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Abstract
A set P = H ∪ {w} of n + 1 points in the plane is called a wheel set if all points but w are
extreme. We show that for the purpose of counting crossing-free geometric graphs on P , it
suffices to know the so-called frequency vector of P . While there are roughly 2n distinct order
types that correspond to wheel sets, the number of frequency vectors is only about 2n/2.

We give simple formulas in terms of the frequency vector for the number of crossing-free
spanning cycles, matchings, w-embracing triangles, and many more. Based on these formulas,
the corresponding numbers of graphs can be computed efficiently.

Also in higher dimensions, wheel sets turn out to be a suitable model to approach the problem
of computing the simplicial depth of a point w in a set H, i.e., the number of simplices spanned
by H that contain w. While the concept of frequency vectors does not generalize easily, we show
how to apply similar methods in higher dimensions. The result is an O(nd−1) time algorithm for
computing the simplicial depth of a point w in a set H of n d-dimensional points, improving on
the previously best bound of O(nd logn).

Configurations equivalent to wheel sets have already been used by Perles for counting the
faces of high-dimensional polytopes with few vertices via the Gale dual. Based on that we can
compute the number of facets of the convex hull of n = d+ k points in general position in Rd in
time O(nmax{ω,k−2}) where ω ≈ 2.373, even though the asymptotic number of facets may be as
large as nk.
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1 Introduction

Computing the number of crossing-free straight-line drawings of certain graph classes (e.g.,
triangulations, spanning trees, etc.) on a planar point set is a well-known problem in
computational and discrete geometry. While for point sets in convex position many of these
numbers have simple closed formulas, it seems difficult to compute them efficiently for a
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54:2 From Crossing-Free Graphs on Wheel Sets to Embracing Simplices

given general point set, or to provide tight upper and lower bounds. In this work, we provide
means for solving these problems for a special class of point sets which we call wheel sets.

Let P = H ∪ {w} be a set of n + 1 points in the plane. Unless stated otherwise, P is
assumed to be in general position and the points in H are assumed to be extreme (i.e., part
of the boundary of the convex hull of P ). P is in convex position if all points including w
are extreme, and P is a wheel set if all points except w are extreme. If P is either of them,
then we call it a conowheel set. We denote by Pcon a concrete set in convex position (say, the
vertex set of a regular (n+ 1)-gon) and by Pbar a barely-in wheel set (i.e., H is the vertex set
of a regular n-gon and w is sufficiently close to an edge e of the n-gon in such a way that w
is in the interior of every triangle spanned by e and a third point of H).

The numbers of triangulations and pseudo-triangulations on wheel sets [24], as well as
perfect matchings [26], have been studied before. Our work generalizes these approaches.
Wheel sets have also been used to represent vectors in the investigation of high-dimensional
polytopes with few vertices; already in the 1960s, Perles counted the number of combinatorially
different wheel sets (as reported by Grünbaum [15]). In the terminology of modern discrete
geometry, these correspond to the different order types of wheel sets.

Order types. The order type of a point set P is a combinatorial description that assigns
an orientation (either clockwise or counterclockwise) to every ordered triple of points. Two
point sets are said to have the same order type if there exists a bijection between the two
sets that preserves these orientations [13]. We follow the practice of considering two point
sets to have the same order type if there exists a bijection that reverses all orientations.

Many combinatorial properties of a point set can be recovered from its order type. In
particular, the order type determines whether two segments with endpoints in P cross, and
whether a given point in P is extreme. It is not hard to see that all sets in convex position
have the same order type. However, the same is not true for wheel sets.

I Theorem 1. The number of distinct order types of conowheel sets of size n+ 1 is1

1
4n
∑
2-k|n

ϕ(k)2n/k + 2b(n−3)/2c = Θ(2n/n) .

The above formula has been obtained first by Perles (as stated, without proof, in [15,
Chapter 6.3]) for the number of simplicial polytopes with few vertices, and we explain the
connection to wheel sets in Section 4. Perles also counted the number of equivalent so-called
distended standard forms of Gale diagrams, which basically correspond to wheel sets with
different order types. In Section 2 we describe this correspondence.

Frequency vectors. While the order type of a point set determines the set of crossing-free
geometric graphs on it, we show in Section 3 that we can rely on the following, coarser
classification when only considering wheel sets.

Let P = H ∪ {w} be a conowheel set and let h ∈ H be arbitrary. Let l(h) denote the
number of points strictly to the left of the directed line going from w to h, and let r(h)
denote the number of points strictly to the right of that line. The frequency vector of P
is the vector F (P ) = (F0, F1, . . . , Fn−1) where Fi is the number of points h ∈ H satisfying
| l(h)− r(h)| = i. Consider the following examples for n = 7.

F (Pcon) = (1, 0, 2, 0, 2, 0, 2) F (Pbar) = (1, 0, 2, 0, 4, 0, 0)

1 Here, ϕ(k) denotes Euler’s totient function, which counts the integers coprime to k that are at most k.
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Note that the frequency vector can be computed in O(n logn) time by radially sorting H
around w. It is also clear that the order type determines the frequency vector. However, the
opposite is not true. In Section 2, we give a complete characterization of frequency vectors,
which allows us to conclude the following.

I Theorem 2. For any n ≥ 1, the number of frequency vectors realizable by a conowheel set
over n+ 1 points is exactly 2dn/2e−1.

Given that the number of frequency vectors is significantly smaller than the number
of order types, it is unclear how much the frequency vector reveals about a conowheel set.
However, we will show that for the purpose of counting crossing-free structures it is both
sufficient and necessary.

Moreover, there is again a connection to simplicial polytopes with few vertices. In
Section 4, we show that the number of frequency vectors is equal to the number of f -vectors
of polytopes in d-space with at most d+3 vertices (including the empty polytope). The latter
has been calculated by Linusson [17] using a sophisticated counting of so-called M -sequences.

Geometric graphs. A geometric graph on P is a graph with vertex set P and edges drawn
as straight segments between the corresponding endpoints, and it is crossing-free if no two
edges intersect in their respective relative interiors.

There exists a vast literature that is concerned with counting these crossing-free structures
on specific point sets or proving extremal upper and lower bounds [3, 27, 28, 29]. One
comparatively simple case is if P is in convex position. In that case, counting triangulations
is a classical problem that goes back to Euler, and it gives rise to the famous Catalan numbers.
For many other families of graphs (such as perfect matchings and spanning trees), simple
closed formulas can be obtained as well [7, 11, 22].

Randall et al. [24] were the first to consider geometric graphs on wheel sets. They
found the extremal configurations for triangulations and pseudo-triangulations by using an
argument that involves continuously moving the extra point w. The case of perfect matchings
has been studied by Ruiz-Vargas and Welzl [26]. The next theorem is a generalization of a
result from their paper.

In the following, let G be a set of abstract (unlabeled) graphs with n+ 1 vertices, and let
nbG(P ) denote the number of crossing-free geometric graphs on P which are isomorphic to a
graph in G. In other words, nbG(P ) is the number of non-crossing straight-line embeddings
of graphs in G on P .

I Theorem 3. thmggraph Let G be arbitrary, and let P = H ∪ {w} be a conowheel set of
size n+ 1. Then, nbG(P ) depends only on the frequency vector F (P ) = (F0, F1, . . . , Fn−1).
More concretely,

nbG(P ) = γn −
1
2
∑
h∈H

λl(h),r(h) =
n−1∑
k=0

FkΛk ,

where γn and λl,r = λr,l are integers and Λk are rationals depending on G.

While the latter formula in the above theorem makes the dependency on the frequency
vector more obvious, the former will turn out to be more natural. The latter formula follows
from the former simply by putting Λk = γn/n+ 1/2 · λ(n+k−1)/2,(n−k−1)/2.

We give just one example here, which at the same time makes the connection to the later
parts of the paper. Let G = {K ···4 }, where K ···4 is obtained by adding n−3 additional isolated
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vertices to the complete graph K4. The following formula is obtained alongside Theorem 3
in Section 3.

nbG(P ) =
(
n

3

)
− 1

2
∑
h∈H

((
l(h)
2

)
+
(

r(h)
2

))
for G = {K ···4 } . (1)

Observe that all non-crossing embeddings of K ···4 on a given conowheel set P = H ∪ {w}
have the following property. One of the vertices of the underlying K4 is mapped to the
point w, while the other three vertices are mapped to three points which form a triangle
that contains the extra point w in its interior. We thus get a rather simple formula for the
number of w-embracing triangles (i.e., point triples in H whose convex hull contains w).
Note that the set of w-embracing triangles does not change if we replace a point p ∈ H by a
point p′ on the ray starting at w and passing through p; for counting w-embracing triangles,
the approach for conoweel sets thus generalizes to arbitrary point sets. In other words, the
formula in equation (1) also counts the number of w-embracing triangles in an arbitrary point
set H in general position. We note that the algorithm which counts w-embracing triangles
in [25] is essentially an implementation of equation (1).

Higher dimensions. The concept of conowheel sets can be generalized to arbitrary dimen-
sions, where we may again consider sets with at most one non-extreme point. However, even
for counting w-embracing tetrahedra in 3-space, the ideas from the proof of Theorem 3 do
not generalize. Nevertheless, in Section 4 we give a generalization of equation (1). From that
we obtain improved time bounds for computing the number of w-embracing simplices or, in
other words, the simplicial depth of a point w (as defined in [18]).

I Theorem 4. thmsimpldepth Let d ≥ 3 be fixed and let H be a set of n points in Rd. Then,
the simplicial depth of a point w in H can be computed in O(nd−1) time.

Again, this result is stated for arbitrary sets H and not for wheel sets only, as for the
simplicial depth only the position relative to w is relevant. We further note that the algorithm
generalizes to counting all k-element subsets of H whose convex hull contains w.

The simplicial depth of a point has attracted considerable attention as a measure of
data depth. Several authors describe the calculation of the simplicial depth of a point in
the plane [12, 16, 25]. O(n2) and O(n4) time algorithms for 3- and 4-space, respectively,
are provided by Cheng and Ouyang [6], who also point out flaws in previous algorithms
in 3-space. Our result improves over the previously best known general O(nd logn) time
algorithm for points in constant dimension d [2]. For arbitrary dimensions, the problem is
known to be #P -complete and W [1]-hard [2].

The work by Perles aimed at counting the number of facets of high-dimensional simplicial
polytopes with few vertices. Via the Gale dual, this number corresponds to the number of
simplices embracing the origin in a dual point set. In Section 4, we show how to compute
the number of facets of the convex hull of d + k points in general position in Rd in time
O(nmax{ω,k−2}) (with O(nω) being an upper bound for matrix multiplication).

2 Order Types and Frequency Vectors

The purpose of this section is to give an explanation for Table 1. The latter contains the
numbers of distinct order types and frequency vectors corresponding to conowheel sets of
size n+ 1. For completeness, we have also included the corresponding numbers if equivalence
over order types is defined to not include reflections.
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Table 1 Number of order types and frequency vectors of conowheel sets over n + 1 points.

Order Types Freq. Vectors Order Types Freq. Vectors
n with w/o n with w/o

reflection reflection

1 1 1 1 7 9 10 8
2 1 1 1 8 12 16 8
3 2 2 2 9 23 30 16
4 2 2 2 10 34 52 16
5 4 4 4 11 63 94 32
6 5 6 4 12 102 172 32

Figure 1 All order types of conowheel sets for n = 7. The extra point w is drawn in white.

Order types. Given a set H of n = 7 points forming the vertex set of a regular heptagon,
there are 8 conowheel sets P = H ∪ {w} with distinct order types that can be obtained by
adding an extra point w, see the left hand side of Figure 1. Notice the discrepancy with
the number 9 displayed in Table 1. The ninth and last order type can be obtained by first
deforming H as illustrated on the right hand side of Figure 1. This necessary deformation of
H seems to complicate matters significantly, but only at first sight.

I Theorem 1 (restated). The number of distinct order types of conowheel sets of size n+ 1
is2

1
4n
∑
2-k|n

ϕ(k)2n/k + 2b(n−3)/2c = Θ(2n/n) .

The asymptotic estimate is explained by taking the dominant summand with k = 1.
The exact formula was first obtained by Perles (cf. [15, Chapter 6.3]) as the number of
combinatorially different simplicial polytopes in dimension n− 3 with at most n vertices.

The formula was also obtained in the context of counting the number of 2-colored self-
dual necklaces with 2n beads with mirrored necklaces identified [5, 23]. These are binary
(say, black and white) circular sequences of length 2n such that elements at distance n
(i.e., opposing beads) are distinct (i.e., if one is black the other must be white, and vice
versa). The correspondence between simplicial polytopes and necklaces has been shown by
Montellano-Ballesteros and Strausz [21] using Radon complexes, unaware of Perles’ result.

A proof of Theorem 1 can be given by using a simple bijection to necklaces. We note
that a similar (and slightly simpler) formula is known if mirrored necklaces are not identified.
Naturally, that formula also counts order types of conowheel sets without reflection.

2 Here, ϕ(k) denotes Euler’s totient function, which counts the integers coprime to k that are at most k.
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h1

h2

i j

P :

w

δi,j

δj,i

h1

h2

i j

P ′:

w′

Figure 2 Moving the extra point over the segment h1h2 for the case i = 3 and j = 2.

Frequency vectors. The following lemma gives a characterization of frequency vectors. The
proof is by letting a line rotate about the extra point w, and by observing how it dissects
the point set H during the process. Full details can be found in [26].

I Lemma 5. F = (F0, F1, . . . , Fn−1) ∈ Nn is the frequency vector of a conowheel set
P = H ∪ {w} of size n+ 1, i.e., F = F (P ), if and only if
(i)

∑n−1
k=0 Fk = n,

(ii) Fk = 0 for all k ≡2 n,
(iii) Fk is even for all k ≥ 1, and
(iv) if Fk 6= 0 and k ≥ 2, then Fk−2 6= 0.

With this characterization, it is not hard to determine the number of frequency vectors.

I Theorem 2 (restated). For any n ≥ 1, the number of frequency vectors realizable by a
conowheel set over n+ 1 points is exactly 2dn/2e−1.

Proof. For n = 1 and n = 2 the formula evaluates to 1, which is consistent with the fact
that there is only one respective order type for either two or three points. For larger n, we
give a proof by induction for odd n, and note that even n can be handled analogously.

So let n = m+ 2 ≥ 3 be odd. Using Lemma 5, we can characterize the set of frequency
vectors that are realizable by n + 1 points by saying that it contains all vectors F =
(F0, F1, . . . , Fn−1) which have one of the following two mutually exclusive forms.

F0 = 1, F1 = 0, and (F2− 1, F3, F4, . . . , Fn−1) is any frequency vector realizable by m+ 1
points.
F0 ≥ 3 is odd, Fn−2 = Fn−1 = 0, and (F0 − 2, F1, F2, . . . , Fn−3) is any frequency vector
realizable by m+ 1 points.

If 2dm/2e−1 is the number of frequency vectors realizable by m+ 1 points, the corresponding
number for n+ 1 points is thus 2 · 2dm/2e−1 = 2dn/2e−1. J

3 Geometric Graphs

Recall that nbG(P ) is the number of crossing-free geometric graphs on a point set P that are
isomorphic to a graph in the family G. Consider now two conowheel sets P = H ∪ {w} and
P ′ = H ∪ {w′} which can be transformed into each other by moving the extra point over
the segment between h1, h2 ∈ H (and without encountering any other collinearities). The
situation is illustrated in Figure 2. Assume that on the w-side of the segment h1h2 there are
i points of H, and on the w′-side there are j points of H (thus, i+ j = n− 2). Let δi,j be
the increment of nbG when going from P to P ′, i.e., δi,j = nbG(P ′)− nbG(P ).
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I Lemma 6. For every G, δi,j is well-defined, i.e., its value depends only on i, j and G, and
not on the exact placement of H or the location where the extra point traverses the segment
between h1 and h2.

Proof. All geometric graphs that do not contain the edge {h1, h2} are not affected by the
mutation, i.e., they are crossing-free on P if and only if they are crossing-free on P ′. Therefore,
δi,j is equal to the number of crossing-free geometric graphs on P ′ containing {h1, h2} minus
the number of crossing-free geometric graphs on P containing {h1, h2}. For the following
reasons, these numbers only depend on i, j and G.

In the case of P , on the w-side we have i+ 3 points (including h1 and h2) in a barely-in
configuration, for which there exists a unique order type. On the opposite side we have
j + 2 points (including h1 and h2) in convex position, for which there also exists a unique
order type. Because of the presence of the edge {h1, h2} any other edges must be completely
contained in one of the two sides, and the claim follows. In the case of P ′, an analogous
argument works. J

Example, embracing triangles. Consider the case G = {K ···4 }. Observe that any crossing-
free embedding of K ···4 on P uses w as the inner vertex of the underlying K4. Furthermore, if
the embedding uses the edge {h1, h2}, which implies that h1 and h2 are outer vertices of K4,
then any one of the i points on the left hand side can be used as the third outer vertex of
K4. This gives exactly i crossing-free embeddings of K ···4 on P which use the edge {h1, h2}.
Similarly, we get j for the corresponding number of embeddings on P ′. Therefore, δi,j = j− i
for G = {K ···4 }.

I Theorem 3 (restated). Let G be arbitrary, and let P = H ∪ {w} be a conowheel set of size
n+ 1. Then, nbG(P ) depends only on the frequency vector F (P ) = (F0, F1, . . . , Fn−1). More
concretely,

nbG(P ) = γn −
1
2
∑
h∈H

λl(h),r(h) =
n−1∑
k=0

FkΛk ,

where γn and λl,r = λr,l are integers and Λk are rationals depending on G.

Proof. We proceed by choosing the numbers λl,r such that the validity of the formula is
preserved under continuous motion of P , and then choose γn such that it holds for some
starting configuration. To be more concrete, we allow continuous motion of P where all
points are allowed to move if P is in convex position, and only w is allowed to move if P is a
wheel set. At discrete moments in time we allow collinearity of three points, the one in the
middle being w. In this way any two conowheel sets can be transformed into each other.

Let now P and P ′ be as in Figure 2. Note that the values l(h) and r(h) do not change for
any h ∈ H \ {h1, h2} when going from P to P ′. For h1 and h2 the corresponding values are

P : l(h1) = r(h2) = i r(h1) = l(h2) = j + 1
P ′ : l(h1) = r(h2) = i+ 1 r(h1) = l(h2) = j

We therefore preserve the validity of the formula as long as the numbers λl,r = λr,l are chosen
in such a way that the following equality holds.

δi,j = 1
2(λi,j+1 + λj+1,i)−

1
2(λi+1,j + λj,i+1) = λi,j+1 − λi+1,j .

The definition λl,r := δn−2,0 + δn−3,1 + · · ·+ δl,r−1 + cn satisfies this constraint. Moreover,
the assumed symmetry λl,r = λr,l follows from the skew-symmetry δi,j = −δj,i. Note that

SoCG 2017
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l+ r = n− 1 always, and that cn is an arbitrary integer independent of l and r (for the proof
to go through one could simply fix cn = 0).

Finally, γn is chosen in such a way that the formula holds for some conowheel set. The
most natural choice for “anchoring” the formula is a set in convex position.

γn := nbG(Pcon) + 1
2

∑
l,r : l+r=n−1

λl,r J

Computing the frequency vector can be done in O(n logn) time. Given the values Λk,
computing the number nbG(P ) of embeddings then requires only O(n) additional arithmetic
operations.

Example continued, embracing triangles. We already derived δi,j = j − i for G = {K ···4 }.
This now gives rise to

λl,r = δn−2,0 +δn−3,1 + · · ·+δl,r−1 +cn =
r−1∑
j=0

j−

((
n− 1

2

)
−

l−1∑
i=0

i

)
+cn =

(
l

2

)
+
(
r

2

)
,

if we choose cn =
(
n−1

2
)
. It can be checked that nbG(Pcon) = 0. Hence,

γn = nbG(Pcon) + 1
2

∑
l,r : l+r=n−1

λl,r = 0 + 1
2

n−1∑
l=0

(
l

2

)
+ 1

2

n−1∑
r=0

(
r

2

)
=
(
n

3

)
.

After putting everything together we obtain the exact formula displayed earlier in equation (1).

3.1 Further Examples
We call the following two simple applications “insensitive” since the number of crossing-free
embeddings is the same on all wheel sets, but may be different for sets in convex position.

Spanning cycles. Consider the case where G contains a cycle over n + 1 vertices. Then,
we have δi,j = 0 because no crossing-free spanning cycle can use the edge {h1, h2}. That is,
unless i = 0 or j = 0, in which case we have δ0,n−2 = −δn−2,0 = n − 1. For anchoring we
calculate nbG(Pcon) = 1. It follows that all wheel sets over n+ 1 points admit n crossing-free
spanning cycles (which can easily be seen directly).

Spanning paths. If G contains a path over n+ 1 vertices we also get δi,j = 0 unless i = 0
or j = 0, but for a different reason. On P there are 2 · 2i · 2j−1 crossing-free embeddings
that use the edge {h1, h2}, since there are 2 choices for deciding which one of h1 and h2
is connected to the left hand side, 2i choices for completing the left hand side to a path
and 2j−1 choices for completing the right hand side to a path. Likewise, on P ′ there are
2 · 2i−1 · 2j embeddings, which is the same number. Using a similar argument it can be
checked that

δ0,n−2 = −δn−2,0 = 2 · (2n−2 +
n−2∑
k=1

2k−1 · 2n−2−k)− 2 · 2n−3 = (n− 1)2n−2 .

For anchoring we compute nbG(Pcon) = (n+ 1)2n−2, implying nbG(P ) = n2n−1 for any wheel
set P .

The following two applications are “sensitive” in the sense that different wheel sets in
general have different numbers of crossing-free embeddings. The running example with
embracing triangles also is of this kind.
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Matchings. Let G =M, the set of (not necessarily perfect) matchings over n+ 1 vertices.
It is known that nbM(Pcon) = Mn+1 :=

∑b(n+1)/2c
k=0

(
n+1
2k
)
Ck, the (n+ 1)-th Motzkin number

[22]. It is thus easy to compute δi,j = MiMj+1 −Mi+1Mj since, as always, we only have
to worry about embeddings that use the edge {h1, h2}. This gives λl,r = MlMr and
γn = Mn+1 + 1

2
∑
l,rMlMr. After simplifying3, we obtain the following formula.

nbG(P ) = 3Mn+1 −Mn

2 − 1
2
∑
h∈H

Ml(h)Mr(h) for G =M (2)

Spanning trees. Let G = ST , the set of all trees over n + 1 vertices. We will make use
of the fact that nbST (Pcon) = Tn+1 := 1

2n+1
(3n
n

)
[7, 11]. Furthermore, we will use the

hypergeometric identity
∑i
k=0 Tk+1Ti−k+1 = 1

i+1
(3i+1

i

)
. To compute δi,j , consider the set

P as in Figure 2. In order to complete the left hand side into a spanning tree, we have to
build two disjoint trees rooted at h1 and h2, respectively. There are 2 choices for assigning w
either to the upper or the lower tree, and there are i+ 1 choices for distributing the i points
on the left among the two trees. Indeed, the latter claim holds because the k out of i points
assigned to h1, say, have to appear consecutively with h1 on the convex hull as otherwise we
are forced to create a crossing. Once the points have been distributed, we are left with two
point sets of size k + 1 and i− k + 2 in convex position. For completing the right hand side
into a spanning tree, a simpler argument can be used without the additional complication of
w. Moreover, the set P ′ can be handled analogously.

δi,j = 2
j∑

k=0
Tk+1Tj−k+2 ·

i∑
k=0

Tk+1Ti−k+1 − 2
i∑

k=0
Tk+1Ti−k+2 ·

j∑
k=0

Tk+1Tj−k+1

= 2
(

2
j + 2

(
3j + 3
j

)
· 1
i+ 1

(
3i+ 1
i

)
− 2
i+ 2

(
3i+ 3
i

)
· 1
j + 1

(
3j + 1
j

))

For this application, we do not know if a simple closed form expression for λl,r exists.
Still, note that if one were to compute nbST (P ), the numbers δi,j can be summed up in
linear time and the value of γn can be computed on the fly for any given n.

Other applications. Observe that, for example, a geometric triangulation of Pcon can be
embedded as a plane graph on Pbar. However, this embedding is no longer a triangulation
(i.e., a tessellation of CH(Pbar) into triangles). Hence, there is no natural choice of G such
that nbG(P ) is the number of triangulations of any conowheel set P . It turns out that there
are several other families of geometric graphs (pseudotriangulations, crossing-free convex
partitions, etc.) whose quantity on a conowheel set P cannot be expressed easily in the
form nbG(P ), but for which the continuous motion argument is still applicable and leads to
similarly simple formulas. All that is required is a specialized version of Lemma 6.

Furthermore, we note that Theorem 3 generalizes to crossing-free embeddings of hyper-
graphs, where “crossing-free” means that the convex hulls of any two hyperedges intersect in
an at most 1-dimensional set.

3 A crossing-free matching on Pcon either leaves w unmatched (Mn possibilities) or it matches w with one
of the other n points (

∑
l,r

MlMr possibilities). Hence, as required, Mn+1 = Mn +
∑

l,r
MlMr.
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3.2 Wheel Sets and the Rectilinear Crossing Number
Even though conowheel sets and the associated frequency vectors seem like a very specific
set of objects, they do occur naturally in more general settings. Consider for example an
arbitrary set P̃ of n+1 points in general position and let � and 4 be the number of 4-element
subsets of P̃ in convex and in non-convex position, respectively.4 Let p ∈ P̃ be any point.
We can construct a conowheel set P = H ∪ {w} containing w = p and, for every q ∈ P̃ \ {p},
the point h which lies on the intersection of the ray from p to q and a fixed circle centered at
w (as done also, e.g., in [16]). That is, P is simply a representation of the local sequence
of p in P̃ in terms of conowheel sets; see [14]. Further observe that a triangle spanned by
points in P̃ contains p iff its image in P contains w. Hence, nbK···

4
(P ) is the number of such

triangles, which is given by equation (1). We thus obtain 4 by a summation over all points
p in P̃ . Since �+4 =

(
n+1

4
)
, we also obtain �. We note that this can be transformed into

equations from [1, 19, 30] that give � in terms of the number of j-edges (i.e., directed edges
spanned by P̃ with exactly j points of P̃ to their left).

To sum up, we can associate a frequency vector with every point of a given point set, and
this set of frequency vectors determines the value of �. Unfortunately, this simple approach
does not generalize to counting other types of graphs; there are examples of point sets with
the same set of frequency vectors but a different number of triangulations.

4 Higher Dimensions: Origin-embracing Simplices

As already noted in the introduction, the concept of conowheel sets can be generalized to
higher dimensions. However, already in R3 we face certain challenges. For example, the
number of tetrahedralizations of n+ 1 points in convex position in R3 does not only depend
on n, in contrast to the 2-dimensional case. Even when considering simpler structures, like
the set of w-embracing tetrahedra, the ideas from Section 3 do not generalize. (Intuitively,
our argument of w passing over a segment does not work in 3-space, as it can pass “behind” a
triangle.) Still, we can use similar techniques to obtain improved time bounds for computing
the simplicial depth of a point w.

Oriented simplices. Given a set T of d affinely independent points in Rd, its convex hull
CH(T ) is a (d− 1)-simplex and its affine hull is a hyperplane. We want to be able to refer to
the two sides of this hyperplane by identifying a positive and a negative side. For that consider
a sequence p1p2 . . . pd of d affinely independent points. The affine hull of {p1, p2, . . . , pd}
can be described as the set of points q with σ(q, p1p2 . . . pd) = 0, where σ(q, p1p2 . . . pd) :=
det(p1−q, p2−q, . . . , pd−q).We call the set of points q with σ(q, p1p2 . . . pd) > 0 the positive
side of p1p2 . . . pd, and the set of points q with σ(q, p1p2 . . . pd) < 0 the negative side of
p1p2 . . . pd. Note that for d = 2, the positive side of p1p2 is the set of points left of the line
through p1 and p2, directed from p1 to p2. Also note that the positive side of p1p2 coincides
with the negative side of p2p1. For d ≥ 3, distinct orderings of the given d points may have
identical positive sides; this happens iff the orderings can be obtained from each other by
an even number of transpositions. An oriented (d− 1)-simplex is a sequence p1p2 . . . pd of d
affinely independent points, with its associated (d− 1)-simplex CH({p1, p2, . . . , pd}), and its
associated positive and negative side as defined above. Two such oriented (d− 1)-simplices

4 The number � is also the number of crossings of the complete geometric graph on P̃ , a quantity that
has obtained special attention in connection with the so-called rectilinear crossing number of Kn (i.e.,
the smallest number of crossings in a straight line drawing of the complete graph in the plane).
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are defined to be equivalent if their sequences can be obtained from each other by an even
number of transpositions (e.g., p1p2p3 ≡ p3p1p2 ≡ p2p3p1 and p3p2p1 ≡ p1p3p2 ≡ p2p1p3).

Via oriented simplices, the concept of order types generalizes to arbitrary dimensions; the
order type of a set P = H ∪ {w} of n+ 1 points in Rd determines the set of points on the
positive side of the oriented (d− 1)-simplex wh1 . . . hd−1, for each (d− 1)-tuple in H. Let
l(h1 . . . hd−1) be the number of these points, and let r(h1 . . . hd−1) = n−d+ 1− l(h1 . . . hd−1).
We can thus define the frequency vector F (P ) = (F0, F1, . . . , Fn−d+1) by letting Fi denote
the number of tuples ρ ∈ Hd−1 s.t. | l(ρ)− r(ρ)| = i. However, already for d = 3 it turns out
that this frequency vector does not always determine the number of w-embracing tetrahedra,
i.e., the number of subsets of d+ 1 points of H whose convex hull contains w.

4.1 Embracing sets
Here, we generalize the notion of embracing triangles to larger sets. Consider a set P =
H ∪ {w} of n+ 1 points in Rd. A subset A ⊆ H is a w-embracing k-set if w ∈ CH(A) and
|A| = k. For simplicity, we will usually consider w = 0 and call A an embracing k-set.

Let us quickly return to dimension d = 2 and consider a conowheel set P = H ∪ {w}. As
follows, we can show that the number of embracing k-sets is determined by the frequency
vector of P for any k, and not just for k = 3 as seen earlier in equation (1). Indeed, since H
is in general position, for every non-embracing k-set A ⊆ H there exists a unique point h ∈ A
such that CH(A) is in the closed halfplane to the left of the directed segment wh. Observe
that for any choice of h ∈ H we can construct

( l(h)
k−1
)
such non-embracing k-sets, and thus

we get a generalization of equation (1). (This direct approach to counting non-embracing
triangles was, e.g., also used in [25].) Interestingly, the reverse is also true.

I Lemma 7. The sequence (embrk)nk=3, where embrk is the number of embracing k-sets in a
conowheel set P = H ∪ {w} of size n+ 1, determines the frequency vector of P .

Proof. Let E = (embrk)nk=3. Consider the vector L = (Lj)n−1
j=1 where Lj is the number of

points h ∈ H with l(h) = j. Clearly, L determines the frequency vector of P . It thus suffices
to show that E determines L.

The number embrk of embracing k-sets is

embrk =
(
n

k

)
−
∑
h∈H

(
l(h)
k − 1

)
,

which may be rewritten as(
n

k

)
− embrk =

n−1∑
j=1

Lj

(
j

k − 1

)
.

Observe that the above equation also holds for k = 2. We can thus define a vector
E′ = (ei)n−1

i=1 with ei =
(
n
i+1
)
− embri+1 and a square matrix A = (ai,j)n−1

i,j=1 with ai,j =
(
j
i

)
,

such that

E′ = AL .

Since the matrix A is unitriangular (i.e., triangular and without zeroes on the diagonal) it
has an inverse, from which we conclude that E′ determines L. J

I Corollary 8. Let P and P ′ be two conowheel sets. Then nbG(P ) = nbG(P ′) for any graph
class G if and only if F (P ) = F (P ′).
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Proof. We already know from Theorem 3 that the frequency vector determines the number
of embeddings. For the other direction, we reconstruct the number of embracing k-sets by
appropriately choosing the graph classes G. After that, the frequency vector is determined
by Lemma 7.

The number of embracing triangles is equal to the number of embeddings of K ···4 and
therefore, by our assumption, the same for both P and P ′. We now simply generalize to
k-wheels, i.e., G contains a cycle with k vertices, each adjacent to one additional vertex. All
that is left to observe is that the number of distinct embeddings of such a k-wheel on a
conowheel set is the same as the number of embracing k-sets. J

Note that, for arbitrary point sets, we can compute the number of crossing-free embeddings
of such k-wheels in polynomial time: For k = 3, this number is equal to the number of
crossing-free embeddings of K ···4 , which can be obtained from the frequency vector associated
with each point, see Section 3.2. For k ≥ 4, we distinguish the cases where the geometric
embedding of a k-wheel has only three vertices on the unbounded cell and where it has more.
The latter case can be dealt with by computing the number of embracing k-sets for each
point. The former can be obtained by computing the number of triangles with j points in
the interior and multiplying this number by 3

(
j

k−2
)
. This is because for every vertex of such

a triangle, a path of k − 2 points inside this triangle in radial order around that vertex gives
a k-wheel with the triangle as the unbounded cell. For all j, the corresponding number of
triangles can be obtained in O(n3) time [4, 10].

Unfortunately, generalizing the above approach of counting embracing k-sets to higher
dimensions fails already in 3-space. Indeed, consider the set of non-embracing tetrahedra for
a set H ⊂ R3 in convex position. Observe now that any such tetrahedron has either three or
four edges that form a “tangent” plane through w.

Instead, consider a partition B
.
∪W = H defined by a plane φ through w that is disjoint

from H. Then, the set of non-embracing k-sets consists of those completely in B and W ,
respectively, and those intersected by φ. For the latter, consider the intersection of CH(A) of
such a set A with φ. There is again a single “tangent” point t = pq ∩ φ such that CH(A) ∩ φ
is on one side of the line wt on φ. Hence, the number of embracing k-sets in 3-space is

embrk =
(
n

k

)
−
(
|B|
k

)
−
(
|W |
k

)
−

∑
pq∈B×W

(
l(pq)
k − 2

)
.

We can generalize this approach in the following way.

I Lemma 9. Let H be a set of n points in Rd, with H ∪ {0} in general position, and let ψ
be a generic 2-flat containing the origin. Let proj : Rd → Rd−2 be a projection that maps all
of ψ to 0 ∈ Rd−2. Then, the number of embracing k-sets in H is

embrk(proj(H))− 1
2

∑
ρ∈( H

d−1)
CH(ρ)∩ψ 6=∅

((
l(ρ)

k − d+ 1

)
+
(

r(ρ)
k − d+ 1

))
.

Proof. Clearly, any embracing k-set is also an embracing k-set in the projection, so we only
have to subtract the number of non-embracing k-sets which happen to be embracing in the
projection. Let A be such a set. Since 0 ∈ proj(CH(A)), we have CH(A) ∩ ψ 6= ∅. In the
2-dimensional subspace defined by ψ, there is a unique point t on the boundary of CH(A)∩ψ
such that CH(A) ∩ ψ is in the left closed halfplane defined by 0t (recall that we assume
general position). Since ψ is generic, t is the intersection of ψ with a (d− 2)-simplex defined
by a tuple ρ of d− 1 points of A, and the oriented (d− 1)-simplex 0ρ has all points of A \ ρ
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either on its positive or negative side. We are thus counting each such non-embracing k-set
twice (for the left and the right “tangent”), and the claim follows. J

With the previous lemma at hand, it is now a simple task to give a proof of our main
computational result.

I Theorem 4 (restated). Let d ≥ 3 be fixed and let H be a set of n points in Rd. Then, the
simplicial depth of a point w in H can be computed in O(nd−1) time.

Proof. The proof of Lemma 9 is constructive (apart from the choice of ψ, which can be
done arbitrarily using the techniques in [8]). Whether a (d− 1)-simplex intersects ψ can be
computed in O(dd) time. It thus remains to compute the values of l(ρ) for the (d−1)-tuples ρ.
While a brute-force approach would take O(nd) time for this operation, we can actually
consider the points of H as vectors representing points in the (d− 1)-dimensional projective
plane. We compute the dual hyperplane arrangement [9] in O(nd−1) time, which allows us
to extract the values of l(ρ) within the same time bounds (as also discussed in [9]). J

Note that the part whose running time depends on d is computing the values of l(ρ).
After O(nd−1) time, we can produce a vector indicating the number of (d − 1)-simplices
intersecting ψ with a certain number of points on their positive side. Using this vector, we
only have to sum up over O(n) binomial coefficients in each recursion step to obtain the
number of embracing k-sets.

4.2 Polytopes with few vertices
Through the so-called Gale transform (cf. [31, 32, 33]), origin-embracing triangles are in
correspondence to facets ((n−4)-faces) of simplicial (n−3)-polytopes with at most n vertices.
More generally, subsets of size i containing the origin in their convex hull correspond to
(n − i − 1)-faces. Therefore, some of our results connect to such simplicial d-dimensional
polytopes with at most d+ 3 vertices (number of frequency vectors, number of order types,
computation of number of embracing triangles, etc.) and thus to known results in that
context.

Gale duality. For n > d, we call a matrix A ∈ Rn×d legal if A has full rank d and A>1n = 0d.
Let SA = (p1, p2, . . . , pn) be the sequence of points in Rd with the coordinates of pi obtained
from the ith row of A. Legal thus means that SA is not contained in a hyperplane and that
the origin is the centroid of SA. For legal matrices A ∈ Rn×d and B ∈ Rn×n−d−1, we call B
an orthogonal dual of A, in symbols A⊥B, if A>B = 0d×(n−d−1). SB is called a Gale dual
(Gale transform, Gale diagram) of SA.5 In other words, if A⊥B then all column vectors of
B are orthogonal to all column vectors of A; together with the legal condition, this means
that the column vectors of B span the space of all vectors orthogonal to the column vectors
of A and to 1n, i.e., it is a basis of the null space of the vector space spanned by the columns
of (A1n). (The matrix (A1n) is the matrix A with an extra column of 1’s.)

I Proposition 10 ([20, p. 111]). Let A⊥B with SA = (p1, p2, . . . , pn), SB = (p∗1, p∗2, . . . , p∗n).
For every I ⊆ [n], the set {pi | i ∈ I} is contained in a facet of CH(SA) iff {p∗i | i 6∈ I} is
embracing.

5 Following [32], we add the requirement that the origin is the centroid, in contrast to, e.g., [20, Chapter 5.6].
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For a d-dimensional polytope P , the f -vector of P is defined as f(P) = (f−1, f0, . . . , fd−1),
where fi(P) is the number of i-dimensional faces (i-faces) of P (the empty face is the unique
(−1)-face, 0-faces are vertices, 1-faces are edges, . . . , (d− 1)-faces are facets). A property of
the Gale dual is that the points in SA are in general position iff the rows in B are linearly
independent [20, p. 111]. Thus, if S := {p1, p2, . . . , pn} is a set of n points in general position,
P := CH(S), and Q is the set {p∗1, p∗2, . . . , p∗n}, then fi(P) equals the number of embracing
(n− i− 1)-sets in Q.6 Computing the f -vector can thus be done by computing the Gale
dual and by using Proposition 10.

I Proposition 11. Given a legal matrix A ∈ Rn×d, an orthogonal dual can be computed in
time O(nω), where ω is the exponent for matrix multiplication over R.

I Corollary 12. For a set S of n = d+ k points in general position in Rd, the number of
facets of the simplicial polytope CH(S) can be computed in time O(nk−2) for k ≥ 5 and in
O(nω) otherwise, where ω is the exponent for matrix multiplication over R.

Note that the asymptotic number of facets may be as large as nk. A generalization of
Corollary 12 to sets not necessarily in general position is possible for k = 3. Our efficient
computation of the number of embracing k-sets thus lets us obtain not only the f -vector
of a polytope, but of course related vectors like the h- and the g-vector. We finally draw
the connection between order types of conowheel sets and the combinatorial structure of
simplicial d-polytopes with d+ 3 vertices.

I Proposition 13. The family of embracing triangles of a conowheel set P = H ∪ {w}
determines the order type of P .

It is therefore no coincidence that the number obtained in Theorem 1 is the same as the
one obtained by Perles for the number of simplicial d-polytopes with d+ 3 vertices (see [15,
Chapter 6.3]). Also, the number of f -vectors of polytopes with at most d+ 3 vertices, as
obtained by Linusson [17], equals the number of frequency vectors by Lemma 7; via the Gale
dual, we thus obtain a direct proof for the number of these f -vectors, as desired by Linusson.
Doing so for d+ 4 vertices, however, remains an open problem.
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