
Minimum Perimeter-Sum Partitions in the Plane∗†

Mikkel Abrahamsen1, Mark de Berg2, Kevin Buchin3,
Mehran Mehr4, and Ali D. Mehrabi5

1 Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark
miab@di.ku.dk

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
mdberg@win.tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
k.a.buchin@tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
m.mehr@tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
amehrabi@win.tue.nl

Abstract
Let P be a set of n points in the plane. We consider the problem of partitioning P into two
subsets P1 and P2 such that the sum of the perimeters of ch(P1) and ch(P2) is minimized,
where ch(Pi) denotes the convex hull of Pi. The problem was first studied by Mitchell and
Wynters in 1991 who gave an O(n2) time algorithm. Despite considerable progress on related
problems, no subquadratic time algorithm for this problem was found so far. We present an
exact algorithm solving the problem in O(n log4 n) time and a (1 + ε)-approximation algorithm
running in O(n+ 1/ε2 · log4(1/ε)) time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Computational geometry, clustering, minimum-perimeter partition,
convex hull

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.4

1 Introduction

The clustering problem is to partition a given data set into clusters (that is, subsets) according
to some measure of optimality. We are interested in clustering problems where the data set
is a set P of points in Euclidean space. Most of these clustering problems fall into one of two
categories: problems where the maximum cost of a cluster is given and the goal is to find a
clustering consisting of a minimum number of clusters, and problems where the number of
clusters is given and the goal is to find a clustering of minimum total cost. In this paper we
consider a basic problem of the latter type, where we wish to find a bipartition (P1, P2) of a
planar point set P . Bipartition problems are not only interesting in their own right, but also
because bipartition algorithms can form the basis of hierarchical clustering methods.

∗ A full version of the paper is available at http://arxiv.org/abs/1703.05549.
† MA is partly supported by Mikkel Thorup’s Advanced Grant from the Danish Council for Independent

Research under the Sapere Aude research career programme. MdB, KB, MM, and AM are supported by
the Netherlands’ Organisation for Scientific Research (NWO) under project no. 024.002.003, 612.001.207,
022.005025, and 612.001.118 respectively.

© Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and Ali D. Mehrabi;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84868953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.4
http://arxiv.org/abs/1703.05549
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Minimum Perimeter-Sum Partitions in the Plane

There are many possible variants of the bipartition problem on planar point sets, which
differ in how the cost of a clustering is defined. A variant that received a lot of attention is
the 2-center problem [8, 11, 12, 15, 20], where the cost of a partition (P1, P2) of the given
point set P is defined as the maximum of the radii of the smallest enclosing disks of P1
and P2. Other cost functions that have been studied include the maximum diameter of the
two point sets [3] and the sum of the diameters [14]; see also the survey by Agarwal and
Sharir [2] for some more variants.

A natural class of cost function considers the size of the convex hulls ch(P1) and ch(P2) of
the two subsets, where the size of ch(Pi) can either be defined as the area of ch(Pi) or as the
perimeter per(Pi) of ch(Pi). (The perimeter of ch(Pi) is the length of the boundary ∂ ch(Pi).)
This class of cost functions was already studied in 1991 by Mitchell and Wynters [17]. They
studied four problem variants: minimize the sum of the perimeters, the maximum of the
perimeters, the sum of the areas, or the maximum of the areas. In three of the four variants
the convex hulls ch(P1) and ch(P2) in an optimal solution may intersect [17, full version] –
only in the minimum perimeter-sum problem the optimal bipartition is guaranteed to be a
so-called line partition, that is, a solution with disjoint convex hulls. For each of the four
variants they gave an O(n3) algorithm that uses O(n) storage and that computes computes
an optimal line partition; for all except the minimum area-maximum problem they also gave
an O(n2) algorithm that uses O(n2) storage. Note that (only) for the minimum perimeter-
sum problem the computed solution is an optimal bipartition. Around the same time, the
minimum-perimeter sum problem was studied for partitions into k subsets for k > 2; for
this variant Capoyleas et al. [7] presented an algorithm with running time O(n6k). Mitchell
and Wynters mentioned the improvement of the space requirement of the quadratic-time
algorithm as an open problem, and they stated the existence of a subquadratic algorithm for
any of the four variants as the most prominent open problem.

Rokne et al. [18] made progress on the first question, by presenting an O(n2 logn)
algorithm that uses only O(n) space for the line-partition version of each of the four problems.
Devillers and Katz [10] gave algorithms for the min-max variant of the problem, both for area
and perimeter, which run in O((n+k) log2 n) time. Here k is a parameter that is only known
to be in O(n2), although Devillers and Katz suspected that k is subquadratic. They also
gave linear-time algorithms for these problems when the point set P is in convex position and
given in cyclic order. Segal [19] proved an Ω(n logn) lower bound for the min-max problems.
Very recently, and apparently unaware of some of the earlier work on these problems, Bae et
al. [4] presented an O(n2 logn) time algorithm for the minimum-perimeter-sum problem and
an O(n4 logn) time algorithm for the minimum-area-sum problem (considering all partitions,
not only line partitions). Despite these efforts, the main question is still open: is it possible to
obtain a subquadratic algorithm for any of the four bipartition problems based on convex-hull
size?

1.1 Our contribution

We answer the question above affirmatively by presenting a subquadratic algorithm for the
minimum perimeter-sum bipartition problem in the plane.

As mentioned, an optimal solution (P1, P2) to the minimum perimeter-sum bipartition
problem must be a line partition. A straightforward algorithm would generate all Θ(n2) line
partitions and compute the value per(P1)+per(P2) for each of them. If the latter is done from
scratch for each partition, the resulting algorithm runs in O(n3 logn) time. The algorithms
by Mitchell and Wynters [17] and Rokne et al. [18] improve on this by using that the different

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:3

line bipartitions can be generated in an ordered way, such that subsequent line partitions
differ in at most one point. Thus the convex hulls do not have to be recomputed from scratch,
but they can be obtained by updating the convex hulls of the previous bipartition. To obtain
a subquadratic algorithm a fundamentally new approach is necessary: we need a strategy
that generates a subquadratic number of candidate partitions, instead considering all line
partitions. We achieve this as follows.

We start by proving that an optimal bipartition (P1, P2) has the following property:
either there is a set of O(1) canonical orientations such that P1 can be separated from
P2 by a line with a canonical orientation, or the distance between ch(P1) and ch(P2)
is Ω(min(per(P1), per(P2)). There are only O(1) bipartitions of the former type, and finding
the best among them is relatively easy. The bipartitions of the second type are much more
challenging. We show how to employ a compressed quadtree to generate a collection of O(n)
canonical 5-gons – intersections of axis-parallel rectangles and canonical halfplanes – such
that the smaller of ch(P1) and ch(P2) (in a bipartition of the second type) is contained in
one of the 5-gons.

It then remains to find the best among the bipartitions of the second type. Even though
the number of such bipartitions is linear, we cannot afford to compute their perimeters from
scratch. We therefore design a data structure to quickly compute per(P ∩Q), where Q is a
query canonical 5-gon. Brass et al. [6] presented such a data structure for the case where Q
is an axis-parallel rectangle. Their structure uses O(n log2 n) space and has O(log5 n) query
time; it can be extended to handle canonical 5-gons as queries, at the cost of increasing the
space usage to O(n log3 n) and the query time to O(log7 n). Our data structure improves
upon this: it has O(log4 n) query time for canonical 5-gons (and O(log3 n) for rectangles)
while using the same amount of space. Using this data structure to find the best bipartition
of the second type we obtain our main result: an exact algorithm for the minimum perimeter-
sum bipartition problem that runs in O(n log4 n) time. As our model of computation we use
the real RAM (with the capability of taking square roots) so that we can compute the exact
perimeter of a convex polygon – this is necessary to compare the costs of two competing
clusterings. We furthermore make the (standard) assumption that the model of computation
allows us to compute a compressed quadtree of n points in O(n logn) time; see footnote 2
on page 10.

Besides our exact algorithm, we present a linear-time (1 + ε)-approximation algorithm.
Its running time is O(n+ T (1/ε2)) = O(n+ 1/ε2 · log4(1/ε)), where T (1/ε2) is the running
time of an exact algorithm on an instance of size 1/ε2.

Some arguments are omitted due to limited space. See the full version [1] for the details.

2 The exact algorithm

In this section we present an exact algorithm for the minimum-perimeter-sum partition
problem. We first prove a separation property that an optimal solution must satisfy, and
then we show how to use this property to develop a fast algorithm.

Let P be the set of n points in the plane for which we want to solve the minimum-
perimeter-sum partition problem. An optimal partition (P1, P2) of P has the following two
basic properties: P1 and P2 are non-empty, and the convex hulls ch(P1) and ch(P2) are
disjoint [17, full version]. In the remainder, whenever we talk about a partition of P , we
refer to a partition with these two properties.

SoCG 2017

4:4 Minimum Perimeter-Sum Partitions in the Plane

`2 `1 `4

`3

c34
α

βP1 P2

c13 c23

Figure 1 The angles α and β.

2.1 Geometric properties of an optimal partition
Consider a partition (P1, P2) of P . Define P1 := ch(P1) and P2 := ch(P2) to be the convex
hulls of P1 and P2, respectively, and let `1 and `2 be the two inner common tangents of P1
and P2. The lines `1 and `2 define four wedges: one containing P1, one containing P2, and
two empty wedges. We call the opening angle of the empty wedges the separation angle of
P1 and P2. Furthermore, we call the distance between P1 and P2 the separation distance of
P1 and P2.

I Theorem 1. Let P be a set of n points in the plane, and let (P1, P2) be a partition of P
that minimizes per(P1) + per(P2). Then the separation angle of P1 and P2 is at least π/6 or
the separation distance is at least csep ·min(per(P1), per(P2)), where csep := 1/250.

The remainder of this section is devoted to proving Theorem 1. To this end let (P1, P2)
be a partition of P that minimizes per(P1) + per(P2). Let `3 and `4 be the outer common
tangents of P1 and P2. We define α to be the angle between `3 and `4. More precisely, if `3
and `4 are parallel we define α := 0, otherwise we define α as the opening angle of the wedge
defined by `3 and `4 containing P1 and P2. We denote the separation angle of P1 and P2
by β; see Fig. 1.

The idea of the proof is as follows. Suppose that the separation distance and the separation
angle β are both relatively small. Then the region A in between P1 and P2 and bounded
from the bottom by `3 and from the top by `4 is relatively narrow. But then the left and
right parts of ∂ A (which are contained in ∂P1 and ∂P2) would be longer than the bottom
and top parts of ∂ A (which are contained in `3 and `4), thus contradicting that (P1, P2) is
an optimal partition. To make this idea precise, we first prove that if the separation angle β
is small, then the angle α between `3 and `4 must be large. Second, we show that there is a
value f(α) such that the distance between P1 and P2 is at least f(α) ·min(per(P1), per(P2)).
Finally we argue that this implies that if the separation angle is smaller than π/6, then (to
avoid the contradiction mentioned above) the separation distance must be relatively large.
Next we present our proof in detail.

Let cij be the intersection point between `i and `j , where i < j. If `3 and `4 are parallel,
we choose c34 as a point at infinity on `3. Assume without loss of generality that neither `1
nor `2 separate P1 from c34, and that `3 is the outer common tangent such that P1 and P2
are to the left of `3 when traversing `3 from c34 to an intersection point in `3 ∩ P1. Assume
furthermore that c13 is closer to c34 than c23.

For two lines, rays, or segments r1, r2, let ∠(r1, r2) be the angle we need to rotate
r1 in counterclockwise direction until r1 and r2 are parallel. For three points a, b, c, let
∠(a, b, c) := ∠(ba, bc). For i = 1, 2 and j = 1, 2, 3, 4, let sij be a point in Pi ∩ `j . Let ∂Pi
denote the boundary of Pi and per(Pi) the perimeter of Pi. Furthermore, let ∂Pi(x, y)
denote the portion of ∂Pi from x ∈ ∂Pi counterclockwise to y ∈ ∂Pi, and length(∂Pi(x, y))
denote the length of ∂Pi(x, y).

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:5

I Lemma 2. We have α+ 3β > π.

Proof. Since per(P1) + per(P2) is minimum, we know that

length(∂P1(s13, s14)) + length(∂P2(s24, s23)) 6 Ψ,

where Ψ := |s13s23| + |s14s24|. Furthermore, we know that s11, s12 ∈ ∂P1(s13, s14) and
s21, s22 ∈ ∂P1(s24, s23). We thus have

length(∂P1(s13, s14)) + length(∂P2(s24, s23)) > Φ,

where Φ := |s13s11|+ |s11s12|+ |s12s14|+ |s24s21|+ |s21s22|+ |s22s23|. Hence, we must have

Φ 6 Ψ. (1)

Now assume that α+3β < π. We will show that this assumption, together with inequality (1),
leads to a contradiction, thus proving the lemma. To this end we will argue that if (1) holds,
then it must also hold when (i) s21 or s22 coincides with c12, and (ii) s11 or s12 coincides
with c12. To finish the proof it then suffices to observe that that if (i) and (ii) hold, then P1
and P2 touch in c12 and so (1) contradicts the triangle inequality.

It remains to argue that if (1) holds, then we can create a situation where (1) holds
and (i) and (ii) hold as well. To this end we ignore that the points sij are specific points
in the set P and allow the point sij to move on the tangent `j , as long as the movement
preserves (1). Moving s13 along `3 away from s23 increases Ψ more than it increases Φ, so
(1) is preserved. Similarly, we can move s14 away from s24, s23 away from s13, and s24 away
from s14.

We first show how to create a situation where (i) holds, and (1) still holds as well. Let
γij := ∠(`i, `j). We consider two cases.

Case (A): γ32 < π − β.
Note that ∠(xs23, `2) > γ32 for any x ∈ s22c12. However, by moving s23 sufficiently
far away we can make ∠(xs23, `2) arbitrarily close to γ32, and we can ensure that
∠(xs23, `2) < π − β for any point x ∈ s22c12. We now let the point x move at unit speed
from s22 towards c12. To be more precise, let T := |s22c12|, let v be the unit vector
with direction from c23 to c12, and for any t ∈ [0, T] define x(t) := s22 + t · v. Note that
x(0) = s22 and x(T) = c12.
Let a(t) := |x(t)s23| and b(t) := |x(t)s21|. In the full version [1] we show that

a′(t) = − cos(∠(x(t)s23, `2)) and b′(t) = cos(∠(`2, x(t)s21)).

Since ∠(x(t)s23, `2) < π − β for any value t ∈ [0, T], we get a′(t) < − cos(π − β).
Furthermore, we have ∠(`2, x(t)s21) > π − β and hence b′(t) 6 cos(π − β). Therefore,
a′(t) + b′(t) < 0 for any t and we conclude that a(T) + b(T) 6 a(0) + b(0). This is the
same as |s21c12|+ |c12s23| 6 |s21s22|+ |s22s23|, so (1) still holds when we substitute s22
by c12.
Case (B): γ32 > π − β.
Using our assumption α+ 3β < π we get γ32 > α+ 2β. Note that γ14 = π − γ32 + α+ β.
Hence, γ14 < π− β. By moving s24 and s21, we can in a similar way as in Case (A) argue
that (1) still holds when we substitute s21 by c12.

We conclude that in both cases we can ensure (i) without violating (1).
Since γ42 6 γ32 and γ13 6 γ14, we likewise have γ42 < π − β or γ13 < π − β. Hence, we

can substitute s11 or s12 by c12 without violating (1), thus ensuring (ii) and finishing the
proof. J

SoCG 2017

4:6 Minimum Perimeter-Sum Partitions in the Plane

P1

P2

p q

`vert1

`3

`4

s14

α

s13

s23

s24

λ

s24(λ)

s23(λ)

q(λ)

c34

> α

`vert2

Figure 2 Illustration for the proof of Lemma 3.

Let dist(P1,P2) := min(p,q)∈P1×P2 |pq| denote the separation distance between P1 and P2.
Recall that α denotes the angle between the two common outer tangents of P1 and P2; see
Fig. 1

I Lemma 3. We have

dist(P1,P2) > f(α) · per(P1), (2)

where f : [0, π] −→ R is the increasing function

f(ϕ) := sin(ϕ/4)
1 + sin(ϕ/4) ·

sin(ϕ/2)
1 + sin(ϕ/2) ·

1− cos(ϕ/4)
2 .

Proof. The statement is trivial if α = 0 so assume α > 0. Let p ∈ P1 and q ∈ P2 be points
so that |pq| = dist(P1,P2) and assume without loss of generality that pq is a horizontal
segment with p being its left endpoint. Let `vert1 and `vert2 be vertical lines containing p and
q, respectively. Note that P1 is in the closed half-plane to the left of `vert1 and P2 is in the
closed half-plane to the right of `vert2 . Recall that sij denotes a point on ∂Pi ∩ `j .

I Claim 4. There exist two convex polygons P ′1 and P ′2 satisfying the following condi-
tions:
1. P ′1 and P ′2 have the same outer common tangents as P1 and P2, namely `3 and `4.
2. P ′1 is to the left of `vert

1 and p ∈ ∂P ′1; and P ′2 is to right of `vert
2 and q ∈ ∂P ′2.

3. per(P ′1) = per(P1).
4. per(P ′1) + per(P ′2) 6 per(ch(P ′1 ∪ P ′2)).
5. There are points s′ij ∈ P ′i ∩ `j for all i ∈ {1, 2} and j ∈ {3, 4} such that ∂P ′1(s′13, p),

∂P ′1(p, s′14), ∂P ′2(s′24, q), and ∂P ′2(q, s′23) each consist of a single line segment.
6. Let s′2j(λ) := s′2j − (λ, 0) and let `′j(λ) be the line through s′1j and s′2j(λ) for j ∈ {3, 4}.

Then ∠(`′3(|pq|), `′4(|pq|)) > α/2.

Proof of the Claim. Let P ′1 := P1 and P ′2 := P2, and let s′ij be a point in P ′i ∩ `j for
all i ∈ {1, 2} and j ∈ {3, 4}. We show how to modify P ′1 and P ′2 until they have all the
required conditions. Of course, they already satisfy conditions 1–4. We first show how to
obtain condition 5, namely that ∂P ′1(s′13, p) and ∂P ′1(p, s′14) – and similarly ∂P ′2(s′24, q) and

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:7

∂P ′1(q, s′23) – each consist of a single line segment, as depicted in Fig. 2. To this end, let vij
be the intersection point `verti ∩ `j for i ∈ {1, 2} and j ∈ {3, 4}. Let s′ ∈ s′14v14 be the point
such that length(∂P ′1(p, s′14)) = |ps′|+ |s′s′14|. Such a point exists since

|ps′14| 6 length(∂P ′1(p, s′14)) 6 |pv14|+ |v14s
′
14|.

We modify P ′1 by substituting ∂P ′1(p, s′14) with the segments ps′ and s′s′14. We can now
redefine s′14 := s′ so that ∂P ′1(p, s′14) = ps′14 is a line segment. We can modify P ′1 in a similar
way to ensure that ∂P ′1(s′13, p) = s′13p, and we can modify P ′2 to ensure ∂P ′2(s′24, q) = s′24q

and ∂P ′2(q, s′23) = qs′23. Note that these modifications preserve conditions 1–4 and that
condition 5 is now satisfied.

The only condition that (P ′1,P ′2) might not satisfy is condition 6. Let s′2j(λ) := s′2j−(λ, 0)
and let `j(λ) be the line through s′2j(λ) and s′1j for j ∈ {3, 4}. Clearly, if the slopes of `3 and
`4 have different signs (as in Fig. 2), the angle ∠(`3(λ), `4(λ)) is increasing for λ ∈ [0, |pq|],
and condition 6 is satisfied. However, if the slopes of `3 and `4 have the same sign, the angle
might decrease.

Consider the case where both slopes are positive – the other case is analogous. Changing
P ′2 by substituting ∂P ′2(s′23, s

′
24) with the line segment s′23s

′
24 makes per(P ′1) + per(P ′2) and

per(ch(P ′1 ∪ P ′2)) decrease equally much and hence condition 4 is preserved. This clearly
has no influence on the other conditions. We thus assume that P ′2 is the triangle qs′23s

′
24.

Consider what happens if we move s′23 along the line `3 away from c34 with unit speed. Then
|s′13s

′
23| grows with speed exactly 1 whereas |qs′23| grows with speed at most 1. We therefore

preserve condition 4, and the other conditions are likewise not affected.
We now move s′23 sufficiently far away so that ∠(`3, `3(|pq|)) 6 α/4. Similarly, we move

s′24 sufficiently far away from c34 along `4 to ensure that ∠(`4, `4(|pq|)) 6 α/4. It then follows
that ∠(`3(|pq|), `4(|pq|)) > ∠(`3, `4)− α/2 = α/2, and condition 6 is satisfied. J

Note that condition 2 in the claim implies that dist(P ′1,P ′2) = dist(P1,P2) = |pq|,
and hence inequality (2) follows from condition 3 if we manage to prove dist(P ′1,P ′2) >
f(α) · per(P ′1). Therefore, with a slight abuse of notation, we assume from now on that
P1 and P2 satisfy the conditions in the claim, where the points sij play the role as s′ij in
conditions 5 and 6.

We now consider a copy of P2 that is translated horizontally to the left over a distance λ;
see Fig. 2. Let s24(λ), s23(λ), and q(λ) be the translated copies of s24, s23, and q, respectively,
and let `j(λ) be the line through s1j and s2j(λ) for j ∈ {3, 4}. Furthermore, define

Φ(λ) := |s13p|+ |s14p|+ |s23(λ)q(λ)|+ |s24(λ)q(λ)|

and

Ψ(λ) := |s13s23(λ)|+ |s14s24(λ)|.

Note that Φ(λ) = Φ is constant. By conditions 4 and 5, we know that

Φ 6 Ψ(0). (3)

Note that q(|pq|) = p. In the full version [1] we show that

Φ−Ψ(|pq|) > sin(δ/2) · 1− cos(δ/2)
1 + sin(δ/2) · (|s13p|+ |s14p|), (4)

where δ := ∠(`3(|pq|), `4(|pq|)). By condition 6, we know that δ > α/2. The function
δ 7−→ sin(δ/2) · 1−cos(δ/2)

1+sin(δ/2) is increasing for δ ∈ [0, π] and hence inequality (4) also holds for
δ = α/2.

SoCG 2017

4:8 Minimum Perimeter-Sum Partitions in the Plane

When λ increases from 0 to |pq| with unit speed, the value Ψ(λ) decreases with speed at
most 2, i.e., Ψ(λ) > Ψ(0)− 2λ. Using this and inequalities (3) and (4), we get

2|pq| > Ψ(0)−Ψ(|pq|) > Φ− Φ + sin(α/4) · 1− cos(α/4)
1 + sin(α/4) · (|s13p|+ |s14p|),

and we conclude that

|pq| > 1
2 · sin(α/4) · 1− cos(α/4)

1 + sin(α/4) · (|s13p|+ |s14p|). (5)

By the triangle inequality, |s13p|+ |s14p| > |s13s14|. Furthermore, for a given length of
s13s14, the fraction |s13s14|/(|s14c34|+ |c34s13|) is minimized when s13s14 is perpendicular
to the angular bisector of `3 and `4. (Recall that c34 is the intersection point of the outer
common tangents `3 and `4; see Fig. 2.) Hence

|s13s14| > sin(α/2) · (|s14c34|+ |c34s13|) . (6)

We now conclude

|s13p|+ |s14p| = sin(α/2)
1+sin(α/2) ·

(
|s13p|+|s14p|

sin(α/2) + |s13p|+ |s14p|
)

> sin(α/2)
1+sin(α/2) ·

(
|s13s14|
sin(α/2) + |s13p|+ |s14p|

)
by the triangle inequality

> sin(α/2)
1+sin(α/2) ·

(
|s14c34|+ |c34s13|+ |s13p|+ |s14p|

)
by (6)

> sin(α/2)
1+sin(α/2) · per(P1),

where the last inequality follows because P1 is fully contained in the quadrilateral s14, c34,

x13, p. The statement (2) in the lemma now follows from (5). J

We are now ready to prove Theorem 1.

Proof of Theorem 1. If the separation angle of P1 and P2 is at least π/6, we are done.
Otherwise, Lemma 2 gives that α > π/2, and Lemma 3 gives that dist(P1,P2) > f(π/2) ·
per(P1) > (1/250) ·min(per(P1), per(P2)). J

2.2 The algorithm
Theorem 1 suggests to distinguish two cases when computing an optimal partition: the case
where the separation angle is large (namely at least π/6) and the case where the separation
distance is large (namely at least csep ·min(per(P1), per(P2))). As we will see, the first case
can be handled in O(n logn) time and the second case in O(n log4 n) time, leading to the
following theorem.

I Theorem 5. Let P be a set of n points in the plane. Then we can compute a partition
(P1, P2) of P that minimizes per(P1) + per(P2) in O(n log4 n) time using O(n log3 n) space.

To find the best partition when the separation angle is at least π/6, we observe that in
this case there is a separating line whose orientation is j · π/7 for some 0 6 j < 7. For each
of these orientations we can scan over the points with a line ` of the given orientation, and
maintain the perimeters of the convex hulls on both sides. This takes O(n logn) time in
total; see the full version [1].

Next we show how to compute the best partition with large separation distance. We
assume without loss of generality that per(P2) 6 per(P1). It will be convenient to treat the
case where P2 is a singleton separately.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:9

I Lemma 6. The point p ∈ P minimizing per(P \ {p}) can be computed in O(n logn) time.

Proof. The point p we are looking for must be a vertex of ch(P). First we compute ch(P)
in O(n logn) time [5]. Let v0, v1, . . . , vm−1 denote the vertices of ch(P) in counterclockwise
order. Let ∆i be the triangle with vertices vi−1vivi+1 (with indices taken modulo m) and let
Pi denote the set of points lying inside ∆i, excluding vi but including vi−1 and vi+1. Note
that any point p ∈ P is present in at most two sets Pi. Hence,

∑m
i=0 |Pi| = O(n). It is not

hard to compute the sets Pi in O(n logn) time in total. After doing so, we compute all
convex hulls ch(Pi) in O(n logn) time in total. Since

per(P \ {vi}) = per(P)− |vi−1vi| − |vivi+1|+ per(Pi)− |vi−1vi+1|,

we can now find the point p minimizing per(P \ {p}) in O(n) time. J

It remains to compute the best partition (P1, P2) with per(P2) 6 per(P1) whose separation
distance is at least csep · per(P2) and where P2 is not a singleton. Let (P ∗1 , P ∗2) denote this
partition. Define the size of a square1 σ to be its edge length. A square σ is a good square if
(i) P ∗2 ⊂ σ, and (ii) size(σ) 6 c∗ · per(P ∗2), where c∗ := 18. Our algorithm globally works as
follows.
1. Compute a set S of O(n) squares such that S contains a good square.
2. For each square σ ∈ S, construct a set Hσ of O(1) halfplanes such that the following

holds: if σ ∈ S is a good square then there is a halfplane h ∈ Hσ such that P ∗2 = P (σ∩h),
where P (σ ∩ h) := P ∩ (σ ∩ h).

3. For each pair (σ, h) with σ ∈ S and h ∈ Hσ, compute per(P \ P (σ ∩ h)) + per(P (σ ∩ h)),
and report the partition (P \ P (σ ∩ h), P (σ ∩ h)) that gives the smallest sum.

Step 1: Finding a good square. To find a set S that contains a good square, we first
construct a set Sbase of so-called base squares. The set S will then be obtained by expanding
the base squares appropriately.

We define a base square σ to be good if (i) σ contains at least one point from P ∗2 , and
(ii) c1 · diam(P ∗2) 6 size(σ) 6 c2 · diam(P ∗2), where c1 := 1/4 and c2 := 4 and diam(P ∗2)
denotes the diameter of P ∗2 . Note that 2 ·diam(P ∗2) 6 per(P ∗2) 6 4 ·diam(P ∗2). For a square σ,
define σ to be the square with the same center as σ and whose size is (1 + 2/c1) · size(σ).

I Lemma 7. If σ is a good base square then σ is a good square.

Proof. The distance from any point in σ to the boundary of σ is at least

size(σ)− size(σ)
2 > diam(P ∗2).

Since σ contains a point from P ∗2 , it follows that P ∗2 ⊂ σ. Since size(σ) 6 c2 · diam(P ∗2), we
have

size(σ) 6 (2/c1 + 1) · c2 · diam(P ∗2) = 36 · diam(P ∗2) 6 c∗ · per(P ∗2). J

To obtain S it thus suffices to construct a set Sbase that contains a good base square. To
this end we first build a compressed quadtree for P . For completeness we briefly review the
definition of compressed quadtrees; see also Fig. 3 (left).

1 Whenever we speak of squares, we always mean axis-parallel squares.

SoCG 2017

4:10 Minimum Perimeter-Sum Partitions in the Plane

B1

B2

B3

B4.1

B4.2

B4.3

Figure 3 A compressed quadtree and some of the base squares generated from it. In the right
figure, only the points are shown that are relevant for the shown base squares.

Assume without loss of generality that P lies in the interior of the unit square U := [0, 1]2.
Define a canonical square to be any square that can be obtained by subdividing U recursively
into quadrants. A compressed quadtree [13] for P is a hierarchical subdivision of U , defined
as follows. In a generic step of the recursive process we are given a canonical square σ and
the set P (σ) := P ∩ σ of points inside σ. (Initially σ = U and P (σ) = P .)

If |P (σ)| 6 1 then the recursive process stops and σ is a square in the final subdivision.
Otherwise there are two cases. Consider the four quadrants of σ. The first case is that
at least two of these quadrants contain points from P (σ). (We consider the quadrants
to be closed on the left and bottom side, and open on the right and top side, so a point
is contained in a unique quadrant.) In this case we partition σ into its four quadrants
– we call this a quadtree split – and recurse on each quadrant. The second case is that
all points from P (σ) lie inside the same quadrant. In this case we compute the smallest
canonical square, σ′, that contains P (σ) and we partition σ into two regions: the square
σ′ and the so-called donut region σ \ σ′. We call this a shrinking step. After a shrinking
step we only recurse on the square σ′, not on the donut region.

A compressed quadtree for a set of n points can be computed in O(n logn) time in the
appropriate model of computation2 [13]. The idea is now as follows. Let p, p′ ∈ P ∗2 be a
pair of points defining diam(P ∗2). The compressed quadtree hopefully allows us to zoom in
until we have a square in the compressed quadtree that contains p or p′ and whose size is
roughly equal to |pp′|. Such a square will be then a good base square. Unfortunately this
does not always work since p and p′ can be separated too early. We therefore have to proceed
more carefully: we need to add five types of base squares to Sbase, as explained next and
illustrated in Fig. 3 (right).

(B1) Any square σ that is generated during the recursive construction – note that this not
only refers to squares in the final subdivision – is put into Sbase.

(B2) For each point p ∈ P we add a square σp to Sbase, as follows. Let σ be the square of
the final subdivision that contains p. Then σp is a smallest square that contains p and
that shares a corner with σ.

2 In particular we need to be able to compute the smallest canonical square containing two given points
in O(1) time. See the book by Har-Peled [13] for a discussion.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:11

(B3) For each square σ that results from a shrinking step we add an extra square σ′ to
Sbase, where σ′ is the smallest square that contains σ and that shares a corner with the
parent square of σ.

(B4) For any two regions in the final subdivision that touch each other – we also consider
two regions to touch if they only share a vertex – we add at most one square to Sbase, as
follows. If one of the regions is an empty square, we do not add anything for this pair.
Otherwise we have three cases.
(B4.1) If both regions are non-empty squares containing points p and p′, respectively,

then we add a smallest enclosing square for the pair of points p, p′ to Sbase.
(B4.2) If both regions are donut regions, say σ1 \ σ′1 and σ2 \ σ′2, then we add a smallest

enclosing square for the pair σ′1, σ′2 to Sbase.
(B4.3) If one region is a non-empty square containing a point p and the other is a donut

region σ \ σ′, then we add a smallest enclosing square for the pair p, σ′ to Sbase.

I Lemma 8. The set Sbase has size O(n) and contains a good base square. Furthermore,
Sbase can be computed in O(n logn) time.

Proof. A compressed quadtree has size O(n) so we have O(n) base squares of type (B1)
and (B3). Obviously there are O(n) base squares of type (B2). Finally, the number of
pairs of final regions that touch is O(n) – this follows because we have a planar rectilinear
subdivision of total complexity O(n) – and so the number of base squares of type (B4) is
O(n) as well. The fact that we can compute Sbase in O(n logn) time follows directly from
the fact that we can compute the compressed quadtree in O(n logn) time [13].

It remains to prove that Sbase contains a good base square. We call a square σ too small
when size(σ) < c1 · diam(P ∗2) and too large when size(σ) > c2 · diam(P ∗2); otherwise we say
that σ has the correct size. Let p, p′ ∈ P ∗2 be two points with |pp′| = diam(P ∗2), and consider
a smallest square σp,p′ , in the compressed quadtree that contains both p and p′. Note that
σp,p′ cannot be too small, since c1 = 1/4 < 1/

√
2. If σp,p′ has the correct size, then we are

done since it is a good base square of type (B1). So now suppose σp,p′ is too large.
Let σ0, σ1, . . . , σk be the sequence of squares in the recursive subdivision of σp,p′ that

contain p; thus σ0 = σp,p′ and σk is a square in the final subdivision. Define σ′0, σ′1, . . . , σ′k′

similarly, but now for p′ instead of p. Suppose that none of these squares has the correct size
– otherwise we have a good base square of type (B1). There are three cases.

Case (i): σk and σ′k′ are too large.
We claim that σk touches σ′k′ . To see this, assume without loss of generality that
size(σk) 6 size(σ′k′). If σk does not touch σ′k′ then |pp′| > size(σk), which contradicts
that σk is too large. Hence, σk indeed touches σ′k′ . But then we have a base square of
type (B4.1) for the pair p, p′ and since |pp′| = diam(P ∗2) this is a good base square.
Case (ii): σk and σ′k′ are too small.
In this case there are indices 0 < j 6 k and 0 < j′ 6 k′ such that σj−1 and σ′j′−1 are too
large and σj and σ′j′ are too small. Note that this implies that both σj and σ′j′ result
from a shrinking step, because c1 < c2/2 and so the quadrants of a too-large square
cannot be too small. We claim that σj−1 touches σ′j′−1. Indeed, similarly to Case (i), if
σj−1 and σ′j′−1 do not touch then |pp′| > min(size(σj−1), size(σ′j′−1)), contradicting that
both σj−1 and σ′j′−1 are too large. We now have two subcases.

The first subcase is that the donut region σj−1 \σj touches the donut region σ′j′−1 \σj′ .
Thus a smallest enclosing square for σj and σ′j′ has been put into Sbase as a base
square of type (B4.2). Let σ∗ denote this square. Since the segment pp′ is contained

SoCG 2017

4:12 Minimum Perimeter-Sum Partitions in the Plane

in σ∗ we have

c1 · diam(P ∗2) < diam(P ∗2)/
√

2 = |pp′|/
√

2 6 size(σ∗).

Furthermore, since σj and σ′j′ are too small we have

size(σ∗) 6 size(σj) + size(σ′j′) + |pp′| 6 3 · diam(P ∗2) < c2 · diam(P ∗2), (7)

and so σ∗ is a good base square.
The second subcase is that σj−1 \σj does not touch σ′j′−1 \σj′ . This can only happen if
σj−1 and σ′j′−1 just share a single corner, v. Observe that σj must lie in the quadrant
of σj−1 that has v as a corner, otherwise |pp′| > size(σj−1)/2 and σj−1 would not be
too large. Similarly, σ′j′ must lie in the quadrant of σ′j′−1 that has v as a corner. Thus
the base squares of type (B3) for σj and σ′j′ both have v as a corner. Take the largest
of these two base squares, say σj . For this square σ∗ we have

c1 · diam(P ∗2) < diam(P ∗2)/2
√

2 = |pp′|/2
√

2 6 size(σ∗),

since |pp′| is contained in a square of twice the size of σ∗. Furthermore, since σj is too
small and |pv| < |pp′| we have

size(σ∗) 6 size(σj) + |pv| 6 (c1 + 1) · diam(P ∗2) < c2 · diam(P ∗2). (8)

Hence, σ∗ is a good base square.
Case (iii): neither (i) nor (ii) applies.
In this case σk is too small and σ′k′ is too large (or vice versa). Thus there must be an
index 0 < j 6 k such that σj−1 is too large and σj is too small. We can now follow
a similar reasoning as in Case (ii): First we argue that σj must have resulted from a
shrinking step and that σj−1 touches σ′k′ . Then we distinguish two subcases, namely
where the donut region σj \ σj−1 touches σ′k′ and where it does not touch σ′k′ . The
arguments for the two subcases are similar to the subcases in Case (ii), with the following
modifications. In the first subcase we use base squares of type (B4.3) and in (7) the term
size(σ′j′) disappears; in the second subcase we use a type (B3) base square for σj and
a type (B2) base square for p′, and when the base square for p′ is larger than the base
square for σj then (8) becomes size(σ∗) 6 2 |p′v| < c2 · diam(P ∗2). J

Step 2: Generating halfplanes. Consider a good square σ ∈ S. Let Qσ be a set of
4 · c∗/csep + 1 = 18001 points placed equidistantly around the boundary of σ. Note that the
distance between two neighbouring points in Qσ is less than csep/c

∗ · size(σ). For each pair
q1, q2 of points in Qσ, add to Hσ the two halfplanes defined by the line through q1 and q2.

I Lemma 9. For any good square σ ∈ S, there is a halfplane h ∈ Hσ such that P ∗2 = P (σ∩h).

Proof. In the case where σ ∩ P ∗1 = ∅, two points in Qσ from the same edge of σ define a
half-plane h such that P ∗2 = P (σ ∩ h), so assume that σ contains one or more points from
P ∗1 .

We know that the separation distance between P ∗1 and P ∗2 is at least csep · per(P ∗2).
Moreover, size(σ) 6 c∗ · per(P ∗2). Hence, there is an empty open strip O with a width of at
least csep/c

∗ · size(σ) separating P ∗2 from P ∗1 . Since σ contains a point from P ∗1 , we know
that σ \O consists of two pieces and that the part of the boundary of σ inside O consists
of two disjoint portions B1 and B2 each of length at least csep/c

∗ · size(σ). Hence the sets
B1 ∩Qσ and B2 ∩Qσ contain points q1 and q2, respectively, that define a half-plane h as
desired. J

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:13

Step 3: Evaluating candidate solutions. In this step we need to compute for each pair
(σ, h) with σ ∈ S and h ∈ Hσ, the value per(P \ P (σ ∩ h)) + per(P (σ ∩ h)). We do this by
preprocessing P into a data structure that allows us to quickly compute per(P \ P (σ ∩ h))
and per(P (σ ∩ h)) for a given pair (σ, h). Recall that the bounding lines of the halfplanes h
we must process have O(1) different orientations. We construct a separate data structure for
each orientation.

Consider a fixed orientation φ. We build a data structure Dφ for range searching on P
with ranges of the form σ∩h, where σ is a square and h is halfplane whose bounding line has
orientation φ. Since the edges of σ are axis-parallel and the bounding line of the halfplanes h
have a fixed orientation, we can use a standard three-level range tree [5] for this. Constructing
this tree takes O(n log2 n) time and the tree has O(n log2 n) nodes.

Each node ν of the third-level trees in Dφ is associated with a canonical subset P (ν),
which contains the points stored in the subtree rooted at ν. We preprocess each canonical
subset P (ν) as follows. First we compute the convex hull ch(P (ν)). Let v1, . . . , vk denote
the convex-hull vertices in counterclockwise order. We store these vertices in order in an
array, and we store for each vertex vi the value length(∂ P (v1, vi)), that is, the length
of the part of ∂ ch(P (ν)) from v1 to vi in counterclockwise order. Note that the convex
hull ch(P (ν)) can be computed in O(|P (ν)|) from the convex hulls at the two children of ν.
Hence, the convex hulls ch(P (ν)) (and the values length(∂ P (v1, vi))) can be computed in∑
ν∈Dφ O(|P (ν)|) = O(n log3 n) time in total, in a bottom-up manner.
Now suppose we want to compute per(P (σ ∩ h)), where the orientation of the bounding

line of h is φ. We perform a range query in Dφ to find a set N(σ ∩ h) of O(log3 n) nodes
such that P (σ ∩ h) is equal to the union of the canonical subsets of the nodes in N(σ ∩ h).
Standard range-tree properties guarantee that the convex hulls ch(P (ν)) and ch(P (µ)) of
any two nodes ν, µ ∈ N(σ ∩ h) are disjoint. Note that ch(P (σ ∩ h)) is equal to the convex
hull of the set of convex hulls ch(P (ν)) with ν ∈ N(σ ∩ h). In the full version [1] we show
that we can compute per(P (σ ∩ h)) in O(log4 n) time.

Observe that P \ P (σ ∩ h) can also be expressed as the union of O(log3 n) canonical
subsets with disjoint convex hulls, since R2 \ (σ ∩ h) is the disjoint union of O(1) ranges of
the right type. Hence, we can compute per(P \ P (σ ∩ h)) in O(log4 n) time. We thus obtain
the following result, which finishes the proof of Theorem 5.

I Lemma 10. Step 3 can be performed in O(n log4 n) time and using O(n log3 n) space.

3 The approximation algorithm

I Theorem 11. Let P be a set of n points in the plane and let (P ∗1 , P ∗2) be a partition
of P minimizing per(P ∗1) + per(P ∗2). Suppose we have an exact algorithm for the minimum
perimeter-sum problem running in T (k) time for instances with k points. Then for any
given ε > 0 we can compute a partition (P1, P2) of P such that per(P1) + per(P2) 6
(1 + ε) ·

(
per(P ∗1) + per(P ∗2)

)
in O(n+ T (1/ε2)) time.

Proof. Consider the axis-parallel bounding box B of P . Let w be the width of B and let h
be its height. Assume without loss of generality that w > h. Our algorithm works in two
steps.

Step 1: Check if per(P ∗
1) + per(P ∗

2) 6 w/16. If so, compute the exact solution.
We partition B vertically into four strips with width w/4, denoted B1, B2, B3, and B4
from left to right. If B2 or B3 contains a point from P , we have per(P ∗1) + per(P ∗2) >
w/2 > w/16 and we go to Step 2. If B2 and B3 are both empty, we consider two cases.

SoCG 2017

4:14 Minimum Perimeter-Sum Partitions in the Plane

Case (i): h 6 w/8. In this case we simply return the partition (P ∩B1, P ∩B4). To see
that this is optimal, we first note that any subset P ′ ⊂ P that contains a point from
B1 as well as a point from B4 has per(P ′) > 2 · (3w/4) = 3w/2. On the other hand,
per(P ∩B1) + per(P ∩B4) 6 2 · (w/2 + 2h) 6 3w/2.

Case (ii): h > w/8. We partition B horizontally into four rows with height h/4,
numbered R1, R2, R3, and R4 from bottom to top. If R2 or R3 contains a point from
P , we have per(P ∗1) + per(P ∗2) > h/2 > w/16, and we go the Step 2. If R2 and R3 are
both empty, we overlay the vertical and the horizontal partitioning of B to get a 4× 4
grid of cells Cij := Bi ∩ Rj for i, j ∈ {1, . . . , 4}. We know that only the corner cells
C11, C14, C41, C44 contain points from P . If three or four corner cells are non-empty,
per(P ∗1) + per(P ∗2) > 6h/4 > w/16. Hence, we may without loss of generality assume
that any point of P is in C11 or C44. We now return the partition (P ∩ C11, P ∩ C44),
which is easily seen to be optimal.

Step 2: Handle the case where per(P ∗
1) + per(P ∗

2) > w/16.
The idea is to compute a subset P̂ ⊂ P of size O(1/ε2) such that an exact solution to the
minimum perimeter-sum problem on P̂ can be used to obtain a (1 + ε)-approximation for
the problem on P .
We subdivide B into O(1/ε2) rectangular cells of width and height at most c :=
εw/(64π

√
2). For each cell C where P ∩ C is non-empty we pick an arbitrary point in

P ∩ C, and we let P̂ be the set of selected points. For a point p ∈ P̂ , let C(p) be the
cell containing p. Intuitively, each point p ∈ P̂ represents all the points P ∩ C(p). Let
(P̂1, P̂2) be a partition of P̂ that minimizes per(P̂1) + per(P̂2). We assume we have an
algorithm that can compute such an optimal partition in T (|P̂ |) time. For i = 1, 2, define

Pi :=
⋃
p∈P̂i

P ∩ C(p).

Our approximation algorithm returns the partition (P1, P2). (Note that the convex hulls
of P1 and P2 are not necessarily disjoint.) It remains to prove the approximation ratio.
First, note that per(P̂1) + per(P̂2) 6 per(P ∗1) + per(P ∗2) since P̂ ⊆ P . For i = 1, 2, let P̃i
consist of all points in the plane (not only points in P) within a distance of at most

√
2c

from ch(P̂i). In other words, P̃i is the Minkowksi sum of ch(P̂i) with a disk D of radius
c
√

2 centered at the origin. Note that if p ∈ P̂i, then q ∈ P̃i for any q ∈ P ∩ C(p), since
any two points in C(p) are at most

√
2c apart from each other. Therefore Pi ⊂ P̃i and

hence per(Pi) 6 per(P̃i). Note also that per(P̃i) = per(P̂i) + 2cπ
√

2. These observations
yield

per(P1) + per(P2) 6 per(P̃1) + per(P̃2)
= per(P̂1) + per(P̂2) + 4cπ

√
2 6 per(P ∗1) + per(P ∗2) + 4cπ

√
2

= per(P ∗1) + per(P ∗2) + 4π
√

2 ·
(
εw/(64π

√
2)
)

6 per(P ∗1) + per(P ∗2) + εw/16 6 (1 + ε) · (per(P ∗1) + per(P ∗2)).

As all the steps can be done in linear time, the time complexity of the algorithm is O(n+T (nε))
for some nε = O(1/ε2). J

Acknowledgements. This research was initiated when the first author visited the Depart-
ment of Computer Science at TU Eindhoven during the winter 2015–2016. He wishes to
express his gratitude to the other authors and the department for their hospitality.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:15

References
1 M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, A.D. Mehrabi. Minimum Perimeter-

Sum Partitions in the Plane. Preprint, http://arxiv.org/abs/1703.05549 (2017).
2 P.K. Agarwal, M. Sharir. Efficient algorithms for geometric optimization. ACM Comput.

Surv. 30(4):412–458 (1998).
3 T. Asano, B. Bhattacharya, M. Keil, and F. Yao. Clustering algorithms based on minimum

and maximum spanning trees. In Proc. 4th ACM Symp. Comput. Geom. (SoCG), pages
252–257, 1988.

4 S.W. Bae, H.-G. Cho, W. Evans, N. Saeedi, and C.-S. Shin. Covering points with convex
sets of minimum size. Theor. Comput. Sci., in press (2016).

5 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications (3rd edition). Springer-Verlag, 2008.

6 P. Brass, C. Knauer, C.-S. Shin, M. Smid, and I. Vigan. Range-aggregate queries for geo-
metric extent problems. In Proc. 19th Computing: Australasian Theory Symp. (CATS),
pages 3–10, 2013.

7 V. Capoyleas, G. Rote, G. Woeginger. Geometric clusterings. J. Alg. 12(2):341–356 (1991).
8 T.M. Chan. More planar two-center algorithms. Comput. Geom. Theory Appl. 13(2):189–

198 (1999).
9 T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (3rd

edition). MIT Press, 2009.
10 O. Devillers and M. J. Katz. Optimal line bipartitions of point sets. Int. J. Comput. Geom.

Appl. 9(1):39–51 (1999).
11 Z. Drezner. The planar two-center and two-median problems. Transportation Science

18(4):351–361 (1984).
12 D. Eppstein. Faster construction of planar two-centers. In Proc. 8th ACM-SIAM Symp.

Discr. Alg. (SODA), pages 131–138 (1997).
13 S. Har-Peled. Geometric approximation algorithms. Mathematical surveys and monographs,

Vol. 173. American Mathematical Society, 2011.
14 J. Hershberger. Minimizing the sum of diameters efficiently. Comput. Geom. Theory

Appl. 2(2):111–118 (1992).
15 J.W. Jaromczyk and M. Kowaluk. An efficient algorithm for the Euclidean two-center

problem. In Proc. 10th ACM Symp. Comput. Geom. (SoCG), pages 303–311 (1994).
16 D. Kirkpatrick and J. Snoeyink. Computing common tangents without a separating line.

In Proc. 4th Workshop Alg. Data Struct. (WADS), LNCS 955, pages 183–193, 1995.
17 J. S. B. Mitchell and E.L. Wynters. Finding optimal bipartitions of points and polygons.

In Proc. 2nd Workshop Alg. Data Struct. (WADS), LNCS 519, pages 202–213, 1991. Full
version available at http://www.ams.sunysb.edu/~jsbm/.

18 J. Rokne, S. Wang, and X. Wu. Optimal bipartitions of point sets. In Proc. 4th Canad.
Conf. Comput. Geom. (CCCG), pages 11–16, 1992.

19 M. Segal. Lower bounds for covering problems. J. Math. Modelling Alg. 1(1):17–29 (2002).
20 M. Sharir. A near-linear algorithm for the planar 2-center problem. Discr. Comput.

Geom. 18(2):125–134 (1997).

SoCG 2017

http://arxiv.org/abs/1703.05549
ftp://ftp.ams.sunysb.edu/pub/geometry/bipart.ps.gz

	Introduction
	Our contribution

	The exact algorithm
	Geometric properties of an optimal partition
	The algorithm

	The approximation algorithm

