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Abstract
Given a 1.5-dimensional terrain T , also known as an x-monotone polygonal chain, the Terrain
Guarding problem seeks a set of points of minimum size on T that guards all of the points on
T . Here, we say that a point p guards a point q if no point of the line segment pq is strictly below
T . The Terrain Guarding problem has been extensively studied for over 20 years. In 2005
it was already established that this problem admits a constant-factor approximation algorithm
[SODA 2005]. However, only in 2010 King and Krohn [SODA 2010] finally showed that Terrain
Guarding is NP-hard. In spite of the remarkable developments in approximation algorithms for
Terrain Guarding, next to nothing is known about its parameterized complexity. In particular,
the most intriguing open questions in this direction ask whether it admits a subexponential-time
algorithm and whether it is fixed-parameter tractable. In this paper, we answer the first question
affirmatively by developing an nO(

√
k)-time algorithm for both Discrete Terrain Guarding

and Continuous Terrain Guarding. We also make non-trivial progress with respect to the
second question: we show that Discrete Orthogonal Terrain Guarding, a well-studied
special case of Terrain Guarding, is fixed-parameter tractable.
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1 Introduction

The study of terrains, also known as x-monotone polygonal chains, has attracted widespread
and growing interest over the last few decades in the field of Discrete Computational Geometry.
A terrain is a graph where each vertex vi, 1 ≤ i ≤ n, is associated with a point (xi, yi) on
the two-dimensional Euclidean plane such that x1 < x2 < . . . < xn, and the edge-set is
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11:2 Exact Algorithms for Terrain Guarding

E = {{vi, vi+1} : 1 ≤ i ≤ n}. In the Terrain Guarding problem the task is to decide
whether one can place guards on at most k points of a given terrain such that each point on
the terrain is seen by at least one guard. Here, we say that a point p sees a point q if no
point of the line segment pq is strictly below T . The Terrain Guarding problem arises in
a wide-variety of applications relevant to the design of various communication technologies
such as cellular telephony and line-of-sight transmission networks for radio broadcasting. It
also arises in applications of coverage of highways, streets and walls with street lights or
security cameras [3, 14].

The visibility graphs of terrains exhibit unique properties which render the complexity
of the Terrain Guarding problem difficult to elucidate. Some of these properties have
already been observed in 1995 by Abello et al. [1], and some of them remain unknown despite
recent advances to identify them [13]. Indeed, the Terrain Guarding problem has been
extensively studied since 1995, when an NP-hardness proof was claimed but never completed
by Chen et al. [5]. Almost 10 years later King and Krohn [23] finally showed that this
problem is NP-hard.

Particular attention has been given to the Terrain Guarding problem from the
viewpoint of approximation algorithms. In 2005, Ben-Moshe et al. [3] obtained the first
constant-factor approximation algorithm for Terrain Guarding. Afterward, the approxim-
ation factor was gradually improved in [6, 22, 12], until a PTAS was proposed by Gibson
et al. [16]. Recently, Friedrichs et al. [14] showed that even if the terrain is continuous, the
Terrain Guarding problem still admits a PTAS.

The Terrain Guarding problem has also gained interest due to its deceptive resemblance
to the Art Gallery problem, where instead of a terrain, it is necessary to guard a polygon.
The Art Gallery problem was introduced by Klee in 1976, and it is arguably one of the
most well-known problems in Discrete Computational Geometry. For more information on
the Art Gallery problem, we refer to the books dedicated to its study [26, 28, 18]. Note
that the Art Gallery problem does not admit a subexponential-time algorithm. Indeed,
the known NP-hardness reduction for the Art Gallery problem, even when restricted
to orthogonal polygons, reduces a 3-SAT instance on n variables and m clauses to an
instance of Art Gallery with O(n+m) vertices [27, 26]. This reduction combined with
the Exponential Time Hypothesis (ETH) [19, 7] implies the following result.

I Corollary 1 (Folklore). Unless ETH fails, there is no algorithm for Art Gallery, even
when restricted to orthogonal polygons, that achieves running time of 2o(n). That is, the Art
Gallery problem does not admit a subexponential-time algorithm.

In the parameterized setting, where n is the number of vertices in the polygon and k is
the number of guards, clearly one can design an algorithm for the Art Gallery problem
running in time nO(k) by enumerating all subsets of vertices of size at most k. Interestingly,
by the very recent result of Bonnet and Miltzow [4] this trivial brute-force algorithm is
essentially optimal. More precisely, they proved that an algorithm solving Art Gallery
in time f(k) · no(k/ log k) for any function f would imply that the ETH fails. The reduction
given in [4] also implies that Art Gallery is W[1]-hard parameterized by k. Thus it is
highly unlikely that Art Gallery is fixed-parameter tractable (FPT).

Orthogonal Terrain Guarding is a problem of independent interest that is a special
case of Terrain Guarding. In this problem, the terrain is orthogonal: for each vertex
vi, 2 ≤ i ≤ n− 1, either both xi−1 = xi and yi = yi+1 or both yi−1 = yi and xi = xi+1. In
other words, each edge is either a horizontal line segment or a vertical line segment, and
each vertex is incident to at most one horizontal edge and at most one vertical edge. The
Orthogonal Terrain Guarding problem has already been studied from the perspective
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of algorithms theory [20, 24, 25, 11]. Katz and Roisman [20] gave a relatively simple 2-
approximation algorithm for the the problem of guarding all vertices of an orthogonal terrain
by vertices. Recently, Lyu and Üngör improved upon this result by developing a linear-time
2-approximation algorithm for Orthogonal Terrain Guarding. The papers [25] and
[11] studied restrictions under which Orthogonal Terrain Guarding can be solved in
polynomial time.

While by now we have quite satisfactory understanding of the approximability of Terrain
Guarding, the parameterized hardness of this problem is unknown. Currently, the most
fundamental open questions regarding the complexity of the Terrain Guarding problem
are the following:

Does Terrain Guarding admit a subexponential-time algorithm?
Is Terrain Guarding FPT with respect to k?

Indeed, King and Krohn [23] state that “the biggest remaining question regarding the
complexity of Terrain Guarding is whether or not it is FPT”. Moreover, interest in the
design of efficient, exact exponential-time algorithms for this problem has been expressed
at workshops such as the Lorentz Workshop on Fixed-Parameter Computational Geometry
[15]. To the best of our knowledge, the only work which is somewhat related to the second
question is the one by Khodakarami et al. [21], who introduced the parameter “the depth of
the onion peeling of a terrain” and showed that Terrain Guarding is FPT with respect to
this parameter.

In this paper, we address both of these questions. First, we completely resolve the first
question by designing a subexponential-time algorithm for Terrain Guarding in both
discrete and continuous domains. For this purpose, we develop an nO(

√
k)-time algorithm for

Terrain Guarding in discrete domains. Friedrichs et al. [14] proved that given an instance
of Terrain Guarding in a continuous domain, one can construct (in polynomial time)
an equivalent instance of Terrain Guarding in a discrete domain. More precisely, given
an instance (T = (V,E), k) of Terrain Guarding in a continuous domain, Friedrichs et
al. [14] designed a discretization procedure that outputs an instance (T ′ = (V ′, E′), k) of
Terrain Guarding in a discrete domain such that (T = (V,E), k) is a yes-instance if and
only if (T ′ = (V ′, E′), k) is a yes-instance. Unfortunately, this reduction blows up the number
of vertices of the terrain to O(n3), and therefore the existence of a subexponential-time
algorithm for Terrain Guarding in discrete domains does not imply that there exists
such an algorithm for Terrain Guarding in continuous domains. However, observe that
the reduction does not change the value of the parameter k. Thus, since we solve Terrain
Guarding in discrete domains in time nO(

√
k) rather than nO(

√
n), we are able to deduce

that Terrain Guarding in continuous domains is solvable in time nO(
√

k). Observe that,
in both discrete and continuous domains, it can be assumed that k ≤ n: to guard all of
the points that lie on a terrain, it is sufficient to place guards only on the vertices of the
terrain. Hence, when we solve Terrain Guarding in continuous domains, we assume that
k ≤ n where n is the number of vertices of the input continuous terrain and not of the
discrete terrain outputted by the reduction. The next theorem summarizes our algorithmic
contribution.

I Theorem 2. Terrain Guarding in both discrete and continuous domains is solvable in
time nO(

√
k). Thus, it is also solvable in time nO(

√
n).

Observe that our result, Theorem 2, demonstrates an interesting dichotomy in the
complexities of Terrain Guarding and the Art Gallery problem: Corollary 1 implies
that the Art Gallery problem does not admit an algorithm with running time 2o(n), while

SoCG 2017



11:4 Exact Algorithms for Terrain Guarding

Terrain Guarding in both discrete and continuous domains is solvable in time 2O(
√

n log n).
When we measure the running time in terms of both n and k, the Art Gallery problem
does not admit an algorithm with running time f(k) · no(k/ log k) for any function f [4], while
Terrain Guarding in both discrete and continuous domains is solvable in time nO(

√
k).

Our solution is based on the definition of a planar graph that has a small domination
number and which captures both the manner in which a hypothetical solution guards the
terrain and some information on the layout of the terrain itself. Having this planar graph, we
are able to “guess” separators whose exploitation, which involves additional guesses guided
by the structure of the graph, essentially results in a divide-and-conquer algorithm. The
design of the divide-and-conquer algorithm is also nontrivial since given our guesses, it is not
possible to divide the problem into two simpler subproblems in the obvious way – that is, we
cannot divide the terrain into two disjoint subterrains that can be handled separately. We
overcome this difficulty by dividing not the terrain itself, but a set of points of interest on
the terrain.

We also shed light on the second question by showing that Orthogonal Terrain
Guarding of vertices of the orthogonal terrain with vertices is FPT with respect to the
parameter k. More precisely, we obtain the following result.

I Theorem 3. Orthogonal Terrain Guarding of vertices of the terrain with vertices is
solvable in time kO(k) · nO(1).

Our algorithm is based on new insights into the structure of orthogonal terrains, par-
ticularly into the relations between their left and right reflex and convex vertices. We
integrate these insights in the design of an algorithm that is based on the proof that one can
ignore “exposed vertices”, which are vertices seen by too many vertices of a specific type,
greedy localization, and a non-trivial branching strategy that we call “double-branching”. We
conclude the introduction by posing the following open problems: Are Terrain Guarding
and Orthogonal Terrain Guarding in continuous domains FPT?

2 Preliminaries

For a positive integer k, we use [k] as a shorthand for {1, 2, . . . , k}.

Graphs. We use standard notation and terminology from the book of Diestel [9] for graph-
related terms which are not explicitly defined here. We only consider simple undirected graphs.
Given a graph H, V (H) and E(H) denote its vertex-set and edge-set, respectively. Given a
subset U ⊆ V (H), the subgraph of H induced by U is denoted by H[U ]. A dominating set of
H is a subset S ⊆ V (H) such that each vertex in V (H) either belongs to S or has a neighbor
in S. The domination number of H, denoted by γ(H), is the minimum size of a dominating
set of H. A clique cover of H is a partition (V1, V2, . . . , Vt) of V (H) for some t ∈ N such that
for any i ∈ [t], H[Vi] is a clique. The size of the clique cover is t. The clique cover number of
H, denoted by κ(H), is the minimum size of a clique cover of H. An independent set of H is
a subset U ⊆ V (H) such that there do not exist two vertices in U that are neighbors in H.
The independence number of H, denoted by α(H), is the maximum size of an independent
set of H. A chordal graph is a graph that has no induced cycle on more than three vertices.
In the context of chordal graphs, we will need to rely on the following well-known results.

I Theorem 4 ([17]). Let H be a chordal graph. Then
A clique cover of H of minimum size can be found in linear time.
An independent set of H of maximum size can be found in linear time.
κ(H) = α(H).
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Figure 1 Reflex and convex vertices.

Terrains. A 1.5-dimensional terrain T = (V,E), or terrain for short, is a graph on vertex-
set V = {v1, v2, . . . , vn} where each vertex vi is associated with a point (xi, yi) on the
two-dimensional Euclidean plane such that x1 < x2 < . . . < xn, and the edge-set is
E = {{vi, vi+1} : i ∈ [n− 1]}. We say that a point p sees a point q if every point of the line
segment pq is either on or above T . Note that if a point p sees a point q, then the point q
sees the point p as well. More generally, we say that a set of points P sees a set of points Q
if each point in Q is seen by at least one point in P .

An orthogonal terrain, also known as a rectilinear terrain, is a terrain T = (V,E) where
for each vertex vi, 2 ≤ i ≤ n − 1, either both xi−1 = xi and yi = yi+1 or both yi−1 = yi

and xi = xi+1. In other words, an orthogonal terrain is a terrain where each edge is either
a horizontal line segment or vertical line segment, and each vertex is incident to at most
one horizontal edge and at most one vertical edge. A vertex vi, 2 ≤ i ≤ n − 1 belongs to
one of the four following categories: if xi = xi+1 and yi > yi+1, it is a right reflex vertex;
if xi = xi+1 and yi < yi+1, it is a right convex vertex; if xi = xi−1 and yi > yi−1, it is a
left reflex vertex; if xi = xi−1 and yi < yi−1, it is a left convex vertex. Moreover, if x1 = x2
and y1 > y2, v1 is a right reflex vertex; if x1 = x2 and y1 < y2, it is a right convex vertex;
otherwise it is a left convex vertex. Symmetrically, if xn = xn−1 and yn > yn−1, vn is a left
reflex vertex; if xn = xn−1 and yn < yn−1, it is a left convex vertex; otherwise it is a right
convex vertex. We also say that a vertex is a reflex vertex if it is either a left reflex vertex
or a right reflex vertex, and otherwise it is a convex vertex. Furthermore, we say that left
reflex/convex vertices are opposite to right reflex/convex vertices. An illustrative example of
these notions is given in Fig. 1

Let T = (V,E) be a terrain and let U be a subset of V . We use vis(U) to denote the
set containing every vertex in V that is seen by at least one vertex in U . In case U = {u},
we abuse notation and write vis(u) to refer to vis(U). We use cut(U) to denote the set
of (maximal) subterrains of T that result from the removal of the vertices in U . That is,
cut(U) is the set of each subterrain T ′ = (V ′, E′) for which there exist i < j such that
V ′ = {vi, vi+1, . . . , vj} ⊆ V \ U , either i = 1 or vi−1 ∈ U , and either j = n or vj+1 ∈ U . An
illustrative example of this notation is given in Fig. 2. Given a subset X ⊆ V and subterrain
T ′ = (V ′, E′), we define X[T ′] = X ∩ V ′. Moreover, given a set of terrains T , we let X[T ]
be set of vertices that is the union of the sets in {X[T ′] : T ′ ∈ T }.

Terrain Guarding Problems. The decision version of the (Discrete) Terrain Guarding
problem is defined as follows. Its input consists of a terrain T = (V,E) on n vertices and a
positive integer k ≤ n, and the objective is to determine whether there is a subset S ⊆ V of
size at most k that sees V . We say that such a subset S is a solution. In the special case
where the input terrain is an orthogonal terrain, the problem is known as the Orthogonal
Terrain Guarding problem.

SoCG 2017
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Figure 2 The result of the operation cut(U) where U is the set of black vertices.

The Terrain Guarding problem is also defined in the context of continuous domains,
in which case it is called the Continuous Terrain Guarding problem. The input for
the Continuous Terrain Guarding problem is the same as the input for the Discrete
Terrain Guarding problem. We say that a point lies on the terrain T if it is either a vertex
in V or a point on an edge between two adjacent vertices. The objective is to determine
whether there is a subset of points of size at most k that lie on T and which see every point
that lies on T .

To develop our algorithms for Discrete Terrain Guarding, it will be more convenient
to solve a problem generalizing Discrete Terrain Guarding, that we call Annotated
Terrain Guarding. Roughly speaking, Annotated Terrain Guarding is the variant of
Discrete Terrain Guarding where one cannot place a “guard” on any vertex, but only
on vertices from a given set G, and where it is not necessary to “cover” all of the vertices
in V , but only those belonging to a given set C. Formally, the input consists of a terrain
T = (V,E) on n vertices, a positive integer k ≤ n, and subsets G,C ⊆ V . The objective is to
determine whether there is a subset S ⊆ G of size at most k that sees C. We say that such
a subset S is a solution. Clearly, Terrain Guarding is the special case of Annotated
Terrain Guarding where G = C = V . We will refer to the special case where the input
terrain is an orthogonal terrain as the Annotated Orthogonal Terrain Guarding
problem.

Treewidth. A tree decomposition of a graph H is a pair (D,β), where D is a rooted tree
and β : V (D)→ 2V (G) is a mapping that satisfies the following conditions.

For each vertex v ∈ V (H), the set {d ∈ V (D) : v ∈ β(d)} induces a nonempty and
connected subtree of D.
For each edge {v, u} ∈ E(H), there exists d ∈ V (D) such that {v, u} ⊆ β(d).

A vertex d in V (D) is called a node, and the set β(d) is called the bag at d. We let
descendants(d) denote the set of descendants of d in D. The width of (D,β) is the size
of the largest bag minus one (i.e., maxd∈V (D) |β(d)| − 1). The treewidth of H, denoted by
tw(H), is the minimum width among all possible tree decompositions of H.
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Standard arguments on trees, see e.g. [7, Lemma 7.20], imply the correctness of the
following observation.

I Observation 5. Let (D,β) be a tree decomposition of a graph H where D is a binary
tree, and let S be a subset of V (H). Then, there exists a node d ∈ V (D) such that |S|/3 ≤
|
⋃

d′∈descendants(d) β(d′) ∩ S| and |
⋃

d′∈descendants(d)\{d} β(d′) ∩ S| ≤ 2|S|/3.

Parameterized Complexity. In Parameterized Complexity each problem instance is ac-
companied by a parameter k. A central notion in this field is the one of fixed-parameter
tractability (FPT). This means, for a given instance (I, k), solvability in time f(k)|I|O(1)

where f is some function of k. For more information on Parameterized Complexity we refer
the reader to monographs such as [10, 7].

Bit Vectors. A t-length bit vector is a vector v = (v1, v2, . . . , vt) such that for any i ∈ [t],
vi ∈ {0, 1}. Given two t-length bit vectors v and u, the Hamming distance between them,
denoted by H(v, u), is the number of indices i ∈ [t] such that vi 6= ui.

3 Subexponential Algorithm

In this section we prove that Annotated Terrain Guarding can be solved in time nO(
√

n).
In fact, we obtain a somewhat stronger result:

I Theorem 6. Annotated Terrain Guarding is solvable in time nO(
√

k).

Since Discrete Terrain Guarding is a special case of Annotated Terrain Guard-
ing, we derive the following result.

I Corollary 7. Discrete Terrain Guarding is solvable in time nO(
√

k).

We also derive the following result.

I Corollary 8. Continuous Terrain Guarding is solvable in time nO(
√

k).

Throughout this section, we let (T = (V,E), n, k,G,C) denote the input instance of
Annotated Terrain Guarding. First, in Section 3.1, we carefully define a planar graph
PS that captures relations between a hypothetical solution and the set C. Then, in Section 3.2,
we rely on properties of PS to show that there exists a partition of G∪C into two sets which
rarely “alternate” along the terrain and which are both relatively “small”. In Section 3.3 we
show how the existence of this partition allows us to design an algorithm for Annotated
Terrain Guarding. The algorithm is based on the method of divide-and-conquer, although
the subproblems we obtain are not associated with subterrains smaller than the original one.

3.1 The Planar Graph PS

In this section we assume that the input instance is a yes-instance. Let S be some hypothetical
solution, that is, a subset of G of size at most k that sees C. We define three sets of edges:

The set E1 contains an edge {vi, vj} between any two vertices vi, vj ∈ S ∪ C such that
there is no vt ∈ S ∪ C with i < t < j.
The set E2 contains an edge {vi, vj} between any two vertices vi ∈ S and vj ∈ C ∩vis(vi)
such that i < j and there is no vt ∈ S with t < i and vj ∈ vis(vt).
The set E3 contains an edge {vi, vj} between any two vertices vi ∈ S and vj ∈ C ∩vis(vi)
such that j < i and there is no vt ∈ S with i < t and vj ∈ vis(vt).

SoCG 2017
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Figure 3 A sketch of the embedding of the planar graph PS where S = {a, f, i, n} (black vertices)
and C = {b, c, d, e, g, h, j, k, l, m} (grey vertices). Here, E1 = {{a, b}, {b, c}, {c, d}, {d, e}, {e, f},

{f, g}, {g, h}, {h, i}, {i, j}, {j, k}, {k, l}, {l, m}, {m, n}}, E2 = {{a, b}, {a, c}, {a, e}, {a, l}, {f, g},

{f, k}, {i, j}} and E3 = {{c, n}, {d, f}, {e, f}, {h, i}, {l, n}, {m, n}}.

We define PS as the graph on the vertex set V (PS) = S ∪ C and the edge set E(PS) =
E1 ∪E2 ∪E3. Denote the vertices in V (PS) by u1, u2, . . . , u|V (PS)| with respect to the order
(from left to right) in which they appear on the terrain T . An illustrative example is given
in Fig. 3. We show that PS isa planar graph using techniques similar to that in [16]. To
show that PS is a planar graph, we will need the following result, known as the Order Claim,
which was proved in [3].

I Lemma 9 ([3]). Let vi, vj , vt, vr be four vertices in V such that i < t < j < r. If vi sees
vj and vt sees vr, then vi sees vr.

Our proof also relies on the following result.

I Lemma 10. There is no pair of edges {ui, uj}, {ut, ur} ∈ E2 such that i < t < j < r.
Symmetrically, there is no pair of edges {ui, uj}, {ut, ur} ∈ E3 such that i < t < j < r.

I Lemma 11. The graph PS is a planar graph.

Let us remind that we use tw(H) to denote the treewidth and γ(H) the dominating
number of a graph H. The proof of the following result is given in [2], (see also [8]).

I Lemma 12 ([2]). There exists a constant c such that for any planar graph H, tw(H) ≤
c
√
γ(H).

From now on, we let c denote the constant mentioned in this lemma. We are now ready
to bound the treewidth of PS .

I Lemma 13. tw(PS) ≤ c
√
k.
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3.2 The Existence of Exploitable Partitions
In this section we continue to assume that the input instance is a yes-instance, and again
we let S be some hypothetical solution. Given a subset U ⊆ G ∪ C and a mapping
f : cut(U) → {0, 1}, denote cut(f, 0) = {T ′ ∈ cut(U) : f(T ′) = 0} and cut(f, 1) =
{T ′ ∈ cut(U) : f(T ′) = 1}. Thus cut(f, 0) and cut(f, 1) form a partition of the set of
subterrains cut(U). Moreover, given a subset X ⊆ V , denote X[f, 0] = X[cut(f, 0)] and
X[f, 1] = X[cut(f, 1)]. Roughly speaking, we will use such a carefully chosen set U and
a function f to achieve the following goal. The set U will partition the terrain T into
subterrains, but these subterrains do not necessarily correspond to independent subproblems.
Yet, the function f : cut(U)→ {0, 1} will partition cut(U) into two sets of subterrains such
that each of them will be independent (in a certain exploitable sense) and relatively small.1

To make the above mentioned divide-and-conquer approach work, we need the following
definition. Each of its properties will be exploited in the following section.

I Definition 14. Let U ⊆ G∪C, and let f be a mapping f : cut(U)→ {0, 1}. We say that
the pair (U, f) is good if the following conditions are satisfied.
1. |U | ≤ 2c

√
k.

2. S ∩ U sees U .
3. |S[f, 0]|, |S[f, 1]| ≤ 2

3 |S|.
4. S ∩ (U ∪G[f, 0]) sees C[f, 0]; S ∩ (U ∪G[f, 1]) sees C[f, 1].

Roughly speaking, the motivation behind the introduction of each property is the following.
The first property implies that the set U is small, and therefore it will be possible to “guess”
it. The second property implies that guards places on set S see all of the vertices of U . The
third property implies that the two subproblems are small in a narrow yet exploitable sense:
each subproblem will include the entire terrain and therefore its size will be roughly the same
as the size of the original problem, yet the number of guards one should place to solve it
will be much smaller than the number of guards one should place to solve to the original
problem. We briefly note that each subproblem will be associated with the entire terrain,
including vertices on which we cannot place guards and which are already covered/may not
be covered, because such vertices play a role in blocking the lines of sights between other
vertices on which we can place guards and vertices that should be covered. The last property
implies that the subproblems are independent in the sense that we do not need to cover a
vertex of one subproblem using a guard that we place when we solve the other subproblem.

The rest of this section focuses on the proof of the existence of a good pair.

I Lemma 15. There exists a good pair (U, f).

3.3 Divide-and-Conquer
In this section we rely on Lemma 15 to design an algorithm, based on the method of
divide-and-conquer, that solves Annotated Terrain Guarding in time nO(

√
k).

We start by presenting an algorithmic interpretation of Lemma 15. To this end, we need
the following definition.

1 In our algorithm, the terrain itself will not change – the partition is only meant to control the annotations
associated with it).
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I Definition 16. A tuple (U,U ′, f, k0, k1) is relevant if the following conditions are satisfied.
1. U ⊆ G ∪ C satisfies |U | ≤ 2c

√
k.

2. U ′ ⊆ U ∩G sees U .
3. f : cut(U)→ {0, 1}.
4. k0, k1 ∈ {0} ∪ [b2k/3c]; k0 + k1 + |U ′| = k.

I Lemma 17. One can compute in time nO(
√

k) a collection Q of relevant tuples whose size
is bounded by nO(

√
k) such that if the input instance is a yes-instance, then there exists a

solution S of size k and at least one tuple in Q having the following properties.
1. (U, f) is a good pair (with respect to S).
2. U ′ = U ∩ S.
3. |S[f, 0]| ≤ k0; |S[f, 1]| ≤ k1.

Let Q be a collection of tuples given by Lemma 17. With each tuple (U,U ′, f, k0, k1) ∈ Q,
we associate a pair of instances of Annotated Terrain Guarding, (I0(U,U ′, f, k0),
I1(U,U ′, f, k0)), as follows: I0(U,U ′, f, k0) = (T, k0, G0, C0) where G0 = G[f, 0] and C0 =
C[f, 0] \ vis(U ′); I1(U,U ′, f, k1) = (T, k1, G1, C1) where G1 = G[f, 1] and C1 = C[f, 1] \
vis(U ′). We set I(Q) = {(I0(U,U ′, f, k0), I1(U,U ′, f, k1)) : (U,U ′, f, k0, k1) ∈ Q}.

I Lemma 18. The input instance is a yes-instance if and only if there exists a pair (I0, I1)
in I(Q) such that both I0 and I1 are yes-instances.

We are now ready to prove Theorem 6.

Proof of Theorem 6. We present a recursive algorithm that solves Annotated Terrain
Guarding in the desired time. At each stage, if k ≤ 10c, it uses brute-force to solve the
instance in polynomial time. Otherwise, it computes the set I(Q) where Q is given by
Lemma 17. For each pair (I0, I1) ∈ I(Q), it calls itself recursively twice: once with the
input I0 and once with the input I1. If the answers to both inputs I0 and I1 are positive, it
returns a positive answer. At the end, if no pair resulted in two positive answers, it returns
a negative answer. By Lemma 18, the algorithm returns the correct answer.

By Lemma 17, we have that |I(Q)| = |Q| = nO(
√

k). Consider some pair (I0(U,U ′,
f, k0), I1(U,U ′, f, k1)) in I(Q). By the fourth property in Definition 16, k0, k1 ≤ 2k/3. Let
t(k, n) denote the running time of our algorithm. Then, there exists a constant d such that
t(k, n) ≤ nd

√
k · t(2k/3). Let p be the largest number smaller than 10c such that there exists

q for which
√

(2/3)qk = p. Thus, t(n, k) = nd(
√

k+
√

(2/3)k+
√

(2/3)2k+···+p) = nO(
√

k). J

4 Parameterized Algorithm for Orthogonal Terrain Guarding

In this section we prove that Discrete Orthogonal Terrain Guarding is FPT:

I Theorem 19. Discrete Orthogonal Terrain Guarding is solvable in time kO(k) ·
nO(1).

Throughout this section, we let R`, Rr, C` and Cr denote the sets of left reflex vertices,
right reflex vertices, left convex vertices and right convex vertices, respectively. We further let
R = R`∪Rr and C = C`∪Cr denote the sets of reflex vertices and convex vertices, respectively.
Katz and Roisman [20] showed that an instance (T = (V,E), n, k) of Discrete Orthogonal
Terrain Guarding is a yes-instance if and only if the instance (T = (V,E), n, k,R,C) of
Annotated Orthogonal Terrain Guarding is a yes-instance. In other words, it is
sufficient to place guards only on reflex vertices and to guard only convex vertices. Therefore,
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we say that an instance (T = (V,E), n, k,G,C) of Annotated Orthogonal Terrain
Guarding is relevant if R = G and C = C, and in the rest of this section, we focus on the
proof of the following result.

I Lemma 20. Relevant instances of Annotated Orthogonal Terrain Guarding are
solvable in time kO(k) · nO(1).

First, in Section 4.1, we show that vertices seen by too many vertices of the opposite type
can actually be ignored as they will be guarded even if we do not explicitly demand it. In
Section 4.2, we describe solutions via clique covers in chordal graphs. This description will
allow us to find a set of size at most k′, for any k′ ≤ k, that guards a subset of left convex
vertices of interest via left reflex vertices, or provide a witness for the non-existence of such a
set. Next, in Section 4.3, we examine the Hamming distance between vectors that describe
the way in which convex vertices can be guarded, and show that this distance cannot be too
large. Finally, in Section 4.4, we integrate the results obtained in the three previous sections
into the design of our double-branching parameterized algorithm for relevant instances of
Annotated Orthogonal Terrain Guarding.

4.1 Ignoring Exposed Vertices
In this section, we handle seemingly problematic vertices, which comply with the following
definition.

I Definition 21. A vertex v ∈ V (T ) is exposed if it is a convex vertex seen by more than
k + 2 opposite reflex vertices.

We let E denote the set of exposed vertices, E` = C` ∩E and Er = Cr ∩E. The efficiency
of the second phase of our double-branching procedure, presented in Section 4.4, relies on the
assumption that C does not contain exposed vertices. However, C = C, and the set C may
very well contain exposed vertices. We circumvent this difficulty by showing that vertices in
E can actually be ignored. To prove this claim, we need the following notation. Given a
vertex v ∈ E`, we let uv

1, u
v
2, . . . , u

v
k+3 denote the k + 3 leftmost right reflex vertices that see

v, sorted from left-to-right by the order in which they lie on T (see Fig. 4(A)). Symmetrically,
given a vertex v ∈ Er, we let uv

1, u
v
2, . . . , u

v
k+3 denote the k + 3 rightmost left reflex vertices

that see v, sorted from right-to-left by the order in which they lie on T (see Fig. 4(B)). By
the definition of an orthogonal terrain, we have the following observation.

I Observation 22. For each vertex v ∈ E, the x-coordinate of uv
1 is the same as the one

of v and the y-coordinate of uv
1 is larger than the one of v. For any 2 ≤ i ≤ k + 3, the

y-coordinate of uv
i is the same as the one of v, and if v ∈ E` (v ∈ Er), the x-coordinate of

uv
i is larger (resp. smaller) than the one of v.

In the two following lemmata, we continue to examine vertices in E.

I Lemma 23. For each vertex v ∈ E` and index 2 ≤ i ≤ k + 2, there exists a vertex in
C` \ E` that lies between uv

i and uv
i+1. Symmetrically, for each vertex v ∈ Er and index

2 ≤ i ≤ k + 2, there exists a vertex in Cr \ Er that lies between uv
i and uv

i+1.

I Lemma 24. Let S be a solution to (T, n, k,R,C \E). For each vertex v ∈ E`, there exists
an index 2 ≤ i ≤ k + 2 and a vertex that lies strictly between uv

i and uv
i+1 which is seen by a

vertex in S to the right of uv
i+1. Symmetrically, for each vertex v ∈ Er, there exists an index

2 ≤ i ≤ k + 2 and a vertex that lies strictly between uv
i and uv

i+1 which is seen by a vertex in
S to the left of uv

i+1.
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Figure 4 Exposed vertices are black, and reflex vertices of the opposite type that see them are
white. The parameter k is 2.

We are now ready to show that vertices in E can be ignored.

I Lemma 25. (T, n, k,R,C) is a yes-instance if and only if (T, n, k,R,C\E) is a yes-instance.

4.2 Describing Solutions via Clique Covers in Chordal Graphs
Katz and Roisman [20] defined two graphs that aim to capture relations between convex
vertices. The first graph, GL, is defined as follows: V (GL) = CL and E(GL) = {{v, u} : there
exists a vertex in RL that sees both v and u}. The second one, GR, is defined symmetrically:
V (GR) = CR and E(GR) = {{v, u} : there exists a vertex in RR that sees both v and u}.
For these graphs, Katz and Roisman [20] proved the following useful result.

I Lemma 26 ([20]). The graph GL satisfies the following properties.
The graph GL is a chordal graph.
For any subset U ⊆ V (GL), GL[U ] is a clique if and only if there exists a left reflex vertex
that sees all of the vertices in U .

The symmetric claim holds for the graph GR.

By relying on Lemma 26, Katz and Roisman [20] showed that one can decide in polynomial
time whether there exists a subset S ⊆ RL of size k′ that sees CL. To design our double-
branching procedure (in Section 4.4), we will need the following stronger claim.

I Lemma 27. Let U ⊆ CL and k′ ∈ N. Then, one can decide in polynomial time whether
there exists a subset S ⊆ RL of size k′ that sees U . In case such a subset does not exist, one
can find in polynomial time a subset U ′ ⊆ U of size k′ + 1 such that there does not exist a
subset S ⊆ RL of size k′ that sees U ′.

Symmetrically, we obtain the following claim.

I Lemma 28. Let U ⊆ CR and k′ ∈ N. Then, one can decide in polynomial time whether
there exists a subset S ⊆ RR of size k′ that sees U . In case such a subset does not exist, one
can find in polynomial time a subset U ′ ⊆ U of size k′ + 1 such that there does not exist a
subset S ⊆ RR of size k′ that sees U ′.

4.3 Hamming Distance
In this section, we associate vectors with subsets of R, and then examine the Hamming
distance between these vectors and a special vector. We start with the definition of the
association. Here, we set m = |C \ E|, and let u1, u2, . . . , um denote the vertices in C \ E
sorted from left-to-right by the order in which they lie on T .
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I Definition 29. Let S ⊆ R be a set that sees C. Then, the vector associated with S is the
m-length bit vector (b1, b2, . . . , bm) such that bi = 0 if and only if ui is seen by a vertex in S
that is a left reflex vertex.

In other words, the vector associated with a subset S ⊆ R that sees C indicates, for each
vertex that we would like to guard, whether it is guarded by at least one left reflex vertex or
only by right reflex vertices. Observe that by the definition of an orthogonal terrain, a reflex
vertex can see at most two vertices of the opposite type:

I Observation 30. Any reflex vertex v sees at most two convex vertices of the opposite type:
one has the same x-coordinate as v and the other has the same y-coordinate as v.

Next, we examine the Hamming distance between a vector associated with a solution and
a special vector.

I Lemma 31. Let S∗ be a solution to (T, n, k,R,C \E), and let b∗ be the m-length bit vector
associated with S∗. Let b be the m-length bit vector (b1, b2, . . . , bm) such that bi = 0 if and
only if ui is a left convex vertex. Then, H(b∗, b) ≤ 2k.

4.4 Double-Branching
We are now ready to present ALG(T = (V,E), n,R, C, δ, k`, kr), our algorithm for relevant
instances of Annotated Orthogonal Terrain Guarding. Initially, it is called with the
arguments C = C \ E, δ = 2k, and every choice of k`, kr ∈ [k] such that k` + kr = k. As the
execution of the algorithm progresses, vertices are removed from C, and the values of k`, kr

and δ decrease. Note that there are only k choices of k` and kr, and there exists a choice of
k` and kr such that if there exists a solution S, it holds that |S ∩R`| = k` and |S ∩Rr| = kr.
Accordingly, and in light of Lemma 31, we say that the input instance (in the context of a
pair (k`, kr)) is identifiable if there exists a solution S such that |S ∩ R`| = k`, |S ∩ Rr| = kr

and the Hamming distance between b and the vector associated with S is at most δ. Thus,
to prove Lemma 20, it is sufficient to prove the following result.

I Lemma 32. ALG(T = (V,E), n,R, C, δ, k`, kr) runs in time kO(k) ·nO(1), and returns YES
if and only if the input instance is identifiable.

The pseudocode of our algorithm is given in Algorithm 1. First, we argue that if the
input instance is identifiable, then the algorithm returns YES. In this argument, we follow
the pseudocode line-by-line, and also highlight the phases of our double-branching. In case
δ < 0, we return NO, since the Hamming distance between any two vectors is nonnegative.
Next, suppose that δ ≥ 0. By Lemma 27, we may proceed by deciding in polynomial time
whether C ∩ CL cannot be seen by any set of at most k` vertices from RL. If the answer is
positive, by Lemma 27, we can compute in polynomial time a set U ⊆ C ∩ CL of size k` + 1
that cannot be seen by any set of at most k` vertices from RL. In case the input instance is
identifiable, there exists a vertex v ∈ U that should be seen by a right reflex vertex. We try
every option to identify the vertex v; this is the first phase of our double-branching. Then,
we try every option to identify a vertex u ∈ RR ∩ vis(v) that should both see v and belong
to a solution; this is the second phase of our double-branching. Since v is not exposed, there
are at most k + 2 such options to consider. For each such option, we place a guard on u.
Therefore, we decrement kr by 1, remove the vertices in vis(u) from C, and since at least
one bit is flipped in b, we also decrement δ by 1. For an identifiable input instance, we will
have made correct choices in at least one of the paths in the branch-tree. Now, if the answer
is negative, by performing the symmetric test with respect to the set C ∩ CR, we can safely
conclude that an identifiable instance is detected correctly.
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Algorithm 1 ALG(T = (V,E), n,R, C, δ, k`, kr).
1: if δ < 0 then
2: Return NO.
3: else if C ∩ CL cannot be seen by any set of at most k` vertices from RL then
4: Compute a set U ⊆ C ∩ CL of size k` + 1 that cannot be seen by any set of at most k`

vertices from RL.
5: for all v ∈ U do
6: for all u ∈ RR∩vis(v) do Return ALG(T = (V,E), n,R, C \vis(u), δ−1, k`, kr−1).
7: end for
8: else if C ∩ CR cannot be seen by any set of at most kr vertices from RR then
9: Compute a set U ⊆ C ∩ CR of size kr + 1 that cannot be seen by any set of at most kr

vertices from RR.
10: for all v ∈ U do
11: for all u ∈ RL∩vis(v) do Return ALG(T = (V,E), n,R, C \vis(u), δ−1, k`−1, kr).
12: end for
13: else
14: Return YES.
15: end if

5 Conclusion

We studied the well-known Terrain Guarding problem, addressing two fundamental
questions relating to its complexity:

Does Terrain Guarding admit a subexponential-time algorithm?
Is Terrain Guarding FPT with respect to k?

We have resolved the first question: both Discrete Terrain Guarding and Continu-
ous Terrain Guarding admit subexponential-time algorithms. For discrete orthogonal
domains we have also resolved the second question: Discrete Orthogonal Terrain
Guarding is FPT.

We would like to conclude our paper by suggesting several directions for further research.
First and foremost, it remains to establish the fixed-parameter (in)tractability of Terrain
Guarding in general (discrete and continuous) domains, as well as to determine whether Dis-
crete Orthogonal Terrain Guarding is NP-hard or not. In case Terrain Guarding
is FPT, one can further ask whether it admits a polynomial kernel. An affirmative answer to
this question, combined with our subexponential-time algorithm, would imply that Terrain
Guarding admits a subexponential-time parameterized algorithm. Finally, it would also be
interesting to investigate whether the running time of our subexponential-time algorithm
can be substantially improved, or whether it is essentially tight under reasonable complexity
assumptions. We remark that the proof given by King and Krohn [23] to show that Terrain
Guarding is NP-hard only implies that unless ETH fails, Terrain Guarding cannot be
solved in time 2o(n

1
4 ).
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