
Range-Clustering Queries∗†

Mikkel Abrahamsen1, Mark de Berg2, Kevin Buchin3,
Mehran Mehr4, and Ali D. Mehrabi5

1 Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark
miab@di.ku.dk

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
mdberg@win.tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
k.a.buchin@tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
m.mehr@tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
amehrabi@win.tue.nl

Abstract
In a geometric k-clustering problem the goal is to partition a set of points in Rd into k subsets
such that a certain cost function of the clustering is minimized. We present data structures for
orthogonal range-clustering queries on a point set S: given a query box Q and an integer k > 2,
compute an optimal k-clustering for S ∩Q. We obtain the following results.

We present a general method to compute a (1+ε)-approximation to a range-clustering query,
where ε > 0 is a parameter that can be specified as part of the query. Our method applies
to a large class of clustering problems, including k-center clustering in any Lp-metric and a
variant of k-center clustering where the goal is to minimize the sum (instead of maximum) of
the cluster sizes.
We extend our method to deal with capacitated k-clustering problems, where each of the
clusters should not contain more than a given number of points.
For the special cases of rectilinear k-center clustering in R1, and in R2 for k = 2 or 3, we
present data structures that answer range-clustering queries exactly.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Geometric data structures, clustering, k-center problem

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.5

1 Introduction

Motivation

The range-searching problem is one of the most important and widely studied problems
in computational geometry. In the standard setting one is given a set S of points in Rd,
and a query asks to report or count all points inside a geometric query range Q. In many

∗ A full version of the paper is available at http://arxiv.org/abs/1705.06242.
† MA is partly supported by Mikkel Thorup’s Advanced Grant from the Danish Council for Independent

Research under the Sapere Aude research career programme. MdB, KB, MM, and AM are supported by
the Netherlands Organisation for Scientific Research (NWO) under project no. 024.002.003, 612.001.207,
022.005025, and 612.001.118 respectively.

© Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and Ali D. Mehrabi;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 5; pp. 5:1–5:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84868963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.5
http://arxiv.org/abs/1705.06242
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Range-Clustering Queries

applications, however, one would like to perform further analysis on the set S ∩Q, to obtain
more information about its structure. Currently one then has to proceed as follows: first
perform a range-reporting query to explicitly report S ∩Q, then apply a suitable analysis
algorithm to S ∩ Q. This two-stage process can be quite costly, because algorithms for
analyzing geometric data sets can be slow and S ∩Q can be large. To avoid this we would
need data structures for what we call range-analysis queries, which directly compute the
desired structural information about S ∩Q. In this paper we develop such data structures
for the case where one is interested in a cluster-analysis of S ∩Q.

Clustering is a fundamental task in data analysis. It involves partitioning a given data
set into subsets called clusters, such that similar elements end up in the same cluster. Often
the data elements can be viewed as points in a geometric space, and similarity is measured
by considering the distance between the points. We focus on clustering problems of the
following type. Let S be a set of n points in Rd, and let k > 2 be a natural number. A
k-clustering of S is a partitioning C of S into at most k clusters. Let Φ(C) denote the cost
of C. The goal is now to find a clustering C that minimizes Φ(C). Many well-known geometric
clustering problems are of this type. Among them is the k-center problem. In the Euclidean
k-center problem Φ(C) is the maximum cost of any of the clusters C ∈ C, where the cost of C
is the radius of its smallest enclosing ball. Hence, in the Euclidean k-center problem we want
to cover the point set S by k congruent balls of minimum radius. The rectilinear k-center
problem is defined similarly except that one considers the L∞-metric; thus we want to cover S
by k congruent axis-aligned cubes1 of minimum size. The k-center problem, including the
important special case of the 2-center problem, has been studied extensively, both for the
Euclidean case (e.g. [2, 8, 12, 17, 16, 22]) and for the rectilinear case (e.g. [7, 23]).

All papers mentioned above – in fact, all papers on clustering that we know of – consider
clustering in the single-shot version. We are the first to study range-clustering queries on a
point set S: given a query range Q and a parameter k, solve the given k-clustering problem
on S ∩Q. We study this problem for the case where the query range is an axis-aligned box.

Related work

Range-analysis queries can be seen as a very general form of range-aggregate queries. In
a range-aggregate query, the goal is to compute some aggregate function F (S ∩ Q) over
the points in the query range. The current state of the art typically deals with simple
aggregate functions of the following form: each point p ∈ S has a weight w(p) ∈ R, and
F (S ∩Q) :=

⊕
p∈S∩Q w(p), where ⊕ is a semi-group operation. Such aggregate functions

are decomposable, meaning that F (A ∩ B) can be computed from F (A) and F (B), which
makes them easy to handle using existing data structures such as range trees.

Only some, mostly recent, papers describe data structures supporting non-decomposable
analysis tasks. Several deal with finding the closest pair inside a query range (e.g. [1, 10, 13]).
However, the closest pair does not give information about the global shape or distribution
of S ∩Q, which is what our queries are about. The recent works by Brass et al. [5] and by
Arya et al. [4] are more related to our paper. Brass et al. [5] present data structures for
finding extent measures, such the width, area or perimeter of the convex hull of S ∩Q, or
the smallest enclosing disk. (Khare et al. [18] improve the result on smallest-enclosing-disk
queries.) These measures are strictly speaking not decomposable, but they depend only on

1 Throughout the paper, when we speak of cubes (or squares, or rectangles, or boxes) we always mean
axis-aligned cubes (or squares, or rectangles, or boxes).

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:3

the convex hull of S ∩Q and convex hulls are decomposable. A related result is by Nekrich
and Smid [20], who present a data structure that returns an ε-coreset inside a query range.
The measure studied by Arya et al. [4], namely the length of the MST of S ∩Q, cannot be
computed form the convex hull either: like our range-clustering queries, it requires more
information about the structure of the point set. Thus our paper continues the direction set
out by Arya et al., which is to design data structures for more complicated analysis tasks
on S ∩Q.

Our contribution

Our main result is a general method to answer approximate orthogonal range-clustering
queries in Rd. Here the query specifies (besides the query box Q and the number of
clusters k) a value ε > 0; the goal then is to compute a k-clustering C of S ∩ Q with
Φ(C) 6 (1 + ε) · Φ(Copt), where Copt is an optimal clustering for S ∩Q. Our method works
by computing a sample R ⊆ S ∩Q such that solving the problem on R gives us the desired
approximate solution. We show that for a large class of cost functions Φ we can find such a
sample of size only O(k(f(k)/ε)d), where f(k) is a function that only depends on the number
of clusters. This is similar to the approach taken by Har-Peled and Mazumdar [15], who
solve the (single-shot) approximate k-means and k-median problem efficiently by generating
a coreset of size O((k/εd) · logn). A key step in our method is a procedure to efficiently
compute a lower bound on the value of an optimal solution within the query range. The class
of clustering problems to which our method applies includes the k-center problem in any
Lp-metric, variants of the k-center problem where we want to minimize the sum (rather than
maximum) of the cluster radii, and the 2-dimensional problem where we want to minimize
the maximum or sum of the perimeters of the clusters. Our technique allows us, for instance,
to answer rectilinear k-center queries in the plane in O((1/ε) logn+ 1/ε2) for k = 2 or 3, in
O((1/ε) logn+ (1/ε2)polylog(1/ε)) for k = 4 or 5, and in O((k/ε) logn+ (k/ε)O(

√
k)) time

for k > 3. We also show that for the rectilinear (or Euclidean) k-center problem, our method
can be extended to deal with the capacitated version of the problem. In the capacitated
version each cluster should not contain more than α · (|S ∩Q|/k) points, for a given α > 1.

In the second part of the paper we turn our attention to exact solutions to range-clustering
queries. Here we focus on rectilinear k-center queries – that is, range-clustering queries for
the rectilinear k-center problem – in R1 and R2. We present two linear-size data structures
for queries in R1; one has O(k2 log2 n) query time, the other has O(3k logn) query time. For
queries in R2 we present a data structure that answers 2-center queries in O(logn) time, and
one that answers 3-center queries in O(log2 n) time. Both data structures use O(n logε n)
storage, where ε > 0 is an arbitrary small (but fixed) constant.

2 Approximate Range-Clustering Queries

In this section we present a general method to answer approximate range-clustering queries.
We start by defining the class of clustering problems to which it applies.

Let S be a set of n points in Rd and let Part(S) be the set of all partitions of S. Let
Partk(S) be the set of all partitions into at most k subsets, that is, all k-clusterings of S.
Let Φ : Part(S) 7→ R>0 be the cost function defining our clustering problem, and define

Optk(S) := min
C∈Partk(S)

Φ(C)

to be the minimum cost of any k-clustering. Thus the goal of a range-clustering query with
query range Q and parameter k > 2 is to compute a clustering C ∈ Partk(SQ) such that

SoCG 2017

5:4 Range-Clustering Queries

Φ(C) = Optk(SQ), where SQ := S ∩Q. From now on we use SQ as a shorthand for S ∩Q.
The method presented in this section gives an approximate answer to such a query: for a
given constant ε > 0, which can be specified as part of the query, the method will report a
clustering C ∈ Partk(SQ) with Φ(C) 6 (1 + ε) ·Optk(SQ).

To define the class of clusterings to which our method applies, we will need the concept
of r-packings [14]. Actually, we will use a slightly weaker variant, which we define as follows.
Let |pq| denote the Euclidean distance between two points p and q. A subset R ⊆ P of a
point set P is called a weak r-packing for P , for some r > 0, if for any point p ∈ P there
exists a packing point q ∈ R such that |pq| 6 r. (The difference with standard r-packings is
that we do not require that |qq′| > r for any two points q, q′ ∈ R.) The clustering problems
to which our method applies are the ones whose cost function is regular, as defined next.

I Definition 1. A cost function Φ : Part(S) 7→ R>0 is called (c, f(k))-regular, if there is a
constant c and a function f : N>2 7→ R>0 such that the followings hold.

For any clustering C ∈ Part(S), we have

Φ(C) > c ·max
C∈C

diam(C),

where diam(C) = maxp,q∈C |pq| denotes the Euclidean diameter of the cluster C. We call
this the diameter-sensitivity property.
For any subset S′ ⊆ S, any weak r-packing R of S′, and any k > 2, we have that

Optk(R) 6 Optk(S′) 6 Optk(R) + r · f(k).

Moreover, given a k-clustering C ∈ Partk(R) we can compute a k-clustering C∗ ∈ Partk(S′)
with Φ(C∗) 6 Φ(C) + r · f(k) in time Texpand(n, k). We call this the expansion property.

Examples

Many clustering problems have regular cost functions, in particular when the cost function is
the aggregation – the sum, for instance, or the maximum – of the costs of the individual
clusters. Next we give some examples.

Rectilinear and other k-center problems. For a cluster C, let radiusp(C) denote the
radius of the minimum enclosing ball of C in the Lp-metric. In the L∞-metric, for
instance, radiusp(C) is half the edge length of a minimum enclosing axis-aligned cube
of C. Then the cost of a clustering C for the k-center problem in the Lp-metric is
Φmax
p (C) = maxC∈C radiusp(C). One can easily verify that the cost function for the rectilin-

ear k-center problem is (1/(2
√
d), 1)-regular, and for the Euclidean k-center problem it is

(1/2, 1)-regular. Moreover, Texpand(n, k) = O(k) for the k-center problem, since we just have
to scale each ball by adding r to its radius.2 (In fact Φmax

p (C) is regular for any p.)

Min-sum variants of the k-center problem. In the k-center problem the goal is to minimize
maxC∈C radiusp(C). Instead we can also minimize Φsum

p (C) :=
∑
C∈C radiusp(C), the sum

of the cluster radii. Also these costs functions are regular; the only difference is that the
expansion property is now satisfied with f(k) = k, instead of with f(k) = 1. Another
interesting variant is to minimize

(∑
C∈C radius2(C)2)1/2, which is (1/(2

√
d),
√
k)-regular.

2 This time bound only accounts for reporting the set of balls that define the clustering. If we want to
report the clusters explicitly, we need to add an O(nk) term.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:5

Minimum perimeter k-clustering problems. For a cluster C of points in R2, define per(C)
to be the length of the perimeter of the convex hull of C. In the minimum perimeter-sum
clustering problem the goal is to compute a k-clustering C such that Φper :=

∑
C∈C per(C) is

minimized [6]. This cost function is (2, 2πk)-regular. Indeed, if we expand the polygons in a
clustering C of a weak r-packing R by taking the Minkowski sum with a disk of radius r,
then the resulting shapes cover all the points in S. Each perimeter increases by 2πr in this
process. To obtain a clustering, we then assign each point to the cluster of its closest packing
point, so Texpand(n, k) = O(n logn).

Non-regular costs functions. Even though many clustering problems have regular costs
functions, not all clustering problems do. For example, the k-means problem does not have a
regular cost function. Minimizing the the max or sum of the areas of the convex hulls of the
clusters is not regular either.

Our data structure and query algorithm

We start with a high-level overview of our approach. Let S be the given point set on which
we want to answer range-clustering queries, and let Q be the query range. We assume we
have an algorithm SingleShotClustering(P, k) that computes an optimal solution to the
k-clustering problem (for the given cost function Φ) on a given point set P . (Actually, it is
good enough if SingleShotClustering(P, k) gives a (1 + ε)-approximation.) Our query
algorithm proceeds as follows.

ClusterQuery(k,Q, ε)
1: Compute a lower bound lb on Optk(SQ).
2: Set r := ε · lb/f(k) and compute a weak r-packing RQ on SQ.
3: C := SingleShotClustering(RQ, k).
4: Expand C into a k-clustering C∗ of cost at most Φ(C) + r · f(k) for SQ.
5: return C∗.

Note that Step 4 is possible because Φ is (c, f(k))-regular. The following lemma is immediate.

I Lemma 2. Φ(C∗) 6 (1 + ε) ·Optk(SQ).

Next we show how to perform Steps 1 and 2: we will describe a data structure that allows
us to compute a suitable lower bound lb and a corresponding weak r-packing, such that the
size of the r-packing depends only on ε and k but not on |SQ|.

Our lower bound and r-packing computations are based on so-called cube covers. A cube
cover of SQ is a collection B of interior-disjoint cubes that together cover all the points in
SQ and such that each B ∈ B contains at least one point from SQ (in its interior or on its
boundary). Define the size of a cube B, denoted by size(B), to be its edge length. The
following lemma follows immediately from the fact that the diameter of a cube B in Rd is√
d · size(B).

I Lemma 3. Let B be a cube cover of SQ such that size(B) 6 r/
√
d for all B ∈ B. Then

any subset R ⊆ SQ containing a point from each cube B ∈ B is a weak r-packing for S.

Our next lemma shows we can find a lower bound on Optk(SQ) from a suitable cube cover.

I Lemma 4. Suppose the cost function Φ is (c, f(k))-regular. Let B be a cube cover of SQ
such that |B| > k2d. Then Optk(SQ) > c ·minB∈B size(B).

SoCG 2017

5:6 Range-Clustering Queries

Proof. For two cubes B,B′ such that the maximum xi-coordinate of B is at most the
minimum xi-coordinate of B′, we say that B is i-below B′ and B′ is i-above B. We denote
this relation by B ≺i B′. Now consider an optimal k-clustering Copt of SQ. By the pigeonhole
principle, there is a cluster C ∈ Copt containing points from at least 2d + 1 cubes. Let BC be
the set of cubes that contain at least one point in C.

Clearly, if there are cubes B,B′, B′′ ∈ BC such that B′ ≺i B ≺i B′′ for some 1 6 i 6 d,
then the cluster C contains two points (namely from B′ and B′′) at distance at least size(B)
from each other. Since Φ is (c, f(k))-regular this implies that Φ(Copt) > c · size(B), which
proves the lemma.

Now suppose for a contradiction that such a triple B′, B,B′′ does not exist. Then we can
define a characteristic vector Γ(B) = (Γ1(B), . . . ,Γd(B)) for each cube B ∈ BC , as follows:

Γi(B) =
{

0 if no cube B′ ∈ BC is i-below B

1 otherwise

Since the number of distinct characteristic vectors is 2d < |BC |, there must be two cubes
B1, B2 ∈ BC with identical characteristic vectors. However, any two interior-disjoint cubes
can be separated by an axis-parallel hyperplane, so there is at least one i ∈ {1, . . . , d}
such that B1 ≺i B2 or B2 ≺i B1. Assume w.l.o.g. that B1 ≺i B2, so Γi(B2) = 1. Since
Γ(B1) = Γ(B2) there must be a cube B3 with B3 ≺i B1. But then we have a triple
B3 ≺i B1 ≺i B2, which is a contradiction. J

Next we show how to efficiently perform Steps 1 and 2 of ClusterQuery. Our algorithm
uses a compressed octree T (S) on the point set S, which we briefly describe next.

For an integer s, let Gs denote the grid in Rd whose cells have size 2s and for which the
origin O is a grid point. A canonical cube is any cube that is a cell of a grid Gs, for some
integer s. A compressed octree on a point set S in Rd contained in a canonical cube B is a
tree-like structure defined recursively, as follows.

If |S| 6 1, then T (S) consists of a single leaf node, which corresponds to the cube B.
If |S| > 1, then consider the cubes B1, . . . , B2d that result from cutting B into 2d
equal-sized cubes.

If at least two of the cubes Bi contain at least one point from S then T (S) consists of
a root node with 2d children v1, . . . , v2d , where vi is the root of a compressed octree
for3 Bi ∩ S.
If all points from S lie in the same cube Bi, then let Bin ⊆ Bi be the smallest canonical
cube containing all points in S. Now T (S) consists of a root node with two children:
one child v which is the root of a compressed octree for S inside Bin, and one leaf
node w which represents the donut region B \Bin.

A compressed octree for a set S of n points in any fixed dimension can be computed in
O(n logn) time, assuming a model of computation where the smallest canonical cube of
two points can be computed in O(1) time [14, Theorem 2.23]. For a node v ∈ T (S), we
denote the cube or donut corresponding to v by Bv, and we define Sv := Bv ∩ S. It will be
convenient to slightly modify the compressed quadtree by removing all nodes v such that
Sv = ∅. (These nodes must be leaves.) Note that this removes all nodes v such that Bv
is a donut. As a result, the parent of a donut node now has only one child. The modified
tree T (S) – with a slight abuse of terminology we still refer to T (S) as a compressed octree

3 Here we assume that points on the boundary between cubes are assigned to one of these cubes in a
consistent manner.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:7

Algorithm 1 Algorithm for Steps 1 and 2 of ClusterQuery, for a (c, f(k))-regular cost
function.

1: Binner := Broot(T (S)) and Bleaf := ∅.
2: B Phase 1: Compute a lower bound on Optk(SQ).
3: while |Binner ∪ Bleaf| 6 k22d and Binner 6= ∅ do
4: Remove a largest cube Bv from Binner. Let v be the corresponding node.
5: if Bv 6⊆ Q then
6: Compute bb(SQ ∩Bv), the bounding box of SQ ∩Bv.
7: Find the deepest node u such that bb(SQ ∩Bv) ⊆ Bu and set v := u.
8: end if
9: For each child w of v such that Bw ∩ SQ 6= ∅, insert Bw into Binner if w is an

internal node and insert Bw into Bleaf if w is a leaf node.
10: end while
11: lb := c ·maxBv∈Binner size(Bv) .
12: B Phase 2: Compute a suitable weak r-packing.
13: r := ε · lb/f(k).
14: while Binner 6= ∅ do
15: Remove a cube Bv from Binner and handle it as in lines 5–9, with the following

change: if size(Bw) 6 r/
√
d then always insert Bw into Bleaf (not into Binner).

16: end while
17: For each cube Bv ∈ Bleaf pick a point in SQ ∩Bv and put it into RQ.
18: return RQ.

– has the property that any internal node has at least two children. We augment T (S) by
storing at each node v an arbitrary point p ∈ Bv ∩ S.

Our algorithm descends into T (S) to find a cube cover B of SQ consisting of canonical
cubes, such that B gives us a lower bound on Optk(SQ). In a second phase, the algorithm
then refines the cubes in the cover until they are small enough so that, if we select one point
from each cube, we get a weak r-packing of SQ for the appropriate value of r. The details are
described in Algorithm 1, where we assume for simplicity that |SQ| > 1. (The case |SQ| 6 1
is easy to check and handle.)

Note that we continue the loop in lines 3–9 until we collect k22d cubes (and not k2d, as
Lemma 4 would suggest) and that in line 11 we take the maximum cube size (instead of the
minimum, as Lemma 4 would suggest).

I Lemma 5. The value lb computed by Algorithm 1 is a correct lower bound on Optk(SQ),
and the set RQ is a weak r-packing for r = ε · lb/f(k) of size O(k(f(k)/(c ε))d).

Proof. As the first step to prove that lb is a correct lower bound, we claim that the loop in
lines 3–9 maintains the following invariant: (i)

⋃
(Binner ∪ Bleaf) contains all points in SQ,

and (ii) each B ∈ Binner contains at least two points from SQ and each B ∈ Bleaf contains
exactly one point from SQ. This is trivially true before the loop starts, under our assumption
that |SQ| > 2. Now suppose we handle a cube Bv ∈ Binner. If Bv ⊆ Q then we insert the
cubes Bw of all children into Binner or Bleaf, which restores the invariant. If Bv 6⊆ Q then
we first replace v by u. The condition bb(SQ ∩Bv) ⊆ Bu guarantees that all points of SQ
in Bv are also in Bu. Hence, if we then insert the cubes Bw of u’s children into Binner or
Bleaf, we restore the invariant. Thus at any time, and in particular after the loop, the set
Binner ∪ Bleaf is a cube cover of SQ.

SoCG 2017

5:8 Range-Clustering Queries

To complete the proof that lb is a correct lower bound we do not work with the set
Binner∪Bleaf directly, but we work with a set B defined as follows. For a cube Bv ∈ Binner∪Bleaf,
define parent(Bv) to be the cube Bu corresponding to the parent node u of v. For each
cube Bv ∈ Binner ∪ Bleaf we put one cube into B, as follows. If there is another cube
Bw ∈ Binner ∪ Bleaf such that parent(Bw) (parent(Bv), then we put Bv itself into B, and
otherwise we put parent(Bv) into B. Finally, we remove all duplicates from B. Since
Binner ∪Bleaf is a cube cover for SQ – that is, the cubes in Binner ∪Bleaf are disjoint and they
cover all points in SQ – the same is true for B. Moreover, the only duplicates in B are cubes
that are the parent of multiple nodes in Binner ∪ Bleaf, and so |B| > |Binner ∪ Bleaf|/2d > k2d.
By Lemma 4 we have Optk(SQ) > c ·minBv∈B size(Bv).

It remains to argue that minBv∈B size(Bv) > maxBv∈Binner size(Bv). We prove this by
contradiction. Hence, we assume minBv∈B size(Bv) < maxBv∈Binner size(Bv) and we define
B := arg minBv∈B size(Bv) and B′ := arg maxBv∈Binner size(Bv). Note that for any cube
Bv ∈ B either Bv itself is in Binner∪Bleaf or Bv = parent(Bw) for some cube Bw ∈ Binner∪Bleaf.
We now make the following case distinction.

Case I: B = parent(Bw) for some cube Bw ∈ Binner ∪ Bleaf. But this is an immediate
contradiction since Algorithm 1 would have to split B′ before splitting B.

Case II: B ∈ Binner∪Bleaf. Because B itself was put into B and not parent(B), there exists a
cube Bw ∈ Binner∪Bleaf such that parent(B)) parent(Bw), which means size(parent(Bw)) <
size(parent(B)). In order to complete the proof, it suffices to show that size(parent(Bw)) 6
size(B). Indeed, sinceB′ has not been split by Algorithm 1 (becauseB′ ∈ Binner) we know that
size(B′) 6 size(parent(Bw)). This inequality along with the inequality size(parent(Bw)) 6
size(B) imply that size(B′) 6 size(B) which is in contradiction with size(B) < size(B′). To
show that size(parent(Bw)) 6 size(B) we consider the following two subcases. (i) parent(B) is
a degree-1 node. This means that parent(B) corresponds to a cube that was split into a donut
and the cube corresponding to B. Since the cube corresponding to Bw must be completely
inside the cube corresponding to parent(B) (because size(parent(Bw)) < size(parent(B)))
and a donut is empty we conclude that the cube corresponding to Bw must be completely
inside the cube corresponding to B. Hence, size(parent(Bw)) 6 size(B). (ii) parent(B) is
not a degree-1 node. The inequality size(parent(Bw)) < size(parent(B)) along with the fact
that parent(B) is not a degree-1 node imply that size(parent(Bw)) 6 size(B).

This completes the proof that lb is a correct lower bound. Next we prove that RQ is a
weak r-packing for r = ε · lb/f(k). Observe that after the loop in lines 14–16, the set Bleaf is
still a cube cover of SQ. Moreover, each cube Bv ∈ Bleaf either contains a single point from
SQ or its size is at most r/

√
d. Lemma 3 then implies that RQ is a weak r-packing for the

desired value of r.

It remains to bound the size of RQ. To this end we note that at each iteration of the
loop in lines 3–9 the size of Binner ∪ Bleaf increases by at most 2d − 1, so after the loop we
have |Binner ∪ Bleaf| 6 k22d + 2d − 1. The loop in lines 14–16 replaces each cube Bv ∈ Binner
by a number of smaller cubes. Since lb = c ·maxBv∈Binner size(Bv) and r = ε · lb/f(k), each
cube Bv is replaced by only O((f(k)2d

√
d/(c ε))d) smaller cubes. Since d is a fixed constant,

the total number of cubes we end up with (which is the same as the size of the r-packing) is
O(k(f(k)/(c ε))d). J

Lemma 5, together with Lemma 2, establishes the correctness of our approach. To achieve a
good running time, we need a few supporting data structures.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:9

We need a data structure that can answer the following queries: given a query box Z,
find the deepest node u in T (S) such that Z ⊆ Bu. With a centroid-decomposition tree
Tcd we can answer such queries in O(logn) time; see the full version for details.
We need a data structure D that can answer the following queries on S: given a query
box Z and an integer 1 6 i 6 d, report a point in S ∩ Z with maximum xi-coordinate,
and one with minimum xi-coordinate. It is possible to answer such queries in O(logd−1 n)
time with a range tree (with fractional cascading), which uses O(n logd−1 n) storage. Note
that this also allows us to compute the bounding box of S ∩ Z in O(logd−1 n) time. (In
fact slightly better bounds are possible [19], but for simplicity we stick to using standard
data structures.)

I Lemma 6. Algorithm 1 runs in O(k (f(k)/(c ε))d + k ((f(k)/(c ε)) logn)d−1) time.

Proof. The two key observations in the proof are the following. First, when Bv 6⊆ Q we
replace v by the deepest node u such that bb(SQ ∩ Bv) ⊆ Bu, which implies at least two
of the children of u must contain a point in SQ. From this we conclude that the number
of iterations in Phase 1 is bounded by k22d. Second, we use the fact that in Phase 2 the
computation of bb(SQ ∩Bv) is only needed when Bv 6⊆ Q. The complete proof is in the full
version. J

This leads to the following theorem.

I Theorem 7. Let S be a set of n points in Rd and let Φ be a (c, f(k))-regular cost function.
Suppose we have an algorithm that solves the given clustering problem on a set of m points in
Tss(m, k) time. Then there is a data structure that uses O(n logd−1 n) storage such that, for
a query range Q and query values k > 2 and ε > 0, we can compute a (1 + ε)-approximate
answer to a range-clustering query in time

O

(
k

(
f(k)
c ε
· logn

)d−1
+ Tss

(
k

(
f(k)
c ε

)d
, k

)
+ Texpand(n, k)

)
.

As an example application we consider k-center queries in the plane. (The result for rectilinear
2-center queries is actually inferior to the exact solution presented later.)

I Corollary 8. Let S be a set of n points in R2. There is a data structure that uses O(n logn)
storage such that, for a query range Q and query values k > 2 and ε > 0, we can compute a
(1 + ε)-approximate answer to a k-center query within the following bounds:
(i) for the rectilinear case with k = 2, 3, the query time is O((1/ε) logn+ 1/ε2);
(ii) for the rectilinear case with k = 4, 5, the query time is O((1/ε) logn+(1/ε2)polylog(1/ε));
(iii) for the Euclidean case with k = 2, the expected query time is O((1/ε) logn + (1/ε2)·

log2(1/ε));
(iv) for the rectilinear case with k > 5 and the Euclidean case with k > 2 the query time is

O((k/ε) logn+ (k/ε)O(
√
k)).

Proof. Recall that the cost function for the k-center problem is (1/(2
√
d), 1)-regular for

the rectilinear case and (1/2, 1)-regular for the Euclidean case. We now obtain our results
by plugging in the appropriate algorithms for the single-shot version. For (i) we use the
linear-time algorithm of Hoffmann [16], for (ii) we use the O(n ·polylogn) algorithm of Sharir
and Welzl [23], for (iii) we use the O(n log2 n) randomized algorithm of Eppstein [12], for (iv)
we use the nO(

√
k) algorithm of Agarwal and Procopiuc [3]. J

SoCG 2017

5:10 Range-Clustering Queries

3 Approximate Capacitated k-Center Queries

In this section we study the capacitated variant of the rectilinear k-center problem in the
plane. In this variant we want to cover a set S of n points in R2 with k congruent squares
of minimum size, under the condition that no square is assigned more than α · n/k points,
where α > 1 is a given constant. For a capacitated rectilinear k-center query this means we
want to assign no more than α · |SQ|/k points to each square. Our data structure will report
a (1 + ε, 1 + δ)-approximate answer to capacitated rectilinear k-center queries: given a query
range Q, a natural number k > 2, a constant α > 1, and real numbers ε, δ > 0, it computes
a set C = {b1, . . . , bk} of congruent squares such that:

Each bi can be associated to a subset Ci ⊆ SQ∩bi such that {C1, . . . , Ck} is a k-clustering
of SQ and |Ci| 6 (1 + δ)α · |SQ|/k; and
The size of the squares in C is at most (1+ε)·Optk(SQ, α), where Optk(SQ, α) is the value
of an optimal solution to the problem on SQ with capacity upper bound UQ := α · |SQ|/k.

Thus we allow ourselves to violate the capacity constraint by a factor 1 + δ.
To handle the capacity constraints, it is not sufficient to work with r-packings – we also

need δ-approximations. Let P be a set of points in R2. A δ-approximation of P with respect
to rectangles is a subset A ⊆ P such that for any rectangle σ we have∣∣ |P ∩ σ|/|P | − |A ∩ σ|/|A|∣∣ 6 δ.

From now on, whenever we speak of δ-approximations, we mean δ-approximations with
respect to rectangles. Our method will use a special variant of the capacitated k-center
problem, where we also have points that must be covered but do not count for the capacity:

I Definition 9. Let R ∪ A be a point set in R2, k > 2 a natural number, and U a
capacity bound. The 0/1-weighted capacitated k-center problem in R2 is to compute a
set C = {b1, . . . , bk} of congruent squares of minimum size where each bi is associated to a
subset Ci ⊆ (R ∪A) ∩ bi such that {C1, . . . , Ck} is a k-clustering of R ∪A and |Ci ∩A| 6 U .

For a square b, let expand(b, r) denote the square b expanded by r on each side (so its radius
in the L∞-metric increases by r). Let 0/1-WeightedKCenter be an algorithm for the
single-shot capacitated rectilinear k-center problem. Our query algorithm is as follows.

CapacitatedKCenterQuery(k,Q, α, ε, δ)
1: Compute a lower bound lb on Optk(SQ).
2: Set r := ε · lb/f(k) and compute a weak r-packing RQ on SQ.
3: Set δQ := δ/16k3 and compute a δQ-approximation AQ on SQ.
4: Set U := (1+δ/2) ·α · |AQ|/k and C := 0/1-WeightedKCenter(RQ∪AQ, k, U).
5: C∗ := {expand(b, r) : b ∈ C}.
6: return C∗.

Note that the lower bound computed in Step 1 is a lower bound on the uncapacitated problem
(which is also a lower bound for the capacitated problem). Hence, for Steps 1 and 2 we can
use the algorithm from the previous section. How Step 3 is done will be explained later. First
we show that the algorithm gives a (1 + ε, 1 + δ)-approximate solution. We start by showing
that we get a valid solution that violates the capacity constraint by at most a factor (1 + δ).
(See the full version for a proof.)

I Lemma 10. Let {b1, . . . , bk} := C∗ be the set of squares computed in Step 5. There exists
a partition {C1, . . . , Ck} of SQ such that Ci ⊆ bi and |Ci| 6 (1 + δ) · UQ for each 1 6 i 6 k,
and such a partition can be computed in O(k2 + n logn) time.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:11

We also need to prove that we get a (1 + ε)-approximate solution. For this it suffices to show
that an optimal solution Copt to the problem on SQ is a valid solution on RQ ∪AQ. We can
prove this by a similar approach as in the proof of the previous lemma.

I Lemma 11. The size of the squares in C∗ is at most (1 + ε) ·Optk(SQ, α).

To make CapacitatedKCenterQuery run efficiently, we need some more supporting data
structures. In particular, we need to quickly compute a δQ-approximation within our range Q.
We use the following data structures.

We compute a collection A1, . . . , Alogn where Ai is a (1/2i)-approximation on S using
the algorithm of Phillips [21]. This algorithm computes, given a planar point set P of
size m and a parameter δ, a δ-approximation of size O((1/δ) log4(1/δ) ·polylog(log(1/δ)))
in time O((n/δ3) · polylog(1/δ)). We store each Ai in a data structure for orthogonal
range-reporting queries. If we use a range tree with fractional cascading, the data
structure uses O(|Ai| log |Ai|) storage and we can compute all the points in Ai ∩ Q in
time O(logn+ |Ai ∩Q|).
We store S in a data structure for orthogonal range-counting queries. There is such a
data structure that uses O(n) storage and such that queries take O(logn) time [9].

We can now compute a δQ-approximation for SQ as follows.

DeltaApprox(Q, δQ)
1: Find the smallest value for i such that 1

2i 6 δQ

4
|SQ|
|S| , and compute A := Q ∩Ai.

2: Compute a (δQ/2)-approximation AQ on A using the algorithm by Phillips [21].
3: return AQ.

I Lemma 12. DeltaApprox(Q, δQ) computes a δQ-approximation of size O
(

1
δQ

polylog 1
δQ

)
on SQ in time O(

(
logn/δQ)4polylog(logn/δQ)

)
.

The only thing left is now an algorithm 0/1-WeightedKCenter(RQ∪AQ, k, U) that solves
the 0/1-weighted version of the capacitated rectilinear k-center problem. Here we use the
following straightforward approach. Let m := |RQ ∪AQ|. First we observe that at least one
square in an optimal solution has points on opposite edges. Hence, to find the optimal size
we can do a binary search over O(m2) values, namely the horizontal and vertical distances
between any pair of points. Moreover, given a target size s we can push all squares such that
each has a point on its bottom edge and a point on its left edge. Hence, to test if there is
a solution of a given target size s, we only have to test O(m2k) sets of k squares. To test
such a set C = {b1, . . . , bk} of squares, we need to check if the squares cover all points in
RQ ∪AQ and if we can assign the points to squares such that the capacity constraint is met.
For the latter we need to solve a flow problem, which can be done in O(m2k) time; see the
full version. Thus each step in the binary search takes O(m2k+2k), leading to an overall
time complexity for 0/1-WeightedKCenter(RQ ∪ AQ, k, U) of O(m2k+2k logm), where
m = |RQ ∪AQ| = O

(
k/ε2 + (1/δQ)polylog(1/δQ)

)
, where δQ = Θ(δ/k3).

The following theorem summarizes the results in this section.

I Theorem 13. Let S be a set of n points in R2. There is a data structure that uses
O(n logn) storage such that, for a query range Q and query values k > 2, ε > 0 and
δ > 0, we can compute a (1 + ε, 1 + δ)-approximate answer to a rectilinear k-center query
in O∗((k/ε) logn+ ((k3/δ) logn)4 + (k/ε2 + (k3/δ))2k+2) time, where the O∗-notation hides
O(polylog(k/δ)) factors.

SoCG 2017

5:12 Range-Clustering Queries

Note that for constant k and ε = δ the query time simplifies to O∗((1/ε4) log4 n+ (1/ε)4k+4).
Also note that the time bound stated in the theorem only includes the time to compute the
set of squares defining the clustering. If we want to also report an appropriate assignment of
points to the squares, we have to add an O(k2 + |SQ| log |SQ|) term; see Lemma 10.
I Remark. The algorithm can be generalized to the rectilinear k-center problem in higher
dimensions, and to the Euclidean k-center problem; we only need to plug in an appropriate
δ-approximation algorithm and an appropriate algorithm for the 0/1-weighted version of the
problem.

4 Exact k-Center Queries in R1

In this section we consider k-center queries in R1. Here we are given a set S of n points in
R1 that we wish to preprocess into a data structure such that, given a query interval Q and
a natural number k > 2, we can compute a set C of at most k intervals of the same length
that together cover all points in SQ := S ∩Q and whose length is minimum. We obtain the
following result (complete proof in the full version).

I Theorem 14. Let S be a set of n points in R1. There is a data structure that uses O(n)
storage such that, for a query range Q and a query value k > 2, we can answer a rectilinear
k-center query in O(min{k2 log2 n, 3k logn}) time.

Proof Sketch. We present two approaches, one with O(k2 log2 n) query time and one with
O(3k logn) query time. Let p1, . . . , pn be the points in S, sorted from left to right.

The first approach uses a subroutine Decider which, given an interval Q′, a length L
and an integer ` 6 k, can decide in O(` logn) time if all points in S ∩Q′ can be covered by
` intervals of length L. The global query algorithm then performs a binary search, using
Decider as subroutine, to find a pair of points pi, pi+1 ∈ SQ such that the first interval in
an optimal solution covers pi but not pi+1. Then an optimal solution is found recursively for
k − 1 clusters within the query interval Q ∩ [pi+1,∞).

The second approach searches for a point q ∈ Q and value ` such that there is an optimal
solution where SQ ∩ (−∞, q] is covered by ` intervals and SQ ∩ [q,∞) is covered by k − `
intervals. The efficiency depends on the interesting fact that there must be a fair split
point, that is, a pair (q, `) such that `/k (the fraction of intervals used to the left of q) is
proportional to the fraction of the length of Q to the left of q. J

5 Exact Rectilinear 2- and 3-Center Queries in R2

Suppose we are given a set S = {p1, p2, . . . , pn} of n points in R2 and an integer k. In this
section we build a data structure D that stores the set S and, given an orthogonal query
rectangle Q, can be used to quickly find an optimal solution for the k-center problem on SQ
for k = 2 or 3, where SQ := S ∩Q.

2-center queries

Our approach for the case of k = 2 is as follows. We start by shrinking the query range Q
such that each edge of Q touches at least one point of S. (The time for this step is subsumed
by the time for the rest of the procedure.) It is well known that if we want to cover SQ
by two squares σ, σ′ of minimum size, then σ and σ′ both share a corner with Q and these
corners are opposite corners of Q. We say that σ and σ′ are anchored at the corner they share
with Q. Thus we need to find optimal solutions for two cases – σ and σ′ are anchored at the

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:13

c

c′

c

c′

c

c′
(a) (b) (c)

A1

A2

A′
1

A′
2

A1 A′
1

A1

A′
1

Figure 1 Various types of L∞-bisectors. The bisectors and the boundaries of query regions are
shown in black. (a): Q is “fat”. The regions Aj , A′

j for j = 1, 2 are shown with text. (b): Q is “thin”.
The regions Aj and A′

j for j = 2, 3, 4 are empty. (c): Q is a square. The regions Aj and A′
j for j = 2

are empty. In both (a) and (c) regions A3, A′
3 are colored in blue and A4, A′

4 are colored in pink.

topleft and bottomright corner of Q, or at the topright and bottomleft corner – and return
the better one. Let c and c′ be the topleft and the bottomright corners of Q, respectively. In
the following we describe how to compute two squares σ and σ′ of minimum size that are
anchored at c and c′, respectively, and whose union covers SQ. The topright/bottomleft case
can then be handled in the same way.

First we determine the L∞-bisector of c and c′ inside Q; see Figure 1. The bisector
partitions Q into regions A and A′, that respectively have c and c′ on their boundary.
Obviously in an optimal solution (of the type we are focusing on), the square σ must cover
SQ∩A and the square σ′ must cover SQ∩A′. To compute σ and σ′, we thus need to find the
points q ∈ A and q′ ∈ A′ with maximum L∞-distance to the corners c and c′ respectively. To
this end, we partition A and A′ into subregions such that in each of the subregions the point
with maximum L∞-distance to its corresponding corner can be found quickly via appropriate
data structures discussed below. We assume w.l.o.g. that the x-span of Q is at least its
y-span. We begin by presenting the details of such a partitioning for Case (a) of Figure 1 –
Cases (b) and (c) can be seen as special cases of Case (a).

As Figure 1 suggests, we partition A and A′ into subregions. We denote these subregions
by Aj and A′j , for 1 6 j 6 4. From now on we focus on reporting the point q ∈ S in A

with maximum L∞-distance to c; finding the furthest point from c′ inside A′ can be done
similarly. Define four points p(Aj) ∈ S for 1 6 j 6 4 as follows.

The point p(A1) is the point of SQ with maximum L∞-distance to c in A1. Note that
this is either the point with maximum x-coordinate in A1 or the point with minimum
y-coordinate.
The point A2 is a bottommost point in A2.
The point A3 is a bottommost point in A3.
The point A4 is a rightmost point in A4.

Clearly

q = arg max
16j64

{d∞(p(Aj), c)}, (1)

where d∞(.) denotes the L∞-distance function.

Data structure. Our data structure now consists of the following components.
We store S in a data structure D1 that allows us to report the extreme points in the
x-direction and in the y-direction inside a rectangular query range. For this we use the
structure by Chazelle [9], which uses O(n logε n) storage and has O(logn) query time.
We store S in a data structure D2 with two components. The first component should
answer the following queries: given a 45◦ query cone whose top bounding line is horizontal

SoCG 2017

5:14 Range-Clustering Queries

and that is directed to the left – we obtain such a cone when we extend the region A4
into an infinite cone –, report the rightmost point inside the cone. The second component
should answer similar queries for cones that are the extension of A3.
In the full version we describe a linear-size data structure for such queries that has
O(logn) query time.

Query procedure. Given an axis-aligned query rectangle Q, we first (as already mentioned)
shrink the query range so that each edge of Q contains at least on point of S. Then compute
the L∞-bisector of Q. Query D1 with A1 and A2, respectively, to get the points p(A1) and
p(A2). Then query D2 with u and u′ to get the points p(A3) and p(A4), where u and u′ are
respectively the bottom and the top intersection points of L∞-bisector of Q and the boundary
of Q. Among the at most four reported points, take the one with maximum L∞-distance the
corner c. This is the point q ∈ SQ ∩A furthest from c.

Compute the point q′ ∈ SQ ∩ A′ furthest from c′ in a similar fashion. Finally, report
two minimum-size congruent squares σ and σ′ anchored at c and c′ and containing q and q′,
respectively.

Putting everything together, we end up with the following theorem.

I Theorem 15. Let S be a set of n points in R2. For any fixed ε > 0, there is a data
structure using O(n logε n) storage that can answer rectilinear 2-center queries in O(logn)
time.

I Remark. We note that the query time in Theorem 15 can be improved in the word-RAM
model to O(log logn) by using the range successor data structure of Zhou [24], and the point
location data structure for orthogonal subdivisions by de Berg et al. [11].

3-center queries

Given a (shrunk) query range Q, we need to compute a set {σ1, σ2, σ3} of (at most) three
congruent squares of minimal size whose union covers SQ. It is easy to verify (and is
well-known) that at least one of the squares in an optimal solution must be anchored at one
of the corners of Q. Hence and w.l.o.g. we assume that σ1 is anchored at one of the corners
of Q. We try placing σ1 in each corner of Q and select the placement resulting in the best
overall solution. Next we briefly explain how to find the best solution subject to placing σ1 in
the leftbottom corner of Q. The other cases are symmetric. We perform two separate binary
searches; one will test placements of σ1 such that its right side has the same x-coordinate
as a point in S, the other will be on possible y-coordinates for the top side. During each
of the binary searches, we compute the smallest axis-parallel rectangle Q′ ⊆ Q containing
the points of Q\σ1 (by covering Q\σ1 with axis-parallel rectangles and querying for extreme
points in these rectangles). We then run the algorithm for k = 2 on Q′. We need to ensure
that this query ignores the points already covered by σ1. For this, recall that for k = 2 we
covered the regions A and A′ by suitable rectangular and triangular ranges. We can now do
the same, but we cover A \ σ1 and A′ \ σ1 instead.

After the query on Q′, we compare the size of the resulting squares with the size of σ1
to guide the binary search. The process stops as soon as the three sizes are the same or no
further progress in the binary search can be made. Putting everything together, we end up
with the following theorem.

I Theorem 16. Let S be a set of n points in R2. For any fixed ε > 0, there is a data
structure using O(n logε n) storage that can answer rectilinear 3-center queries in O(log2 n)
time.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:15

I Remark. Similar to Theorem 15, the query time in Theorem 16 can be improved in the
word-RAM model of computation to O(logn log logn) time.

Acknowledgements. This research was initiated when the first author visited the Depart-
ment of Computer Science at TU Eindhoven during the winter 2015–2016. He wishes to
express his gratitude to the other authors and the department for their hospitality. The last
author wishes to thank Timothy Chan for valuable discussions about the problems studied
in this paper.

References

1 M. Abam, P. Carmi, M. Farshi, and M. Smid. On the power of the semi-separated pair
decomposition. Compututational Geometry: Theory and Applications, 46:631–639, 2013.

2 P.K. Agarwal, R. Ben Avraham, and M. Sharir. The 2-center problem in three dimensions.
Compututational Geometry: Theory and Applications, 46:734–746, 2013.

3 P.K. Agarwal and Cecilia M. Procopiuc. Exact and approximation algorithms for clustering.
Algorithmica, 33:201–226, 2002.

4 Sunil Arya, David M. Mount, and Eunhui Park. Approximate geometric MST range queries.
In Proc. 36th International Symposium on Computational Geometry (SoCG), pages 781–
795, 2015.

5 Peter Brass, Christian Knauer, Chan-Su Shin, Michiel H.M. Smid, and Ivo Vigan. Range-
aggregate queries for geometric extent problems. In Computing: The Australasian Theory
Symposium 2013, CATS’13, pages 3–10, 2013.

6 V. Capoyleas, G. Rote, and G. Woeginger. Geometric clusterings. Journal of Algorithms,
12:341–356, 1991.

7 T.M. Chan. Geometric applications of a randomized optimization technique. Discrete &
Compututational Geometry, 22:547–567, 1999.

8 T.M. Chan. More planar two-center algorithms. Compututational Geometry: Theory and
Applications, 13:189–198, 1999.

9 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM Journal on Computing, 17:427–462, 1988.

10 A.W. Das, P. Gupta, K. Kothapalli, and K. Srinathan. On reporting the L1-metric closest
pair in a query rectangle. Information Processing Letters, 114:256–263, 2014.

11 Mark de Berg, Marc van Kreveld, and Jack Snoeyink. Two- and three-dimensional point
location in rectangular subdivisions. Journal of Algorithms, 18:256–277, 1995.

12 D. Eppstein. Faster construction of planar two-centers. In Proc. 8th Annual ACM-SIAM
Symposiun on Discrete Algorithms (SODA), pages 131–138, 1997.

13 P. Gupta, R. Janardan, Y. Kumar, and M. Smid. Data structures for range-aggregate
extent queries. Compututational Geometry: Theory and Applications, 47:329–347, 2014.

14 Sariel Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical sur-
veys and monographs. American Mathematical Society, 2011.

15 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proc. 36th Annual ACM Symposium on Theory of Computing (STOC), pages 291–300,
2004.

16 M. Hoffmann. A simple linear algorithm for computing rectilinear 3-centers. Compututa-
tional Geometry: Theory and Applications, 31:150–165, 2005.

17 R.Z. Hwang, R. Lee, and R.C. Chang. The generalized searching over separators strategy
to solve some NP-hard problems in subexponential time. Algorithmica, 9:398–423, 1993.

SoCG 2017

5:16 Range-Clustering Queries

18 S. Khare, J. Agarwal, N. Moidu, and K. Srinathan. Improved bounds for smallest enclos-
ing disk range queries. In Proc. 26th Canadian Conference on Computational Geometry
(CCCG), 2014.

19 H.-P. Lenhof and M.H.M. Smid. Using persistent data structures for adding range restric-
tions to searching problems. Theoretical Informatics and Applications, 28:25–49, 1994.

20 Yakov Nekrich and Michiel H.M. Smid. Approximating range-aggregate queries using
coresets. In Proc. 22nd Canadian Conference on Computational Geometry (CCCG), pages
253–256, 2010.

21 Jeff M. Phillips. Algorithms for ε-approximations of terrains. In Proc. 35th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 447–458, 2008.

22 M. Sharir. A near-linear time algorithm for the planar 2-center problem. Discrete &
Compututational Geometry, 18:125–134, 1997.

23 M. Sharir and E. Welzl. Rectilinear and polygonal p-piercing and p-center problems. In
Proc. 12th International Symposium on Computational Geometry (SoCG), pages 122–132,
1996.

24 Gelin Zhou. Two-dimensional range successor in optimal time and almost linear space.
Information Processing Letters, 116:171–174, 2016.

	Introduction
	Approximate Range-Clustering Queries
	Approximate Capacitated k-Center Queries
	Exact k-Center Queries in 1D
	Exact Rectilinear 2- and 3-Center Queries in the Plane

