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Abstract
We study data structures for storing a set of polygonal curves in IRd such that, given a query
curve, we can efficiently retrieve similar curves from the set, where similarity is measured using
the discrete Fréchet distance or the dynamic time warping distance. To this end we devise the first
locality-sensitive hashing schemes for these distance measures. A major challenge is posed by the
fact that these distance measures internally optimize the alignment between the curves. We give
solutions for different types of alignments including constrained and unconstrained versions. For
unconstrained alignments, we improve over a result by Indyk from 2002 [17] for short curves. Let
n be the number of input curves and letm be the maximum complexity of a curve in the input. In
the particular case where m ≤ α

4d logn, for some fixed α > 0, our solutions imply an approximate
near-neighbor data structure for the discrete Fréchet distance that uses space in O(n1+α logn)
and achieves query time in O(nα log2 n) and constant approximation factor. Furthermore, our
solutions provide a trade-off between approximation quality and computational performance: for
any parameter k ∈ [m], we can give a data structure that uses space in O(22kmk−1n logn+nm),
answers queries in O(22kmk logn) time and achieves approximation factor in O(m/k).
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1 Introduction

We study nearest-neighbor searching for polygonal curves under the discrete Fréchet distance
or the dynamic time warping distance. This problem has various applications in machine
learning, information retrieval and classification where the recorded instances are curves.
Dynamic time warping has shown to be useful for classification of various types of data: sur-
gical processes [11], whale singing [5], chromosomes [23], fingerprints [22], electrocardiogram
(ECG) frames [15], and vessel trajectories [30]. Originally conceived for speech recognition,
it is now being deployed as universal similarity measure for time series in the field of data
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37:2 Locality-Sensitive Hashing of Curves

mining. The Fréchet distance is considered a useful similarity measure for trajectories of
moving objects [6, 12, 20, 31].

Indyk and Motwani [19, 14] introduced the idea that hashing could enable faster nearest-
neighbor searching in high-dimensional Euclidean spaces using a hashing scheme where near
points are more likely to collide than far ones. They showed that such an approach can be
used for the (c, r)-near neighbor problem which is defined as follows. Preprocess a set S
of n points into a data structure that answers queries in the following way: if there exists
a point p ∈ S that lies within distance r from the query point q, then the data structure
reports a point p′ ∈ S that lies within distance cr from q. In this paper, we study such
locality-sensitive hashing schemes for the space of curves.

1.1 State of the art
In 2002, Indyk gave a deterministic and approximate near-neighbor data structure for the
discrete Fréchet distance [17]. This data structure is to date the only result known for this
task and represents the state of the art. The data structure achieves approximation factor
O(logm + log logn), where m is the maximum length of a curve and n is the maximum
number of elements in the data structure. Further, the data structures uses space in
O
(
|X|
√
m(m

√
mn)2

)
, where |X| is the size of the domain on which the curves are defined.

The query time is O
(
mO(1) logn

)
. The data structure precomputes all answers to queries

with curves of length
√
m, leading to a very high space consumption.1

In the group of `p distances, the Fréchet distance most resembles the `∞-distance, which
is notoriously hard to embed into a low-dimensional `p-space, see also the discussion by Indyk
in [16]. Indyk’s data structure for the discrete Fréchet distance is in fact an extension of his
data structure for the `∞-distance [16]. Any subset of `d∞ can be embedded into the Fréchet
metric2 [18]. This embedding implies that, unless the strong exponential-time hypothesis
fails, there exists no data structure for near-neighbor searching under the discrete Fréchet
distance that achieves preprocessing time in O

(
n2−ε polym

)
, query time in O

(
n1−ε polym

)
for any ε > 0, and approximation factor c < 3. This suggests that the problem becomes
hard for long curves, i.e., m ∈ ω(logn). Recently, Backurs and Sidiropoulos showed how
to embed finite subsets of the Hausdorff distance into `∞ using constant distortion and
constant dimension of the host space [2]. However, for the Fréchet distance, no non-trivial
embeddings are known, see also the discussion in [18]. It is possible to embed any finite
metric space into `p, for example, using the embedding due to Bourgain [25]. However, the
high cost of computing the embedding makes it unfit for use in a nearest-neighbor data
structure. Another known approach to proximity searching in metric spaces is to exploit a
low doubling-dimension [1, 13]. However, the doubling dimension of the Fréchet distance
is infinite, even if the metric space is restricted to curves of constant length [9]. Recently
Bartal et al. [3] gave lower bounds for embedding doubling spaces. Their result implies that a
metric embedding of the Fréchet distance into an `p-space would have at least super-constant
distortion. However, as noted earlier, it is not even known how to obtain such an embedding.

In general, there is little known in terms of data structures for the Fréchet distance.

1 Indyk also claims (without proof) a slightly different bound using a trade-off parameter t ≥ 2: approx-
imation factor O((logm+ log logn)(t−1)), space O

((
m2|X|

)tm1/t

n2t
)

and query time (m+ logn)O(t).
The space bound decreases at the cost of approximation and query time as soon as t < logm; however,
the trade-off disappear for larger values of t since all bounds increase in t as soon as t ≥ logm.

2 In particular, one can use 3d vertices to express each d-dimensional vector as a curve on a real line.
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The authors are aware of the following few results which were developed for the classic
(continuous) Fréchet distance. De Berg, Cook and Gudmundsson [7] study range counting
queries for the set of subcurves that lie within distance r to a query line segment. Their data
structure uses a partition tree to store compressed subcurves. For any parameter n ≤ s ≤ n2,
the space used by the data structure is in O(spoly logn). The queries are computed in time
in O

(
n√
s

poly logn
)
and uses a constant approximation factor. However, the data structure

does not support more complex query curves than line segments. A second data structure
is due to Driemel and Har-Peled [8]. This data structure answers queries for the Fréchet
distance of a subcurve to a query curve (the subcurve is specified in the query). If the queries
are line segments, an approximation factor of (1 + ε) can be achieved with logarithmic query
time and linear space. Unlike the `∞-metric, which can be evaluated in time that is linear
in the dimension, evaluating a single Fréchet distance is believed to take time that is at
least roughly quadratic in the complexity of the curves (the number of vertices) in the worst
case [4]. The high time complexity can be credited to the fact that the distance measure
optimizes over all possible monotone alignments of the two input sequences. Computing
the discrete Fréchet distance, as well as dynamic time warping, can be solved via dynamic
programming. In both cases, the naive linear scan leads to O(nm2) query time for finding
the nearest neighbor. For dynamic time warping (DTW) no data structures exist that give
provable guarantees, however there exist many heuristics, see the work of Rakthanmanon
et al. [26] (and references therein). Since DTW does not satisfy the triangle inequality, it
cannot be embedded into an `p-space.

1.2 Our results
Our first result is a basic LSH scheme for the discrete Fréchet distance, which leads to a
very efficient LSH with approximation factor that is linear in the number of curve vertices.
The scheme is described in Section 3 and it is surprisingly simple: We snap the curves to
a randomly shifted grid and remove consecutive duplicate vertices. It turns out that this
simple scheme alleviates the alignment problem which sets the Fréchet distance computation
apart from the `∞-distance. Next, we show in Section 4 that it is even possible to get
constant approximation, at the cost of a lower collision probability for near curves. The
second scheme randomly perturbs the vertices of the input curves independently and snaps
the vertices to a fixed grid instead of a randomly shifted grid. It is natural to ask if there
exists an LSH scheme exhibiting a full-spectrum trade-off between collision probability and
approximation. We positively answer to this question in Section 5, with a scheme based
on a random partition of the input curves, inspired by Indyk’s data structure [17], followed
by the application of the basic scheme to each subsequence independently.3 (Due to space
constraints, we refer to the full version of our paper [10] for more details.)

All the LSH schemes achieve zero false-positives, meaning that no collisions happen
between far curves. When applied to the (c, r)-near neighbor problem, we obtain the results
summarized in Table 1 (see also Section 2.3). It is interesting to compare our bounds with the
state of the art. The basic scheme of Theorem 7 provides a data structure using almost linear
space and O(m logn) query time by allowing a linear approximation c = O(m). This query
time always beats the trivial exact solution of scanning all input curves for each query, which
needs O

(
nm2) time. In comparison, Indyk’s result [17] provides a better approximation when

3 Indeed, in Theorem 10, the collision probability for near curves is bounded by 2−3M for K = M (using
Stirling’s approximation for the binomial coefficient), however when summarizing our bounds we use
the simplified bound from Corollary 11.

SoCG 2017
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Table 1 Our approximate near-neighbor data structure results for the discrete Fréchet distance
in comparison with the result by Indyk, assuming d = O(1) for simplicity. The first four rows
refer to the standard discrete Fréchet distance dF , while the last two rows dw,aF and dw,sF refer
to the anchored and speed constraints respectively. The input consists of n polygonal curves
in IRd, each of complexity at most m. The corresponding query results are achieved with high
probability. The parameters k ≥ 1 and ` ≥ 1 trade-off space/query time and approximation, and
parameter w constrains the possible alignments. The first entry in bi-criteria (·, ·) denotes the
distance approximation, while the second is the alignment approximation.

Space Query time Approximation Reference

dF

O
(
|X|
√

m(m
√

mn)2) O
(
mO(1) logn

)
O(logm+ log logn) [17]

O(n logn+ nm) O(m logn) O(m) Thm. 7
O(24mdn logn+ nm) O(24mdm logn) O(1) Thm. 9
O(22kmk−1n logn+ nm) O(22kmk logn) O(m/k) Cor. 11

dw,aF O
((√

2w
)2m/`

n logn+ nm
)

O
((√

2w
)2m/`

m logn
)

bi-criteria
(

4d 3
2 `, 2`− 2

)
Thm. 12

dw,sF O
((√

2w`
)2m/`

n logn+ nm
)
O
((√

2w`
)2m/`

m logn
)
bi-criteria

(
4d 3

2 `, `
)

Thm. 13

m = Ω(log logn) but it uses exponential space and slightly higher query time. More generally,
when curves are short m = o(logn), our basic result provides a good alternative to Indyk’s
result due to the improved space. In the particular case where m ≤ α

4d logn for some fixed
α > 0, we can answer queries using a constant approximation factor in O(nα log2 n) time
and using O(n1+α logn) space, using Theorem 9. When curves have constant complexity,
the basic LSH gives the first efficient data structure with constant approximation. We recall
that a data structure for the (c, r)-approximate near neighbor problem can be used as a
building block for solving the c-approximate nearest neighbor problem [28].

We then address LSH for the discrete Fréchet distance under alignment constraints in
Section 6. It is natural to constrain the alignments of curves: this preserves important
characteristics of the input curves and it also reduces the actual time to compute the distance
between curves (see e.g., [27, 21]). We target the anchored and bounded speed constraints
that require, respectively, a vertex to be aligned with at most w vertices or to be aligned
with vertices whose indices differ by at most w/2, for a suitable parameter w ≥ 1 (for
formal definitions see Section 2.2). Our scheme provides the first data structures for the
(c, r)-near neighbor problem with alignment constraints. Further, they exhibit a bi-criteria
approximation: it is possible to reduce space and query time with a weaker approximation
on the distance but also on the alignment parameter w. Bounds are summarized in Table 1.

In Section 7, we study which one of our schemes work for DTW. We show that the basic
LSH applies to DTW with the same linear approximation, space and query bounds of the
discrete Fréchet distance. In contrast, the techniques to improve the approximation factor
under the Fréchet distance do not provide improvements for DTW. The LSH schemes for
constrained distances also yields linear approximation for DTW distance, but maintains the
trade-off between space/query time and the approximation on the alignment parameter w.

2 Preliminaries

2.1 Distance measures for curves
A time series (or trajectory)4 is a series (p1, t1), . . . , (pm, tm) of measurements pi of a signal
taken at times ti. We assume 0 = t1 < t2 < . . . < tm = 1 andm is finite. A time series may be

4 Usually, these are referred to as time series when d = 1 and trajectories when d > 1.



A. Driemel and F. Silvestri 37:5

viewed as a continuous function P : [0, 1]→ IRd by linearly interpolating p1, . . . , pm in order
of ti, i = 1, . . .m. We obtain a polygonal curve with vertices p1 = P (t1), . . . , pm = P (tm)
and segments between pi and pi+1 called edges pipi+1 = {xpi + (1− x)pi+1|x ∈ [0, 1]}. We
will simply refer to P as a curve. We denote the space of all curves in IRd with ∆d.

We now recall the definitions of discrete Fréchet distance and of the dynamic time warping
distance between two curves. To this end we define the concept of traversal. Given two
polygonal curves P = p1, . . . , pm1 and Q = q1, . . . , qm2 , a traversal

T = {(i1, j1), (i2, j2), . . . , (i`, j`)}

is a sequence of pairs of indices referring to a pairing of vertices from the two curves with
the following properties:
(i) i1 = 1, j1 = 1, i` = m1, and j` = m2
(ii) ∀(ik, jk) ∈ T : (ik+1 − ik) ∈ {0, 1} ∧ (jk+1 − jk) ∈ {0, 1}.
(iii) ∀(ik, jk) ∈ T : (ik+1 − ik) + (jk+1 − jk) ≥ 1.
Intuitively, one can think of the traversal as a prescribed schedule for simultaneously traversing
the two curves, starting at the first vertex of each curve, in every step the traversal advances
by one vertex, either on one of the curves, or on both curves simultaneously, finally the
traversal has to end at the last vertices of the two curves.

We consider the maximum distance of two vertices paired by a traversal as the cost
incurred by this traversal. Let T be the set of possible traversals for two curves P and Q,
then the Fréchet distance corresponds to the minimal cost of a traversal of the two curves.
Likewise, if we define the cost of a traversal as the sum of distances between paired vertices,
then the traversal with minimum cost corresponds to the dynamic time warping distance.

I Definition 1. Let T be the set of possible traversals for two curves P and Q. The discrete
Fréchet distance dF (P,Q) between curves P and Q is defined as

dF (P,Q) = min
T∈T

max
(ik,jk)∈T

‖pik − qjk‖.

I Definition 2. Let T be the set of possible traversals for two curves P and Q. The dynamic
time warping (DTW) distance dDTW(P,Q) between curves P and Q is defined as

dDTW(P,Q) = min
T∈T

∑
(ik,jk)∈T

‖pik − qjk‖.

The discrete Fréchet distance satisfies the triangle inequality and is a pseudo-metric. This
is not true for the DTW distance, since it does not satisfy the triangle inequality.

We refer to a traversal realizing the distance of two curves as an optimal traversal. We
can interpret a traversal as the edges of a bipartite graph where the nodes are the vertices
of the two curves and the edges connect the pairs. The following simple lemma holds for
all distance measures. As a consequence, we assume in the paper that an optimal traversal
consists of disconnected stars, that we call components.

I Lemma 3. For any two curves P = p1, . . . , pm1 and Q = q1, . . . , qm2 , there always exists
an optimal traversal T with the following two properties:
(i) T consists of at most m = min{m1,m2} disconnected components.
(ii) Each component is a star, i.e., all edges of this component share a common vertex.

Proof. The first part is immediate, since we can charge each component to a vertex of the
shorter curve that is contained in it. To see the second part of the claim, assume for the sake

SoCG 2017



37:6 Locality-Sensitive Hashing of Curves

of contradiction that an optimal traversal has the pairs (i, j), (i, j + 1)(i+ 1, j + 1) for some
i, j (or the symmetric configuration (i, j), (i+ 1, j)(i+ 1, j + 1)). In this case, the middle pair
(i, j + 1) can be removed without increasing the cost and without invalidating the traversal
properties. We can apply this reasoning repeatedly until each component is a star. J

2.2 Distances measures with constraints
Anchored distances. A traversal T is said w-anchored traversal if each vertex is paired
with a vertex at distance at most w/2 (for simplicity we assume w to be even): namely,
|i − j| ≤ w/2 for each (i, j) ∈ T . Parameter w is called the width of the traversal. Such
a traversal exists only if |m1 − m2| ≤ w/2, otherwise there would be unpaired vertices
(e.g., the last vertex of the longest curve). For two curves P and Q with lengths satisfying
|m1 −m2| ≤ w/2, we define the w-anchored discrete Fréchet distance dw,aF(P,Q) and w-
anchored DTW distance dw,aDTW(P,Q) as in Definitions 1 and 2 where T is defined as the
set of all possible w-anchored traversals.

Speed-constrained distances. A traversal T is a w-speed traversal if each vertex is aligned
with at most w vertices of the other curve: in other terms, the bipartite graph representing
the traversal has degree at most w. Parameter w is called the speed of the traversal. (We
overload the meaning of w since the width and speed parameters play a similar role in our
algorithms.) Note that a w-anchored traversal is a (w + 1)-speed traversal, but the opposite
is not necessary true. A w-speed traversal exists only if 1/w ≤ m1/m2 ≤ w. For two curves
P and Q with lengths satisfying 1/w ≤ m1/m2 ≤ w, we defined the w-speed discrete Fréchet
distance dw,sF(P,Q) and w-speed DTW distance dw,sDTW(P,Q) as in Definitions 1 and 2
where T is defined as the set of all possible w-speed traversals.

2.3 Locality-sensitive hashing
We use the notion of asymmetric locality-sensitive hashing (see, e.g. [29]), defined as follows:

I Definition 4. Let S be the set of curves in IRd and let d : S × S → IR+ be a distance
measure defined on them. Given real values r > 0, c > 1, 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1 with
α1 > α2, a family H of pairs of hash functions (h1, h2) is called (r, c, α1, α2)-sensitive if for
any two curves P,Q ∈ S
(i) if d(P,Q) ≤ r, then Pr(h1,h2)∈H(h1(P ) = h2(Q)) ≥ α1;
(ii) if d(P,Q) > cr, then Pr(h1,h2)∈H(h1(P ) = h2(Q)) ≤ α2.

When h1 = h2, we have the traditional definition of (symmetric) locality-sensitive hashing.
The above scheme is asymmetric in the sense that there are two different schemes and the
guarantees only hold for curves P and Q where P was hashed using the first scheme and Q
was hashed using the second scheme. This is useful, e.g., if the application of the LSH is
a nearest neighbor data structure, where comparisons only need to be done between input
objects and query objects.

The results reported in Table 1 follow by applying the standard framework for solving the
(c, r)-near neighbor problem with an (r, c, α1, α2)-sensitive hashing scheme H. For the sake
of completeness, we sketch this process here.5 A new family H′ of hashing is constructed by

5 We observe that the LSH schemes presented in this paper have long hash values (curves or array of
curves). However, they can be shortened with traditional hashing (i.e., by mapping each value in
[0, O(n)]), that allows for a more efficient search in the hash tables generated by the LSH. This technique
increases α2 by an additive O(1/n) term.
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concatenating k = max{1, logα2(1/n)} hash functions fromH, so that the collision probability
of far points is at most 1/n. Then, each point in S is inserted into L = (1/α1)k hash tables,
each corresponding to a different randomly chosen hash function from H′. For a query point
q, the algorithm searches among all points that collide with q in the L hash tables and
stops as soon as a cr-near neighbor is found. When α2 > 0, the data structure requires
O
(
n1+ρ + nm

)
memory words and query time O(Γnρ), where Γ = Ω(m) is the time required

for computing the distance between two curves and ρ = logα1/ logα2. When α2 = 0, the
data structure requires O(n/α1) memory words and query time O(m/α1). Note that in this
case the query time does not include Γ: the algorithm does not need to compute distances
between q and points in the buckets since there are no false positives. For a given query,
the data structures returns an approximate cr-near neighbor with constant probability. To
obtain high probability (i.e., at least 1−1/n) we repeat the above process logn times, leading
to logn different data structures. This increases space and query time by a O(logn) term.

3 Linear approximation factor

We first present the basic LSH scheme in Section 3.1, and then in Section 3.2 we analyze
its correctness and performance for the discrete Fréchet distance. The basic LSH has an
approximation factor that is linear in the number of vertices that a curve can have.

3.1 Algorithm
We use a randomly shifted grid in our hashing scheme. Let the canonical d-dimensional grid
of resolution δ be defined as an evenly spaced point set in IRd, as follows:

Gδ =
{

(x1, . . . , xd) ∈ IRd | ∀ 1 ≤ i ≤ d ∃ j ∈ IN : xi = j · δ
}
.

Consider a family of such grids parametrized by a shift t:

Ĝtδ = {p+ t | p ∈ Gδ} .

Choosing t uniformly at random from the half-open hypercube [0, δ)d we obtain a family of
randomly shifted grids. Let P ∈ ∆d be a polygonal curve with vertices p1, . . . , pm and let
htδ : ∆d → ∆d be a hash function. The curve htδ(P ) is defined as the result of the following
two-stage construction.
(i) We snap the curve to the grid Ĝtδ. More precisely, we replace each vertex pi with its

closest grid point p′i = arg min
q∈Ĝt

δ

‖pi − q‖ to obtain the curve P ′.
(ii) We remove consecutive duplicates in P ′. That is, we remove the vertex p′i if it is identical

to p′i−1.
Let HL

δ be the family of hash functions htδ constructed this way.

3.2 Analysis
I Lemma 5. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively, and let
m = min{m1,m2}. For any δ > 0, it holds that

PrHL
δ

(
htδ(P ) = htδ(Q)

)
≥ 1−

(
2dm · dF (P,Q)

δ

)
.

Proof. We bound the probability that P and Q do not hash to the same sequence. To this
end, consider an optimal traversal T of P and Q with respect to the discrete Fréchet distance.

SoCG 2017
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By Lemma 3, we can assume that |T | ≤ m and each component is a star. Let ` denote the
number of components of T . For 1 ≤ k ≤ ` denote with Ek the event that not all vertices of
the k-th component are snapped to the same grid point. This happens only if at least one
pair of vertices is separated in at least one dimension by the random shift t.

Since the component is a star, there exists a vertex v of either P or Q, such that v is
involved in all pairs of T in the k-th component. Therefore, all vertices in this component
have distance at most dF (P,Q) to v. Since t is uniformly distributed in [0, δ)d, the probability
that any pair is separated along any fixed dimension is 2dF (P,Q) /δ. As a consequence,
event Ek happens with probability at most 2d · dF (P,Q) /δ.

By a union bound over the ` components in T , we have that the probability of P and Q
not being hashed to the same sequence is bounded by

Pr

 ⋃
1≤k≤`

Ek

 ≤ ∑
1≤k≤`

Pr(Ek) = 2dm · dF (P,Q)
δ

and the lemma follows. J

I Lemma 6. For any value of δ and for any P,Q ∈ ∆d, if there exists a value of t ∈ [0, δ)d
such that htδ(P ) = htδ(Q), then it holds that dF (P,Q) ≤

√
d · δ.

Proof. In the case that htδ(P ) = htδ(Q), it holds that dF (htδ(P ), htδ(Q)) = 0. Snapping a
curve to the randomly shifted grid changes the position of each vertex by at most

√
d

2 · δ.
Therefore, it holds that dF (P, htδ(P )) ≤

√
d

2 · δ and similarly dF (Q, htδ(Q)) ≤
√
d

2 · δ. By the
triangle inequality, dF (P,Q) ≤ dF (htδ(P ), P )+dF (htδ(P ), htδ(Q))+dF (htδ(Q), Q) ≤

√
d·δ. J

The next theorem follows by plugging in the bounds of Lemmas 5 and 6.

I Theorem 7. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively, and let
m = min{m1,m2}, δ = 4dmr and c = 4d 3

2m. It holds that:
(i) if dF (P,Q) < r, then PrHL

δ
(htδ(P ) = htδ(Q)) > 1

2 ;
(ii) if dF (P,Q) > cr, then PrHL

δ
(htδ(P ) = htδ(Q)) = 0.

4 Constant approximation factor

In the previous section we analyzed a very efficient LSH with linear approximation factor.
On the other end of the spectrum, we can also design an LSH with constant approximation
factor, but higher running time. Conceptually, the easiest way to do this is to randomly and
independently perturb the vertices of each curve and snap them to a fixed grid.

4.1 Algorithm
The described scheme is asymmetric. We assume that we have two types of curves, which
we call input curves and query curves. Consider an input curve P = p1, . . . , pm, and let
Gδ be the canonical d-dimensional grid of resolution δ defined in the previous section.
Let tP = t1, . . . , tm be a sequence of independent random variables which are uniformly
distributed in

[
− δ2 ,

δ
2
]d. We perturb the vertices of P : Let P ′ = p′1, . . . , p

′
m be the perturbed

curve with p′i = pi + ti. We snap the curve P ′ to the grid Gδ. More precisely, we replace
each vertex p′i with its closest grid point p′′i = arg minq∈Gδ ‖p

′
i − q‖ to obtain the curve P ′′.

In the next step we remove consecutive duplicates in P ′′. That is, we remove the vertex p′′i if
it is identical to p′′i−1. We define htPδ (P ) to be the result of this algorithm.
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For a query curve Q, the hash function is the same. However, a different random sequence
tQ is used for randomly perturbing the curve. We let HC

δ denote the LSH scheme defined
this way: namely, HC

δ contains all pairs (htPδ , h
tQ
δ ), where vectors tP and tQ consist of entries

independent and identically distributed in
[
− δ2 ,

δ
2
]d.

4.2 Analysis
I Lemma 8. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively. Let
m = min{m1,m2} and let M = max{m1,m2}. For any δ > 0, it holds that

PrHC
δ

(
htPδ (P ) = h

tQ
δ (Q)

)
≥
(

1
2

)dm
·
(

1
2 −

dF (P,Q)
δ

)dM
In particular, if δ > 4dF (P,Q), then the probability is strictly lower bounded by 2−2d(m1+m2).

Proof. Note that for dF (P,Q) ≥ δ
2 the claim is trivially true. Therefore, assume that

dF (P,Q) < δ
2 . For simplicity assume first that d = 1. We bound the probability that P

and Q do not hash to the same sequence. To this end, consider an optimal traversal T of
P and Q with respect to the discrete Fréchet distance. By Lemma 3, we can assume that
|T | ≤ m1 +m2 and each component is a star. Let ` denote the number of components of
T . For 1 ≤ k ≤ ` denote with Ek the event that not all vertices of the k-th component are
snapped to the same grid point. Assume that the center of the k-th star is a vertex pi of P
and that the other vertices of the component are vertices qj , . . . , qj+ck of Q. The analysis for
the case where the center is a vertex of Q is analogous. There must be a grid point in either
one of the two intervals to the left and to the right of pi: Il = [pi− δ

2 , pi) and Ir = [pi, pi+ δ
2 ).

We analyze the case that there is a grid point in Ir, the other case is analogous. Let Xi be
the event that p′i ∈ Ir. Since tP is uniformly random in

[
− δ2 ,

δ
2
]m1 , it holds that Pr(Xi) ≥ 1

2 .
Now, let Yj be the event that q′j ∈ Ir. If qj was in pi’s component, then there are two cases.
Either qj lies in Il or in Ir. In the first case, we have

Pr(Yi) ≥
δ
2 − |pi − qj |

δ
≥ 1

2 −
d(P,Q)

δ
,

and in the second case we have Pr(Yi) ≥ 1
2 . We can bound the probability that all vertices

in the k-th component snap to the same grid point

Pr
(
Ek
)
≥ Pr(Xi ∩ Yj ∩ · · · ∩ Yj+ck) ≥ 1

2 ·
(

1
2 −

d(P,Q)
δ

)ck
.

If all components are preserved, then the two curves will hash to the same sequence,
therefore

Pr
(
htPδ (P ) = h

tQ
δ (Q)

)
≥ Pr

 ⋂
1≤k≤`

Ek

 ≥ ∏
1≤k≤`

Pr
(
Ek
)

≥
∏

1≤k≤`

1
2

(
1
2 −

d(P,Q)
δ

)ck
≥
(

1
2

)`(1
2 −

d(P,Q)
δ

)m1+m2−`

.

The last inequality follows since
(∑

1≤k≤` ck

)
= m1 + m2 − `. Indeed, each center of a

component can be charged to this component and the remaining vertices make up the
sum of the leaves of all components. The lemma is now implied for d = 1 observing that
` ≤ min{m1,m2}, as implied by Lemma 3. We get the lemma for general d by observing
that the dimensions are independent. J
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The next theorem follows by plugging in the bounds of Lemma 8 and by using same
arguments as in the proof of Lemma 6.

I Theorem 9. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively, and let
δ = 4dr and c = 4d3/2. It holds that
(i) if dF (P,Q) < r, then PrHC

δ

(
htPδ (P ) = h

tQ
δ (Q)

)
>
( 1

2
)2d(m1+m2);

(ii) if dF (P,Q) > cr, then PrHC
δ

(
htPδ (P ) = h

tQ
δ (Q)

)
= 0.

5 Trade-off between approximation factor and query time

In the previous two sections we have seen schemes with linear and constant approximations.
We now suggest a scheme exhibiting a trade-off between the collision probability of near
points and the approximation factor. The basic idea is to randomly partition the input
curves and to concatenate the outcome of the basic LSH (Section 3) applied to the different
parts of the curves.

5.1 Algorithm
The scheme is asymmetric. Again, we assume that we have two types of curves, which we
call input and query curves. The difference in how they are handled lies in the way we create
the partition. For an input curve P = p1, . . . , pm, we randomly sample a partition into K
subsequences. To this end, we denote a partition of P with Φs(P ) =

(
P̂1, . . . , P̂K

)
where

the subsequences are defined by a monotone sequence s ∈ [m]K−1 as follows.

P̂1 = p1, . . . , ps1 ; ∀ 1 < i < K : P̂i = psi−1 , . . . , psi ; P̂K = psK−1 , . . . , pm.

There are at most
(
m+K−1
K−1

)
ways to partition a curve of length m in this way. We denote

with PK the family of all valid partitions for a given m. Let t = t1, . . . , tK be a sequence
of independent random values evenly distributed in [0, δ)d. Once we have partitioned the
input curve P into K (overlapping) subsequences, we apply the basic LSH to each individual
subsequence and concatenate the resulting curves:

gt,sδ,K(P ) = ht1δ

(
P̂1

)
⊕ ht2δ

(
P̂2

)
⊕ · · · ⊕ htKδ

(
P̂K

)
.

A query curve Q = q1, . . . , qm is subdivided into K equal-sized subsequences (determin-
istically), where the last subsequence may be shorter and two consecutive sequences overlap
by one element. We denote with Φ∗(Q) this partitioning into equal-sized subsequences. For
query curves, we define gt,∗δ,K(Q) to be the resulting curve given by applying the basic LSH to
each individual subsequence and concatenating the resulting curves. For any given δ > 0 and
K ≥ 1, we denote with HT

δ,K the family of asymmetric hash functions created this way: that
is, HT

δ,K consists of tuples (gt,sδ,K , g
t,∗
δ,K) where the entries of t are independently and identically

distributed in [0, δ)d and Φs(P ) is uniformly chosen at random from PK .

5.2 Analysis
We have the following theorem which generalizes Theorem 7. Using the parameter K we get
a tradeoff between approximation factor and query time.

I Theorem 10. Let P,Q ∈ S be two curves with m1 and m2 points, respectively, and let
M = max{m1,m2}. Let K ≥ 1 be a given integer and let δ = 4dr ·

⌈
M
K

⌉
and c = 4d 3

2 ·
⌈
M
K

⌉
.

It holds that
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(i) if dF (P,Q) < r, then PrHT
δ,K

(
gt,sδ,K(P ) = gt,∗δ,K(Q)

)
≥
( 1

2
)K · (M+K−1

K−1
)−1;

(ii) if dF (P,Q) > cr, then PrHT
δ,K

(
gt,sδ,K(P ) = gt,∗δ,K(Q)

)
= 0.

Proof. We first prove (i). Let T be an optimal traversal of P and Q. We say two partitions
Φs(P ) and Φr(Q) are consistent with respect to T if and only if (si, ri) ∈ T for all 1 ≤ i ≤
K−1. Let E denote the event that the partition Φs(P ) used in the hash functions is consistent
with Φ∗(Q) with respect to T . By construction this happens for at least one of the partitions
in PK . Therefore, Pr(E) ≥ 1

|PK | . Now, let Ei be the event that htiδ
(
P̂i

)
= htiδ

(
Q̂i

)
. By

Lemma 5 we have that

Pr(Ei | E) ≥ 1−

2dm′ ·
dF

(
P̂i, Q̂i

)
δ

 ≥ 1−
(

2d
⌈
M

K

⌉
· dF (P,Q)

δ

)
≥ 1

2 .

Note that we can assume m′ ≤
⌈
M
K

⌉
in the above inequality, since m′ is the length of the

shorter of the two subsequences in the lemma. By construction, the length of Q̂i will be at
most

⌈
M
K

⌉
.

Since the values ti are chosen pairwise independent, we have

PrHT
δ,K

(
gt,sδ,K(P ) = gt,∗δ,K(Q)

)
≥

 ∏
1≤i≤K

Pr(Ei | E)

 · Pr(E) ≥
(

1
2

)K
· 1
|PK |

.

Using |PK | ≤
(
M+K−1
K−1

)
, the first part of the claim follows.

As for the second part of the claim, we can use Lemma 6 applied to the subsequences.
If there exists a partition of P , and there exist t = t1, . . . , tK , such that for all 0 ≤ i ≤ K

htiδ

(
P̂i

)
= htiδ

(
Q̂i

)
, then it holds by Lemma 6 that dF

(
P̂i, Q̂i

)
≤
√
d · δ. In this case, we can

combine the traversals of the subsequences to a traversal of the entire curves. This combined
traversal has the same cost, therefore it follows that dF (P,Q) ≤

√
d · δ. Consequently, if

dF (P,Q) > cr = 4d 3
2Mr/K =

√
d · δ, then it cannot happen that gt,sδ (P ) = gt,∗δ (Q) for any

combination of t = t1, . . . , tK and s. J

I Corollary 11. Let P,Q ∈ S be two curves with m1 and m2 points, respectively, and let
M = max{m1,m2}. Let K ≥ 1 be a given integer and let δ = 4dr ·

⌈
M
K

⌉
and c = 4d 3

2 ·
⌈
M
K

⌉
.

It holds that
(i) if dF (P,Q) < r, then PrHT

δ,K

(
gt,sδ,K(P ) = gt,∗δ,K(Q)

)
>
( 1

4
)K ·( 1

M

)K−1;

(ii) if dF (P,Q) > cr, then PrHT
δ,K

(
gt,sδ,K(P ) = gt,∗δ,K(Q)

)
= 0.

6 Handling constrained alignments

We now focus on LSH for discrete Fréchet distance with constraints on the alignment. We first
target the w-anchored distance in Section 6.1, and then the w-speed distance in Section 6.2.
As in the previous sections, the schemes are asymmetric and consist of a partitioning of the
curve into subsequences and on the application of the basic LSH scheme to each subsequence.
However, the partitions are different since they leverage on random processes on both input
and query curves, consecutive subsequences do not overlap, and the constraints are exploited.
We let ` ≥ 1 denote an arbitrary given integer that allows to trade-off the collision probability
of near curves with a bi-criteria approximation on the distance and on the anchored alignment.
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6.1 LSH for anchored distances

Consider an input curve P = p1, . . . , pm and let rP = rP,1, rP,2, . . . rP,m and t = t1, t2, . . . , tm
denote sequences of independent and identically distributed random variables in [1, w/2] and
[0, δ)d respectively, where δ is a suitable parameter defined later. The partition of P consists
of a fixed partitioning into subsequences of length `, followed by a random perturbation of
subsequence lengths. Specifically, the following three operations are performed:
(i) Partition P into subsequences P̂ ′1, . . . , P̂ ′K′ with K ′ = dm/`e of size `, with the possible

exception of the last subsequence. Let s′ ∈ [m]K′+1 be the vector denoting the final
indexes of each subsequence, that is P̂i = p(s′i−1+1), . . . , ps′i : we have s′0 = 0, s′K′ = m

and s′i = i` for each 1 ≤ i < K ′.
(ii) Random perturb the final index of each subsequence with the random vector rP : for

each 1 ≤ i < K ′, set si = min{si + rp,2,m}.
(iii) Clean the partition by removing overlaps among subsequences: for each 1 ≤ i < K ′

and starting from i = 1, remove each subsequence where s′i ≤ s′j for some j < i. We
let ΦrP (P ) =

(
P̂1, . . . , P̂K

)
denote the resulting partition of P with K ≤ dm/`e and

let sP ∈ [m]K+1 be the resulting vector denoting the final indexes of each subsequence
(note that each subsequence has now length at most `+ w).
Once curve P has been partitioned into K subsequences, we apply the basic LSH in

Section 3 to each subsequence using the random shifts given by sequence t. Specifically, we
snap the i-th subsequence P̂i on a grid of side δ shifted by the random value ti and remove
consecutive duplicates within each subsequence; the remaining values denote the hash value
of P̂i and we denote them with htiδ

(
P̂i

)
. The final hash value gt,rPw,δ,`(P ) of curve P is the

array containing the hash of each subsequence, specifically:

gt,rPw,δ,`(P ) =
(
ht1δ

(
P̂1

)
, ht2δ

(
P̂2

)
, . . . , htKδ

(
P̂K

))
.

We observe that the final hash value is not a curve as in previous sections, but an array of
curves. Equality between two curves then holds only if the two hash values have the same
length and coincide in each position (i.e., the hash values ((a, b), (c)) and ((a), (b, c)) do not
collide, but they collide if their are considered as a single curve (a, b, c)). This enforces the
alignment constraint.

The hash process of a query curve Q is the same: however, a different random sequence
rQ is used to partition the curve, while the same sequence t of random shifts is kept. Due
to the different random bits in rQ the proposed LSH scheme is asymmetric. We let HA

w,δ,`

denote the hash family consisting of all possible pairs of hash functions
(
gt,rPw,δ,`, g

t,rQ
w,δ,`

)
.

The next theorem shows that the scheme has a bi-criteria approximation: In addition to
the distance approximation c, the scheme has also an approximation on the alignment. As
an example, we observe that two curves with a w-anchored distance larger than cr can still
collide if they have a w + 2(`− 1)-anchored distance lower than cr.

I Theorem 12. Let P,Q ∈ S be two curves with m1 and m2 points, respectively and let
m = min{m1,m2}. Let ` ≥ 1 be an arbitrary integer, δ = 4dr`, and c = 4d 3

2 `. Then, it holds
that:
(i) if dw,aF(P,Q) < r, then PrHA

w,δ,`

(
gt,rPw,δ,`(P ) = g

t,rQ
w,δ,`(Q)

)
>
(
1/
√

2w
)2m/`;

(ii) if d(w+2(`−1)),aF(P,Q) > cr, then PrHA
w,δ,`

(
gt,rPw,δ,`(P ) = g

t,rQ
w,δ,`(Q)

)
= 0.
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6.2 LSH for bounded-speed distances
Consider an input curve P = p1, . . . , pm and let rP = rP,1, rP,2, . . . , rP,m and t = t1, t2, . . . tm
denote sequences of independent and identically distributed random variables in [1, w`] and
[0, δ)d respectively. We random partition curve P into non overlapping subsequences of
length given by the random sequence rp. Specifically, let Φs(P ) =

(
P̂1, . . . , P̂K

)
denote

a partition of P with m/(w`) ≤ K ≤ m and let s ∈ [m]K+1 be the vector denoting the
initial and final indexes of a subsequence, that is P̂i = psi−1+1, . . . , psi . Then, s satisfies the
following conditions : (i) s0 = 0 and sK = m, (ii) for 1 ≤ i ≤ K, si − si−1 = rp,1, which
implies that si =

∑i
j=1 rp,1. Once we have partitioned curve P into K subsequences, we

continue as in the w-anchored LSH by applying the basic LSH to each subsequence using
the random shifts given by sequence t. For a query curve Q, the hash process is the same,
but a different random sequence rQ is used to partition the curve. We let HS

w,δ,` denote
the hash family consisting of all possible pairs of hash functions

(
gt,rPw,δ,`, g

t,rQ
w,δ,`

)
. The next

theorem shows that the scheme has a bi-criteria approximation (note that the alignment
approximation in point (ii) differs from the one for the anchored distance).

I Theorem 13. Let P,Q ∈ S two curves with m1 and m2 points, respectively and let
m = min{m1,m2}. Let ` ≥ 1 be an arbitrary integer, δ = 4dr`, and c = 4d 3

2 `. Then, it holds
that:
(i) if dw,sF(P,Q) < r, then PrHS

w,δ,`

(
gt,rPw,δ,`(P ) = g

t,rQ
w,δ,`(Q)

)
>
(
1/
√

2w`
)2m/`;

(ii) if dw`,sF(P,Q) > cr, then PrHS
w,δ,`

(
gt,rPw,δ,`(P ) = g

t,rQ
w,δ,`(Q)

)
= 0.

7 Extensions to dynamic time warping

All our schemes can be applied to DTW without any algorithmic change, and in this section
we analyze some of them. We first investigate in Section 7.1 the basic scheme in Section 3.1
for this distance. Then, we provide a few insights on DTW with constrained alignments in
Section 7.2. We do not analyze the techniques proposed in Sections 4 and 5 since they have
the same linear approximation of the basic LSH, and – in contrast to our previous results for
the Fréchet distance – do not provide a sublinear approximation for DTW.

7.1 Analysis of the basic LSH
I Lemma 14. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively. For any
δ ≥ 0, it holds that

PrHL
δ

(
htδ(P ) = htδ(Q)

)
≥ 1−

(
d · dDTW(P,Q)

δ

)
.

I Lemma 15. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively, and let
M = max{m1,m2} and δ ≥ 0. If there exists a value of t ∈ [0, δ)d such that htδ(P ) = htδ(Q),
then it holds that dDTW(P,Q) ≤ 2M

√
d · δ.

Lemma 14 above can be proven by a similar analysis as in the proof of Lemma 5: let T be
an optimal traversal of P and Q with respect to their DTW distance; let ` = |T | and denote
with dk the distance ‖pik − qjk‖ for 1 ≤ k ≤ `; we have that dDTW(P,Q) =

∑
1≤k≤` dk; now,

we can use a union bound over all pairs in the traversal, instead of components. The proof
of Lemma 15 is somewhat technical since DTW does not satisfy the triangle inequality. The
following theorem can be obtained by plugging in the bounds of Lemmas 14 and 15.

SoCG 2017



37:14 Locality-Sensitive Hashing of Curves

I Theorem 16. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively, and let
M = max{m1,m2}, δ = 2dr and let c = 4d 3

2M .
(i) if dDTW(P,Q) < r, then PrHL

δ
(htδ(P ) = htδ(Q)) > 1

2 ;
(ii) if dDTW(P,Q) > cr, then PrHL

δ
(htδ(P ) = htδ(Q)) = 0.

7.2 Handling constrained alignments
The schemes in Section 6 for w-anchored/speed traversals automatically apply to DTW
distance, with the same collision probabilities stated in Theorems 12 and 13. However, the
approximation factor is 4d3/2(m1 + m2), where m1 and m2 are curve lengths. The claim
follows by mimicking the proofs for the Fréchet distance and use the bounds in Theorem 16.

8 Conclusion

To the best of our knowledge, this is the first paper providing LSH schemes for curves. When
applied to the near neighbor problem, our techniques improve the state of the art for the
discrete Fréchet distance [17] under different settings, and provide the first data structure
with theoretical guarantees for DTW. The methods presented are simple enough that they
may be practical. We do not know if our bounds are tight. It would be interesting to
know if lower bounds can be obtained for the studied problem and/or to improve the upper
bounds. All of the presented LSH schemes exhibit the property that no collisions happen
between far points (i.e., α2 = 0). An open question is to understand if it is possible to
slightly increase this collision probability (say α2 = 1/n) to get a better approximation factor.
Another interesting direction would be to reduce space by exploiting the independence in
the approach described in Section 4.1, or by using a multiprobe approach [24]. Finally, we
remark that our results only partially extend to DTW. As such, it is still open to get a
sublinear approximation for DTW. We hope that our work inspires further work in one of
these directions.
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