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Abstract
A graph drawing is greedy if, for every ordered pair of vertices (x, y), there is a path from x

to y such that the Euclidean distance to y decreases monotonically at every vertex of the path.
Greedy drawings support a simple geometric routing scheme, in which any node that has to send
a packet to a destination “greedily” forwards the packet to any neighbor that is closer to the
destination than itself, according to the Euclidean distance in the drawing. In a greedy drawing
such a neighbor always exists and hence this routing scheme is guaranteed to succeed.

In 2004 Papadimitriou and Ratajczak stated two conjectures related to greedy drawings. The
greedy embedding conjecture states that every 3-connected planar graph admits a greedy drawing.
The convex greedy embedding conjecture asserts that every 3-connected planar graph admits a
planar greedy drawing in which the faces are delimited by convex polygons. In 2008 the greedy
embedding conjecture was settled in the positive by Leighton and Moitra.

In this paper we prove that every 3-connected planar graph admits a planar greedy drawing.
Apart from being a strengthening of Leighton and Moitra’s result, this theorem constitutes a
natural intermediate step towards a proof of the convex greedy embedding conjecture.
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1 Introduction

Geographic routing is a family of routing protocols for ad-hoc networks, which are networks
with no fixed infrastructure – such as routers or access points – and with dynamic topology [15,
27, 28]. In a geographic routing scheme each node of the network actively sends, forwards,
and receives packets; further, it does so by only relying on the knowledge of its own geographic
coordinates, of those of its neighbors, and of those of the packet destination. Greedy routing
is the simplest and most renowned geographic routing scheme. In this protocol, a node that
has to send a packet simply forwards it to any neighbor that is closer – according to the
Euclidean distance – to the destination than itself. The greedy routing scheme might fail

∗ This article reports on work supported by the U.S. Defense Advanced Research Projects Agency (DARPA)
under agreement no. AFRL FA8750-15-2-0092. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense or the U.S. Government. This
research was also partially supported by NSERC, by MIUR-PRIN Project 20157EFM5C – “MODE”,
and by H2020-MSCA-RISE Project 734922 – “CONNECT”.

© Giordano Da Lozzo, Anthony D’Angelo, and Fabrizio Frati;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84868958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


33:2 On Planar Greedy Drawings of 3-Connected Planar Graphs

to deliver packets because of the presence of a void in the network; this is a node with no
neighbor closer to the destination than itself. For this reason, several variations of the greedy
routing scheme have been proposed; see, e.g., [6, 19, 20].

Apart from its failure in the presence of voids, the greedy routing protocol has two
disadvantages which limit its applicability. First, in order for the protocol to work, each
node of the network has to be equipped with a GPS, which might be expensive and might
consume excessive energy. Second, two nodes that are close geographically might be unable
to communicate with each other because of the presence of topological obstructions. Rao et
al. [26] introduced the following brilliant idea for extending the applicability of geographic
routing in order to overcome the above issues. Suppose that a network topology is known;
then one can assign virtual coordinates to the nodes and use these coordinates instead of the
geographic locations of the nodes in the greedy routing protocol. The virtual coordinates
can then be chosen so that the greedy routing protocol is guaranteed to succeed.

Assigning the virtual coordinate to the nodes of a network corresponds to the following
graph drawing problem: given a graph G, construct a greedy drawing of G, that is a drawing
in the plane such that, for any ordered pair of vertices (x, y), there is a neighbor of x in G that
is closer – in terms of Euclidean distance – to y than x. Equivalently, a greedy drawing of G
is such that, for any ordered pair of vertices (x, y), there is a distance-decreasing path from x

to y, that is, a path (u1, . . . , um) in G such that x = u1, y = um, and the Euclidean distance
between ui+1 and um is smaller than the one between ui and um, for any i = 1, . . . ,m− 2.

Greedy drawings experienced a dramatical surge of popularity in the theory community in
2004, when Papadimitriou and Ratajczak [24] proposed the following two conjectures about
greedy drawings of 3-connected planar graphs (the convex greedy embedding conjecture has
not been stated in the journal version [25] of their paper [24]).

I Conjecture 1 (Greedy embedding conjecture). Every 3-connected planar graph admits a
greedy drawing.

I Conjecture 2 (Convex greedy embedding conjecture). Every 3-connected planar graph
admits a convex greedy drawing.

Papadimitriou and Ratajczak [24, 25] provided several reasons why 3-connected planar
graphs are central to the study of greedy drawings. First, there exist non-3-connected planar
graphs and 3-connected non-planar graphs that do not admit any greedy drawing. Thus, the
3-connected planar graphs form the largest class of graphs that might admit a greedy drawing,
in a sense. Second, all the 3-connected graphs with no K3,3-minor admit a 3-connected
planar spanning graph, hence they admit a greedy drawing, provided the truth of the greedy
embedding conjecture. Third, the preliminary study of Papadimitriou and Ratajczak [24, 25]
provided evidence for the mathematical depth of their conjectures.

Leighton and Moitra [21] (and, independently and slightly later, Angelini et al. [4]) settled
Conjecture 1 in the affirmative. In this paper we show the following result.

I Theorem 3. Every 3-connected planar graph admits a planar greedy drawing.

Given a 3-connected planar graph G, the algorithms in [4, 21] find a spanning subgraph
S of G and construct a (planar) greedy drawing of S; then they embed the edges of G not in
S as straight-line segments obtaining a, in general, non-planar greedy drawing of G. Thus,
Theorem 3 strengthens Leighton and Moitra’s and Angelini et al.’s results. Furthermore,
convex drawings, in which all the faces are delimited by convex polygons, are planar, hence
Theorem 3 provides a natural step towards a proof of Conjecture 2.
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Our proof employs a structural decomposition for 3-connected planar graphs which
finds its origins in a paper by Chen and Yu [7]. This decomposition actually works for a
super-class of the 3-connected planar graphs known as strong circuit graphs. We construct a
planar greedy drawing of a given strong circuit graph G recursively: we apply the structural
decomposition to G in order to obtain some smaller strong circuit graphs, we recursively
construct planar greedy drawings for them, and then we suitably arrange these drawings
together to get a planar greedy drawing of G. For this arrangement to be feasible, we need
to ensure that the drawings we construct satisfy some restrictive geometric requirements;
these are described in the main technical theorem of the paper – Theorem 8.

Related results. Planar greedy drawings always exist for maximal planar graphs [11].
Further, every planar graph G with a Hamiltonian path P = (u1, . . . , un) has a planar greedy
drawing. Namely, construct a planar straight-line drawing Γ of G such that y(u1) < · · · <
y(un); such a drawing always exists [12]; scale Γ down horizontally, so that P is “almost
vertical”. Then, for any 1 ≤ i < j ≤ n, the paths (ui, ui+1 . . . , uj) and (uj , uj−1 . . . , ui) are
distance-decreasing. A characterization of the trees that admit a (planar) greedy drawing is
known [22]; indeed, a greedy drawing of a tree is always planar [2].

Algorithms have been designed to construct succinct greedy drawings, in which the vertex
coordinates are represented with a polylogarithmic number of bits [13, 16, 17]; this has been
achieved by allowing the embedding space to be different from the Euclidean plane or the
metric to be different from the Euclidean distance.

Planar drawings have been studied in which paths between pairs of vertices are required
to exist satisfying properties other than being distance-decreasing. We say that a path
P = (u1, . . . , um) in a graph drawing is self-approaching [1, 23] if, for any three points a, b, c
in this order along P from u1 to um, the Euclidean distance between a and c is larger than
the one between b and c – then a self-approaching path is also distance-decreasing. We say
that P is increasing-chord [1, 10, 23] if it is self-approaching in both directions. We say that
P is strongly monotone [3, 14, 18] if the orthogonal projections of the vertices of P on the
line ` through u1 and um appear in the order u1, . . . , um. It has been recently proved [14]
that every 3-connected planar graph has a planar drawing in which every pair of vertices is
connected by a strongly monotone path.

Because of space limitations some proofs are sketched or omitted; they can be found in
the complete version of the paper [8].

2 Preliminaries

In this section we introduce some preliminaries.

Subgraphs and connectivity. We denote by V (G) and E(G) the vertex and edge sets of
a graph G, respectively. For U ⊆ V (G), we denote by G − U the graph obtained from G

by removing the vertices in U and their incident edges. Further, if e ∈ E(G), we denote by
G− e the graph obtained from G by removing the edge e. Let H be a subgraph of G. An
H-bridge B of G is either an edge of G not in H with both the end-vertices in H (then B is
a trivial H-bridge), or a connected component of G− V (H) together with the edges from
that component to the vertices in V (H) (then B is a non-trivial H-bridge); the vertices in
V (H) ∩ V (B) are the attachments of B in H. For a vertex v ∈ V (G)− V (H), we denote by
H ∪ {v} the subgraph of G composed of H and of the isolated vertex v.

SoCG 2017
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A vertex k-cut (in the following simply called k-cut) in a connected graph G is a set of k
vertices whose removal disconnects G. For k ≥ 2, a connected graph is k-connected if it has
no (k − 1)-cut. A k-connected component of a graph G is a maximal k-connected subgraph
of G. Given a 2-cut {a, b} in a 2-connected graph G, an {a, b}-component is either the edge
ab (then the {a, b}-component is trivial) or a subgraph of G induced by a, b, and the vertices
of a connected component of G− {a, b} (then the {a, b}-component is non-trivial).

Plane graphs and embeddings. A drawing of a graph is planar if no two edges cross. A
plane graph is a planar graph with a plane embedding; a plane embedding of a connected
planar graph G is an equivalence class of planar drawings of G, where two drawings Γ1 and
Γ2 are equivalent if: (i) the clockwise order of the edges incident to each vertex v ∈ V (G)
coincides in Γ1 and Γ2; and (ii) the clockwise order of the edges of the walks delimiting the
outer faces of Γ1 and Γ2 is the same. When we talk about a planar drawing of a plane graph
G, we always mean that it respects the plane embedding of G. We assume that any subgraph
H of G is associated with the plane embedding obtained from the one of G by deleting the
vertices and edges not in H. A vertex of G is external or internal depending on whether it is
or it is not incident to the outer face of G, respectively. For two external vertices u and v of
a 2-connected plane graph G, let τuv(G) and βuv(G) be the paths composed of the vertices
and edges encountered when walking along the boundary of the outer face of G in clockwise
and counter-clockwise direction from u to v, respectively. Note that τuv(G) and βvu(G) have
the same vertices and edges, however in reverse linear orders.

Geometry. In this paper every angle is measured in radians. The slope of a half-line ` is
defined as follows. Denote by p the starting point of ` and let `′ be the vertical half-line
starting at p and directed towards decreasing y-coordinates. Then the slope of ` is the
angle spanned by a counter-clockwise rotation around p bringing `′ to coincide with `, minus
π
2 . Because of this definition, the slope of any half-line is between -π2 (included) and 3π

2
(excluded); in the following there will be very few exceptions to this assumption, which will
be however evident from the text. Every angle expressed as arctan(·) is between -π2 and π

2 .
We define the slope of an edge uv in a graph drawing as the slope of the half-line from u

through v. Then the slope of an edge uv is equal to the slope of the edge vu plus or minus π.
For a directed line `, we let its slope be equal to the slope of any half-line starting at a point
of ` and directed as `. We denote by ∆pqr a triangle with vertices p, q, r, and we denote by
]pqr the angle of ∆pqr incident to q; note that ]pqr is between 0 and π.

Let Γ be a drawing of a graph G and let u, v ∈ V (G). We denote by d(Γ, uv) the Euclidean
distance between the points representing u and v in Γ. We also denote by dV (Γ, uv) the
vertical distance between u and v in Γ, that is, dV (Γ, uv) = |y(u) − y(v)|, where the y-
coordinates of u and v are taken from Γ; the horizontal distance dH(Γ, uv) between u and v
in Γ is defined analogously. With a slight abuse of notation, we will use d(Γ, pq), dH(Γ, pq),
and dV (Γ, pq) even if p and q are points in the plane (and not vertices of G). A straight-line
drawing of a graph is such that each edge is represented by a straight-line segment.

The following lemma argues that the planarity and the greediness of a drawing are not
lost as a consequence of any sufficiently small perturbation of the vertex positions.

I Lemma 4. Let Γ be a planar straight-line drawing of a graph G. There is a value ε∗Γ > 0
such that the following holds. Let Γ′ be any straight-line drawing in which, for every vertex
z ∈ V (G), the Euclidean distance between the positions of z in Γ and Γ′ is at most ε∗Γ; then
Γ′ is planar and any path which is distance-decreasing in Γ is also distance-decreasing in Γ′.
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Figure 1 (a) Structure of (G, u, v) in Case A. (b) Structure of (G, u, v) in Case B.

3 Proof of Theorem 3

In this section we prove Theorem 3. Throughout the section, we will work with plane graphs.
Further, we will deal with a class of graphs, known as strong circuit graphs [7], that is
wider than 3-connected planar graphs. Strong circuit graphs constitute a subclass of the
well-known circuit graphs, whose definition is due to Barnette and dates back to 1966 [5].
Here we rephrase the definition of strong circuit graphs as follows.

I Definition 5. A strong circuit graph is a triple (G, u, v) such that either: (i) G is an edge
uv or (ii) |V (G)| ≥ 3 and the following properties are satisfied.
(a) G is a 2-connected plane graph;
(b) u and v are two distinct external vertices of G;
(c) if edge uv exists, then it coincides with the path τuv(G); and
(d) for every 2-cut {a, b} of G we have that a and b are external vertices of G and at

least one of them is an internal vertex of the path βuv(G); further, every non-trivial
{a, b}-component of G contains an external vertex of G different from a and b.

Several problems are easier to solve on (strong) circuit graphs than on 3-connected planar
graphs. Indeed, (strong) circuit graphs can be easily decomposed into smaller (strong)
circuit graphs and hence are suitable for inductive proofs. We now present a structural
decomposition for strong circuit graphs whose main ideas can be found in a paper by Chen
and Yu [7] (see [9] for an application of this decomposition to cubic strong circuit graphs).

Consider a strong circuit graph (G, u, v) such that G is not a single edge. The decompos-
ition distinguishes the case in which the path τuv(G) coincides with the edge uv (Case A)
from the case in which it does not (Case B).

I Lemma 6. Suppose that we are in Case A (refer to Fig. 1(a)). Then the graph G′ = G−uv
consists of a sequence of graphs G1, . . . , Gk, with k ≥ 1, such that:

6a: for i = 1, . . . , k − 1, the graphs Gi and Gi+1 share a single vertex ui; further, Gi is
in the outer face of Gi+1 and vice versa in the plane embedding of G;
6b: for 1 ≤ i, j ≤ k with j ≥ i+ 2, the graphs Gi and Gj do not share any vertex; and
6c: for i = 1, . . . , k with u0 = u and uk = v, (Gi, ui−1, ui) is a strong circuit graph.

Given a strong circuit graph (G, u, v) that is not a single edge, the vertex u belongs to
one 2-connected component of the graph G− {v}. Indeed, if it belonged to more than one
2-connected component of G−{v}, then {u} would be a 1-cut of G−{v}, hence {u, v} would
be a 2-cut of G, which contradicts Property (d) for (G, u, v). We now present the following.

I Lemma 7. Suppose that we are in Case B (refer to Fig. 1(b)). Let H be the 2-connected
component of the graph G−{v} that contains u; then we have |V (H)| ≥ 3. Let H ′ := H∪{v}.
Then G contains ` distinct H ′-bridges B1, . . . , B`, for some ` ≥ 2, such that:

SoCG 2017
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7a: each H ′-bridge Bi has two attachments, namely v and a vertex yi ∈ V (H);
7b: the H ′-bridges B1, . . . , B`−1 are trivial, while B` might be trivial or not;
7c: any two among y1, . . . , y` are distinct except, possibly, for y`−1 and y`; also if ` = 2,
then y1 and y2 are distinct;
7d: y1 is an internal vertex of τuv(G); further, B1 is an edge that coincides with τy1v(G);
7e: y` is an internal vertex of βuv(G) and βuy1(H); further, B` contains the path βy`v(G);
7f: B1, . . . , B`−1 appear in this counter-clockwise order around v and lie in the outer face
of B` in the plane embedding of G;
7g: the triple (H,u, y1) is a strong circuit graph; and
7h: B` consists of a sequence of graphs G1, . . . , Gk, with k ≥ 1, such that:

for i = 1, . . . , k − 1, the graphs Gi and Gi+1 share a single vertex ui; further, Gi is in
the outer face of Gi+1 and vice versa in the plane embedding of G;
for 1 ≤ i, j ≤ k with j ≥ i+ 2, the graphs Gi and Gj do not share any vertex; and
for i = 1, . . . , k with u0=y` and uk=v, the triple (Gi, ui−1, ui) is a strong circuit graph.

We prove that any strong circuit graph (G, u, v) has a planar greedy drawing by exploiting
Lemmata 6 and 7 in a natural way. Indeed, if we are in Case A (in Case B) then Lemma 6
(resp. Lemma 7) is applied in order to construct strong circuit graphs (Gi, ui−1, ui) with
i = 1, . . . , k (resp. strong circuit graphs (H,u, y1) and (Gi, ui−1, ui) with i = 1, . . . , k) for
which planar greedy drawings are inductively constructed and combined together in order
to get a planar greedy drawing of (G, u, v). The base case of the induction is the one in
which G is an edge; then a planar greedy drawing of G is directly constructed. In order to be
able to combine the planar greedy drawings for the strong circuit graphs (Gi, ui−1, ui) (and
(H,u, y1) if we are in Case B) to construct a planar greedy drawing of (G, u, v), we need the
inductively constructed drawings to satisfy some restrictive geometric requirements. These
are expressed in the following theorem, which is the core of the proof of Theorem 3.

I Theorem 8. Let (G, u, v) be a strong circuit graph with at least three vertices and let
0 < α < π

4 be an arbitrary parameter. Let βuv(G) = (u = b1, b2, . . . , bm = v). There exists
a straight-line drawing Γ of G in the Cartesian plane such that the following holds. For
any value δ ≥ 0, denote by Γδ the straight-line drawing obtained from Γ by moving the
position of vertex u by δ units to the left. Then Γδ satisfies the following properties (refer to
Fig. 2).
1. Γδ is planar;
2. τuv(G) lies entirely on a horizontal line `u with u to the left of v;
3. the edge b1b2 has slope in the interval (−α, 0) and the edge bibi+1 has slope in the interval

(0, α), for each i = 2, 3, . . . ,m− 1;
4. for every vertex x ∈ V (G) there is a path Px = (x = v1, v2, . . . , vp = v) from x to v in G

such that the edge vivi+1 has slope in the interval (−α, α) in Γδ, for each i = 1, 2, . . . , p−1;
further, if x 6= u, then u /∈ V (Px);

5. for every vertex x ∈ V (G) there is a path Qx = (x = w1, w2, . . . , wq = u) from x to u
in G such that the edge wiwi+1 has slope in the interval (π − α, π + α) in Γδ, for each
i = 1, 2, . . . , q − 1; and

6. for every ordered pair of vertices (x, y) in V (G) there is a path Pxy from x to y in G such
that Pxy is distance-decreasing in Γδ; further, if x 6= u and y 6= u, then u /∈ V (Pxy).

We comment on the statement of Theorem 8. First, let us set δ = 0 and argue about
Γ0 = Γ. Properties 1 and 6 are those that one would expect, as they state that Γ is planar
and greedy, respectively. Properties 2 and 3 state that all the edges incident to the outer
face of Γ are “almost” horizontal; indeed, the edges of τuv(G) are horizontal (this does not
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bm−1

b2
b3

bm=v`u δ

u=b1α

PxxQx

Figure 2 Illustration for the statement of Theorem 8.

bm−1

b2
b3

at=bm=v`u δ

a2 a3
ε

u=a1=b1

d(Γ′, a1a2) d(Γ′, a2at)

Figure 3 The straight-line drawing Γ of G in Case A if k = 1.

compromise the planarity of Γ since G does not contain edges between non-consecutive
vertices of τuv(G), by Property (d) of (G, u, v)), the edge b1b2 has a slightly negative slope,
and all the other edges of βuv(G) have slightly positive slopes. Then the planarity of Γ
implies that Γ is contained in a wedge delimited by two half-lines with slopes 0 and −α
starting at u. Properties 4 and 5 argue about the existence of certain paths from any vertex
to u and v; these two vertices play an important role in the structural decomposition we
employ, since distinct subgraphs are joined on those vertices, and the paths incident to them
are inductively combined together in order to construct distance-decreasing paths. Finally,
all these properties still hold if u is moved by an arbitrary non-negative amount δ to the left.
This is an important feature we exploit in one of our inductive cases.

We now present an inductive proof of Theorem 8. In the Base Case the graph G is
a single edge. We remark that, although Theorem 8 assumes that the given graph has at
least three vertices, for its proof we need to inductively draw certain subgraphs of it; these
subgraphs might indeed be single edges. Whenever we need to draw a strong circuit graph
(G, u, v) such that G is a single edge uv, we draw it as a horizontal straight-line segment
with positive length, with u to the left of v. We remark that, since Theorem 8 assumes that
|V (G)| ≥ 3, we do not need the constructed drawing to satisfy Properties 1–6.

We now discuss the inductive cases. In Case A the path τuv(G) coincides with the edge
uv, while in Case B it does not. We discuss Case A first. Let G′ = G − uv, where G′
consists of a sequence of graphs G1, . . . , Gk, with k ≥ 1, satisfying the properties described
in Lemma 6. Our construction is different if k = 1 and k ≥ 2.

Suppose first that k = 1; by Lemma 6 the triple (G′ = G1, u, v) is a strong circuit graph
(and G1 is not a single edge, as otherwise we would be in the Base Case). Inductively
construct a straight-line drawing Γ′ of G′ with α

2 as a parameter. By Property 2 the path
τuv(G′) = (u = a1, . . . , at = v) lies on a horizontal line `u in Γ′ with u to the left of v. Let
Y > 0 be the minimum distance in Γ′ of any vertex strictly below `u from `u. Let

ε = 1
2 min{ε∗Γ′ , Y, tan(α) · d(Γ′, a1a2), tan(α) · d(Γ′, a2at)}.

We construct a straight-line drawing Γ of G from Γ′ as follows; refer to Fig. 3. Decrease the
y-coordinate of the vertex a2 by ε; for i = 3, . . . , t− 1, decrease the y-coordinate of the vertex
ai so that it ends up on the straight-line segment a2at. Draw the edge uv as a straight-line
segment. We have the following.

SoCG 2017
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b2

`u δ

u1

ε

u=u0=b1

d(Γ1, u0u1)

Γ1
u2

Γ2

Γ3
Γ4

u3
pv=v=u4=bm

h

Figure 4 The straight-line drawing Γ of G in Case A if k ≥ 2. In this example k = 4. The gray
angle in the drawing is α

2 .

I Lemma 9. For any δ ≥ 0, the drawing Γδ constructed in Case A if k = 1 satisfies
Properties 1–6 of Theorem 8.

Proof Sketch. The planarity of Γ is established due to the inequality ε < ε∗Γ′ and to Lemma 4.
Since Γ and Γδ coincide, except for the position of u, every crossing in Γδ has to involve
edges incident to u. The proof that in fact there are no such crossings relies on the fact that
Γ′δ is planar, by induction, and on the inequalities ε < ε∗Γ′ and ε < Y .

The paths Px and Qx requested for Properties 4 and 5 are obtained by suitably modifying
paths satisfying the same properties for (G′, u, v). The paths Px and Qx might contain edges
in τuv(G′); however, the slopes of the edges are in the required interval, which is (−α, α) or
(π − α, π + α) depending on whether these edges are traversed towards v or u, respectively.
This is due to the inequalities ε < tan(α) · d(Γ′, a1a2) and ε < tan(α) · d(Γ′, a2at). J

We now discuss the case in which k ≥ 2. Refer to Fig. 4. By Lemma 6, for i = 1, . . . , k,
the triple (Gi, ui−1, ui) is a strong circuit graph, where u0 = u, uk = v, and ui is the only
vertex shared by Gi and Gi+1, for i = 1, . . . , k − 1.

If G1 is a single edge, then inductively construct a straight-line drawing Γ1 of G1 and
define ε = 1

2 min{ε∗Γ1
, tan(α) · d(Γ1, u0u1)}. If G1 is not a single edge, then inductively

construct a straight-line drawing Γ1 of G1 with α
2 as a parameter. By Property 2 of Γ1, the

path τu0u1(G1) lies on a horizontal line `u. Let Y > 0 be the minimum distance in Γ1 of any
vertex strictly below `u from `u. Let ε = 1

2 min{ε∗Γ1
, Y, tan(α) · d(Γ1, u0u1)}. In both cases,

decrease the y-coordinate of u1 by ε. Further, decrease the y-coordinate of every internal
vertex of the path τu0u1(G1), if any, so that it ends up on the straight-line segment u0u1.

Now consider a half-line h with slope s = α
2 starting at u1. Denote by pv the point at

which h intersects the horizontal line `u through u. For i = 2, . . . , k, inductively construct a
straight-line drawing Γi of Gi with α

3 as a parameter (if Gi is a single edge, then the parameter
does not matter). Uniformly scale the drawings Γ2, . . . ,Γk so that the Euclidean distance
between ui−1 and ui in Γi is equal to d(Γ1,u1pv)

k−1 . For i = 2, . . . , k, rotate the scaled drawing
Γi around ui−1 counter-clockwise by s radians. Translate the scaled and rotated drawings
Γ2, . . . ,Γk so that the representations of ui in Γi and Γi+1 coincide, for i = 1, . . . , k − 1.
Finally, draw the edge uv as a straight-line segment. This completes the construction of a
drawing Γ of G. We have the following.

I Lemma 10. For any δ ≥ 0, the drawing Γδ constructed in Case A if k ≥ 2 satisfies
Properties 1–6 of Theorem 8.

Proof Sketch. The fulfillment of Property 3 for Γδ is the reason for the asymmetry of the
construction, which shifts vertices in Γ1, while it rotates Γ2, . . . ,Γk. Indeed, for i = 1, . . . , k,
the first edge of βui−1ui(Gi) has negative slope in Γi, while all the other edges have positive
slopes; we need to ensure that the same property holds for βuv(G) = βu0u1(G1) ∪ · · · ∪
βuk−1uk(Gk) in Γδ. For i = 2, . . . , k, the counter-clockwise rotation of Γi by s = α

2 radians
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v=u4
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ε

d(Γ1, u0u1)

u2

u3

u=u0=c1

x=v1

vh=cj

`u

c2

Figure 5 Illustration for the proof that the slope in Γδ of every edge in the path Px is in (−α, α),
in the case in which x belongs to G1. The path Px is thick.

makes up for the negative slope (at most α
3 in absolute value) of the first edge of βui−1ui(Gi)

in Γi. On the other hand, the edges of βu0u1(G1) do not move when transforming Γ1 in Γ,
except for the edge incident to u1, which however does not change its slope significantly, due
to the inequality ε < Y ; hence the slope of the first edge of βu0u1(G1) remains negative (or
becomes negative if G1 is a single edge) and the other ones remain positive.

We present a proof that Γδ satisfies Property 4. Let x ∈ V (G). If x = u, let Px = (u, v);
then the only edge of Px has slope 0 ∈ (−α, α) in Γδ. If x = ui, for some i ∈ {1, . . . , k−1}, then
let Px =

⋃k
j=i+1 τuj−1uj (Gj) and observe that all the edges of Px have slope s = α

2 ∈ (−α, α);
further Px does not pass through u. If x 6= ui, for every i ∈ {0, . . . , k}, then x belongs to
a unique graph Gi, for some i ∈ {1, . . . , k}. Assume that i = 1; the case i ≥ 2 is easier
to handle. Refer to Fig. 5. Let τu0u1(G1) = (u0 = c1, c2, . . . , cr = u1). Since Γ1 satisfies
Property 4, there exists a path P 1

x = (x = v1, v2, . . . , vp = u1) from x to u1 in G1, not passing
through u0, whose edges have slopes in (−α2 ,

α
2 ) in Γ1; let h be the smallest index such that

vh = cj , for some j ∈ {1, . . . , r}. Such an index h exists (possibly h = p and j = r). Then
let Px consist of the paths (x = v1, v2, . . . , vh), (vh = cj , cj+1, . . . , cr), and

⋃k
j=2 τuj−1uj (Gj).

Since u /∈ V (P 1
x ), we have that u /∈ V (Px), hence it suffices to argue about the slopes of the

edges of Px in Γ rather than in Γδ.
For l = 1, . . . , h−2, the slope of vlvl+1 is in (−α, α) in Γ since it is in (−α, α) in Γ1 and since

neither vl nor vl+1 moves when transforming Γ1 into Γ. Further, for l = j, . . . , r−1, the slope
of the edge clcl+1 in Γ is − arctan

(
ε

d(Γ1,u0u1)

)
, which is in the interval (−α, 0) ⊂ (−α, α),

given that ε, d(Γ1, u0u1) > 0 and that ε < tan(α) · d(Γ1, u0u1). Moreover, the edges of⋃k
j=2 τuj−1uj (Gj) have slope s = α

2 ∈ (−α, α). Finally, let σ1 and σ be the slopes of the edge
vh−1vh in Γ1 and Γ, respectively. Since vh−1vh ∈ E(P 1

x ), we have σ1 ∈ (−α2 ,
α
2 ); since α ≤ π

4 ,
we have x(vh−1) < x(vh) in Γ1 and Γ (note that the x-coordinates of the vertices do not
change when transforming Γ1 into Γ). Further, by Properties 1–4 of Γ1, we have that vh−1
lies below `u, which contains vh; hence, y(vh−1) < y(vh) in Γ1. Since the vertex vh moves
down (while vh−1 stays put) when transforming Γ1 into Γ, and since ε ≤ Y

2 < dV (Γ1, vh−1vh),
it follows that 0 < σ < σ1; hence σ ∈ (0, α2 ) ⊂ (−α, α).

Turning our attention to Property 6, consider any two vertices x, y ∈ V (G), and assume
that x ∈ V (Gi) and y ∈ V (Gj). We prove the existence of a path Pxy from x to y in G

that is distance-decreasing in Γδ in the case in which 2 ≤ i < j ≤ k; the other cases can be
treated similarly. Let Pxy consist of a path P ix in Gi from x to ui whose edges have slopes in
(−α3 ,

α
3 ) in Γi, of the path

⋃j−1
l=i+1 τul−1ul(Gl), and of a path P juj−1y in Gj that is distance-

decreasing in Γj . By induction, P ix and P juj−1y exist since Γi and Γj satisfy Properties 4
and 6, respectively; further, note that u /∈ V (Pxy). Let Pxy = (z1, z2, . . . , zs); we prove that
d(Γδ, zhzs) > d(Γδ, zh+1zs), for h = 1, 2, . . . , s − 2, hence Pxy is distance-decreasing in Γδ.
We distinguish three cases.

If zhzh+1 is in Gj , then (zh, zh+1, . . . , zs) is a sub-path of P juj−1y, hence it is distance-
decreasing in Γδ since it is distance-decreasing in Γj and since the drawing of Gj in Γδ is
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Figure 6 (a) Illustration for the proof that d(Γδ, zhzs) > d(Γδ, zh+1zs) if zhzh+1 is in τul−1ul(Gl).
(b) Illustration for the proof that d(Γδ, zhzs) > d(Γδ, zh+1zs) if zhzh+1 is in P ix.

congruent to Γj , up to affine transformations (a uniform scaling, a rotation, and a translation),
which preserve the property of a path to be distance-decreasing.

If zhzh+1 is in τul−1ul(Gl), for some l ∈ {i+ 1, i+ 2, . . . , j − 1}, as in Fig. 6(a), then it
has slope s = α

2 . The directed line `h with slope π+α
2 through ul, oriented towards increasing

y-coordinates has the drawings of Gl+1, . . . , Gk (and in particular the vertex zs) to its right;
this is because by Property 3 of Γδ every edge in βulv(G) has slope in the interval (0, α), where
−π+α

2 < 0 < α < π+α
2 , and because the path

⋃k
m=l+1 τum−1um(Gm) has slope s = α

2 , where
−π+α

2 < α
2 <

π+α
2 . Then the directed line `′h parallel to `h, passing through the midpoint of

the edge zhzh+1, and oriented towards increasing y-coordinates has `h to its right, hence it
has zs to its right. Since the half-plane to the right of `′h represents the locus of the points of
the plane that are closer to zh+1 than to zh, it follows that d(Γδ, zhzs) > d(Γδ, zh+1zs).

If zhzh+1 is in P ix, as in Fig. 6(b), then by Property 4 it has slope in (−α3 ,
α
3 ) in Γi.

Since Γi is counter-clockwise rotated by s radians in Γδ, it follows that zhzh+1 has slope in
(s − α

3 , s + α
3 ) = (α6 ,

5α
6 ) in Γδ. Consider the directed line `h that passes through ui, that

is directed towards increasing y-coordinates and that is orthogonal to the line through zh
and zh+1. Denote by sh the slope of `h. Then sh ∈ (π2 + α

6 ,
π
2 + 5α

6 ). We have that `h has
the drawings of Gi+1, . . . , Gk to its right; this is because by Property 3 of Γδ every edge in
βuiv(G) has slope in (0, α) with sh − π < −π2 + 5α

6 < 0 < α < π
2 + α

6 < sh and because the
path

⋃k
m=i+1 τum−1um(Gm) has slope s = α

2 , where sh − π < −
π
2 + 5α

6 < α
2 < π

2 + α
6 < sh.

Further, `h has the drawings of G2, . . . , Gi to its left; this is because by Property 3 of Γδ every
edge in τuiu1(G) has slope in (π, π+α) with sh < π

2 + 5α
6 < π < π+α < 3π

2 + α
6 < π+sh and

because the path
⋃i
m=2 βumum−1(Gm) has slope s = π + α

2 , where sh <
π
2 + 5α

6 < π + α
2 <

3π
2 + α

6 < π + sh. Now consider the directed line `′h parallel to `h, passing through the
midpoint of the edge zhzh+1, and oriented towards increasing y-coordinates. This line has `h
to its right, given that the drawing of Gi (and in particular the midpoint of zhzh+1) is to the
left of `h in Γδ. Thus, `′h has the drawings of Gl+1, . . . , Gk (and in particular the vertex zs)
to its right. Since the half-plane to the right of `′h represents the locus of the points of the
plane that are closer to zh+1 than to zh, it follows that d(Γδ, zhzs) > d(Γδ, zh+1zs). J

We now discuss Case B, in which (G, u, v) is decomposed according to Lemma 7. Refer
to Figs. 7 and 8. First, the triple (H,u, y1) is a strong circuit graph with |V (H)| ≥ 3.
Inductively construct a straight-line drawing ΓH of H with α

2 as a parameter.
Let βuy1(H) = (u = b1, . . . , bm = y1). Let φi be the slope of the edge bibi+1 in ΓH and

let φ = mini=2,...,m−1{φi}. By Property (c) of (H,u, y1) if the edge uy1 belongs to H then
it coincides with the path τuy1(H). Hence, m ≥ 3 and φ is well-defined. Further, φ is in the
interval (0, α2 ) by Property 3 of ΓH .
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dH(Γδ, y`y1) dy1v
pρ,β
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φ2

Figure 7 The straight-line drawing Γ of G in Case B. For the sake of readability, φ and ρ are
larger than they should be. The dark gray angle is β. Fig. 8 shows an enlarged view of Dρ.

Dρ

pρ,u pρ,β

Γ1

Γ2
Γ3

u1 u2 v=uk

u0

v=uk

Dρ

Γ1,d∗

Γ2
Γ3

u1 u2

(a) (b)

Figure 8 A closer look at Dρ. Figure (a) represents the drawings Γ1, . . . ,Γk once they have been
uniformly scaled, rotated, and translated, while (b) also has the vertex u0 moved by d∗ units (this
movement actually happens before the rotation and translation of Γ1).

Let β = 1
2 min

{
φ, arctan

(
dV (ΓH ,y`y1)

3dV (ΓH ,y`y1)+3dH(ΓH ,y`y1)

)}
. Note that β > 0, given that

φ, dV (ΓH , y`y1) > 0 and dH(ΓH , y`y1) ≥ 0. In particular, dV (ΓH , y`y1) > 0 because y1 is
a vertex of τuy1(H) and y` is an internal vertex of βuy1(H) by Lemma 7, and because of
Properties 1–3 of ΓH . Also note that β < α

4 , given that φ < α
2 .

Consider a half-line hβ with slope β starting at y`. Place the vertex v at the intersection
point between hβ and the horizontal line `u through u. Draw all the trivial (H ∪{v})-bridges
of G as straight-line segments. This concludes the construction if every (H ∪ {v})-bridge of
G is trivial. Otherwise, B` is the only non-trivial (H ∪ {v})-bridge of G. Then B` consists
of k strong circuit graphs (Gi, ui−1, ui), where u0 = y` and uk = v. With a slight change of
notation, in the remainder of the section we assume that, if the edge y`v exists, then it is
an edge of B` (rather than an individual trivial (H ∪ {v})-bridge B`−1 of G); in this case
(B`, u0, uk) is a strong circuit graph.

We claim that v lies to the right of y1. The polygonal line representing βy`y1(H) in ΓH
and the straight-line segment y`v are both incident to y`. By definition of φ and since ΓH
satisfies Property 3, βy`y1(H) is composed of straight-line segments with slopes in the range
[φ, α2 ), while y`v has slope β. The claim then follows from 0 < β < φ < π

2 . Let dy1v be the
distance between y1 and v. Let Y > 0 be the minimum distance in ΓH of any vertex strictly
below `u from `u. Let ρ = min{dy1v

3 , Y2 } and let Dρ be the disk with radius ρ centered at v.
Let pρ,β (pρ,u) be the intersection point of the boundary of Dρ with hβ (resp. with `u) that
is closer to y` (resp. to y1). Let d∗ be the Euclidean distance between y` and pρ,β .

Let α′ = β
2 . Since β > 0, we have α′ > 0; further, α′ < α

8 , given that β < α
4 . For

i = 1, . . . , k, inductively construct a straight-line drawing Γi of Gi with α′ as a parameter
(if Gi is a single edge, then the parameter does not matter). Uniformly scale the drawings
Γ1, . . . ,Γk so that the Euclidean distance between ui−1 and ui is equal to ρ

k . Move the
vertex u0 in Γ1 by d∗ units to the left, obtaining a drawing Γ1,d∗ . Rotate the drawings
Γ1,d∗ ,Γ2, . . . ,Γk counter-clockwise by β radians. Translate Γ1,d∗ ,Γ2, . . . ,Γk so that, for
i = 1, . . . , k − 1, the representations of ui in Γi and Γi+1 (in Γ1,d∗ and Γ2 if i = 1) coincide
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Figure 9 Illustration for the proof that d(Γδ, zhy) > d(Γδ, zh+1y) if zhzh+1 is in PHx . For the
sake of readability, Dρ is larger than it should be.

and so that the representation of u0 in Γ1,d∗ coincides with the one of y` in ΓH . This
completes the construction of a straight-line drawing Γ of G. We have the following.

I Lemma 11. For any δ ≥ 0, the drawing Γδ constructed in Case B satisfies Properties 1–6
of Theorem 8.

Proof Sketch. Let ΓH,δ denote the drawing obtained from ΓH by moving the vertex u by δ
units to the left.

We first prove that every vertex z 6= u0 that belongs to a graph Gi lies inside the
disk Dρ in Γδ. A consequence of this statement is a sharp geometric separation between
the vertices of G that are in H and those that are not. Consider any drawing Γj with
j ∈ {1, . . . , k} (where Γ1 is considered before moving u0 by d∗ units to the left) and let
Dj be the disk centered at uj with radius d(Γj , uj−1uj). By Properties 1 and 2 of Γj ,
the path τuj−1uj (Gj) lies on uj−1uj in Γj , hence it lies inside Dj . Further, the edges of
βuj−1uj (Gj) have slopes in (−α′, α′) ⊂ (−α8 ,

α
8 ) ⊂ (− π

32 ,
π
32 ); hence βuj−1uj (Gj) also lies

inside Dj . By planarity Γj lies entirely inside Dj . Hence, uj−1 is the farthest vertex
of Gj from uj in Γj . This property is true also after the uniform scaling of Γ1, . . . ,Γk;
further, after the scaling, the distance between uj−1 and uj is ρ

k , by construction. By the
triangular inequality, we have that d(Γδ, vz) ≤

∑k
j=i+1 d(Γδ, uj−1uj) + d(Γδ, uiz). Since

d(Γδ, uj−1uj) = ρ
k for any j ∈ {2, . . . , k}, and since d(Γδ, uiz) ≤ ρ

k (this exploits z 6= u0
and hence d(Γδ, uiz) = d(Γi, uiz), where Γi is understood as already scaled), we have that
d(Γδ, vz) ≤ (k−i+1)ρ

k ≤ ρ. Thus z lies inside Dρ.
We now prove that Property 6 is satisfied by Γδ. We devote our attention to the proof of

the existence of a distance-decreasing path Pxy from a vertex x to a vertex y if: (i) x ∈ V (H)
and y ∈ V (Gi), for some i ∈ {1, . . . , k}; or (ii) x ∈ V (Gi), for some i ∈ {1, . . . , k}, and
y ∈ V (H). While the rest of the proof that Property 6 is satisfied by Γδ proceeds similarly
to the proof of Lemma 10, cases (i) and (ii) above deal with vertices x and y that are “far
apart” in Γδ, a circumstance that does not occur in the proof of Lemma 10.

In case (i) Pxy contains a path PHx in H from x to y1. Assume that x 6= u, as the case
x = u is easier to handle. By Property 4 of ΓH,δ, there is a path PHx = (x = z1, . . . , zs = y1)
in H that connects x to y1, that does not pass through u, and whose edges have slopes in
(−α2 ,

α
2 ) in ΓH,δ. We prove that, for h = 1, . . . , s− 1, d(Γδ, zhy) > d(Γδ, zh+1y); see Fig. 9.

Since the drawing of H in Γδ coincides with ΓH,δ, zhzh+1 has slope in (−α2 ,
α
2 ) in Γδ. Let `h

be the directed line through y1 directed towards increasing y-coordinates and orthogonal to
the line through zh and zh+1. Denote by sh the slope of `h. Then sh ∈ (π−α2 , π+α

2 ).
We prove that `h has the disk Dρ to its right. In order to do that, consider the point pT on

the half-line with slope π−α
2 starting at y1 and such that dV (Γδ, y1pT ) = ρ. Further, consider
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Figure 10 Illustration for the proof that d(Γδ, zhy) > d(Γδ, zh+1y) if zh+1 = y` = u0.

the point pB on the half-line with slope −π+α
2 starting at y1 and such that dV (Γδ, y1pB) = ρ.

Note that pT pB is a vertical straight-line segment with length 2ρ. Consider the infinite closed
strip S with height 2ρ that is delimited by the horizontal lines through pT and pB . Since Dρ

has its center on `u and has radius ρ, it lies inside S. The part of `h inside S is to the left of
pT pB , given that sh ∈ (π−α2 , π+α

2 ). Hence, it suffices to show that pρ,u, which is the point of
Dρ with smallest x-coordinate, lies to the right of pT pB. We have d(Γδ, y1pρ,u) = dy1v − ρ.
Further, dH(Γδ, y1pT ) = ρ · tan(α2 ). Hence, it suffices to prove ρ · tan(α2 ) < dy1v − ρ, that is
ρ <

dy1v
1+tan(α2 ) ; this is true since ρ < dy1v

3 and tan(α2 ) < 1, given that 0 < α < π
4 .

The line `h has ΓH,δ (and in particular the midpoint of zhzh+1) to its left; this is because by
Property 2 of ΓH,δ every edge in βy1u(H) has slope π, where sh < π+α

2 < π < 3π−α
2 < π+sh,

and because by Property 3 of ΓH,δ every edge in τy1u(H) has slope in (π − α
2 , π + α

2 ), where
sh <

π+α
2 < π − α

2 < π + α
2 < 3π−α

2 < π + sh. Let `′h be the directed line parallel to `h,
passing through the midpoint of zhzh+1, and oriented towards increasing y-coordinates; `′h
has `h to its right, as the midpoint of zhzh+1 is to the left of `h in Γδ. Thus, `′h has Dρ, and
in particular y, to its right. Since the half-plane to the right of `′h is the locus of the points
of the plane that are closer to zh+1 than to zh, it follows that d(Γδ, zhy) > d(Γδ, zh+1y).

The path Pxy also contains the edge y1v, which “jumps” from H to Dρ. Since y lies
in Dρ, we have that d(Γδ, vy) ≤ ρ ≤ dy1v

3 . By the triangular inequality, we have that
d(Γδ, y1y) > d(Γδ, y1v)− d(Γδ, vy) ≥ dy1v − ρ ≥

2dy1v
3 . Hence, d(Γδ, y1y) > d(Γδ, vy). The

third sub-path of Pxy is a path Pvy from v to y in
⋃k
l=iGl that is distance-decreasing in Γδ.

The construction of this path proceeds similarly as in the proof of Lemma 10.
In case (ii) we have that x ∈ V (Gi), for some i ∈ {1, . . . , k}, and y ∈ V (H). While in case

(i) the connection between H and Dρ is done via y1, here it is done via y`. In particular, the
first part of Pxy consists of edges with slopes in the range (π−α, π+α) inside Dρ. Similarly
to case (i), the orthogonal line through the midpoint of each of these edges separates H from
Dρ; hence traversing the edge decreases the distance to y.

We now argue that traversing an edge that “jumps” from Dρ to H decreases the distance
to y. That is, we show that, for a vertex zh in Dρ incident to an edge zhzh+1 with
zh+1 = y` = u0, it holds d(Γδ, zhy) > d(Γδ, zh+1y). Refer to Fig. 10. We exploit again the
fact that the line `h passing through y1 and orthogonal to the line through zh and zh+1 has
ΓH,δ (and in particular y) to its left; then consider the directed line `′h parallel to `h, oriented
towards increasing y-coordinates, and passing through the midpoint mh of zhzh+1. Since the
half-plane to the left of `′h is the locus of the points of the plane that are closer to zh+1 than
to zh, it suffices to show that the intersection point ph of `′h and `u lies to the right of y1 on
`u; in fact, this implies that `′h has `h (and hence y) to its left.

Since zh lies inside Dρ, we have x(zh) ≥ x(pρ,u) = x(y1) + dy1v − ρ. Moreover, x(y1) =
x(y`)+dH(Γδ, y`y1). Thus, we have x(mh) = x(y`)+x(zh)

2 ≥ x(y`)+(x(y`)+dH(Γδ,y`y1)+dy1v−ρ)
2 =

x(y`) + dH(Γδ,y`y1)+dy1v−ρ
2 . Translate the Cartesian axes so that x(y`) = 0. Thus, x(mh) =

dH(Γδ,y`y1)+dy1v−ρ
2 . By Lemma 7, y` is an internal vertex of βuv(G), hence y` lies below `u.
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Since ρ < Y and zh lies in Dρ, the y-coordinate of y` is smaller than the one of zh. Hence,
the slope of zhzh+1 is larger than π. Further, zh and hence mh lie on or below hβ , thus the
slope of zhzh+1 is at most π + β and the slope sh of `′h is in the interval (π2 ,

π
2 + β).

We now derive a lower bound for the x-coordinate of ph. Let qh be the projection of
mh on `u. Consider the triangle ∆mhphqh. Since the y-coordinate of y` is smaller than the
one of zh, it is also smaller than the one of mh. Thus, d(Γδ,mhqh) ≤ dV (Γδ, y`y1). Since
sh ∈ (π2 ,

π
2 + β), the angle ]phmhqh is at most β. Hence, d(Γδ, phqh) ≤ dV (Γδ, y`y1) · tan(β).

Thus, x(ph) = x(mh)− d(Γδ, phqh) ≥ dH(Γδ,y`y1)+dy1v−ρ
2 − dV (Γδ, y`y1) · tan(β). It remains

to prove that this quantity is larger than dH(Γδ, y`y1), which is the x-coordinate of y1.
Since β < α

4 <
π
16 , we have tan(β) ≤ 1, hence dH(Γδ,y`y1)+dy1v−ρ

2 −dV (Γδ, y`y1) · tan(β) ≥
dH(Γδ,y`y1)+dy1v−ρ

2 − dV (Γδ, y`y1). We want to establish dH(Γδ,y`y1)+dy1v−ρ
2 − dV (Γδ, y`y1) >

dH(Γδ, y`y1), that is, dy1v > 2dV (Γδ, y`y1) + dH(Γδ, y`y1) + ρ. Since ρ ≤ dy1v
3 , we need to

prove that dy1v >
6dV (Γδ,y`y1)+3dH(Γδ,y`y1)

2 .
We now express dy1v as a function of β. This is done by looking at the triangle whose

vertices are y`, v, and the projection of y` on `u. Since the angle of this triangle at v is
β, we get dy1v = dV (Γδ,y`y1)

tan(β) − dH(Γδ, y`y1). Substituting this into the previous inequal-
ity, we need to have dV (Γδ,y`y1)

tan(β) − dH(Γδ, y`y1) > 6dV (Γδ,y`y1)+3dH(Γδ,y`y1)
2 , hence tan(β) <

2dV (Γδ,y`y1)
6dV (Γδ,y`y1)+5dH(Γδ,y`y1) , which is true since β < arctan

(
dV (ΓH ,y`y1)

3dV (ΓH ,y`y1)+3dH(ΓH ,y`y1)

)
. This

concludes the proof that d(Γδ, zhy) > d(Γδ, zh+1y).
The path Pxy continues with a path Py`y from y` to y in H that is distance-decreasing in

ΓH,δ (and hence in Γδ, since the drawing of H in Γδ coincides with ΓH,δ). This concludes
the proof of the lemma. J

Given a strong circuit graph (G, u, v) such that G is not a single edge, we are in Case A
or Case B depending on whether the edge uv exists or not, respectively. Thus, Lemmata 9–11
prove Theorem 8. We show how to use Theorem 8 in order to prove Theorem 3. Consider
any 3-connected planar graph G and associate any plane embedding to it; let u and v be
two consecutive vertices in the clockwise order of the vertices along the outer face of G. We
have that (G, u, v) is a strong circuit graph. Indeed: (a) by assumption G is 2-connected –
in fact 3-connected – and associated with a plane embedding; (b) by construction u and v
are two distinct external vertices of G; (c) edge uv exists and coincides with τuv(G), given
that v immediately follows u in the clockwise order of the vertices along the outer face of G;
and (d) G does not have any 2-cut, as it is 3-connected. Thus, Theorem 8 can be applied in
order to construct a planar greedy drawing of G. This concludes the proof of Theorem 3.

4 Conclusions

In this paper we have shown how to construct planar greedy drawings of 3-connected planar
graphs. It is tempting to try to use the graph decomposition we employed in this paper for
proving that 3-connected planar graphs admit convex greedy drawings. However, despite
some efforts in this direction, we have not been able to modify the statement of Theorem 8
in order to guarantee the desired convexities of the angles in the drawings. Thus, proving or
disproving the convex greedy embedding conjecture remains an elusive goal.
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