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Abstract
A tower is a sequence of simplicial complexes connected by simplicial maps. We show how to
compute a filtration, a sequence of nested simplicial complexes, with the same persistent barcode
as the tower. Our approach is based on the coning strategy by Dey et al. (SoCG 2014). We
show that a variant of this approach yields a filtration that is asymptotically only marginally
larger than the tower and can be efficiently computed by a streaming algorithm, both in theory
and in practice. Furthermore, we show that our approach can be combined with a streaming
algorithm to compute the barcode of the tower via matrix reduction. The space complexity of the
algorithm does not depend on the length of the tower, but the maximal size of any subcomplex
within the tower. Experimental evaluations show that our approach can efficiently handle towers
with billions of complexes.
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1 Introduction

Motivation and problem statement. Persistent homology [16, 6, 15] is a paradigm to
analyze how topological properties of general data sets evolve across multiple scales. Thanks
to the success of the theory in finding applications (see, e.g., [25, 18] for recent enumerations),
there is a growing demand for efficient computations of the involved topological invariants.

In this paper, we consider a sequence of simplicial complexes (Ki)i=0,...,m and simplicial
maps φi : Ki → Ki+1 connecting them, calling this data a (simplicial) tower of length m.
Applying the homology functor with an arbitrary field, we obtain a persistence module, a
sequence of vector spaces connected by linear maps. Such a module decomposes into a
barcode, a collection of intervals, each representing a homological feature in the tower that
spans over the specified range of scales.

Our computational problem is to compute the barcode of a given tower efficiently. The
most prominent case of a tower is when all maps fi are inclusion maps. In this case one
obtains a filtration, a sequence of nested simplicial complexes. A considerable amount of
work went into the study of fast algorithms for the filtration case, which culminated in fast
software libraries for this task. The more general case of towers recently received growing
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interest in the context of sparsification technique for the Vietoris-Rips and Čech complexes;
see the related work section below for a detailed discussion.

Results. As our first result, we show that any tower can be efficiently converted into a small
filtration with the same barcode. Dey et al. [13] give an explicit construction, called “coning”,
for the generalized case of zigzag towers. Using a simple variant of their strategy, we obtain
a filtration whose size is only marginally larger than the length of the tower. Furthermore,
we experimentally show that the size is even smaller on realistic instances.

To describe our improved coning strategy, we discuss the case that a simplicial map in
the tower contracts two vertices u and v. The coning strategy by Dey et al. proposes to join
u with the closed star of v, making all incident simplices of v incident to u without changing
the homotopy type. The vertex u is then taken as the representative of the contracted pair.
We refer to the number of simplices that the join operation adds to the complex as the cost
of the contraction. Quite obviously, the method is symmetric in u and v, and we have two
choices to pick the representative, leading to potentially quite different costs. We employ the
self-evident strategy to pick the representative that leads to smaller costs. This idea leads to
an asymptotically improved size bound on the filtration. We prove this by an abstraction to
path decompositions on weighted forest. Altogether, the worst-case size of the filtration is
O(∆ · n · log(n0)), where ∆ is the maximal dimension of any complex in the tower, and n/n0
is the number of simplices/vertices added to the tower.

We also provide a conversion algorithm whose time complexity is roughly proportional to
the total number of simplices in the resulting filtration. One immediate benefit is a generic
solution to compute barcodes of towers: just convert the tower to a filtration and apply one
of the efficient implementations for barcodes of filtrations. Indeed, we experimentally show
that on not-too-large towers, our approach is competitive with, and sometimes outperforms
Simpers, an alternative approach that computes the barcode of towers with annotations, a
variant of the persistent cohomology algorithm.

Our second contribution is a space-efficient version of the just mentioned algorithmic
pipeline that is applicable to very large towers. To motivate the result, let the width of a
tower denote the maximal size of any simplicial complex among the Ki. Consider a tower
with a very large length (say, larger than the number of bytes in main memory) whose width
remains relatively small. In this case, our conversion algorithm yields a filtration that is
very large as well. Most implementations for barcode computation read the entire filtration
on initialization and algorithms based on matrix reduction are required to keep previously
reduced columns. This leads to a high memory consumption for the barcode computation.

We show that with minor modifications, the standard persistent algorithm can be turned
into a streaming algorithm with smaller space complexity in the case of towers. The idea
is that upon contractions, simplices become inactive and cannot get additional cofaces.
Our approach makes use of this observation by modifying the boundary matrix such that
columns associated to inactive simplices can be removed. Combined with our conversion
algorithm, we can compute the barcode of a tower of width ω keeping only up to O(ω)
columns of the boundary matrix in memory. This yields a space complexity of O(ω2) and a
time complexity of O((∆ · n · log(n0)) · ω2) in the worst case. We implemented a practically
improved variant that makes use of additional heuristics to speed up the barcode computation
in practice and resembles the chunk algorithm presented in [1]. We tested our implementation
on various challenging data sets. The source code of the implementation is available at
https://bitbucket.org/schreiberh/sophia/.

https://bitbucket.org/schreiberh/sophia/
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Related work. Already the first works on persistent homology pointed out the existence of
efficient algorithm to compute the barcode invariant (or equivalently, the persistent diagram)
for filtrations [16, 27]. As a variant of Gaussian elimination, the worst-case complexity is cubic.
Remarkable theoretical follow-up results are a persistence algorithm in matrix multiplication
time [23], an output-sensitive algorithm to compute only high-persistent features with linear
space complexity [9], and a conditional lower bound on the complexity relating the problem
to rank computations of sparse matrices [17].

On realistic instances, the standard algorithm has shown a quasi-linear behavior in
practice despite its pessimistic worst-case complexity. Nevertheless, many improvements of
the standard algorithm have been presented in the last years which improve the runtime
by several orders of magnitude. One line of research exploits the special structure of the
boundary matrix to speed up the reduction process [8]. This idea has led to efficient parallel
algorithms for persistence in shared [1] and distributed memory [2]. Moreover, of same
importance as the reduction strategy is an appropriate choice of data structures in the
reduction process as demonstrated by the Phat library [3]. A parallel development was
the development of dual algorithms using persistent cohomology, based on the observation
that the resulting barcode is identical [12]. The annotation algorithm [13, 4] is an optimized
variant of this idea realized in the Gudhi library [21]. It is commonly considered as an
advantage of annotations that only a cohomology basis must be kept during the reduction
process, making it more space efficient than reduction-based approaches. We refer to the
comparative study [24] for further approaches and software for persistence on filtrations.

Moreover, generalizations of the persistence paradigm are an active field of study. Zigzag
persistence is a variant of persistence where the maps in the filtration are allowed to map
in either direction (that is, either φi : Ki ↪→ Ki+1 or φi : Ki ←↩ Ki+1) – see [25] for a
comprehensive introduction. The initial algorithms to compute this barcode [7] has been
improved recently [22]. Our case of towers of complexes and simplicial maps can be modeled
as a zigzag filtration and therefore sits in-between the standard and the zigzag filtration case.

Dey et al. [13] described the first efficient algorithm to compute the barcode of towers.
Instead of the aforementioned coning approach explained in their paper, their implementation
handles contractions with an empirically smaller number of insertions, based on the link
condition. Recently, the authors have released the SimPers library that implements their
annotation algorithm from the paper.

The case of towers has received recent attention in the context of approximate Vietoris-
Rips and Čech filtrations. The motivation for approximation is that the (exact) topological
analysis of a set of n points in d-dimensions requires a filtration of size O(nd+1) which is
prohibitive for most interesting input sizes. The first such type of result by Sheehy [26]
resulted in a approximate filtration; however, it has been observed that the concept of towers
somewhat simplifies the approximation schemes conceptually. See [13, 5, 20, 10] for examples.
Very recently, the SimBa library [14] brings these theoretical approximation techniques for
Vietoris-Rips complexes into practice.

Outline. We introduce the necessary basic concepts in Section 2. We describe our conversion
algorithm from general towers to barcodes in Section 3. The streaming algorithm for
persistence is discussed in Section 4. Several proofs and constructions are only sketched due
to space constraints; see the arxiv version [19] for full arguments.

SoCG 2017
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2 Background

Simplicial Complexes. Given a finite vertex set V , a simplex is a non-empty subset of
V ; more precisely, a k-simplex is a subset consisting of k + 1 vertices, and k is called the
dimension of the simplex. For a k-simplex σ, a simplex τ is a face of σ if τ ⊆ σ. If τ is of
dimension `, we call it a `-face. If ` < k, we call τ a proper face of σ, and if ` = k− 1, we call
it a facet. For a simplex σ and a vertex v /∈ σ, we define the join v ∗σ as the simplex {v}∪σ.

An (abstract) simplicial complex K over V is a set of simplices that is closed under
taking faces. We call V the vertex set of K and write V(K) := V . The dimension of K is
the maximal dimension of its simplices. For σ, τ ∈ K, we call σ a coface of τ in K if τ is
a face of σ. In this case, σ is a cofacet of τ if their dimensions differ by exactly one. A
simplicial complex L is a subcomplex of K if L ⊆ K. Given W ⊆ V, the induced subcomplex
by W is the set of all simplices σ in K with σ ⊆ W. For a subcomplex L ⊆ K and a vertex
v ∈ V(K) \ V(L), we define the join v ∗ L := {v ∗ σ | σ ∈ L}. For a vertex v ∈ K, the star of
v in K, denoted by St(v,K), is the set of all cofaces of v in K. In general, the star is not a
subcomplex, but we can make it a subcomplex by adding all faces of star simplices, which is
denoted by the closed star St(v,K). Equivalently, the closed star is the smallest subcomplex
of K containing the star of v. The link of v, Lk(v,K), is defined as St(v,K) \ St(v,K). It
can be checked that the link is a subcomplex of K. When the complex is clear from context,
we will sometimes omit the K in the notation of stars and links.

Simplicial maps. A map K φ→ L between simplicial complexes is called simplicial if with
σ = {v0, . . . , vk} ∈ K, φ(σ) is equal to {φ(v0), . . . , φ(vk)} and φ(σ) is a simplex in L. By
definition, a simplicial map maps vertices to vertices and is completely determined by its
action on the vertices. Moreover, the composition of simplicial maps is again simplicial.

A simple example of a simplicial map is the inclusion map L
φ
↪→ K where L is a subcomplex

of K. If K = L ∪ {σ} with σ /∈ L, we call φ an elementary inclusion. The simplest example
of a non-inclusion simplicial map is K φ→ L such that there exist two vertices u, v ∈ K with
V(L) = V(K) \ {v}, φ(u) = φ(v) = u, and φ is the identity on all remaining vertices of K.
We call φ an elementary contraction and write (u, v) u as a shortcut. These notions were
introduced by Dey, Fan and Wang in [13] and they also showed that any simplicial map
K φ→ L can be written as the composition of elementary contractions1 and inclusions.

A tower of length m is a collection of simplicial complexes K0, . . . ,Km and simplicial
maps φi : Ki → Ki+1 for i = 0, . . . ,m− 1. From this initial data, we obtain simplicial maps
φi,j : Ki → Kj for i ≤ j by composition, where φi,i is simply the identity map on Ki. A tower
is called a filtration if all φi are inclusion maps. The dimension of a tower is the maximal
dimension among the Ki, and the width of a tower is the maximal number of simplices in a
Ki. For filtrations, dimension and width are determined by the dimension and size of the
last complex Km, but this is not necessarily true for general towers.

Homology and Collapses. For a fixed base field F, let Hp(K) := Hp(K,F) the p-dimensional
homology group of K. It is well-known that Hp(K) is a F-vector space. Moreover, a simplicial
map K φ→ L induces a linear map Hp(K) φ∗

→ Hp(L). In categorical terms, the equivalent

1 They talk about “collapses” instead of “contractions”, but this notion clashes with the standard notion
of simplicial collapses of free faces that we use later. Therefore, we decided to use “contraction”, even
though the edge between the contracted vertices might not be present in the complex.
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statement is that homology is a functor from the category of simplicial complexes and
simplicial maps to the category of vector spaces and linear maps.

We will make use of the following homology-preserving operation: a free face in K, is a
simplex with exactly one proper coface in K. An elementary collapse in K is the operation
of removing a free face and its unique coface from K, yielding a subcomplex of K. We say
that K collapses to L, if there is a sequence of elementary collapses transforming K into L.
It is then well-known that the inclusion map L

φ
↪→ K induces an isomorphism φ∗ between

Hp(L) and Hp(K).

Barcodes. A persistence module is a sequence vector spaces V0, . . . ,Vm and linear maps
fi,j : Vi → Vj for i < j such that fi,i = idVi

and fi,k = fj,k ◦ fi,j for i ≤ k ≤ j. Persistence
modules admit a decomposition into indecomposable summands in the following sense.
Writing Ib,d with b ≤ d for the persistence module

0 0−−−−→ . . .
0−−−−→ 0︸ ︷︷ ︸

b− 1 times

0−−−−→ F id−−−−→ . . .
id−−−−→ F︸ ︷︷ ︸

d− b+ 1 times

0−−−−→ 0 0−−−−→ . . .
0−−−−→ 0︸ ︷︷ ︸

m− d times

,

we can write every persistence module as the direct sum Ib1,d1 ⊕ . . .⊕ Ibs,ds
, where the direct

sum of persistence modules is defined component-wise for vector spaces and linear maps in
the obvious way. Moreover, this decomposition is uniquely defined up to isomorphisms and
re-ordering, thus the pairs (b1, d1), . . . , (bs, ds) are an invariant of the persistence module,
called its barcode. When the persistence module was generated by a tower, we also talk about
the barcode of the tower.

Matrix reduction. In this paragraph, we assume that (Ki)i=0,...,m is a filtration such that
K0 = ∅ and Ki+1 has exactly one more simplex than Ki. We label the simplices of Km
accordingly as σ1, . . . , σm, with Ki\Ki−1 = {σi}. The filtration can be encoded as a boundary
matrix ∂ of dimension m×m, where the (ij)-entry is 1 if σi is a facet of σj , and 0 otherwise.
In other words, the j-th column of ∂ encodes the facets of σj , and the i-th row of ∂ encodes
the cofacets of σi. Moreover, ∂ is upper-triangular because every Ki is a simplicial complex.
We will sometimes identify rows and columns in ∂ with the corresponding simplex in Km.
Adding the k-simplex σi to Ki−1 either introduces one new homology class (of dimension k),
or turns a non-trivial homology class (of dimension k − 1) trivial. We call σi and the i-th
column of ∂ positive or negative, respectively (with respect to the given filtration).

For the computation of the barcode, we assume for simplicity homology over the base field
Z2, and interpret the coefficients of ∂ accordingly. In an arbitrary matrix A, a left-to-right
column addition is an operation of the form Ak ← Ak +A` with ` < k, where Ak and A` are
columns of the matrix. The pivot of a non-zero column is the largest non-zero index of the
corresponding column. A non-zero entry is called a pivot if its row is the pivot of the column.
A matrix R is called a reduction of A if R is obtained by a sequence of left-to-right column
additions from A and no two columns in R have the same pivot. It is well-known that,
although ∂ does not have a unique reduction, the pivots of all its reductions are the same.
Moreover, the pivots (b1, d1), . . . , (bs, ds) of R are precisely the barcode of the filtration. A
direct consequence is that a simplex σi is positive if and only if the i-th column in R is zero.

The standard persistence algorithm processes the columns from left to right. In the
j-th iteration, as long as the j-th column is not empty and has a pivot that appears in a
previous column, it performs a left-to-right column addition. In this work, we use a simple
improvement of this algorithm that is called compression: before reducing the j-th column,
it first scans through the non-zero entries of the column. If a row index i corresponds to

SoCG 2017
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u

v
w

u

v

contraction of u and v to w

K L

L∗

Figure 1 Construction example of L∗, were u and v in K are contracted to w in L.

a negative simplex (i.e., if the i-th column is not zero at this point in the algorithm), the
row index can be deleted without changing the pivots of the matrix. After this initial scan,
the column is reduced in the same way as in the standard algorithm. See [1, §. 3] for a
discussion (we remark that this optimization was also used in [27]).

3 From towers to filtrations

We phrase now our first result which says that any tower can be converted into a filtration
of only marginally larger size with a space-efficient streaming algorithm:

I Theorem 1 (Conversion Theorem). Let T : K0
φ0 // K1

φ1 // . . .
φm−1

// Km be a tower
where, w.l.o.g., K0 = ∅ and each φi is either an elementary inclusion or an elementary
contraction. Let ∆ denote the dimension and ω the width of the tower, and let n ≤ m

denote the total number of elementary inclusions, and n0 the number of vertex inclusions.
Then, there exists a filtration F : K̂0

� � // K̂1
� � // . . . �

�
// K̂m , where the inclusions

are not necessarily elementary, such that T and F have the same barcode and the width of
the filtration |K̂m| is at most O(∆ · n logn0). Moreover, F can be computed from T with a
streaming algorithm in O(∆ · |K̂m| ·Cω) time and space complexity O(∆ ·ω), where Cω is the
cost of an operation in a dictionary with ω elements.

The remainder of the section is organized as follows. We define F in Section 3.1 and
prove that it yields the same barcode as T in Section 3.2. In Section 3.3, we prove the upper
bound on the width of the filtration. In Section 3.4, we explain the algorithm to compute F
and analyze its time and space complexity.

3.1 Active and small coning
Coning. We briefly revisit the coning strategy introduced by Dey, Fan and Wang [13]. Let
φ : K→ L be an elementary contraction (u, v) u and define

L∗ = K ∪
(
u ∗ St(v,K)

)
(see Figure 1).

Dey et al. show that L ⊆ L∗ and that the map induced by inclusion is an isomorphism
between H(L) and H(L∗). By applying this result at any elementary contraction, this implies
that every zigzag tower can be transformed into a zigzag filtration with identical barcode.

Given a tower T , we can also obtain an non-zigzag filtration using coning, if we continue
the operation on L∗ instead of going back to L. More precisely, we set K̃0 := K0 and if φi is
an inclusion of simplex σ, we set K̃i+1 := K̃i ∪ {σ}. If φi is a contraction (u, v) u, we set
K̃i+1 = K̃i ∪

(
u ∗ St(v, K̃i)

)
. Indeed, it can be proved that (K̃i)i=0,...,m has the same barcode

as T . However, the filtration will not be small, and we will define a smaller variant now.



M. Kerber and H. Schreiber 57:7

Our new construction yields a sequence of complexes K̂0, . . . , K̂m with K̂i ⊆ K̂i+1. During
the construction, we maintain a flag for each vertex in K̂i, which marks the vertex as active
or inactive. A simplex is called active if all its vertices are active, and inactive otherwise.
For a vertex u and a complex K̂i, let ActSt(u, K̂i) denote its active closed star, which is the
set of active simplices in K̂i in the closed star of u.

The construction is inductive, starting with K̂0 := ∅. If Ki
φi→ Ki+1 is an elementary

inclusion with Ki+1 = Ki ∪ {σ}, set K̂i+1 := K̂i ∪ {σ}. If σ is a vertex, we mark it as active.
It remains the case that Ki

φi→ Ki+1 is an elementary contraction of the vertices u and v. If
|ActSt(u, K̂i)| ≤ |ActSt(v, K̂i)|, we set

K̂i+1 = K̂i ∪
(
v ∗ActSt(u, K̂i)

)
and mark u as inactive. Otherwise, we do the same by inverting the role of u and v in the
construction. This ends the description of the construction. We write F for the filtration
(K̂i)i=0,...,m.

There are two major changes compared to the construction of (K̃i)i=0,...,m. First, to
counteract the potentially large growth of the involved cones, we restrict coning to active
simplices. We will show below that the subcomplex of K̂i induced by the active vertices is
isomorphic to Ki. As a consequence, we add the same number of simplices by passing from
K̂i to K̂i+1 as in the approach by Dey et al. does when passing from K to L∗.

A second difference is that our strategy exploits that an elementary contraction of two
vertices u and v leaves us with a choice: we can either take u or v as the representative of
the contracted vertex. In terms of simplicial maps, these two choices correspond to setting
φi(u) = φi(v) = u or φi(u) = φi(v) = v, if φi is the elementary contraction of u and v.
It is obvious that both choices yield identical complexes Ki+1 up to renaming of vertices.
However, the choices make a difference in terms of the size of K̂i+1, because the active closed
star of u to v in K̂i might differ in size. Our construction simply choose the representative
which causes the smaller K̂i+1.

3.2 Topological equivalence

We assume w.l.o.g. that the vertices in Ki are named such that, whenever our construction
encounters an elementary contraction φi of u and v and turns v inactive, we have φi(u) =
φi(v) = u. With this convention, Ki is the subcomplex of K̂i induced by the active vertices.

I Lemma 2. A simplex σ is in Ki if and only if σ is an active simplex in K̂i.

The proof works by induction on i, analyzing carefully the effect of a contraction on
K̂i and Ki. Moreover, when an elementary contraction of u and v turns v inactive, every
simplex σ = {v, v1, . . . , vd} that becomes inactive in K̂i has a corresponding simplex τ =
{u, v, v1, . . . , vd} that also becomes inactive. The pairs (σ, τ) can be arranged in collapsible
pairs, which implies with an inductive argument:

I Lemma 3. For every 0 ≤ i ≤ m, the complex K̂i collapses to Ki.

I Proposition 4. T and F have the same barcode.

Proof Sketch. Let φ̂i : K̂i → K̂i+1 and inci : Ki → K̂i denote inclusion maps. Lemma 3
implies that the induced homology map inc∗i : H(Ki) → H(K̂i) is an isomorphism for all

SoCG 2017
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0 ≤ i ≤ m. The following diagram connects the persistence modules induced by T and F :

H(K0) φ∗
0−−−−→ H(K1) φ∗

1−−−−→ ...
φ∗

m−1−−−−→ H(Km)yinc∗
0

yinc∗
1

yinc∗
m

H(K̂0) φ̂∗
0−−−−→ H(K̂1) φ̂∗

1−−−−→ ...
φ̂∗

m−1−−−−→ H(K̂m)

(1)

Our result follows from the Persistence Equivalence Theorem [15, p.159] which asserts
that (Kj)j=0,...,m and (K̂j)j=0,...,m have the same barcode if (1) commutes, that is, if
inc∗i+1 ◦ φ∗i = φ̂∗i ◦ inc∗i , for all 0 ≤ i < m. The latter statements follows from the fact that
inci+1 ◦ φi and φ̂i ◦ inci are contiguous maps. J

3.3 Size analysis

The contracting forest. We associate a rooted labeled forest Wj to a prefix ∅ = K0
φ0→

. . .
φj−1→ Kj of T inductively as follows: For j = 0, W0 is the empty forest. Let Wj−1 be the

forest of K0 → . . .→ Kj−1. If φj−1 is an elementary inclusion of a d-simplex, we have two
cases: if d > 0, set Wj :=Wj−1. If a vertex v is included, Wj :=Wj−1 ∪{x}, with x a single
node tree labeled with v. If φj−1 is an elementary contraction contracting two vertices u
and v in Kj−1, there are two trees in Wj−1, whose roots are labeled u and v. In Wj , these
two trees are merged by making their roots children of a new root, which is labeled with the
vertex that u and v are mapped to. So Wj is full, that is, every node has 0 or 2 children.

Let W :=Wm denote the forest of the tower T . Let Σ denote the set of all simplices that
are added at elementary inclusions in T , and recall that n = |Σ|. For a node x in W, we
denote by E(x) ⊆ Σ the subset of simplices with at least one vertex that appears as label in
the subtree of W rooted at x. If y1 and y2 are the children of x, the following follows at once:

|E(x)| ≥ |E(y1)|+ |E(y2) \ E(y1)| . (2)

We say that the set N of nodes in W is independent, if there are no two nodes x1 6= x2 in
N , such that x1 is an ancestor of x2 in W. A vertex in Ki appears as label in at most one
W-subtree rooted at a vertex in the independent set N . Thus, a d-simplex σ can only appear
in up to d+ 1 E-sets of vertices in N . That implies:

I Lemma 5. Let N be an independent set of vertices inW. Then,
∑
x∈N |E(x)| ≤ (∆+1) ·n.

The cost of contracting. In order to bound the total size of K̂m, we need to bound the
number of simplices added in all these contractions. We define the cost of a contraction φi
as |K̂i+1 \ K̂i|. Since each contraction corresponds to a node x in W , we can associate these
costs to the internal nodes in the forest, denoted by c(x). The leaves get cost 0.

I Lemma 6. For an internal node x of W with children y1, y2, c(x) ≤ 2 · |E(y1) \ E(y2)|.

Proof Sketch. Let φi : Ki → Ki+1 denote the contraction that is represented by the node
x, and let w1 and w2 the labels of its children y1 and y2, respectively. By construction, w1
and w2 are vertices in Ki that are contracted by φi. Let C1 = St(w1,Ki) \ St(w2,Ki) and
C2 = St(w2,Ki) \ St(w1,Ki). By Lemma 2, St(w1,Ki) = ActSt(w1, K̂i), and the same for
w2. So, because the common simplices of the two active closed stars do not influence the
cost of the contraction, we have c(x) ≤ min{|C1|, |C2|}, because the contraction is defined
such that the resulting complex is as small as possible.
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W(0) W(1)

W(2) W(3) = ∅

Figure 2 Iterations of the pruning procedure. The only-child-paths are marked in color.

In particular, c(x) ≤ |C1|. It is left to show that |C1| ≤ 2 · |E(y1) \E(y2)|. We do this by
a simple charging scheme which attributes the existence of a simplex in C1 to a simplex in
E(y1) \ E(y2) such that no simplex in the latter set is charged more than twice. J

An ascending path (x1, ..., xL), with L ≥ 1, is a path in a forest such that xi+1 is the
parent of xi, for 1 ≤ i < L. We call L the length of the path and xL its endpoint. For
ascending paths in W, the cost of the path is the sum of the costs of the nodes. The set P
of ascending paths is independent, if the endpoints in P are pairwise different and form an
independent set of nodes. We define the cost of P as the sum of the costs of the paths in P .

I Lemma 7. An ascending path with endpoint x has cost at most 2 · |E(x)|. An independent
set of ascending paths in W has cost at most 2 · (∆ + 1) · n.

Proof. For the first statement, let p = (x1, ..., xL) be an ascending path with vL = v. Without
loss of generality, we can assume the the path starts with a leaf x1, because otherwise, we can
always extend the path to a longer path with at least the same cost. We let pi = (x1, . . . , xi)
denote the sub-path ending at xi, for i = 1, . . . , L, so that pL = p. We let c(pi) denote the
cost of the path pi and show by induction that c(pi) ≤ 2 · |E(xi)|. For i = 1, this follows
because c(p1) = 0. For i = 2, . . . , L, xi is an internal node, and its two children are xi−1 and
some other node x′i−1. Using induction and Lemma 6, we have that

c(pi) = c(pi−1) + c(xi) ≤ 2 · (|E(xi−1)|+ |E(x′i−1) \ E(xi−1)|) ≤ 2 · |E(xi)|,

where the last inequality follows from (2). The second statement follows from Lemma 5
because the endpoints of the paths form an independent set in W. J

Ascending path decomposition. An only-child-path in a binary tree is an ascending path
starting in a leaf and ending at the first encountered node that has a sibling, or at the root of
the tree. Consider the following pruning procedure for a full binary forest W . Set W(0) ←W .
In iteration i, we obtain the forest W(i) from W(i−1) by deleting the only-child-paths of
W(i−1). We stop when W(i) is empty. Figure 2 shows the pruning procedure on an example.
We define the following integer valued function for nodes in W:

r(x) =


1, if x is a leaf,
r(y1) + 1, if x has children y1, y2 and r(y1) = r(y2),
max{r(y1), r(y2)}, if x has children y1, y2 and r(y1) 6= r(y2).

With two simple inductive arguments, we can show the next two lemmas:

I Lemma 8. A node x of a full binary forest W is deleted in the pruning procedure during
the r(x)-th iteration.
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I Lemma 9. For a node x in a full binary forest, let s(x) denote the number of nodes in the
subtree rooted at x. Then s(x) ≥ 2r(x) − 1. In particular, r(x) ≤ log2(s(x) + 1).

With that, we can bound the size of the constructed filtration.

I Proposition 10. |K̂m| ≤ n+ 2 · (∆ + 1) · n · (1 + log2(n0)) = O(n ·∆ · log2(n0)), where n0
is the number of vertices included in T .

Proof Sketch. The first summand counts the number of elementary inclusions, the second
one the total cost of the contractions. The costs of all nodes removed in one iteration
of the pruning procedure are at most 2 · (∆ + 1) · n by Lemma 7 because the considered
only-child-paths form an independent set of ascending paths. By Lemma 9, all nodes have
been considered after 1 + log2(n0) iterations. J

3.4 Algorithm
A dictionary is a data structure that stores a set of items of the form (k,v), where k is
called the key and is unique and v is called the value of the item. The dictionary supports
three operations: insert(k,v) adds a new item, delete(k) removes the item with key k
and search(k) returns the item with key k, or returns that no such item exists. Common
realizations are balanced binary search trees [11, §12] and hash tables [11, §11].

Simplicial complexes by dictionaries. The main data structure of our algorithm is a
dictionary D that represents a simplicial complex. Every item stored in the dictionary
represents a simplex, whose key is the list of its vertices. Every simplex σ itself stores an
dictionary CoFσ. Every item in CoFσ is a pointer to another item in D, representing a
cofacet τ of σ. The key of the item is a vertex identifier (e.g., an integer) for v such that
τ = v ∗σ. Assuming that the size of a dictionary is linear in the number n of stored elements,
the size of D is in O(n∆), if ∆ is the dimension of the represented complex. With the right
search(k) function and key encoding, each simplex insertion and deletion requires O(∆)
dictionary operations. In what follows, it is convenient to assume that dictionary operations
have unit costs; we multiply the time complexity with the cost of a dictionary operation at
the end to compensate for this simplification.

The conversion algorithm. We assume that the tower T is given to us as a stream where
each element represents a simplicial map φi in the tower: an element starts with a token {I,
C} that specifies the type of the map and ends with the identifiers of the involved vertices.
The algorithm outputs a stream of simplices specifying the filtration F : while handling the
i-th input element, it outputs the simplices of K̂i+1 \ K̂i in increasing order of dimension. We
use an initially empty dictionary D and maintain the invariant that after the i-th iteration,
D represents the active subcomplex of K̂i, which is equal to Ki by Lemma 2.

If the algorithm reads an inclusion of a simplex σ from the stream, it simply adds σ to
D and writes σ to the output stream. If the algorithm reads a contraction of two vertices
u and v, from Ki to Ki+1, we let ci = |K̂i+1 \ K̂i| denote the cost of the contraction. The
first step is to determine which of the vertices has the smaller closed star in Ki. The size of
the closed star of a vertex v could be computed by a simple graph traversal in D, starting
at a vertex v and following the cofacet pointers recursively. However, we want to identify
the smaller star with only O(ci) operations. Therefore, we change the traversal in several
ways: First of all, observe that |St(u)| ≤ |St(v)| if and only if |St(u)| ≤ |St(v)|. Now define
St(u,¬v) := St(u) \ St(v). Then, |St(u)| ≤ |St(v)| if and only if |St(u,¬v)| ≤ |St(v,¬u)|,
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because we subtracted the intersection of the stars on both sides. Finally, note that
min{|St(u,¬v)|, |St(v,¬u)|} ≤ ci. Moreover, we can count the size of St(u,¬v) by a cofacet
traversal from u, ignoring cofacets that contain v in O(|St(u,¬v)|) time. Finally, we count
the sizes of St(u,¬v) and St(v,¬u) at the same time by a simultaneous graph traversal
of both, terminating as soon as one of the traversal stops. The running time is then
proportional to 2 ·min{|St(u,¬v)|, |St(v,¬u)|} = O(ci), as required. Assume w.l.o.g. that
|St(u)| ≤ |St(v)|. Also in time O(ci), we can obtain St(u,¬v). We sort its elements by
increasing dimension, which can be done in O(ci + ∆) using integer sort. For each simplex
σ = {u, v1, . . . , vk} ∈ St(u,¬v) in order, we check whether {v, v1, . . . , vk} is in D. If not, we
add it to D and also write it to the output stream. Then, we output {u, v, v1, . . . , vk}. At the
end of the loop, we wrote exactly the simplices in Ki+1 \Ki to the output stream. It remains
to maintain the invariant on D. Assuming still that |St(u)| ≤ |St(v)|, u turns inactive in
K̂i+1. We simply traverse over all cofaces of u and remove all encountered simplices from D.

Complexity analysis. By applying the operation costs on the above described algorithm,
we obtain the following statement. Combined with Propositions 4 and 10, it completes the
proof of Theorem 1.

I Proposition 11. The algorithm requires O(∆ · ω) space and O(∆ · |K̂m| · Cω) time, where
ω = maxi=0,...,m |Ki| and Cω is the cost of an operation in a dictionary with ω elements.

Proof Sketch. By the above description, the cost of a contraction can be bounded by
O(∆(ci + di)Cω), where ci is the number of simplices added, and di the number of simplices
that become inactive in the i-th iteration. Because

∑
ci and

∑
di are both in O(|Km|), the

result follows. J

Using balanced binary trees as dictionary, we get Cω = O(∆ logω) because comparing
two keys costs O(∆). Using hash tables, the expected complexity is Cω = O(∆).

Experimental results. The following tests where made on a 64-bit Linux (Ubuntu) HP
machine with a 3.50 GHz Intel processor and 63 GB RAM. The programs were all implemented
in C++ and compiled with optimization level –O2.

To test the performance of our algorithm, we compared it to the software Simpers
(downloaded in May 2016)2, which is the implementation of the Annotation Algorithm from
Dey, Fan and Wang described in [13]. Simpers computes the persistence of the given filtration,
so we add to our time the time the library PHAT (version 1.4.1) needs to compute the
persistence from the generated filtration (with default parameters).

The results of the tests are in Table 1. The timings for File IO are not included in the
process time of PHAT and Simpers. The memory peak was obtained via the ’/usr/bin/time
–v’ Linux command. The first three towers in the table, data1-3, were generated incrementally
on a set of n0 vertices: In each iteration, with 90% probability, a new simplex is included, that
is picked uniformly at random among the simplices whose facets are all present in the complex,
and with 10% probability, two randomly chosen vertices of the complex are contracted. This
is repeated until the complex on the remaining k vertices forms a k − 1-simplex, in which
case no further simplex can be added. The remaining data was generated from the SimBa
(downloaded in June 2016) library with default parameters using the point clouds from [14].
To obtain the towers that SimBa computes internally, we included a print command at a
suitable location in the SimBa code.

2 http://web.cse.ohio-state.edu/~tamaldey/SimPers/Simpers.html
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Table 1 Experimental results. The symbol ∞ means that the calculation time exceeded 12 hours.

Alg1 + PHAT Simpers

c n n0 ∆ ω
filtration

size
time
(s)

mem. peak (kB)
Alg1 / total

time
(s)

mem. peak
(kB)

data1 495 4 833 500 4 2 908 19 747 0.12 4 644 / 7 040 2.49 10188

data2 795 7 978 800 4 4 816 35 253 0.20 5 424 / 10 228 13.97 20308

data3 794 8 443 800 5 5 155 38 101 0.22 5 744 / 10 916 19.29 24 924

GPS 1 746 8 585 1 747 3 1 747 9 063 0.07 4 072 / 5 292 0.35 6 064

KB 22 499 95 019 22 500 3 22 500 133 433 0.50 10 520 / 18 712 2.83 24 460

MC 23 074 143 928 23 075 3 28 219 185 447 0.72 14 636 / 25 272 4.12 26 020

S3 252 995 1 473 580 252 996 4 252 996 1 824 461 10.09 94 020 / 221 636 49.86 239 404

PC25 14 999 10 246 125 15 000 3 2 191 701 12 283 003 135.02 1 029 680 / 2 223 544 ∞ –

To verify that the space consumption of our algorithm does not dependent on the length
of the tower, we constructed an additional example whose size exceeds our RAM capacity,
but whose width is small: we obtained a tower of length about 3.5 ·109 which has a file size of
about 73 GB, but only has a width of 367. Our algorithm took about 2 hours to convert this
tower into a filtration of size roughly 4.6 · 109. During the conversion, the virtual memory
used was constantly around 22 MB and the resident set size about 3.8 MB only, confirming
the theoretical prediction that the space consumption is independent of the length.

4 Persistence by Streaming

If the original tower is small, we want to be able to compute its persistence even if the tower
is extremely long. So we design here a streaming variation of the reduction algorithm that
computes the barcode of filtrations with a more efficient memory use than the standard
algorithm. More precisely, we will prove the following theorem:

I Theorem 12. With the same notation as in Theorem 1, we can compute the barcode of a
tower T in worst-case time O(ω2 ·∆ · n · logn0) and space complexity O(ω2)

Algorithmic description. The input to the algorithm is a stream of elements, each starting
with a token {Add, I} followed by an identifier which represents a simplex σ. In the Add case,
this is followed by the identifiers of the facets of σ. The I means that σ has become inactive.

The algorithm uses a matrix data type M as its main data structure. We realize M as
a dictionary of columns, indexed by a simplex identifier. Each column is a sorted linked
list of identifiers corresponding to the non-zero row indices of the column. In particular,
we can access the pivot of the column in constant time and we can add two columns in
time proportional to the maximal size of the involved lists. There are two secondary data
structures that we mention briefly. Firstly, a dictionary where the keys represents row
indices r and their corresponding value is the column that has r as pivot. Secondly, a
dictionary representing the set of active simplex identifiers, plus a positive/negative flag. It
is straight-forward to maintain these structures during the algorithm, and we will omit the
description of the required operations.

The algorithm uses two subroutines. The first one, called reduce_column, takes a column
identifier j as input and iterate through the non-zero row indices of j: if an index i is the
index of an inactive and negative column in M , remove the entry from the column j (cf. to
“compression” at end of Section 2). Afterwards, while the column is non-empty, and its
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pivot i is the pivot of another column k < j in the matrix, add column k to column j. The
second subroutine, remove_row, takes a index ` as input: let j be the column with ` as
pivot. Traverse all non-zero columns of the matrix except column j. If a column i 6= j has a
non-zero entry at row `, add column j to column i. After traversing all columns, remove
column j from M .

The main algorithm can be described easily now: if we add a simplex, we add the column
to M and call reduce_column on it. If at the end of that routine, the column is empty,
it is removed from M . If the column is not empty and has pivot `, we report (`, j) as a
persistence pair and check whether ` is active. If not, we call remove_row(`). If the input
stream specifies that simplex ` becomes inactive, we check whether ` appears as pivot in the
matrix and call remove_row(`) in this case.

I Proposition 13. The algorithm computes the correct barcode.

Proof Sketch. First, note that removing a column fromM within the procedure remove_row
does not affect further reduction steps. Then, remove_row might also include right-to-left
column additions. But we can easily show that a column reduced with right-to-left additions
can also be expressed by a sequence of left-to-right column additions, and thus yields the
same pivot as in the standard algorithm. J

Complexity analysis. We analyze how large the structure M can become during the al-
gorithm. After every iteration, the matrix represents the reduced boundary matrix of some
intermediate complex L̂ with K̂i ⊆ L̂ ⊆ K̂i+1 for some i = 0, . . . ,m. Moreover, the active
simplices define a subcomplex L ⊆ L̂ and there is a moment during the algorithm where
L̂ = K̂i and L = Ki, for every i = 0, . . . ,m. We call this the i-th checkpoint.

I Lemma 14. At every moment, the number of columns stored in M is at most 2ω.

This come from the fact that, throughout the algorithm, a column is stored in M only if
it has an active pivot. The number of rows is more difficult to bound because we cannot
guarantee that each column in M corresponds to an active simplex. Still, the number of
rows is asymptotically the same:

I Lemma 15. At every moment, the number of rows stored in M is at most 4ω.

Proof Sketch. Consider a row index ` and a time in the algorithm where M represents L̂.
There are at most 2ω active row indices at any time. Moreover, following the algorithm, `
cannot represent an inactive negative simplex neither an active one that was paired with
another index. Therefore, we restrict our attention to the remaining case, that ` is inactive,
positive and has not been paired so far. It is well-known that in this case, ` is the generator
of an homology class of L̂. Let β(L̂) :=

∑∆
i=0 βi(L̂) denote the sum of the Betti numbers of

the complex. Then, it follows that the number of such row indices is at most β(L̂). We have
that β(K̂i) = β(Ki) by Lemma 3, and since Ki has at most ω simplices, β(Ki) ≤ ω. Since we
add at most ω simplices to get from K̂i to L̂, and each addition can increase β by at most
one, we have that β(L̂) ≤ 2ω. J

I Proposition 16. The algorithm runs in time O(ω2 ·∆ · n · logn0) with O(ω2) space.

Proof. The space complexity is immediately clear from the preceding two lemmas, as M is
the dominant data structure in terms of space consumption. For the time complexity, we
observe that both subroutines reduce_column and remove_row need O(ω) column additions
and O(ω) dictionary operations in the worst case. A column addition costs O(ω), and a
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Figure 3 Evolution of processing time (left Y-axis in sec) and process memory peak (right Y-axis
in kB) depending on the chunk size (logarithmic X-axis).

dictionary operation is not more expensive So, the complexity of both methods is O(ω2).
Since each routine is called at most once per input element, and there are O(∆ · n · logn0)
elements by Theorem 1, the bound follows. J

Implementation. The algorithm just described is not efficient in practice, partially because
remove_row scans the entire matrix M which should be avoided. We outline a variant that
behaves better in practice. The idea is to perform a “batch” variant of the previous algorithm:
We define a chunk size C and read in C elements from the stream; we insert added columns
in the matrix, but not reducing the columns yet. After having read C elements, we start the
reduction of the newly inserted columns using the clearing optimization: that is, we go in
decreasing dimension and remove a column as soon as its index becomes the pivot of another
column; see [8] for details. After the reduction ends, except for the last chunk, we go over
the columns of the matrix and check for each pivot whether it is active. If it is, we traverse
its row entries in decreasing order, but skipping the pivot. Let ` be the current entry. If ` is
the inactive pivot of some column j, we add j to the current column. If ` is inactive and
represents a negative column, we delete ` from the current column. After performing these
steps for all remaining columns of the matrix, we go over all columns again, deleting every
column with inactive pivot.

How to choose the parameter C? The chunk provides a trade-off between time and space
efficiency. Roughly speaking, the matrix can have up to O(ω + C) columns during this
reduction, but the larger the chunks are, the more benefit one can draw from clearing.

Experimental evaluation. The tests were made with the same setup as in Section 3.4.
Figure 3 shows the effect of the chunk size parameter C on the runtime and memory
consumption of the algorithm. The data used is S3 (see Section 3.4); we also performed the
tests on the other examples from Table 1, with similar outcome. The File IO operations
are included in the measurements. Confirming the theory, as the chunk size decreases, our
implementation needs less space but more computation time (while the running time seems
to increase slightly again for larger chunk sizes).

For the 4.6 · 109-inclusions-tower from Section 3.4, with C = 200 000, the algorithm took
around 4.5 hours, the virtual memory used was constantly around 68 MB and the resident
set size constantly around 49 MB, confirming the theoretical statement that the memory
size does not depend on the length of the filtration.
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