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Abstract
The packing lemma of Haussler states that given a set system (X,R) with bounded VC dimension,
if every pair of sets in R have large symmetric difference, then R cannot contain too many sets.
Recently it was generalized to the shallow packing lemma, applying to set systems as a function
of their shallow-cell complexity. In this paper we present several new results and applications
related to packings:
1. an optimal lower bound for shallow packings,
2. improved bounds on Mnets, providing a combinatorial analogue to Macbeath regions in con-

vex geometry,
3. we observe that Mnets provide a general, more powerful framework from which the state-of-

the-art unweighted ε-net results follow immediately, and
4. simplifying and generalizing one of the main technical tools in Fox et al. (J. of the EMS, to

appear).
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1 Introduction

Given a set system (X,R) consisting of base elements X together with a set R of subsets of
X, a classical and influential way to capture its ‘complexity’ has been through the concept
of VC dimension. First define the projection of R onto any Y ⊆ X to be the system

R|Y =
{
Y ∩R : R ∈ R

}
.
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Also, for any positive integer r, define R|Y,≤r to be the sets in R|Y of size at most r. The
VC dimension of a set system (X,R), henceforth denoted by VC-dim(R), is the size of any
largest subset Y ⊆ X for which |R|Y | = 2|Y |; such a set Y is said to be shattered by R.

The importance of VC dimension derives from the fact that it is bounded for most
natural geometric set systems, where X is a set of geometric objects in Rd and R is
defined by geometric constraints. For example, consider the case when X is a set of
points in Rd and the sets in R are defined by containment by half-spaces, i.e., R =

{
H ∩

X : H is a half-space in Rd
}
. It is not hard to see that the VC dimension of this set system

is d+ 1. This forms the basis for bounding the VC dimension of many geometric set systems
via linearization [21].

Set systems derived from geometric configurations can be categorized into two types.
When X is a set of points and sets in R are defined by containment by members of a family
of geometric objects O, we say that (X,R) is a primal set system induced by O. The second
type is when the base set X is a finite subset of O, and R is defined to be R =

{
Rp : p ∈ Rd

}
,

where Rp =
{
O ∈ X : p ∈ O

}
is the set of objects containing p. Then we say that (X,R)

is the dual set system induced by O. For most natural families of geometric objects, these
primal and dual set systems can be shown to have bounded VC dimension [21, Section 10.3].

1.1 Shallow-cell Complexity of Set Systems
It turns out that for nearly all results on set systems with bounded VC dimension, the key
technical property required is a consequence of bounded VC dimension, the primal shatter
lemma of Sauer and Shelah [29, 30].

I Theorem A (Primal shatter lemma). Let (X,R) be a set system with VC-dim(R) = d.
Then for any Y ⊆ X, we have |R|Y | = O

(
|Y |d

)
.

While most set systems derived from geometry have bounded VC dimension and thus
satisfy the primal shatter lemma, in fact they often satisfy a finer property—not only is the
size of R|Y polynomially bounded, but also the number of sets in R|Y of any fixed size r is
bounded by an even smaller function. For example, let X be a set of n points in R2, and R
the primal set system induced by disks. Then it is well-known that for any set Y ⊆ X, the
number of sets in R|Y of size at most r is |R|Y,≤r| = O

(
|Y | · r2). For small values of r, this

contrasts sharply with the total size of R|Y , which can be Θ
(
|Y |3

)
.

This has motivated a finer classification of set systems. In [11, 9], a set system (X,R)
was said to have the (d, d1) Clarkson–Shor property if for any Y ⊆ X, the number of sets
in R|Y of size r was O

(
|Y |d1rd−d1

)
. More generally, given (X,R), define fR(m, r) as the

maximum number of sets of cardinality at most r in the projection on any set of m points:

∀m, r ∈ N, fR(m, r) = max
Y⊆X,|Y |=m

|R|Y,≤r|.

We now define the key property used in this paper.

I Definition 1. The shallow-cell complexity, denoted by ϕR(·, ·)1, of a set system (X,R) is
defined as ϕR(m, r) = fR(m,r)

m .

In earlier literature, sometimes this was defined simply as fR(m, r); however, as usually
there is at least a linear factor of m in the function fR(m, r), we prefer to normalize by m,

1 The subscript will be dropped when it is clear from the context.
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Table 1 Some geometric set systems.

Objects P/D ϕ(m) VCdim
Intervals P/D O(1) 2
Lines in R2 P/D O(m) 2
Pseudo-disk P O(1) 3
Pseudo-disk D O(1) O(1)
Half-spaces P/D O

(
mbd/2c−1) d+ 1

Balls P/D O
(
mdd/2e−1) d+ 1

Triangles D O(m) 7
Convex sets P O

(
2m/m

)
∞

which will make later results simpler to state. Often the dependency on r is less important:
we say that (X,R) has shallow-cell complexity ϕR(·) if fR(m, r) = O

(
m · ϕR(m) · rcR

)
,

where cR ≥ 0 is a fixed constant independent of m and r.
Note that the shallow-cell complexity of set systems with the (d, d1) Clarkson–Shor

property is ϕ(m, r) = O
(
md1−1rd−d1

)
. For a family O of geometric objects 2, define its

union complexity κO(·) by letting κO(m) be the maximum number of faces of all dimensions
in the union of any m of its members. It can be shown that the dual set system (O,R)
induced by O has shallow-cell complexity ϕ(m) = O

(κR(m)
m

)
.

See Table 1 for the VC dimension and the shallow-cell complexity of many of the commonly
studied geometric set systems (Primal and Dual).

1.2 Macbeath regions and Mnets
Given a convex object C in Rd with volume vol(C), Macbeath’s theorem [19] states the
existence of a collection of smaller convex regions {C1, . . . , Cl}, each Ci ⊆ C is called a
Macbeath region of C, and where l = O

(( 1
ε

)1− 2
d+1
)
, such that

(i) vol(Ci) = Θ(ε vol(C)) for each i, and
(ii) for any half-space H with vol(H ∩ C) ≥ ε vol(C), there exists a j such that Cj ⊆ H.

Mnets (or combinatorial Macbeath regions), introduced by Mustafa et al. [26], are the
combinatorial analogue of Macbeath regions for set systems, replacing the Lebesgue measure
with the counting measure.

I Definition 2. Given a set system (X,R) on n elements and a parameter ε > 0, a collection
M = {M1, . . . ,Ml} of subsets of X is an ε-Mnet for R of size l if
(i) |Mi| = Θ(εn) for each i, and
(ii) for any R ∈ R with |R| ≥ εn, there exists an index j such that Mj ⊆ R.

Beginning with the breakthrough, and beautiful, result of Haussler and Welzl [16], epsilon-
nets have been one of the most fundamental structures in combinatorial geometry with many
applications in areas such as approximation algorithms, discrete and computational geometry,
combinatorial discrepancy theory and learning theory [8, 20, 21, 28].

I Definition 3. For a given set system (X,R) and a parameter ε > 0, an (unweighted) ε-net
for R is a set N ⊆ X such that for any R ∈ R, |R| ≥ ε|X| =⇒ N ∩R 6= ∅.

2 These objects are usually semialgebraic; see [1] for a discussion of the definition of faces and cells induced
by arrangements of geometric objects.

SoCG 2017
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Haussler and Welzl [16] in their paper showed that there exists ε-nets of size independent
from the size of the ground set X, i.e., the size of the smallest ε-net is O

(
d
ε log d

ε

)
, where

d is the VC dimension of the set system. Chan et al. [6], improving on an earlier result
of Varadarajan [31] that stated a slightly weaker result for dual set systems induced by
geometric objects, proved the following generalization of the epsilon-net result of Haussler
and Welzl. See also [25] for a simpler proof of this theorem.

I Theorem B. Let (X,R) be a set system with shallow-cell complexity ϕR(·), where ϕR(n) =
O(nd) for some constant d. Let ε > 0 be a given parameter. Then there exists an ε-net for
R of size O

( 1
ε logϕR( 1

ε )
)
. Furthermore, such an ε-net can be computed in deterministic

polynomial time.

Recently Theorem B has been shown to be tight by Kupavskii et al. [17]. For a state-of-
the-art on ε-nets, we refer the reader to [27].

1.3 Packing Lemma for Geometric Set Systems
A set system (X,R) is said to be a δ-packing if for all distinct R,S ∈ R, |R∆S| ≥ δ, where
∆ is the symmetric difference. In 1995 Haussler [15] proved the following key statement.

I Theorem C (Packing Lemma). Let (X,R) be a set system with VC-dim(R) ≤ d and
|X| = n. Let δ, 1 ≤ δ ≤ n be such that (X,R) is a δ-packing. Then |R| = O

((
n
δ

)d), where
the constant in the asymptotic notation depends on d3.

Haussler’s seminal proof of Theorem C, later simplified by Chazelle [7], is an elegant
application of the probabilistic method, and has since been applied to diverse areas ranging
from computational geometry and machine learning to Bayesian inference—see e.g. [15, 20, 18].
It was further shown in [15] that this bound is tight:

I Theorem D (Optimality of Packing Lemma). Given any positive integers d, n and δ ∈
{1, . . . , n}, there exists a set system (X,R) such that |X| = n, VC-dim(R) ≤ d, R is a
δ-packing and |R| = Ω

((
n
δ

)d).
Recent efforts have been devoted to extending the packing lemma to these finer classifi-

cations of set systems. For k, δ ∈ N∗, call (X,R) a k-shallow δ-packing if R is a δ-packing
and |S| ≤ k for all S ∈ R. After some earlier bounds [26, 11], the following lemma has been
recently established in [9, 24].

I Theorem E (Shallow Packing Lemma). Let (X,R) be a set system on n elements, and
let d0, d, d1, k, δ > 0 be integers. Assume VC-dim(R) ≤ d0. If (X,R) is a k-shallow
δ-packing,

1. |R| = O

(
nd1kd−d1

δd

)
if R satisfies the (d, d1) Clarkson–Shor property.

2. |R| ≤ 24d0n

δ
· ϕ
(

4d0n

δ
,

12d0k

δ

)
if R has shallow-cell complexity ϕ(·, ·).

The constant in the asymptotic notation of 1 depends on d0, d and d1.

I Remark. Note that 2 implies 1 in Theorem E.

3 The same bound also holds with bounded primal shatter dimension replacing VC dimension, see e.g.
Chapter 5.3 [20].
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2 Our Contributions

We present three main results: a tight lower bound for shallow packings, a construction of
Mnets using the shallow packing lemma, and a generalization of the shallow packing lemma
to l-wise packings. A key ingredient which makes the Mnets bound possible is merging the
polynomial partitioning technique with the shallow packing lemma.

2.1 Optimality of Shallow Packings (Proof in Section 3)
While Haussler [15] gave a matching lower bound to his packing lemma, the optimality of
the shallow packing lemma was an open question in previous work [11, 26, 9, 24]. In earlier
work [9], a matching lower bound was presented for one particular case, when ϕ(m) = m. We
show that the shallow packing lemma is tight up to a constant factor for the most common
case of shallow-cell complexity, when ϕ(m, r) = O

(
md1−1rd−d1

)
for some integers d, d1.

I Theorem 4 (Optimality of Shallow Packings). For any positive integers d ≥ d1 and for any
positive integer n, there exists a set system (X,R) on n elements such that
1. (X,R) has shallow-cell complexity ϕ(m, r) = O(md1−1rd−d1), and

2. for any δ and k ≥ 4dδ, (X,R) has a k-shallow δ-packing of size Ω
(
nd1kd−d1

δd

)
.

Our proof is via an explicit construction of a semialgebraic set system.

2.2 Mnets for Semialgebraic Set Systems (Proof in Section 4)
Semialgebraic sets are subsets of Rd obtained by taking Boolean operations such as unions,
intersections, and complements of sets of the form {x ∈ Rd : g(x) ≥ 0}, where g is a d-variate
polynomial in R [x1, . . . , xd]. Denote by Γd,∆,s the family of all semialgebraic sets in Rd
obtained by taking Boolean operations on at most s polynomial inequalities, each of degree
at most ∆. In this paper d, ∆, s are all regarded as constants and therefore the sets in Γd,∆,s
have constant description complexity4. For a set X of points in Rd and a set system R on X,
we say that (X,R) is a semialgebraic set system generated by Γd,∆,s if for all S ∈ R there
exists a γ ∈ Γd,∆,s such that S = X ∩ γ.

I Theorem 5 (Mnets). Let d, d0, ∆ and s be integers and (X,R) a semialgebraic set system
generated by Γd,∆,s with |X| = n and VC-dim(R) ≤ d0. If R has shallow-cell complexity
ϕ(·, ·), with ϕ(·, ·) a non-decreasing function in the first argument, then (X,R) has an ε-Mnet
of size

l = O

(
d0

ε
· ϕ
(

8d0

ε
, 48d0

))
.

In particular, if (X,R) has shallow-cell complexity ϕ(·), then l = O
( 1
ε · ϕ

( 8d0
ε

))
. Constants

depend on d, ∆, and s; the second one also depends on d0.

Most of the time this bound simplifies to O
( 1
ε · ϕ

( 1
ε

))
The proof of Theorem 5 uses the

shallow packing lemma (Theorem E), as well as the polynomial partitioning method of Guth
and Katz [14], specifically a multilevel refinement due to Matoušek and Patáková [23].

First we point out that Theorem 5 immediately implies the best known bounds on
unweighted ε-nets, though with the additional restriction that the set system is semialgebraic.

4 For a detailed introduction to this topic, see [5].

SoCG 2017
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Table 2 Many known results follow from Theorem 5 via their shallow-cell complexity. Polyloga-
rithmic improvements are in bold.

Set System Primal/Dual Size of ε-Mnets
Objects with union complexity κ(·) D O(κ( 1

ε
))

α-fat triangles D O( 1
ε

log∗ 1
ε
)

Locally γ-fat objects D 1
ε
· 2O(log∗ 1

ε
)

Triangles of approximately same size D O( 1
ε
)

α-fat triangles P O( 1
ε

log2 1
ε
)

Rectangles in R2 P O( 1
ε

log 1
ε
)

Lines in R2 P O( 1
ε2 )

Strips in R2 P O( 1
ε2 )

Cones in R2 P O( 1
ε2 )

Pseudo-disks in R2 P/D O( 1
ε
)

Half-spaces in Rd P/D O( 1
εbd/2c )

I Corollary 6. Set systems with ε-Mnets of size M have ε-nets of size O
( 1
ε log(εM)

)
. In

particular, a set system (X,R) with VC-dim(R) ≤ d0 has ε-nets of size
1. O

( 1
ε logϕ

( 8d0
ε , 48d0

) )
if it has shallow-cell complexity ϕ(·, ·), and

2. O
( 1
ε logϕ

( 8d0
ε

) )
if it has shallow-cell complexity ϕ(·).

Proof. LetM be an ε-Mnet for (X,R) whose sets have size at least Cεn. Pick each point
of X into a random sample R independently with probability p = 1

Cεn log(ε|M|).
R is disjoint from any fixedMi ∈M with probability at most (1−p)Cεn ≤ e−pCεn = 1

ε|M| .
Therefore the expected number of sets ofM not hit by R is at most 1

ε ; let S be a set consisting
of an arbitrary point from each such set. As E[|S|] ≤ 1

ε , we have that S ∪R is an ε-net of
expected size ≤ 1

ε + 1
Cε log(ε|M|)). J

Second, Theorem 5 unifies and generalizes a number of previous statements. In [26], a
collection of results on Mnets were presented using different techniques: for the dual set
system induced by regions of union complexity κ(·) using cuttings, for rectangles using
divide-and-conquer constructions, and for triangles using ε-nets. All these and more results
follow as immediate corollaries of Theorem 5.

I Corollary 7 (See Table 2). There exist ε-Mnets of size
1. O

(
κ( 1

ε )
)
for the dual set system induced by objects in R2 with union complexity κ(·). In par-

ticular, O
( 1
ε log∗ 1

ε

)
for the dual set systems induced by α-fat triangles5, O

(
1
ε 2O(log∗ 1

ε )
)

for the dual set system induced by locally γ-fat semialgebraic objects6 in the plane, and
O
( 1
ε

)
for the dual set systems induced by triangles of approximately same size [22].

2. O
( 1
ε log2 1

ε

)
for the primal set system induced by α-fat triangles.

3. O
( 1
ε log 1

ε

)
for the primal set system induced by rectangles in the plane.

4. O( 1
ε2 ) for the primal system induced by lines, strips and cones in the plane, improving

the previous-best results by polylogarithmic factors. They were O( 1
ε2 log2 1

ε ), O( 1
ε2 log3 1

ε2 )
and O( 1

ε2 log4 1
ε ) respectively.

5. O
( 1
ε

)
for the primal set system of semialgebraic pseudo-disks and O( 1

εbd/2c ) for the primal
set system of half-spaces.

5 For a fixed parameter α with 0 < α ≤ π/3, a triangle is α-fat if all three of its angles are at least α.
6 For a fixed parameter γ with 0 < γ ≤ 1/4, a planar semialgebraic object o is called locally γ-fat if, for any

disk D centered in o and that does not fully contain o in its interior, we have area(D u o) ≥ γ · area(D),
where D u o is the connected component of D ∩ o that contains the center of D.
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The main open question in [26] was the following interesting pattern that was observed:
for all the cases studied, a set system that had an ε-net of size O

( 1
ε logϕ( 1

ε )
)
had Mnets of

size O
( 1
εϕ( 1

ε )
)
. Theorem 5 now shows that this was not a coincidence. By Theorem B, a set

system with shallow-cell complexity ϕ(·) has ε-nets of size O
( 1
ε logϕ( 1

ε )
)
. And now, from

Theorem 5, it follows that it has Mnets of size O
( 1
εϕ( 1

ε )
)
.

2.3 l-Wise k-Shallow δ-Packings (Proof in Section 5)

Call a set system (X,R) an l-wise δ-packing if for all distinct A1, . . . , Al ∈ R, we have∣∣ (A1 ∪ · · · ∪Al)
∖

(A1 ∩ · · · ∩Al)
∣∣ ≥ δ.

Building on Chazelle’s [7] proof of the packing lemma together with Turán’s theorem on
independent sets in graphs [28], Fox et al. [13, Lemma 2.5] proved the following:

I Theorem F (l-Wise δ-Packing Lemma). Let (X,R) be a set system such that |X| = n and
where for all Y ⊆ X we have |R|Y | = O(|Y |d). If R is an l-wise δ-packing, for a positive
integer l and δ ∈ {1, . . . , n}, then |R| = O

((
n
δ

)d), where the constant in the asymptotic
notation depends on l and d.

A set system (X,R) is an l-wise k-shallow δ-packing if it is an l-wise δ-packing and
furthermore, |S| ≤ k, ∀S ∈ R. Building on the proof in [20] and [24], we prove the following,
which simultaneously generalizes three theorems: that of Haussler [15] (Theorem C), Fox et
al. [13] (Theorem F) and Ezra et al. [9] (Theorem E).

I Theorem 8 (l-Wise k-Shallow δ-Packing Lemma). Let (X,R) be a set system with |X| = n.
Let d, k, l, δ > 0 be four integers such that VC-dim(R) ≤ d, and R is an l-wise k-shallow
δ-packing. If R has shallow-cell complexity ϕ(·, ·), then

|R| = O

(
l3n

δ
· ϕ
(
s, 4l · ks

n

))
, where s = 8l(l − 1)dn

δ
− 1.

I Corollary 9. Theorems C, E (up to a constant factor) and F.

Proof. Theorem E is Theorem 8 with l set to 2. To obtain Theorem F, set k = n in
Theorem 8. Theorem C is the special case of F when l = 2. J

3 Proof of Theorem 4

In this section we will build a set system with the desired shallow-cell complexity and then
show that it contains a large shallow packing.

Proof of Theorem 4. Without loss of generality we assume that n is an integer multiple of
d. The ground set X will be a subset of N× N.

For each 1 ≤ i ≤ d1, set Xi = {i} × {1, . . . , nd }. Note that we are simply considering d1
disjoint copies of {1, . . . , nd }; the singleton {i} is here to distinguish Xi from Xj .

Define the following set system Pi on each Xi: Pi =
{{
i
}
×
{

2αβ+1, . . . , 2α(β+1)
} ∣∣∣ 0 ≤

α ≤ log2
(
n
d

)
, 0 ≤ β < 2−α nd

}
.

Intuitively, consider a balanced binary tree Ti on Xi, with its leaves labeled (i, 1), (i, 2),
. . . , (i, nd ) (see figure).

SoCG 2017
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(i, 1) (i, 2) (i, n
d
)

Then for each node v ∈ Ti, Pi contains a set consisting of the leaves of the subtree rooted at
v. Here α is the height of the node (so 2α is the number of elements in the corresponding
subset), while β identifies one of the nodes of that height (among the 2log(nd )−α = 2−α · nd
choices).

I Claim 10. For any Y ⊆ Xi and 7 r ∈ N, |Pi|Y,≤r| = O(|Y |). Specifically, fPi(m, r) ≤ 2m.

Proof. For any Y ⊆ Xi, the sets in Pi|Y are in a one-to-one correspondence with the nodes
of Ti whose left and right subtrees, if they exist, both contain leaves labeled by Y . It is easy
to see that if the nodes of Ti corresponding to Y form a connected sub-tree, then these nodes
define a new binary tree whose leaves are still labeled by Y , and thus their number is at
most 2|Y | − 1. Otherwise, the statement holds by induction on the number of connected
components of Y in Ti. J

Next, for each d1 + 1 ≤ i ≤ d, let Yi = {i} × {1, . . . , nd }. For each Yi, define Qi ={{
i
}
×
{

1, . . . , γ
} ∣∣∣ 1 ≤ γ ≤ n

d , γ ∈ N
}
, which can be seen as prefix sets of the sequence

〈(i, 1), . . . , (i, nd )〉.

I Claim 11. For any Y ⊆ Yi and l ∈ N, |Qi|Y,≤l| = O(l). Specifically, fQi(m, l) ≤ l.

Proof. The number of sets of size at most l in Qi|Y is |Qi|Y,≤l| = min
{
l, |Y |

}
≤ l. J

Finally, the required base set will be X =
(

d1⋃
i=1

Xi

)
∪

(
d⋃

i=d1+1
Yi

)
. Its size is |X| =

d1 · nd + (d− d1) · nd = n. The set system R0 is defined on X by taking d-wise union of the
sets in Pi’s and Qi’s: R0 =

{⋃d
i=1 ri

∣∣∣ (r1, r2, · · · , rd) ∈ P1× · · · ×Pd1 ×Qd1+1× · · · ×Qd
}
.

We will bound the shallow-cell complexity of R0 then construct a subset of R0 which is
a large packing.

I Claim 12. ∀Y ⊆ X, ∀l ∈ N, |R0|Y,≤l| = O
(
|Y |d1 ld−d1

)
. Specifically, fR0(m, l) ≤

(2m)d1 ld−d1 .

Proof. Let Y ⊆ X, |Y | = m. Any set S ∈ R0|Y,≤l can be uniquely written as the disjoint
union S = p1 ∪ · · · ∪ pd1 ∪ qd1+1 ∪ · · · ∪ qd, where pi ∈ Pi|Y ∩Xi,≤l and qi ∈ Qi|Y ∩Yi,≤l. This
yields an injection R0|Y,≤l 7→

(∏
1≤i≤d1

Pi|Y ∩Xi,≤l
)
×
(∏

d1+1≤i≤dQi|Y ∩Yi,≤l
)
.

Thus by Claims 10 and 11, we have the required bound:

fR0(m, l) = max
Y⊆X,|Y |=m

|R0|Y,≤l| ≤
(
fP1(m, l)

)d1
·
(
fQ1(m, l)

)d−d1
≤ (2m)d1 ld−d1 . J

7 Crucially, the bound is actually independent of r.
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It remains to show that some subset of R0 is a large k-shallow δ-packing. For the given
parameters k, δ and for all 1 ≤ i ≤ d1 and d1 + 1 ≤ j ≤ d, define:

P(k,δ)
i =

{i}× {2αβ + 1, . . . , 2α(β + 1)
} ∣∣∣∣∣∣

α, β ∈ N
log2 δ ≤ α ≤ log2(kd )
0 ≤ β < 2−α(nd )

 ⊆ Pi,
Q(k,δ)
j =

{{
j
}
×
{

1, 2, . . . , γδ
} ∣∣ 1 ≤ γ ≤ k

dδ

}
⊆ Qj .

The intuition here is that we pick only the nodes in our binary trees Ti which have height
at least log2 δ (and thus a symmetric difference of at least δ elements).

(i, 1) (i, 2) (i, nd)

height ≥ log2 δ

P(k,δ)
i

Similarly in Qj we only pick every δ-th set. All these sets have size at most k
d . This is

straightforward for Q(k,δ)
i ; on the other hand, a set in P(k,δ)

i defined by the pair (α, β) has
size 2α ≤ k

d .
All those sets also are integer intervals of the form

{
λδ + 1, . . . , µδ

}
for some λ, µ ∈ N

and thus pairwise δ-separated (for the P (k,δ)
i , notice that 2α is a multiple of δ). Hence

R =
{
p1 ∪ · · · ∪ pd1 ∪ qd1+1 ∪ · · · ∪ qd

∣∣∣ (p, q) ∈
∏

1≤i≤d1

P(k,δ)
i ×

∏
d1+1≤i≤d

Q(k,δ)
i

}
⊆ R0

is a δ-packing which is k-shallow. We bound its size:

|R| =
d1∏
i=1

∣∣∣P(k,δ)
i

∣∣∣ · d∏
i=d1+1

∣∣∣Q(k,δ)
i

∣∣∣ =

n
d

blog2( kd )c∑
α=dlog2 δe

2−α
d1 (

k

dδ

)d−d1

≥ d−d
(

21−dlog2 δe − 2blog2( kd )c
)d1

nd1

(
k

δ

)d−d1

≥ d−d
(

1
δ
− 2d

k

)d1

nd1

(
k

δ

)d−d1

≥ d−d(2δ)−d1nd1

(
k

δ

)d−d1

= Ω
(
nd1kd−d1

δd

)
. J

The gist of Haussler’s probabilistic lower bound construction for Theorem D was to consider
R0 with d1 = 0 and randomly build a packing [15].

4 Proof of Theorem 5, Corollary 7

We first give a brief overview of a technical tool that is used in the proof of Theorem 5.

4.1 Preliminaries
We will use the following theorem of Matoušek and Patáková [23]. For γ, ω ⊂ Rd, we say
that γ crosses ω if ω ∩ γ /∈ {∅, ω}.
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I Theorem G (Multilevel polynomial partitioning). For every integer d > 1, there exist
constants K = K(d) and C = C(d) such that the following holds. Given an n-point set
P ⊂ Rd and a parameter r > 1, there exist a set Σ∗ ⊆ P with |Σ∗| ≤ rK and d families of
sets, Σk, 1 ≤ k ≤ d, that form a partition of P

P = Σ∗ ∪
d⋃
k=1

⋃
S∈Σk

S

where the following properties hold for each 1 ≤ k ≤ d:
1. Σk = {Σk1, . . . ,Σktk}, tk ≤ CrC , and for 1 ≤ l ≤ tk, |Σkl| ≤ n

rk
with rk ∈ [r, rK ].

2. there exist a family of semialgebraic regions Sk = {Sk1, . . . , Sktk} such that for each
1 ≤ l ≤ tk,
(a) Skl is connected, defined by O(rC) polynomial inequalities of degree O(rC),
(b) Σkl ⊆ Skl, and
(c) every set γ ∈ Γd,∆,s crosses at most Cd,∆,s · r1−1/d

k of the sets in Sk, where the
constant Cd,∆,s depends only on d, ∆ and s.

Theorem G extends the Guth–Katz [14] polynomial partitioning technique, a partition of Rd
by an algebraic variety which is balanced with respect to the set P . Here partitioning is
applied not once but recursively on varieties of decreasing dimension. This will allow us to
dispense with assumptions of genericity.

4.2 Proofs
We now give proofs of Theorem 5 and Corollary 7.

Proof of Theorem 5. Note that if ε = O( 1
n ), then the trivial collection of singleton sets{

{p} : p ∈ X
}
will be an ε-Mnet for (X,R), of size n = O( 1

ε ). Therefore we may restrict
ourselves to the case when

ε >
4 (16 · d · Cd,∆,s)Kd

n
. (1)

For i = 0, . . . , dlog 1
ε e, let Ri ⊆ R be an inclusion-maximal

(
2i−1ε n

)
-packing, with the

additional constraint that each set in Ri has cardinality in [2iεn, 2i+1εn). From Theorem E,
we have

|Ri| ≤
C ′d0

2iε · ϕ
(

8d0

2iε , 48d0

)
, where C ′ is an absolute constant. (2)

Say Ri =
{
Ri1, . . . , Rimi

}
, where mi = |Ri|. For a parameter r to be fixed later,

consider the multilevel polynomial partitioning of Rij as in Theorem G. We will write

Rij = Σ∗ij ∪
d⋃
k=1

tijk⋃
l=1

Σijkl,

where
1. We will denote by Sijkl the corresponding connected semialgebraic region in Rd containing

the set Σijkl; see Theorem G.
2. rij1, rij2, . . . , rijd ∈ [r, rK ] where the constant K depends on d as defined in Theorem G.
3. For all k = 1, 2, . . . , d, tijk ≤ CrC , where the constant C depends on d and it is defined

in Theorem G. This implies
∑d
i=1 tijk ≤ CdrC .
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4. |Σijkl| ≤ |Rij |rijk
for all k and l.

5. |Σ∗ij | ≤ rK .
6. For all γ ∈ Γd,∆,s and every k = 1, 2, . . . , d, the number of Sijkl crossed by γ is at most

Cd,∆,sr
1−1/d
ijk , where the constant Cd,∆,s is defined in Theorem G.

The ε-MnetM will be the union of a family (Mi) of set collections. For each Rij , we do
the following: for all k ∈ {1, . . . , d} and l ∈ {1, . . . , tijk}, if |Σijkl| ≥ 2iεn

8CdrC then add Σijkl

toMi. Finally letM =
⋃dlog 1

ε e
i=0 Mi.

It remains to show thatM is the required ε-Mnet for an appropriate value of r. Namely,
(i) the required bound on |M| holds,
(ii) each set inM has size Ω(εn), and
(iii) for any R ∈ R with |R| ≥ εn, there exists a set Y ∈M where Y ⊆ R.

Let r = (16dCd,∆,s)d, ensuring that rK < 1
4εn.

To see i), observe that |Mi| = O
(
drC · |Ri|

)
= O

(
d0
2iεϕ

(
8d0
2iε , 48d0

))
. Therefore, as ϕ(·, ·)

is a non-decreasing function in the first variable, we have

|M| =
dlog(d0/ε)e∑

i=0
|Mi| = O

dlog(d0/ε)e∑
i=0

d0

2iε · ϕ
(

8d0

2iε , 48d0

) = O

(
d0

ε
· ϕ
(

8d0

ε
, 48d0

))
.

To see ii), observe that each set added toM satisfies |Σijkl| ≥ 2iεn
8CdrC = Ω

(
εn
)
.

To see iii), let R ∈ R be any set such that |R| ≥ εn, and let i be the index such that
|R| ∈ [2iεn, 2i+1εn). There are two cases.

Case 1: R ∈ Ri

Say R = Rij , then R contains all the sets Σijkl (for all values of k and l), and it remains to
argue that at least one was added toM. So assume that it is not the case. Observe that

|Rij | =
∑
k,l

|Σijkl|+ |Σ∗ij | ≤ CdrC ·
2iεn

8CdrC + rK = 2i−3εn+ rK < 2iεn.

The last inequality follows from the fact that rK < 2i−2εn. We have reached a contradiction,
as by construction we had |Rij | ≥ 2iεn.

Case 2: R /∈ Ri

By the maximality of Ri, there exists an index j such that Rij ∈ Ri and |R∩Rij | ≥ 2i−1εn.
Note that the above bound on |R∩Rij | follows from the fact that |R∩Rij | ≥ |Rij |−|R∆Rij |.
If R contains a set Σijkl included inMi, then we are done. So assume it does not. Then

consider the contribution to the points in the set R ∩Rij =

⋃
k,l

(R ∩ Σijkl)

 ∪ (R ∩ Σ∗ij
)
.

(a) All indices k, l such that |Σijkl| < 2iεn
8CdrC . The total number of points contained in R

from all such sets is at most CdrC · 2iεn
8CdrC = 2iεn

8 .
(b) All k such that the semialgebraic set γ defining R crosses the connected component

Sijkl corresponding to Σijkl. By Theorem G, there are at most Cd,∆,s r1−1/d
ijk such sets,

and by the property of multilevel partitioning, each such region contains at most 2i+1εn
rijk

points of X.
(c) The points of R contained in Σ∗ij .
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Using the fact that r is sufficiently large in terms of d, ∆ and s, we have

|R∩Rij | ≤ 2i−3εn+
d∑
k=1

2i+1εn

rijk
·Cd,∆,sr

1− 1
d

ijk +rK < 2i−3εn+ dCd,∆,s2i+1εn

r1/d +rK < 2i−1εn.

The last inequality follows from the fact that rijk ≥ r, r = (16dCd,∆,s)d and rK < 2i−2εn.
We get a contradiction to the fact that |R ∩Rij | ≥ 2i−1εn, which completes the proof. J

Proof of Corollary 7.
1. The shallow-cell complexity of the dual set system induced by objects with union com-

plexity κ(·) is ϕ(m) = O(κ(m)
m ), which together with Theorem 5 implies the stated bound.

The remaining bounds follow from the facts that κ(m) for triangles with approximately
same size [22] is O(m), for α-fat triangles [12] is O(m log∗m) (where the constant of
proportionality depends only on α), and for locally γ-fat objects [2] is O(m2log∗m), where
the constant of proportionality in the linear term depends only on γ.

2. Ene et al. [10] proved the following: given a set X of n points in R2 and a parameter r > 0,
there exists a collection Or of O(r3n logn) regions, such that for every α-fat triangle ∆,
|∆∩X| ≤ r, there exists a subsetM⊆ Or, |M| ≤ 9, such that

(⋃
M∈MM

)
∩X = ∆∩X.

This result together with Theorem 5 will give us the bound.
3. Ene et al. [10] proved the following: given a set X of n points in the plane and a

parameter r > 0, there exists a collection Or of rectangles, with |Or| = O(r2n logn),
such that for any rectangle R with |R ∩ X| ≤ r there exists R1, R2 ∈ Ok such that
(R1 ∪R2) ∩X = R ∩X. This result together with Theorem 5 will give us the bound.

4. Shallow-cell complexity ϕ(m, r) is O(m2) for lines, O(m2r) for strips, and O(m2r2) for
cones [26]. J

5 Proof of Theorem 8

The proof will use the following technical lemma, combining the ideas in [20, 24, 13].

I Lemma 13. Let (X,R) be a set system with |X| = n. Let d, l, δ be three integers such
that VC-dim(R) ≤ d, and R is an l-wise δ-packing. If A ⊆ X is a uniformly selected random
sample of size 8l(l−1)dn

δ − 1, then |R| ≤ 2l · E [|R|A|].

Proof. Pick a random sample R of size s = 8l(l−1)dn
δ from X. Let GR = (R|R, ER) be the

unit distance graph on R|R, with an edge between any two sets whose symmetric difference
is a singleton. Define the weight of a set S′ ∈ R|R to be the number of sets of R whose
projection in R|R is S′, i.e. w(S′) = |{r ∈ R | r ∩ R = S′}|. Define the weight of an edge
{S′i, S′j} ∈ ER as w(S′i, S′j) = min{w(S′i), w(S′j)}. Let W =

∑
e∈ER w(e).

We will use the following result from [20, Chapter 5, Proof 5.14].

I Claim 14. W ≤ 2d · |R|.

Pick R by first picking a set A of s− 1 elements and then selecting the remaining element
a uniformly from X \A. Let W1 be the weight of the edges in GR for which the element a is
the symmetric difference. By symmetry, we have E[W ] = s · E[W1].

To compute E[W1], first fix a set Y of s− 1 vertices. Conditioned on this fixed choice of
A, one shows (the interested reader will find a proof in the extended version of this paper):

I Claim 15. E
[
W1|A = Y

]
≥ δ/n

2l(l−1)

(
|R| − l |R|Y |

)
.
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Using the fact that E[W ] = s · E[W1], one can compute an upper bound on E[W ]:

E[W ] = s · E[W1] = s ·
∑
Y⊆X
|Y |=s−1

E[W1|A = Y ] · Pr[A = Y ]

≥ s ·
∑
Y⊆X
|Y |=s−1

δ

2l(l − 1)n

(
|R| − l · |R|Y |

)
· Pr[A = Y ] (by Claim 15)

≥ 4d
(
|R|

∑
Y⊆X
|Y |=s−1

Pr[A = Y ]− l
∑
Y⊆X
|Y |=s−1

|R|Y | · Pr[A = Y ]
)

= 4d(|R| − lE[|R|A|]).

Combining Claim 14 and the above lower bound on E[W ], we get 2d|R| ≥ E[W ] ≥
4d|R| − 4dl · E[|R|A|]. This implies |R| ≤ 2l · E[|R|A|]. J

Proof of Theorem 8. Let A ⊆ X be a random sample of size s := 8l(l−1)dn
δ − 1. Let

R1 =
{
S ∈ R s.t. |S ∩A| ≥ 4l · ksn

}
. Each element x ∈ X belongs to A with probability s

n ,
and thus the expected number of elements in A from a fixed set of t elements is ts

n . This
implies that E[|S ∩A|] ≤ ks

n as |S| ≤ k for all S ∈ R. Markov’s inequality then bounds the
probability of a set of R belonging to R1: Pr[S ∈ R1] = Pr

[
|S ∩A| > 4l · ksn

]
≤ 1

4l . Thus

E[|R|A|] ≤ E[|R1|]+E[|(R\R1)|A|] ≤
∑
S∈R

Pr[S ∈ R1]+s ·ϕ
(
s, 4l·ks

n

)
≤ |R|4l +s·ϕ

(
s, 4l·ks

n

)
,

where we used the fact that |(R\R1)|A| = O
(
|A|·ϕ(|A|, t)

)
, where t = maxS∈R\R1 |S| ≤ 4l ksn .

Now the bound follows from Lemma 13. J

6 Conclusion

Lower bound for the Shallow Packing Lemma

The lower bound construction given in the proof of Theorem 4, showing the optimality of the
Shallow Packing Lemma (Theorem E), is constructive. Also observe that it can be realized
in a number of simple ways, for example with points on a square grid and sets induced by
some specific (2d)-gons, i.e., a semialgebraic set system with constant description complexity.

Applications of Mnets

Corollary 6 shows that the existence of small ε-nets follows immediately from the more general
structure of Mnets. Macbeath regions for convex bodies have recently found algorithmic
applications such as volume estimation of convex bodies [4, 3]. We believe that Mnets will
also find important applications and connections to various aspects of set systems with
bounded VC dimension.

Computing Mnets

In the real RAM model of computation one can compute exactly with arbitrary real numbers
and each arithmetic operation takes unit time. Matoušek and Patáková [23] gave the following
algorithmic counterpart of Theorem G.
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I Theorem H (Algorithmic Multilevel Polynomial Partitioning). The sets Σ∗, Σij, Sij from
Theorem G can be computed in time O(nrC) 8.

Using this result and the construction in the proof of Theorem 5, we can get a randomized
algorithm with time complexity poly

(
n, 1

ε

)
that computes Mnets for semialgebraic set systems

matching the upper bound on the size of Mnets from Theorem 5.
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