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Abstract
The Borsuk-Ulam theorem is a fundamental result in algebraic topology, with applications to
various areas of Mathematics. A classical application of the Borsuk-Ulam theorem is the Ham
Sandwich theorem: The volumes of any n compact sets in Rn can always be simultaneously
bisected by an (n− 1)-dimensional hyperplane.

In this paper, we demonstrate the equivalence between the Borsuk-Ulam theorem and the
Ham Sandwich theorem. The main technical result we show towards establishing the equivalence
is the following: For every odd polynomial restricted to the hypersphere f : Sn → R, there exists
a compact set A ⊆ Rn+1, such that for every x ∈ Sn we have f(x) = vol(A∩H+)−vol(A∩H−),
where H is the oriented hyperplane containing the origin with ~x as the normal. A noteworthy
aspect of the proof of the above result is the use of hyperspherical harmonics.

Finally, using the above result we prove that there exist constants n0, ε0 > 0 such that for
every n ≥ n0 and ε ≤ ε0/

√
48n, any query algorithm to find an ε-bisecting (n − 1)-dimensional

hyperplane of n compact sets in [−n4.51, n4.51]n, even with success probability 2−Ω(n), requires
2Ω(n) queries.
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1 Introduction

The Borsuk-Ulam theorem states that every continuous function from an n-sphere into
Euclidean n-space maps some pair of antipodal points to the same point [6]. This result
has countless applications in Mathematics [21]. In particular it implies the Brouwer’s Fixed
Point Theorem [7, 16] which is the basis of several important results in Economics [5], for
example Nash’s theorem [23]. Soon after the Borsuk-Ulam theorem was established, the
Ham Sandwich theorem was proven using it [28, 29]. The Ham Sandwich theorem states
that the volumes of any n compact sets in Rn can always be simultaneously bisected by an
(n− 1)-dimensional hyperplane. However, as far as we know, there is no result in previous
literature establishing the equivalence of the Borsuk-Ulam theorem and the Ham Sandwich
theorem.
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From a computational perspective, the computation of Brouwer fixed points has been
studied extensively in various models of computations such as the Time/Computational
complexity model [24, 12, 10, 9, 26, 27], the Query complexity model [18, 8, 11, 3, 27], and the
Communication model [25, 4]. From these results one may obtain a reasonable understanding
of the problem of computing equally valued antipodal points in a Borsuk-Ulam function
by utilizing the constructive reduction from the Brouwer fixed point computation problem
[30, 32]. However, computational aspects of the Ham Sandwich theorem have been poorly
understood. In particular, no hardness result or non-trivial lower bounds in any model of
computation are known in literature for the Ham Sandwich problem.

In this paper, we prove that the Borsuk-Ulam theorem and the Ham Sandwich theorem
are indeed equivalent! Moreover, we use this equivalence to prove a query complexity lower
bound on the Ham Sandwich problem.

1.1 Our Results

Our main result is a reduction from the Borsuk-Ulam theorem to the Ham Sandwich theorem.
A key result in establishing the above reduction is that of establishing the equivalence between
the two theorems for polynomial functions:

I Proposition 1. For every polynomial f : Sn → Rn restricted to the hypersphere, there
exist n compact sets A1, . . . , An ⊆ Rn+1, such that for every x ∈ Sn and i ∈ [n], we have the
following:

fi(x)− fi(−x) = vol(Ai ∩H+)− vol(Ai ∩H−),

where fi(x) is the projection of f(x) to the ith coordinate, and H is the oriented hyperplane
containing the origin with ~x as the normal.

After establishing the above result, we use the Stone-Weierstrass theorem to note that
any continuous function can be arbitrarily well approximated by polynomial functions, and
prove the Borsuk-Ulam theorem for all continuous functions.

Next, we consider the Ham Sandwich problem in the query model: the input to the
problem is n compact sets A1, . . . , An ⊆

[
−nk, nk

]n, for some constant k > 0, and each query
is an oriented hyperplane H and the answer is vol(Ai ∩H+)− vol(Ai ∩H−), for all i ∈ [n].
The goal is to find a (n− 1)−dimensional hyperplane H such that each set is ε-bisected by
H, i.e., for all i ∈ [n], we have |vol(Ai ∩H+)− vol(Ai ∩H−)| ≤ ε. We show the following
lower bound for the Ham Sandwich problem:

I Theorem 2. There exist constants n0, ε0 > 0 such that for any n ≥ n0, ε ≤ ε0/
√

48n,
p = 2−Ω(n), and k ≥ 4.51 the following holds: any query algorithm to find an ε-bisecting
(n− 1)-dimensional hyperplane of n compact sets in

[
−nk, nk

]n, even with success probability
p, requires 2Ω(n) queries.

By assuming a notion of Lipschitz continuity, we can show that the number of queries
needed to compute an ε−bisecting hyperplane is 2O(n logn) by querying translations of
hyperplanes over

[
−nk, nk

]n whose normals form an O(ε)-net over Sn. Thus, the above
lower bound is tight up to logarithmic multiplicative factor in the exponent. Furthermore,
we remark here that Theorem 2 is the first nontrivial lower bound for the Ham Sandwich
problem in any model of computation.
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1.2 Our Techniques and Proof Overview
We provide below a proof-sketch of the reduction from the Borsuk-Ulam theorem to the
Ham Sandwich theorem. The basic idea is to find for a given continuous odd function on Sn
taking values in R, a compact measurable set in Rn+1, such that the given function is the
difference of volumes of the set on the positive and negative side of an oriented hyperplane
through the origin. This makes sense as the oriented hyperplanes through the origin are
parametrised by Sn on which its positive unit normal takes values, so we actually get a
continuous odd function on Sn. Then an oriented hyperplane bisects the set if and only if
the given odd function vanishes at the point on Sn corresponding to the positive unit normal
of the hyperplane. In particular, if we have have an odd continuous function from Sn to Rn,
we can make the above argument for every component. Then an oriented hyperplane bisects
the sets if and only if the given odd function taking values in Rn vanishes at the point on Sn
corresponding to the positive unit normal of the hyperplane.

A compact measurable set may be constructed by starting with a solid (n+1)-dimensional
ball of unit radius centred at the origin and then radially scaling it by a continuous function
on Sn taking values in R that is positive everywhere. Then the volume contained in a solid
angle sector would be given by integrating an expression proportional to the (n + 1)-th
power of the scaling function over the region on Sn corresponding to the solid angle sector.
Thus the difference of volumes on either side of a hyperplane is related to the (n + 1)-th
power of the scaling function by a linear integral transform. It turns out that this linear
map becomes diagonal in the basis of hyperspherical harmonics and in order to invert this
integral transform we work in this basis.

Since the basis is infinite-dimensional, there may be issues with convergence. We tackle
this by first constructing the inverse transform for functions that are restrictions of polynomial
functions on Rn+1 to Sn (see Proposition 1), since in these cases, only finitely many elements
in the basis suffice. This means that the reduction of Borsuk-Ulam theorem to the Ham
Sandwich theorem holds for all functions that are restrictions of polynomial functions on Rn+1

to Sn. And then we use the Stone-Weierstrass theorem, which states that any continuous
function on [−1, 1]n+1 may be uniformly approximated using polynomial functions, to extend
the reduction to all continuous functions on Sn.

In order to prove Theorem 2, we start from the randomized query complexity lower
bound recently obtained by Rubinstein [27] (building on the works of Hirsch et al. [18] and
Babichenko [3]) for the computation of approximate fixed points in a Brouwer function in the
Euclidean norm. We then show that computing approximately equal-valued antipodal points
in the query model is as hard as computing approximate fixed points in a Brouwer function
by using Su’s constructive proof of the Brouwer fixed point theorem from the Borsuk-Ulam
theorem [30]. Finally, we use multivariate Bernstein polynomials to approximate the Borsuk-
Ulam function and construct an input of the Ham Sandwich problem from Proposition 1 to
obtain the randomized query complexity lower bound for the Ham-Sandwich problem.

1.3 Related Works
Papadimitriou considered the Ham Sandwich problem in the computational complexity
model: given 2n2 points in general position in Rn, separated into n groups with 2n points
each, find a hyperplane which divides all groups in half. Papadimitriou showed that this
search problem is in the complexity class PPA [24, 1]. However, no hardness result is known
for this problem. On the other hand, there are many algorithms proposed in literature
to solve this problem [13, 20, 33]. In particular, the best known algorithm for finding a
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hyperplane simultaneously bisecting n point-sets A1, . . . , An in Rd, is O
(
|A|d−1) [20], where

A =
⋃
i∈[n]

Ai.

A variant of the Ham-Sandwich problem was considered by Knauer et al.: Given d+ 1
point-sets in Rd, is there a hyperplane which simultaneously bisects all the point-sets? They
showed that this decision problem is NP-hard and W[1]-hard (with respect to d) [19], even
when one of the point-sets is just a single point. However, it is not easy to construct a
meaningful decision version of the Ham Sandwich problem because of its totality.

1.4 Organization of the Paper
This paper is organized as follows. In Section 2, we introduce the notations used in the rest
of the paper, provide some key results about hyperspherical harmonics, and formally describe
the query model of computation. In Section 3, we provide the complete reduction from the
Borsuk-Ulam theorem to the Ham Sandwich theorem. In Section 4, we prove the randomized
query complexity lower bound for the Ham Sandwich problem. Finally, in Section 5, we
conclude by highlighting some open directions for future research.

2 Preliminaries

We formally state the two theorems of interest to this paper.

I Theorem 3 (Borsuk-Ulam Theorem, [6]). Let Sn denote the set of all points on the unit
n-dimensional sphere. If n ≥ 0 then for any continuous mapping f : Sn → Rn there is a
point x ∈ Sn for which f(x) = f(−x).

I Theorem 4 (Ham Sandwich Theorem, [28, 29]). Given n compact sets in Rn there is a
(n− 1)-dimensional hyperplane which bisects each set into two sets of equal measure.

Below, we list some notations and standard definitions that are used through out the
paper.

2.1 Notations
The Lp norm of a vector x ∈ Rn is defined in the standard way as follows:

‖x‖p =

∑
i∈[n]

|xi|p
1/p

.

Moreover, we define Sn = {x ∈ Rn+1 | ‖x‖2 = 1}, Sn∞ = {x ∈ Rn+1 | ‖x‖∞ = 1}, and
Bn = {x ∈ Rn | ‖x‖2 ≤ 1}.

A hyperplane in Rn+1 is the set of solutions of an equation of the form

a0 +
n+1∑
i=1

aixi = 0.

The unit normals of the hyperplane are the vectors ±(a1, a2, . . . , an+1). A choice of one of
the two possible unit normals is said to be an orientation on the hyperplane which is referred
to as being oriented and the chosen unit normal as the positive unit normal (the other one is
said to be the negative unit normal).

The volume of a compact set, assumed to be measurable, is simply its measure.



Karthik C. S. and A. Saha 24:5

2.2 Hyperspherical Harmonics
We gather together some definitions and results we need regarding hyperspherical harmonics.

I Definition 5. A polynomial H`(x1, x2, . . . , xn+1) is homogeneous of degree ` in the n +
1 variables x1, x2, ..., xn+1 provided H`(tx1, tx2, ..., txn+1) = t`H`(x1, x2, ..., xn+1) . The
Laplace operator in Rn+1 is given by ∆n+1 :=

∑n+1
i=1

∂2

∂x2
i
. H`(x1, x2, . . . , xn+1) is called

harmonic if ∆n+1H`(x1, x2, . . . , xn+1) = 0. A hyperspherical harmonic of degree `, denoted
Y

(n+1)
` (ξ), is a harmonic homogeneous polynomial of degree ` in n+ 1 variables restricted to
Sn.

I Claim 6. The dimension of the vector space of hyperspherical harmonics of degree ` on
Sn is M(n, `) where,

M(n, `) =
{

1 if ` = 0,
2`+n−1

`

(
`+n−2
`−1

)
if ` > 0.

Proof. See Theorem 4.4 in [14]. J

I Definition 7. Let Vn+1 be the set of all n+ 1-variate polynomials over R restricted to Sn.

I Claim 8. Vn+1 is an inner product space, with addition and scaling defined for any two
polynomials f, g : Sn → R which are restricted to the n-sphere as follows:

(f + g)(x) = f(x) + g(x),
∀α ∈ R, (α · f)(x) = α · f(x),

〈f, g〉 =
∫
x∈Sn

f(x) · g(x) dx.

Proof. A linear combination of two polynomials is another polynomial. Furthermore, from
the definition of the inner product, it is clear that 〈f, g〉 is symmetric under interchange of
f and g and bilinear. To prove nondegenerateness, we shall show that 〈f, f〉 > 0 whenever
f is not identically zero. Assume that f is not identically zero. Then there must be point
x′ ∈ Sn such that f(x) 6= 0. Because f is continuous there must be an open neighbourhood
around this point such that f2 is positive at all points in the neighbourhood. The integral of
f2 over this neighbourhood is therefore positive and since the integral of f2 ≥ 0 over the
rest of the sphere has to be at least zero, it follows 〈f, f〉 > 0. This completes the proof. J

I Definition 9. For n ≥ 2 and each degree `, the set
{
Y

(n+1)
`,m

∣∣∣∣m ∈ [M(n, `)]
}

is a fixed

orthonormal basis for the vector space of hyperspherical harmonics of degree ` on Sn.

I Claim 10. For every n ≥ 2, and d ∈ Z≥0, the set
{
Y

(n+1)
`,m

∣∣∣∣` ∈ Z≥0, ` ≤ d,m ∈ [M(n, `)]
}

is an orthonormal set spanning all f ∈ Vn+1 of total degree d.

Proof. Since every polynomial can be written as a finite sum of homogeneous polynomials
of various degrees, it suffices to prove the above for the case where f is the restriction of a
homogeneous polynomial f̃ of degree d to Sn. By Theorem 2.18 in [2], we note that there is
a unique decomposition as follows,

f̃(x1, . . . , xn+1) =
bd/2c∑
i=0

Hd−2i(x1, . . . , xn+1)

n+1∑
j=1

x2
j

i

,

SoCG 2017
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where H` is a harmonic homogeneous polynomial of degree `. Restricting to Sn gives the
following:

f =
bd/2c∑
i=0

Hd−2i|Sn .

The restriction H`|Sn is a hyperspherical harmonic of degree ` and so is a (finite) linear
combination of the functions Y (n+1)

`,m where m varies over [M(n, `)]. It follows that f is
a (finite) linear combination of hyperspherical harmonics of degree at most d. Finally,
orthonormality follows from Definition 9 above and Theorem 4.6 in [14]. J

I Lemma 11. For every n ≥ 2, and for any odd function f in Vn+1, let it be written as
follows:

f =
∑
`∈Z≥0

M(n,`)∑
m=1

α`,m · Y (n+1)
`,m .

Then, for every even integer `, we have that α`,m = 0.

Proof. Since f is assumed to be odd, we have that f(x) + f(−x) = 0 for all x ∈ Sn. Since
the sum in the hyperspherical harmonic decomposition of f is finite, we may rearrange the
terms to have

0 =
∑

`∈Zeven
≥0

M(n,`)∑
m=1

α`,m · (Y (n+1)
`,m (x) + Y

(n+1)
`,m (−x))

+
∑
`∈Zodd
≥0

M(n,`)∑
m=1

α`,m · (Y (n+1)
`,m (x) + Y

(n+1)
`,m (−x))

= 2
∑

`∈Zeven
≥0

M(n,`)∑
m=1

α`,m · Y (n+1)
`,m (x) .

Now, for any `′ ∈ Zeven
≥0 , we may multiply the above equation by Y (n+1)

`′,m (x) on both sides
and integrate over Sn so that, by virtue of Claim 10 we have 0 = 2α`′,m. Since `′ ∈ Zeven

≥0
was arbitrary , the result to be proved follows. J

I Definition 12. Let the sign function sgn on the interval [−1, 1] be defined as follows.

∀ξ ∈ [−1, 1], sgn(ξ) =


−1 if ξ < 0,
0 if ξ = 0,
1 if ξ > 0.

I Definition 13. For every ` ∈ Z≥0, n ≥ 2, and ξ ∈ [−1, 1], P (n+1)
` (ξ) is the `th-Gegenbauer

polynomial in n+ 1 dimensions defined as follows:

P
(n+1)
` (ξ) = (−1)`

2` ·
`−1

Π
i=0

(`+ (n− 2)/2− i)
(1− ξ2)(2−n)/2

(
d
dξ

)`
(1− ξ2)`+(n−2)/2.
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I Theorem 14 (Funk-Hecke theorem, [15, 17]). Let x ∈ Sn, f : [−1, 1] → R a bounded
measurable function, and Y (n+1)

` a hyperspherical harmonic polynomial of degree `. Then,∫
y∈Sn

f(〈x, y〉)Y (n+1)
` (y) dy = sn−1Y

(n+1)
` (x) ·

∫ 1

−1
f(t)P (n+1)

` (t)(1− t)n/2−1 dt,

where sn−1 is the volume of the (n− 1)-sphere, i.e., Sn−1.

Proof. See Theorem 4.24 in [14]. J

I Lemma 15. Let x ∈ Sn, f : [−1, 1] → R a bounded measurable function, and Y (n+1)
` a

hyperspherical harmonic polynomial of odd degree `. Then,

Y
(n+1)
` (x) = n

2sn−1
·

(`−1)/2

Π
i=1

(`− 2i+ n+ 1)
(`−1)/2

Π
i=1

(`− 2i)

∫
y∈Sn

sgn(〈x, y〉) · Y (n+1)
` (y) dy.

Proof. Plugging in the sign function in Theorem 14, gives us:∫
y∈Sn

sgn(〈x, y〉)Y (n+1)
` (y) dy = sn−1Y

(n+1)
` (x) ·

∫ 1

−1
sgn(t)P (n+1)

` (t)(1− t)n/2−1 dt.

So it remains to evaluate the below when ` is odd:∫ 1

−1
sgn(t)P (n+1)

` (t)(1− t)n/2−1 dt.

We plug in Definition 13 into the above∫ 1

−1

sgn(t)(−1)`

2` ·
`−1

Π
i=0

(`+ (n− 2)/2− i)

(
d
dt

)`
(1− t2)`+(n−2)/2dt.

When ` is odd, the function under the integral is even, so we have:∫ 1

−1

sgn(t)(−1)`

2` ·
`−1

Π
i=0

(`+ (n− 2)/2− i)

(
d
dt

)`
(1− t2)`+(n−2)/2dt

= 2
∫ 1

0

sgn(t)(−1)`

2` ·
`−1

Π
i=0

(`+ (n− 2)/2− i)

(
d
dt

)`
(1− t2)`+(n−2)/2dt

=
∫ 1

0

(−1)`

2`−1 ·
`−1

Π
i=0

(`+ (n− 2)/2− i)

(
d
dt

)`
(1− t2)`+(n−2)/2dt.

The term under the integral is a total derivative, so the integral may be simplified to (−1)`

2`−1 ·
`−1

Π
i=0

(`+ (n− 2)/2− i)

(
d
dt

)`−1
(1− t2)`+(n−2)/2


t=1

t=0

.
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Note that `+ (n− 2)/2 = (`− 1) + (n+ 2− 2)/2, so we may again use Definition 13 to write
the above as[

− 1
n/2 · (1− t

2)n/2 · P (n+3)
`−1 (t)

]t=1

t=0
.

When t = 1, the expression inside the square brackets vanishes. So all we are left with is
(2/n) · P (n+3)

`−1 (0). The recurrence relation from Proposition 4.21 in [14] tells us that for all
` ≥ 1 we have

(`− 1 + n) · P (n+3)
`−1 (0) + (`− 2) · P (n+3)

`−3 (0) = 0.

This, along with the observation that P (n+3)
0 (0) = 1 may be used to determine P (n+3)

`−1 (0) to
be

P
(n+3)
`−1 (0) =

(`−1)/2

Π
i=1

(`− 2i)
(`−1)/2

Π
i=1

(`− 2i+ n+ 1)

.

This completes the proof. J

2.3 Query Model
In this paper, we refer to the query model as described in [3]: every problem is specified by
the allowed possible inputs, the desired outputs, and the queries which are specified types of
questions that can be asked and by the answers that are provided. A query algorithm, is a
procedure that asks queries in an adaptive manner and generates an output for every input.
For this paper, a highly relevant remark is that there is no computational constraints on the
way the query algorithm generates the next query or the output, given the previous answers.

For randomized query algorithms, errors are allowed in the output. To be precise, we
require that for all inputs, the answer is correct only with probability p < 1. The randomized
query complexity of a problem is the minimal number t such that given an input there exists
a randomized query algorithm that makes at most t queries and outputs the correct answer
with probability p. We denote the randomized query complexity of a problem Π by QCp(Π).
As noted by Babichenko [3] this measure of randomized query complexity is closely related
to another measure: the expected number of queries for outputting the correct answer with
probability p. Therefore, any lower bounds on QCp(Π) can be easily translated to lower
bounds on the expected number of queries.

3 Equivalence of Ham Sandwich and Borsuk-Ulam Theorems

In this section, we give the reduction from the Borsuk-Ulam theorem to the Ham Sandwich
theorem. First, we show the reduction for polynomials restricted to the hypersphere.

I Proposition 1. For every polynomial f : Sn → Rn restricted to the hypersphere, there
exist n compact sets A1, . . . , An ⊆ Rn+1, such that for every x ∈ Sn and i ∈ [n], we have the
following:

fi(x)− fi(−x) = vol(Ai ∩H+)− vol(Ai ∩H−),

where fi(x) is the projection of f(x) to the ith coordinate, and H is the oriented hyperplane
containing the origin with ~x as the normal.
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Proof. We consider n projection functions of f : f1, . . . , fn : Sn → R. Let di be the total
degree of fi. For every i ∈ [n] we define gi(x) = fi(x)− fi(−x). Note that the gis are odd
functions. We define below n new functions h1, . . . , hn : Sn → R from the gis. For every
i ∈ [n], from hi, we construct Ai as follows:

Ai =
{
k · (hi(x1, ..., xn+1) · x1, . . . , hi(x1, ..., xn+1) · xn+1)

∣∣∣(x1, ..., xn+1) ∈ Sn, 0 ≤ k ≤ 1
}
.

Note that we can define the volume of Ai as follows:

vol(Ai) =
∫
y∈Sn

(hi(y))n+1/(n+ 1) dy. (1)

We will now define the his. We fix i ∈ [n]. From Claim 10, we have that gi can be written as
a linear combination of the hyperspherical harmonics.

gi =
∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

α`,m · Y (n+1)
`,m . (2)

Note that in the above decomposition of gi into hyperspherical harmonics, we have that only
the odd spherical harmonics appear in the support (from Lemma 11). Next, we define a
couple of constants (depending on ` and m). For every ` ∈ Zodd

≥0 , where ` ≤ di, we have,

γ` = n

2sn−1
·

(`−1)/2

Π
i=1

(`− 2i+ n+ 1)
(`−1)/2

Π
i=1

(`− 2i)

,

β`,m = α`,m · γ` · (n+ 1), (3)

where sn is the volume of the n-sphere Sn. Let Γi : Sn → R be a function defined as follows:

Γi =
∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

β`,m · Y (n+1)
`,m . (4)

Note that Γi is well defined because f is a polynomial function, which implies gi is a
polynomial function. We have the following bound on Γi:

I Claim 16. Let ψi = max
x∈Sn

|Γi(x)|. Then,

ψi < (n+ 1)(n+7)/2 · (di + 1)3/2 ·
(

1 + di
n

)n
· max
x∈Sn

|gi(x)|.

Finally, we define hi as follows:

hi = n+1
√

(Γi + ψi + 1), (5)

This completes the construction of the n compact sets A1, . . . , An. Fix i ∈ [n]. Let H
be some n-dimensional (oriented) hyperplane containing the origin and let xH be the unit
normal of H.

vol(Ai ∩H+)− vol(Ai ∩H−) = 1
(n+ 1) ·

∫
y∈Sn

sgn(〈xH , y〉) · (hi(y))n+1 dy (From (1))

SoCG 2017
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= 1
(n+ 1) ·

∫
y∈Sn

sgn(〈xH , y〉) · (Γi(y) + ψi + 1) dy (From (5))

= 1
(n+ 1) ·

∫
y∈Sn

sgn(〈xH , y〉) · Γi(y) dy

= 1
(n+ 1) ·

∫
y∈Sn

sgn(〈xH , y〉) ·

 ∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

β`,m · Y (n+1)
`,m (y)

 dy (From (4))

=
∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

β`,m ·
1

(n+ 1) ·
∫
y∈Sn

sgn(〈xH , y〉) · Y (n+1)
`,m (y) dy

=
∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

β`,m/γ` ·
1

(n+ 1) · Y
(n+1)
`,m (xH) (From Lemma 15)

=
∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

α`,m · Y (n+1)
`,m (xH) (From (3))

= gi(xH) = fi(xH)− fi(−xH) (From (2))

This completes the proof. J

Below we provide the complete reduction from the Borsuk-Ulam theorem to the Ham
Sandwich theorem.

I Theorem 17 (Theorem 3 restated for n ≥ 3). For every n ≥ 3, if f : Sn → Rn is continuous
then there exists an x ∈ Sn such that, f(−x) = f(x).

Proof. Given a continuous function fi : Sn → R we may use the Tietze Extension Theorem
to extend it to a continuous function f̃i on [−1, 1]n+1 and then use the Stone-Weierstrass
theorem to note that for any real ε > 0 we may find an (n+ 1)-variate polynomial function
pi such that |f̃i(x) − pi(x)| < ε for all x := (x1, . . . , xn+1) ∈ [−1, 1]n+1. In particular
|f(x)− p(x)| < ε for all x ∈ Sn.

By Proposition 1, we know that there exist n compact sets A1, . . . , An ⊆ Rn+1, such that
for every x ∈ Sn and i ∈ [n], we have pi(x)− pi(−x) = vol(Ai ∩H+)− vol(Ai ∩H−) where
x is the unit normal of the oriented hyperplane H. We introduce another compact set An+1
which is a closed ball centred at the origin, so that any hyperplane bisecting its volume has
to necessarily pass through the origin.

By the Ham Sandwich Theorem, we know that there is an oriented hyperplane H ′ such
that vol(Ai ∩H ′+) = vol(Ai ∩H ′−) for all i ∈ [n+ 1], which is to say, there is an oriented
hyperplane H ′ through the origin such that vol(Ai ∩H ′+) = vol(Ai ∩H ′−) for all i ∈ [n].
But this means that pi(x′)− pi(−x′) = 0 for all i ∈ [n] (where x′ is the unit normal of H ′),
and so |fi(x′)− fi(−x′)| < 2ε for all i ∈ [n]. The map x 7→ |fi(x)− fi(−x)| where x ∈ Sn is
continuous and defined on a compact domain. So it must attain a minimum value somewhere,
which is nonnegative. But we have already shown that |fi(x)− fi(−x)| < 2ε for all ε > 0
and i ∈ [n]. It follows that the minimum value attained by this map is 0 (simultaneously
for all i ∈ [n]). Let it be attained at x′′ ∈ Sn. Then f(x′′) = f(−x′′). This completes the
proof. J
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4 Query Complexity Lower Bounds

In this section, we show query complexity lower bounds on the Ham Sandwich problem, by
using the connection established through Proposition 1.

4.1 Borsuk-Ulam problem in Query Model
The query complexity of computing an approximate fixed-point of a Brouwer function in the
max norm was studied by Hirsch et al. [18] in the deterministic setting. Recently, Babichenko
[3] extended their lower bounds to the randomized setting. Rubinstein [27], furthered this
direction to the case of fixed point computation in the Euclidean norm. Before stating the
result of Rubinstein, we formally define the approximate fixed point problem in the query
model as follows:

AFPQ(n, λ, ε) Problem:
Input: λ-Lipschitz function f : [−1, 1]n → [−1, 1]n.
Output: x ∈ [−1, 1]n such that ‖f(x)− x‖22 ≤ ε · n.
Queries: Each query is a point x ∈ [−1, 1]n and the answer is f(x).

We have the following lower bound on QCp(AFPQ(n, λ, ε)).

I Theorem 18 (Rubinstein [27]). There exist constants ε0, λ0, n0 > 0 such that for any
n ≥ n0, ε ≤ ε0, and λ ≥ λ0, and for p = 2−Ω(n) the following holds:

QCp(AFPQ(n, λ, ε)) = 2Ω(n).

Next, we define the approximate equally valued antipodal point problem in the query
model as follows:

AAPQ(n, λ, ε) Problem:
Input: λ-Lipschitz function f :

√
n+ 1 · Sn →

√
n ·Bn.

Output: x ∈ Bn such that ‖f(x)− f(−x)‖22 ≤ ε · n.
Queries: Each query is a point x ∈

√
n+ 1 · Sn and the answer is f(x).

We have the following lower bound on QCp(AAPQ(n, λ, ε)).

I Theorem 19. There exist constants ε0, n0 > 0 such that for any n ≥ n0, ε ≤ ε0/12n, and
λ ≥ 5

√
n, and for p = 2−Ω(n) the following holds:

QCp(AAPQ(n, λ, ε)) = 2Ω(n).

Proof. We show that QCp(AFPQ(n, λ, ε)) ≤ 2 · QCp

(
AAPQ (n, 5√n, ε2/12n

))
by using

the construction of Su [30]. We start from a λ-Lipschitz continuous function f : [−1, 1]n →
[−1, 1]n which is the input of AFPQ and have the following reduction to AAPQ.

Adopting Su’s Construction. Below, we describe the function gSu : Sn∞ → [−3, 3]n, con-
structed by Su to build an instance of Borsuk-Ulam by starting from an instance of Brouwer.
Let P be the projection function on to the first n coordinates. We define gSu as follows:

gSu(x1, . . . , xn+1) =



P (x)− f(P (x)) if xn+1 = 1,
P (x) + f(P (−x)) if xn+1 = −1,
P (x) + gSu (P (x),1)+gSu (P (x),−1)

2 if xn+1 = 0,
xn+1 · gSu(P (x), 1) + (1− xn+1) · gSu(P (x), 0) if 0 ≤ xn+1 ≤ 1,
−xn+1 · gSu(P (x),−1) + (1 + xn+1) · gSu(P (x), 0) if -1 ≤ xn+1 ≤ 0.

SoCG 2017
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Using the above function, we can construct g :
√
n+ 1 · Sn → [−1, 1]n from gSu as follows:

∀x ∈
√
n+ 1 · Sn, g(x) = 1

3 · gSu

(
x

‖x‖∞

)
.

First, we observe that g is an odd function:

I Claim 20. For every x ∈
√
n+ 1 · Sn, we have g(x) = −g(−x).

Next, we compute the Lipschitz constant of g below.

I Claim 21. g is 5
√
n-Lipschitz continuous.

Furthermore, we note that we can obtain approximate fixed points of f from approximate
equally valued antipodal points of g in a natural way as follows.

I Claim 22. Fix x ∈
√
n+ 1 · Sn. If ‖g(x)− g(−x)‖22 ≤ (ε2/12n) · n then,∥∥∥∥f (P ( x

‖x‖∞

))
− P

(
x

‖x‖∞

)∥∥∥∥2

2
≤ ε · n.

Finally, the proof follows by noting that in order to compute g at a point, we need to
query f in at most two points. J

Note that there is an easy deterministic query algorithm for AAPQ(n, λ, ε) which solves
it with

(
1 + 4λ√

ε

)n+1
queries by building an

√
ε

2λ -net (Lemma 5.2 in [31]). In other words we

have that QCp

(
AAPQ (n, λ, ε)

)
≤ 2O(n logn). Thus, the above lower bound is tight up to

logarithmic multiplicative factor in the exponent.
Finally, we define the problem of interest for this section below.

4.2 Ham Sandwich Problem in Query Model
The approximate bisecting hyperplane problem in the query model is defined as follows:

ABHQ(n, k, ε) Problem:
Input: n compact sets A1, . . . , An ⊆

[
−nk, nk

]n.
Output: (n − 1)-dimensional hyperplane H such that ∀i ∈ [n], |vol(Ai ∩ H+) −
vol(Ai ∩H−)| ≤ ε.
Queries: Each query is an oriented hyperplane H and the answer is vol(Ai ∩H+)−
vol(Ai ∩H−), for every i ∈ [n].

We have the following lower bound on QCp(ABHQ(n, k, ε)).

I Theorem 2. There exist constants n0, ε0 > 0 such that for any n ≥ n0, ε ≤ ε0/
√

48n,
p = 2−Ω(n), and k ≥ 4.51 the following holds: any query algorithm to find an ε-bisecting
(n− 1)-dimensional hyperplane of n compact sets in

[
−nk, nk

]n, even with success probability
p, requires 2Ω(n) queries.

Proof. We show QCp

(
AAPQ (n, 5√n, ε2/12n

))
≤ 2 ·QCp

(
ABHQ (n+ 1, 4.51, ε/

√
48n

))
by using Proposition 1. We start from a 5

√
n-Lipschitz continuous function f :

√
n+ 1 ·Sn →√

n ·Bn which is the input of AAPQ and have the following preprocessing step.
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Preprocessing Step. Fix i ∈ [n]. Let fi :
√
n+ 1 ·Sn → [−

√
n,
√
n] be the i-th component

of f which is 5
√
n-Lipschitz continuous. We define f ′i as follows: f ′i(x) = fi(

√
n+ 1 · x).

Note that f ′i is a function from Sn to
√
n ·Bn and is (

√
n+ 1 · 5

√
n)-Lipschitz continuous.

Now by the Tietze extension theorem f ′i may be extended to a continuous function f̃ ′i on
the cube [−1, 1]n+1 ⊃ Sn without increasing the Lipschitz constant [22]. Then from the
Stone-Weierstrass theorem we have that for any ε′ > 0 there is a polynomial function p̃i :
[−1, 1]n+1 → R such that |f̃ ′i(x)−p̃i(x)| ≤ ε′ for all x ∈ [−1, 1]n+1. Let pi be the restriction of
p̃i to Sn. So, we have a polynomial function pi : Sn → [−

√
n−ε/4

√
12n,

√
n+ε/4

√
12n] such

that for all x ∈ Sn, we have |f ′i(x)−pi(x)| ≤ ε/4
√

12n by setting ε′ = ε/4
√

12n. Furthermore,
we have that the degree of pi is O(n5) (using multivariate Bernstein polynomials).

Adopting Proposition 1. We have from Proposition 1, that there exist n compact sets
A′1, . . . , A

′
n ⊆ Rn+1, such that for every x ∈ Sn and i ∈ [n], pi(x)− pi(−x) = vol(A′i ∩H+)−

vol(A′i ∩H−), where H is the oriented hyperplane containing the origin with ~x as the normal.
Fix i ∈ [n]. From the construction in proof of Proposition 1, we have that Ai ⊆ [−h?i , h?i ]n+1,
where h?i = max

x∈Sn
|hi(x)|. We have the following upper bound on h?i from Claim 16:

h?i = max
x∈Sn

|hi(x)| = max
x∈Sn

∣∣∣ n+1
√

Γi(x) + ψi + 1
∣∣∣ ≤ n+1

√
2ψi + 1

= O
(

n+1
√
ψi

)
= O

(
n+1
√

(n)(n+1)/2 · n+1√
n4n
)

= O
(√

n · n+1√
n4n
)

= O
(
n4.5) .

Next, we know that |f ′i(x)− f ′i(−x)| ≤ |pi(x)− pi(−x)|+ ε/2
√

12n. Thus, we have:

|f ′i(x)− f ′i(−x)| ≤
∣∣vol(Ai ∩H+)− vol(Ai ∩H−)

∣∣+ ε/2
√

12n.

Therefore, if we are given some hyperplane H such that for every i ∈ [n], we have
|vol(Ai ∩H+)− vol(Ai ∩H−)| ≤ ε/2

√
12n then, we would obtain x ∈ Sn such that |f ′i(x)−

f ′i(−x)| ≤ ε/
√

12n. This implies that ‖f(
√
n+ 1 · x)− f(−

√
n+ 1 · x)‖22 ≤ ε2/12. Finally,

we complete the proof by noting that to answer vol(Ai ∩H+)− vol(Ai ∩H−) for an oriented
hyperplane H, we need to query f in at most two points. J

We note here that one can construct an easier (to solve) problem than ABHQ, namely
the Euclidean−ABHQ (or ABHQ

E for short), where we need to find an (n− 1)-dimensional

hyperplane H such that
(
Ei∈[n]

[
(vol(Ai ∩H+)− vol(Ai ∩H−))2

])1/2
≤ ε, and still obtain

the same lower bounds as in Theorem 2, i.e., QCp

(
ABHQ

E
(
n+ 1, 4.51, ε/

√
48n

))
= 2Ω(n)

by starting from QCp

(
AAPQ (n, 5√n, ε2/12n

))
.

Finally, we remark that one could obtain lower bounds for the case of fixed dimension,
i.e., when the compacts objects to be bisected are in a fixed dimension, by using the lower
bounds of Chen and Teng [11] for the fixed point computation in Brouwer functions of fixed
dimension.

5 Discussion and Conclusion

In this paper, we established the equivalence between the Borsuk-Ulam theorem and the
Ham Sandwich theorem. Further, we used this equivalence to prove a lower bound on the
Ham Sandwich problem in the query model.

SoCG 2017
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It would be interesting to extend our lower bounds for the Ham Sandwich problem in
the query model where the queries are to a membership oracle. Finally, showing that the
Ham Sandwich problem introduced by Papadimitriou [24] is PPA-complete, remains an
interesting and challenging open problem.
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