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Abstract
We present a self-adjusting point location structure for convex subdivisions. Let n be the number
of vertices in a convex subdivision S. Our structure for S uses O(n) space and processes any
online query sequence σ in O(n+ OPT) time, where OPT is the minimum time required by any
linear decision tree for answering point location queries in S to process σ. The O(n + OPT)
time bound includes the preprocessing time. Our result is a two-dimensional analog of the static
optimality property of splay trees. For connected subdivisions, we achieve a processing time of
O(|σ| log logn+ n+ OPT).
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1 Introduction

Planar point location is a fundamental problem in computational geometry that has been
studied extensively. It calls for preprocessing a planar subdivision into a data structure so
that for any query point, the region in the subdivision that contains the query point can be
reported. There are several common types of planar subdivisions. A subdivision is convex
if the boundary of every region (including the outer boundary) bounds a convex polygon.
A subdivision is connected if the boundary of every region bounds a simple polygon. A
subdivision is general if the boundary of every region bounds a polygon possibly with holes.
In this paper, we are concerned with point location methods that use point-line comparisons.

Given a general subdivision with n vertices, point location structures with worst-case
O(logn) query time, O(n logn) preprocessing time, and O(n) space have been obtained [2,
11, 14, 15]. For connected subdivisions, the preprocessing time can be reduced to O(n) [14]
after triangulating every region in linear time [6].

When processing a sequence of query points that fall into different regions with vastly
different frequencies, one may consider objectives other than minimizing the worst-case time
to answer a single query. One scenario is that for every region r, the probability pr of the
query point falling into r is given. In this case, one may want to minimize the expected query
time. The entropy H =

∑
r pr log(1/pr), where the sum is over all regions in S, is a lower

bound to the expected query time according to Shannon’s theory [16]. Arya, Malamatos,
and Mount [3] and Iacono [12] studied subdivisions in which all regions have sizes bounded
by some constant. They obtained structures that use O(n) space and answer a query in
O(H) expected time. Later, Arya, Malamatos, Mount, and Wong [4] improved the expected
query time to H +O(

√
H).
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30:2 Adaptive Planar Point Location

If some regions have non-constant sizes, the entropy is a very weak lower bound. Indeed,
Arya, Malamatos, Mount, and Wong [4] showed a convex polygon of n sides and a query
distribution so that a query point lies in the polygon with probability 1/2 and the expected
number of point-line comparisons needed to decide whether a query point lies in the polygon
is Ω(logn). Note that the entropy is only a constant. Several subsequent research works
consider comparison against linear decision trees that answer point location queries in planar
subdivisions. We call them point location linear decision tree for convenience. Given a
connected subdivision S with n vertices and the query distribution, Collete et al. [9] designed
a structure that uses O(n) space and answers a query in O(H∗) expected time, where H∗ is
the minimum expected time needed by any point location linear decision tree for S. Afshani,
Barbay, and Chan [1] and Bose et al. [5] also obtained optimal solutions (with respect to
linear decision trees) for several geometry query problems, including planar point location,
when the query distribution is given.

In one dimension, optimal query performance can be obtained without knowing the
query distribution. Sleator and Tarjan [17] designed splay trees for storing an ordered set of
values such that any online query sequence σ can be processed in O(|σ|+

∑
v fv log(|σ|/fv))

time, where the sum is over all values in the set and fv denotes the frequency of v being
queried in σ, provided that every value is accessed at least once. This result is known as the
Static Optimality Theorem [17]. Note that

∑
v fv log(|σ|/fv) is the minimum time needed

to process σ by any static binary search tree that stores the same set of values.
Does there exist an analog of the Static Optimality Theorem in the context of planar

point location? Iacono and Mulzer [13] proposed a self-adjusting point location structure for
triangulations. Given a triangulation S, their structure uses O(n) space and processes any
online query sequence σ in O(n+

∑
t ft log(|σ|/ft)) time, where the sum is over all triangles

in S and ft denotes the frequency of a triangle t being hit by a query point in σ. The
space usage is O(n). The time bound includes the preprocessing time to construct the first
structure before locating the first query point in σ. Note that

∑
t ft log(|σ|/ft) is a lower

bound to the minimum time needed by a static point location structure for S to process
σ. The handling of more general planar subdivisions is posed as an open problem in [13].
Recently, we made progress by designing a self-adjusting point location structure for convex
subdivisions [8] based on the result in [13]. Given a convex subdivision S, our structure uses
O(n) space and processes any online query sequence σ in O(|σ| log logn+ n+ OPT) time,
where OPT is the minimum time needed by any point location linear decision tree for S to
process σ.

In this paper, we prove an analog of the Static Optimality Theorem for convex subdivisions.
We propose a self-adjusting point location structure that processes any online query sequence
in O(n+ OPT) time, which includes the preprocessing time. The space usage is O(n).

It is known that the optimal point location linear decision tree for an optimally triangulated
subdivision has the same asymptotic performance as the optimal point location linear decision
tree for the untriangulated subdivision. Therefore, our solution keeps a triangulation of the
convex subdivision so that we can invoke Iacono and Mulzer’s result [13]. The triangulation
also allows us to extract some frequently accessed triangles and keep a separate, smaller point
location structure for them. Then, query points in these triangles can be located faster. As
observed in [13], the difficulty lies in efficiently computing the optimal triangulation, which
depend on the access frequencies. As the access frequencies evolve, the subdivision will need
to be retriangulated and the analysis has to address this issue. On the other hand, we showed
in [8] that some canonical triangulation methods (independent of the access frequencies) can
lower the average extra cost per query to O(log logn). Our insight is to recursively extract
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Figure 1 Triangulation of a bounded region in S.

frequently accessed triangles and generate a separate point location structure for them using
these canonical triangulation methods. This results in a multi-level structure. The structure
at the highest level is queried first and if that fails, we move down the levels. We devise
an analysis that handles both successful and unsuccessful queries at each level. Intuitively,
the performance improves as the number of levels increases, and thus we circumvent the
difficulty of computing an optimal triangulation.

We also observe that the strategy in [8] works for connected subdivisions with the help of
balanced geodesic triangulations. This gives a processing time of O(|σ| log logn+ n+ OPT).

2 Basics

We state the result of Iacono and Muzler [13] below for future reference.

I Theorem 1 ([13]). For any planar triangulation T with n vertices, there is a point-line
comparison based data structure that uses O(n) space and processes any online sequence of
point location queries in T in O

(∑
t∈T f(t) log N

f(t) + n
)

time, where N is the number of
queries and f(t) is the number of query points that fall into the triangle t in T . The time
bounds includes the O(n) preprocessing time.

We review the canonical triangulation methods in [8] which will be used later.
Let S denote a convex subdivision with n vertices. For each bounded region r in S,

the procedure TriReg is called to triangulate r. Figure 1 gives an example. TriReg runs in
O(|r|) time and produces a triangulation of O(|r|) size. This triangulation method was first
introduced by Dobkin and Kirkpatrick for convex polygon intersection detection [10]. Every
line segment in r intersects O(log |r|) triangles.

TriReg(r)
1. If r is a triangle, then return.
2. Take any maximum subsequence α of vertices of r such that no two vertices in α

are adjacent along the boundary of r, except possibly the first and the last ones.
3. Connect the vertices in α to form a convex polygon r′.
4. Call TriReg(r′).

Second, we triangulate the exterior region of S. We pick three boundary edges of S
such that removing them gives three boundary chains of S of roughly equal sizes. The
support lines of these three edges bound a triangle, denoted by BS , that contains S.1 We
call the three interior-disjoint regions between the boundaries of BS and S boomerangs. Each
boomerang has two straight sides and a reflex chain. Figure 2(a) gives an example. For

1 It is possible that BS is unbounded, but we will assume that BS is bounded for simplicity.
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S S

BS

S ∆S

(a) (b)

Figure 2 (a) Boomerangs (shown shaded). (b) An example in which S is just one convex polygon.

b ∆̃b

Tb

Figure 3 The nodes of Tb are given the same colors as the corresponding regions in ∆̃b.

each boomerang b, we call the procedure SplitBR to partition b hierarchically into triangular
regions as well as to construct a binary tree that represents this hierarchy. Denote the output
partition of b by ∆̃b and the binary tree by Tb. Figure 3 gives an example. The binary tree
Tb is not constructed in [8], but we will need it later. SplitBR runs in O(|b|) time, ∆̃b has
O(|b|) size, and Tb has O(log |b|) height.

SplitBR(b)
1. If b is a triangle, then return.
2. Take the middle edge e of the reflex chain of b.
3. Cut b with the support line of e into a triangle t and two smaller boomerangs b1

and b2.
4. Call SplitBR(b1) and SplitBR(b2) to obtain ∆̃b1 , Tb1 , ∆̃b2 , and Tb2 .
5. ∆̃b := {t} ∪ ∆̃b1 ∪ ∆̃b2 .
6. Create the binary tree Tb with root v containing t. Make Tb1 and Tb2 left and right

subtrees of v.
7. Return ∆̃b and Tb.

Finally, for every triangular region r in ∆̃b, there is exactly one side e of r that bounds S.
This side e contains O(log |b|) vertices. We call TriBR(b) to obtain a triangulation of b.

TriBR(b)
1. For each triangular region r in ∆̃b, do
a. take the side e of r that bounds S,
b. add edges to connect the vertices in e to the vertex of r opposite e.
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Every line segment in b intersects O(log |b|) triangular regions in ∆̃b and there are
O(log |b|) triangles in each triangular region. So each line segment in b intersects O(log2 |b|)
triangles in the triangulation of b.

We use ∆S to denote the resulting triangulation of the boomerangs and the bounded
regions in S. Figure 2(b) gives an example. There are O(n) vertices in ∆S and ∆S can
be constructed in O(n) time. Theorem 1 is applied to ∆S to produce a data structure for
answering point location queries in S.

I Theorem 2 ([8]). Let S be a planar convex subdivision with n vertices. There is a point-line
comparison based data structure that uses O(n) space and processes any online sequence σ of
point location queries in S in O(|σ| log logn+ n+ OPT) time, where OPT is the minimum
time needed by any point location linear decision tree for S to process σ. The time bound
includes the O(n) preprocessing time.

3 Planar convex subdivision

Let S denote a planar convex subdivision with n vertices. We first present a solution with
processing time O(|σ| log log logn + n + OPT). Then, we bootstrap from this solution to
obtain the optimal result.

3.1 First solution
We first compute ∆S as described in Section 2. Let DS be the point location structure in
Theorem 2 for S. Note that DS evolves as σ is processed. Let f(n) denote the function
(log2 n)6. For any j ≥ 1, whenever DS has been used to answer the j-th subset of f(n)
queries, we extract a subset of triangles from ∆S , construct a new triangulation ∆j using
this subset, and then compute a point location structure Dj for ∆j . Once Dj has been
constructed, the next query is answered using Dj first. If Dj locates the query point in a
region (bounded or exterior) in S, we are done; otherwise, we use DS to answer the query.
We elaborate on the construction of ∆j and Dj in the following sections.

3.1.1 Triangulation ∆j

We extract the subsetX of f(n)(log2 n)−2 triangles in ∆S that have the highest f(n)(log2 n)−2

access frequencies currently. Some triangles in X lie in bounded regions in S and some may
lie outside S. To extract X quickly, we maintain a doubly linked list A such that the i-th
entry of A stores a doubly linked list of triangles with the i-th highest frequency. Whenever
we need to output X, we scan the lists in the entries of A in order until we have collected
f(n)(log2 n)−2 triangles. Whenever the frequency of a triangle t ∈ ∆S is incremented, we
need to relocate t within A. Suppose that t is currently stored in the list at the i-th entry of
A. If the triangles in the list at the (i− 1)-th entry of A have the same frequency as t, then
we move t to the end of the list at the (i− 1)-th entry. Otherwise, the triangles in the list
at the (i − 1)-th entry have a higher frequency than t, and so we insert a new entry of A
between the (i− 1)-th and the i-th entries and make t a singleton list at this new entry of A.
If the list at the i-th entry of A becomes empty after moving t, we delete this entry of A. So
each update of A takes O(1) time.

We can assume that for each triangle t in ∆S , if t lies in a region r in S, then t stores the
region id r. Moreover, if r is the exterior region of S, then t ⊆ ∆̃b for some boomerang b and
t also stores the id of the triangular region in ∆̃b that contains t. By sorting the triangles in
X with respect to their region ids, we can find the triangles in r ∩X for every region r in S.

SoCG 2017
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∆̃b

Tb

shrink(b)

Figure 4 The two triangular regions in ∆̃b with white dots contain some triangles in X. Cor-
responding nodes in Tb are also marked with white dots. Then, all ancestors of these nodes in Tb

are marked, and the union of the corresponding triangular regions in ∆̃b is a boomerang shrink(b)
(shown shaded).

For each bounded region r in S, let conv(r ∩X) denote the convex hull of the triangles
in r ∩ X and we can compute conv(r ∩ X) in O(|r ∩ X| log |r ∩ X|) time. Then, we call
TriReg(conv(r ∩X)) to triangulate conv(r ∩X). Each resulting triangle stores the region
id r. Summing over all bounded regions in S, the total running time is O(|X| log |X|) =
O(f(n)/ logn) and the total number of triangles produced is O(|X|) = O(f(n)(logn)−2).

Next, we handle the triangles in X outside S. Let b be one of the boomerangs between
the boundaries of BS and S. For each triangle t ∈ b ∩X, we mark the triangular region r in
the binary tree Tb that contains t and we also mark all ancestors of r in Tb. We form the
union of the marked triangular regions. Denote the union by shrink(b). Note that shrink(b)
is a boomerang and every edge in the reflex chain of shrink(b) supports an outer boundary
edge of S. Figure 4 gives an example. Also, b∩X ⊆ shrink(b), |shrink(b)| = O(|b∩X| log |b|),
and shrink(b) can be computed in O(|b∩X| log |b|) time. We call SplitBR(shrink(b)) and then
TriBR(shrink(b)) to obtain a triangulation of shrink(b). Each resulting triangle stores the id
of the exterior region of S. Summing over all three boomerangs between the boundaries of
BS and S, the total running time is O(|X| logn) = O(f(n)/ logn) and the total number of
triangles produced is O(|X| logn) = O(f(n)/ logn).

Collect all O(f(n)/ logn) triangles computed in the above. By a plane sweep, we can add
edges in O

(
f(n)
logn log f(n)

logn

)
time to form a triangulation that contains all triangles collected

and has size O(f(n)/ logn). This is the triangulation ∆j desired. The total construction
time of ∆j is O

(
f(n)
logn log f(n)

logn

)
. The extra triangles added by the plane sweep do not store

the id of any region in S, and therefore, query points that fall into such triangles are not
located successfully in S.

3.1.2 Structure Dj, querying, and frequencies

The access frequencies in ∆S are initialized to be zero before processing σ. The subscript of
∆j and Dj increases monotonically as we process σ. When the construction of ∆j and Dj

completes, we forget about ∆j−1 and Dj−1 and reuse their storage. The access frequencies
in ∆j are initialized to be zero.

Dj consists of two point location structures D′j and D′′j . D′j is obtained by invoking
Theorem 1, the result in [13], on ∆j . D′′j is a worst-case optimal planar point location
structure (e.g. [14]). The querying procedure works as follows. Let q be the next query point.
We check in O(1) time whether q lies inside BS . If not, we just output that q is outside S.
Suppose that q lies inside BS . We query Dj by alternating the search steps in D′j and D′′j .



S.-W. Cheng and M.-K. Lau 30:7

We stop as soon as a triangle t in ∆j containing q is found. If t stores a region (bounded or
exterior) of S, then we output that region. Otherwise, we use DS to locate the triangle t′ in
∆S that contains q, and we output the region of S (bounded or exterior) stored at t′.

After locating q, we update the access frequencies in ∆S or ∆j . This update is important
because the frequencies govern how the method in [13] will adjust DS and Dj in order to
adapt to incoming queries. If q lies outside BS , we do not change any frequency in ∆S and
∆j . Suppose that q lies inside BS . If q is located in a triangle t ∈ ∆j and t stores a region of
S, then we increment the frequency of t in ∆j and we are done. The frequencies in ∆S do
not change in this case. On the other hand, if the search in Dj does not report a region of S,
then q is subsequently located in S by DS and we increment the frequency of the triangle in
∆S that contains q. The frequencies in ∆j do not change in this case.

There are some consequences due to our frequency update. Consider two online query
sequences αj ⊆ α such that Dj can successfully locate in S the query points in αj , but not
the query points in α\αj . Therefore, query points in α\αj do not cause any change to Dj .
Let Dj(α) denote the running time of Dj on α (excluding the preprocessing time of Dj). We
conclude that

Dj(α) = O(Dj(αj) + |α\αj | log |∆j |) (1)

because each query in α\αj can be answered by D′′j in O(log |∆j |) worst-case time.

3.1.3 Analysis
We first analyze the performance of Dj . Among all point location linear decision trees for
S, let D be the one that takes the minimum time to process σ. We convert D to a point
location linear decision tree for ∆j as follows.

Each leaf node v of D corresponds to a convex polygon ρ in a region of S. If ρ has k
sides, then v has depth at least k as each node of D applies a cut along a line. Therefore, we
can expand v into a linear decision subtree so that the leaf nodes of this subtree correspond
to a triangulation of ρ and the height of this subtree is at most k − 2.

Let Dσ
min denote the linear decision tree obtained by expanding D as described above.

The triangular regions at the leaf nodes of Dσ
min form a refinement of S. Locating a query

point q in this refinement of S using Dσ
min has the same asymptotical complexity as locating

q in S using D.
Let t be the triangle at a leaf node of Dσ

min. We discuss how to expand this leaf node to a
linear decision subtree depending on whether t lies in a bounded or unbounded region of S.

Suppose that t lies in a bounded region r of S. Recall that X is the subset of triangles
extracted from ∆S for constructing ∆j . All vertices of conv(r ∩X) lie on the boundary of r,
so t intersects O(log |r ∩X|) = O(log logn) triangles in ∆j ∩ conv(r ∩X), which refine t into
a planar subdivision Pt of size O(log logn). We expand the leaf node of Dσ

min storing t to a
linear decision subtree Lt that performs point location in Pt in O(log log logn) worst-case
query time. Some leaf nodes of Lt correspond to regions in the refinement of t that are
outside conv(r ∩X). We need to expand such leaf nodes further in order to locate query
points that fall into t \ conv(r ∩X) in a triangle in ∆j . We will not be interested in the
query time for such query points, so we can expand these leaf nodes of Lt arbitrarily.

Suppose that t lies in the unbounded region of S. We expand the leaf node storing t
into a linear decision subtree L′t of O(1) height such that each leaf node of L′t corresponds
to a triangle that lies inside or outside t ∩ BS . At each leaf node of L′t outside t ∩ BS , we
can output the exterior of BS . All leaf nodes of L′t inside BS lie in a boomerang b between
the boundaries of BS and S. Take such a leaf node of L′t and let t′ be the triangle stored

SoCG 2017
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there. We are concerned with the overlay of t′ and shrink(b). Since every edge of the reflex
chain of shrink(b) supports an outer boundary edge of S, every triangular region in shrink(b)
produced by SplitBR is incident on an outer boundary edge of S. Since the interior of t′
cannot intersect the boundary of S or any bounded region in S, the interior of t′ contains
at most one vertex in the reflex chain of shrink(b). Thus, the boundary of t′ inside shrink(b)
consists of O(1) line segments. Each segment intersects O(log |shrink(b)|) triangular regions in
shrink(b) produced by SplitBR, and each triangular region contains O(log |shrink(b)|) triangles
produced by TriBR. As a result, t′ intersects O(log2 |shrink(b)|) = O((log logn)2) triangles in
the triangulation of shrink(b). Therefore, we can expand the leaf node storing t′ into a linear
decision subtree as in the previous paragraph.

Let D′ be the linear decision tree obtained by expanding Dσ
min as described above. Let q

be a query point. If q can be located successfully in S by Dj , the search in D′ traverses a
root-to-leaf path in Dσ

min and then another path of length O(log log logn) to a leaf of D′. Let
Dσ

min(α) and D′(α) denote the running times of Dσ
min and D′ on an online query sequence α,

respectively. Then, for any online query sequence αj such that query points in αj can be
located successfully in S by Dj ,

D′(αj) = O(Dσ
min(αj) + |αj | log log logn). (2)

For every pair of online query sequences αj ⊆ α such that αj is the maximum subsequence
of α that can be located successfully in S by Dj , by (1), Dj(α) = O(Dj(αj)+ |α\αj | log |∆j |).
By Theorem 1, Dj performs no worse than D′ on αj . Let Dpre

j denote the O(|∆j | log |∆j |)
preprocessing time to construct both ∆j and Dj . Therefore,

Dj(α) +Dpre
j

= O
(
Dj(αj) + |α\αj | log |∆j |

)
+O

(
|∆j | log |∆j |

)
= O

(
D′(αj) + |∆j |+ |α\αj | log |∆j |

)
+O

(
|∆j | log |∆j |

)
(∵ Theorem 1)

= O
(
Dσ

min(αj) + |∆j | log |∆j |+ |αj | log log logn+ |α\αj | log |∆j |
)
. (∵ (2))

The next result summarizes the discussion above.

I Lemma 3.
(i) For every pair of online query sequences αj ⊆ α such that αj is the maximum sub-

sequence of α that can be located successfully in S by Dj , Dj(α) +Dpre
j = O

(
Dσ

min(αj) +
|∆j | log |∆j |+ |α\αj | log logn+ |αj | log log logn

)
.

(ii) Dσ
min(σ) = O(OPT), where OPT is the minimum time needed by any point location

linear decision tree for S to process σ.

We are ready to analyze the performance of the first solution.

I Lemma 4. Let S be a planar convex subdivision with n vertices. There is a point-line
comparison based data structure that processes any online sequence σ of point location queries
in S in O(|σ| log log logn+ n+ OPT) time. The time bound includes the preprocessing time.

Proof. Let σS denote the subsequence of queries in σ that are answered by DS . For each
j ≥ 1, we use σj to denote the subsequence of σ that are located successfully in S by Dj .
Therefore,

⋃
j≥1 σj = σ\σS . Note that σj ∩σk = ∅ if j 6= k. Let Γ denote the total processing

time required by all Dj ’s, including the preprocessing time Dpre
j . Note that Γ also includes

the time spent on unsuccessfully locating some query points in σS by the Dj ’s. Lemma 3(i)
implies that

Γ = O
(∑

j

Dσ
min(σj) +

∑
j

|∆j | log |∆j |+ |σS | log logn+ |σ\σS | log log logn
)
.
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Each ∆j has O(f(n)/ logn) size and ∆j is constructed after answering f(n) new queries
using DS . So |∆j | log |∆j | can be charged to these queries, i.e.,

∑
j |∆j | log |∆j | = O(|σ|).

Therefore,

Γ = O
(
Dσ

min(σ\σS) + |σ|+ |σS | log logn+ |σ\σS | log log logn
)
.

Let Γ0 denote the total processing time required by DS on σS , including the O(n) prepro-
cessing time to construct ∆S andDS . By Theorem 2, Γ0 = O(Dσ

min(σS)+|∆S |+|σS | log logn).
Therefore,

Γ0 + Γ = O
(
Dσ

min(σ) + n+ |σ|+ |σS | log logn+ |σ\σS | log log logn
)
. (3)

We will show that the term |σS | log logn can be absorbed by other terms in (3). For query
points in σS that end in leaf nodes ofDσ

min at depth greater than log2 log2 n, their contribution
to |σS | log logn can be absorbed by Dσ

min(σS). We bound the number of remaining query
points in σS in Claim 5 below.

I Claim 5. Let σ̂S be the subsequence of σS such that each query point in σ̂S lies in some
triangle (leaf node) in Dσ

min at depth log2 log2 n or less. Then, |σ̂S | = O(log9 n+ |σS |/ logn).

Proof. We will make use of the following facts:
Fact 1: At most 21+log2 log2 n− 1 = 2 log2 n− 1 nodes in Dσ

min have depth at most log2 log2 n

because Dσ
min is a binary tree.

Fact 2: For each triangle t ∈ ∆S , if the current access frequency of t is at least |σS |(log2 n)2/f(n),
then t must be included in the set X for the next construction of ∆j and Dj . The reason
is that the sum of frequencies in ∆S is at most |σS |, so there are at most f(n)(log2 n)−2

triangles in ∆S with frequencies at least |σS |(log2 n)2/f(n), implying that t is one of the
top f(n)(log2 n)−2 frequently accessed triangles.

Let Z be the subset of triangles in ∆S that overlap with some triangle (leaf node) in Dσ
min

at depth log2 log2 n or less. By Fact 1, there are at most 2 log2 n− 1 triangles (leaf nodes)
in Dσ

min at depth log2 log2 n or less. Each such triangle must lie inside a region (bounded
or exterior) of S in order that Dσ

min answers a point location query correctly. So each such
triangle intersects O(log2 n) triangles in ∆S . It follows that

|Z| = O(log3 n). (4)

Consider a triangle t ∈ ∆S that contains a query point in σ̂S . Thus, t ∈ Z because t must
overlap with some triangle (leaf node) in Dσ

min at depth log2 log2 n or less. If the frequency
of t in ∆S never reaches |σS |(log2 n)2/f(n), then at most |σS |(log2 n)2/f(n) query points
in t are from σ̂S . Suppose that the frequency of t in ∆S reaches |σS |(log2 n)2/f(n), say
after the construction of ∆j and before the construction of ∆j+1. At most f(n) queries can
be answered by DS during this period. It means that the frequency of t in ∆S is at most
f(n) + |σS |(log2 n)2/f(n) before the construction of ∆j+1. By Fact 2, t will be included in
∆k for all k > j. Every query point that falls in t after the construction of ∆j+1 will be
located successfully in S by Dk for some k ≥ j + 1. Thus, the frequency of t in ∆S will
not be increased further and at most f(n) + |σS |(log2 n)2/f(n) query points in t are from
σ̂S . Hence, |σ̂S | ≤ (f(n) + |σS |(log2 n)2/f(n)) · |Z|. Recall that f(n) = (log2 n)6. Since
|Z| = O(log3 n) by (4), we obtain |σ̂S | = O(log9 n+ |σS |/ logn). J
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If |σS\σ̂S | < |σ̂S |, we obtain the following from (3):

Γ0 + Γ = O
(
Dσ

min(σ) + n+ |σ|+ |σS\σ̂S | log logn+ |σ̂S | log logn+
|σ\σS | log log logn

)
= O

(
Dσ

min(σ) + n+ |σ|+ |σ̂S | log logn+ |σ\σS | log log logn
)

= O
(
Dσ

min(σ) + n+ |σ|+ |σS |+ log9 n log logn+
|σ\σS | log log logn

)
(∵ Claim 5)

= O
(
Dσ

min(σ) + n+ |σ|+ |σ\σS | log log logn
)
.

If |σS\σ̂S | ≥ |σ̂S |, we obtain the following from (3):

Γ0 + Γ = O
(
Dσ

min(σ) + n+ |σ|+ |σS\σ̂S | log logn+ |σ̂S | log logn+
|σ\σS | log log logn

)
= O

(
Dσ

min(σ) + n+ |σ|+ |σS\σ̂S | log logn+ |σ\σS | log log logn
)

= O
(
Dσ

min(σ) + n+ |σ|+ |σ\σS | log log logn
)
.

In the last step above, we use the fact that Dσ
min(σS) = Ω(|σS\σ̂S | log logn), which is true

because each query point in σS \σ̂S lies in a triangle (leaf node) in Dσ
min at depth greater

than log2 log2 n.
As a result, no matter whether |σS\σ̂S | or |σ̂S | is greater than the other, we have Γ0 +Γ =

O (Dσ
min(σ) + n+ |σ| log log logn) = O (OPT + n+ |σ| log log logn) by Lemma 3(ii). J

3.2 Optimal solution
We apply the method in Section 3.1 recursively to obtain a multi-level data structure. To
facilitate the description of this new strategy, we revise our notation as follows. We relabel
each triangulation ∆j and each point location structure Dj in Section 3.1 as ∆1,j and
D1,j . The extra subscript 1 signifies that these are triangulations and structures at the
first level. We use ∆0,1 and D0,1 to denote ∆S and DS , respectively. At any level i ≥ 1,
a new triangulation ∆i,j and a new point location structure Di,j will be constructed from
time to time to replace ∆i,j−1 and Di,j−1. At level 0, ∆0,1 and D0,1 will never be replaced,
and there are no other triangulation and point location structure at level 0. When it is not
important to distinguish the current index j at a level, we use ∆i,∗ and Di,∗ to denote the
current triangulation and point location structure at level i.

We have multiple levels of triangulations and point location structures at any time:
(∆0,1, D0,1), (∆1,∗, D1,∗), . . . , (∆m,∗, Dm,∗), where m is the highest level currently. Let q be
the next query point. We first check if q lies inside BS in O(1) time. If not, we output the
exterior region of S. Suppose that q lies inside BS . We first query Dm,∗ with q. If we fail to
locate a region in S containing q, then we try Dm−1,∗. If that also fails, we try Dm−2,∗ and
so on. The location of q will succeed by D0,1 the latest.

After locating q, we need to update the access frequencies in the triangulations. This
update is important because the frequencies govern how the method in [13] adapts the
point location structures to incoming queries. If q lies outside BS , we do not change any
frequency in any triangulation. If q is located in a triangle that stores a region of S at level
i, we increment the frequency of the triangle in ∆i,∗ that contains q. The frequencies in
triangulations at other levels do not change.

The number of levels increases monotonically as we process σ. The triangulation and
point location structure at each level are rebuilt from time to time. We use i-rebuild to
refer to a rebuild at level i. Use n0 to denote n and define ni = f(ni−1)/ log2 ni−1 for i ≥ 1.
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For any i ≥ 0, if f(ni) query points are located successfully in S by Di,∗ since the last
(i+ 1)-rebuild and no i-rebuild has happened during these f(ni) queries, then we perform a
new (i+ 1)-rebuild. That is, if level i+ 1 does not exist, then we construct ∆i+1,1 from ∆i,∗
and then Di+1,1 for ∆i+1,1; otherwise, if ∆i+1,k and Di+1,k are currently stored at level i+ 1,
then we replace them by constructing ∆i+1,k+1 from ∆i,∗ and then Di+1,k+1 for ∆i+1,k+1.
The construction works as follows.

We extract the subset X of f(ni)(log2 ni)−2 triangles in ∆i,∗ that have the highest
f(ni)(log2 ni)−2 access frequencies in ∆i,∗. Then, we proceed as in Section 3.1.1 to produce
∆i+1,k+1 from X. Details are given below. For each bounded region r of S, we compute
conv(r∩X) and then triangulate it by calling TriReg(conv(r∩X)). This produces O(|r∩X|)
triangles and takes O(|r ∩X| log |r ∩X|) time. Each resulting triangle stores the region id
r. Summing over all bounded regions, we obtain O(|X|) = O(f(ni)(logni)−2) = o(ni+1)
triangles in O(|X| log |X|) = O(ni+1 logni+1) time. Consider the processing of triangles in
X outside S. In a 1-rebuild as described in Section 3.1.1, for each boomerang b between the
boundaries of BS and S, we compute another boomerang shrink(b) ⊆ b. Suppose that there is
a 2-rebuild before the next 1-rebuild. Note that any triangle outside S that is selected in this
2-rebuild must be contained in shrink(b′) for some boomerang b′ between the boundaries of BS
and S. Assume that some triangles lying in shrink(b) are selected. Note that these triangles
belong to the triangulation of shrink(b) produced by SplitBR and TriBR. Since shrink(b) is a
boomerang, there is also a hierarchy on the triangular regions produced by SplitBR as in
Figure 4. As in Section 3.1.1, we first mark the triangular regions in the hierarchy that store
the selected triangles and then mark their ancestors in the hierarchy. The union of the marked
triangular regions is another boomerang shrink(shrink(b)) ⊆ shrink(b) and it is triangulated
by calling SplitBR and TriBR. Each resulting triangle stores the id of the exterior region of S.
Each triangle also stores the id of the triangular region containing it, which is produced by
the call SplitBR(shrink(shrink(b))). Note that shrink(shrink(b)) has O(f(n1)/ logn1) size and
its processing takes O(f(n1)/ logn1) time. In general, in an (i+ 1)-rebuild, the processing of
triangles in X outside S takes O(f(ni)/ logni) = O(ni+1) time and produces at most three
boomerangs of O(ni+1) size and O(ni+1) triangles in these boomerangs.

The triangles computed above may form disconnected components. We apply a plane
sweep in O(ni+1 logni+1) time to connect them with triangles. These extra triangles do not
store any region in S, so query points that fall into them are not located successfully in S. The
resulting triangulation is ∆i+1,k+1. The frequencies of all triangles in ∆i+1,k+1 are initialized
to be zero. We apply Theorem 1 to ∆i+1,k+1 to obtain the point location structure Di+1,k+1.
In summary, the (i+ 1)-rebuild takes O(ni+1 logni+1) time and |∆i+1,k+1| = O(ni+1).

We do not increase the number of levels anymore when the highest level m reaches
the value such that nm < 305 for the first time.2 The triangulation size is O(nm) = O(1).
However, we will still perform i-rebuild for any i ∈ [1,m]. Also, if a query point is located
successfully in S at this highest possible level m, we do not change any frequency in ∆m,∗.
The query time is only O(1) anyway.

I Remark. Let m be the highest level currently. When an i-rebuild is performed for some
i < m, the triangulations at levels i + 1, . . . ,m are unaffected. Query answering will still
start from level m. The selected triangles on which the construction of ∆i+1,∗ was based may
not be related to the selected triangles on which the construction of the new ∆i,∗ is based.

2 This particular choice goes well with the proof of Claim 8.
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I Theorem 6. Let S be a planar convex subdivision with n vertices. There is a point-line
comparison based structure that uses O(n) space and processes any online sequence σ of point
location queries in S in O(n + OPT) time, where OPT is the minimum time required by
any point location linear decision tree for S to process σ. The time bound includes the O(n)
preprocessing time.

Proof. For any online query sequence α, we use Di,j(α) to denote the time needed by Di,j

to process α and Dpre
i,j to denote the preprocessing time to construct both ∆i,j and Di,j .

Define the following subsets of query points:

σi,j = {q ∈ σ : q is located successfully in S using Di,j },
σi = {q ∈ σ : q is located successfully in S at level i},
σ<i = {q ∈ σ : q is located successfully in S at some level less than i}.

By definition, σ =
⋃
i,j σi,j , the σi,j ’s are mutually disjoint, σi =

⋃
j σi,j , and σ<i =

⋃i−1
a=0 σa.

Claim 7 below is analogous to Lemma 3(i) and it can be proved by the same argument.

I Claim 7. For all i ∈ [1,m] and all online query sequences αi,j ⊆ α such that αi,j is the
maximum subsequence of α that can be successfully located in S by Di,j, Di,j(α) +Dpre

i,j =
O(Dσ

min(αi,j) + |∆i,j | log |∆i,j |+ |α\αi,j | logni + |αi,j | log logni).

Let Γi denote the total processing time required by Di,j over all j, including the pre-
processing time Dpre

i,j . Recall that Dpre
i,j = O(|∆i,j | log |∆i,j |) = O(ni logni) for i > 0 and

Dpre
0,1 = O(|∆0,1|) = O(n0). Note that for i > 0, Γi includes the time spent on unsuccessfully

locating some query points in σ<i. By Claim 7, for i ∈ [1,m],

Γi = O
(∑

j

Dσ
min(σi,j) +

∑
j

ni logni + |σ<i| logni +
∑
j

|σi,j | log logni
)

= O
(
Dσ

min(σi) +
∑
j

ni logni + |σ<i| logni + |σi| log logni
)
.

By Theorem 2, Γ0 = D0,1(σ0) +O
(
|∆0,1|

)
= O

(
Dσ

min(σ0) + n0 + |σ0| log logn0
)
. Therefore,

m∑
i=0

Γi = O
( m∑
i=0

Dσ
min(σi) + n0 +

m∑
i=1

∑
j

ni logni +
m∑
i=0
|σi| log logni +

m∑
i=1
|σ<i| logni

)
.

Since ∆i,j is constructed after answering f(ni−1) new queries using Di−1,∗, the preprocessing
time of O(ni logni) = o(f(ni−1)) for constructing ∆i,j and Di,j can be charged to these new
queries. So

∑m
i=1
∑
j ni logni can be charged to the queries in σ, i.e.,

∑m
i=1
∑
j ni logni =

O(|σ|). We rewrite the term
∑m
i=1 |σ<i| logni =

∑m−1
i=0 (|σi|

∑m
l=i+1 lognl).

I Claim 8. For all i ∈ [0,m− 1],
∑m
l=i+1 log2 nl < 35 log2 log2 ni.

Consequently,

m∑
i=0

Γi = O
( m∑
i=0

Dσ
min(σi) + n+ |σ|+

m∑
i=0
|σi| log logni +

m−1∑
i=0
|σi| log logni

)
= O

(
Dσ

min(σ) + n+ |σ|+
m∑
i=0
|σi| log logni

)
. (5)
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Define the following quantities:

σ̂i,j =
{
q ∈ σi,j : q lies in some leaf node of Dσ

min at depth log2 log2 ni or less
}
,

σ̂i =
⋃
j

σ̂i,j

Claim 9 below is analogous to Claim 5 in the proof of Lemma 4. It also has a similar proof.

I Claim 9. |σ̂i,j | = O(log9 ni + |σi,j |/ logni).

By Claim 9,

|σ̂i| =
∑
j

|σ̂i,j | = O
(∑

j

log9 ni + |σi|/ logni
)
. (6)

If |σi\σ̂i| ≥ |σ̂i|, then

|σi| log logni = |σi\σ̂i| log logni + |σ̂i| log logni = O(|σi\σ̂i| log logni)
= O(Dσ

min(σi)).

In the last step above, we use the fact that Dσ
min(σi) = Ω(|σi\σ̂i| log logni), which is true

because each query point in σi\σ̂i lies in a triangle (leaf node) in Dσ
min at depth greater than

log2 log2 ni. If |σi\σ̂i| < |σ̂i|, then

|σi| log logni = |σi\σ̂i| log logni + |σ̂i| log logni = O(|σ̂i| log logni)

= O
(∑

j

log9 ni log logni + |σi|
)
. (∵ (6))

= O
(∑

j

ni + |σi|
)
.

Combining the two cases above and the fact thatDσ
min(σi) = Ω(|σi|), we obtain |σi| log logni =

O
(
Dσ

min(σi) +
∑
j ni
)
. Substituting this equation into (5) gives

m∑
i=0

Γi = O
(
Dσ

min(σ) + n+ |σ|+
m∑
i=0

Dσ
min(σi) +

m∑
i=0

∑
j

ni

)
.

We have shown previously that
∑m
i=1
∑
j ni logni = O(|σ|). Note that

∑
j n0 = n0 = n as

there are only one triangulation and one structure at level 0. Also,
∑m
i=0 D

σ
min(σi) = Dσ

min(σ)
andDσ

min(σ) = Ω(|σ|). Therefore, by Lemma 3(ii),
∑m
i=0 Γi = O

(
Dσ

min(σ)+n
)

= O(OPT+n).
To bound the size of our data structure, observe that ∆i,j and Di,j have O(ni) size

and (∆i,j , Di,j) replace (∆i,j−1, Di,j−1). Therefore, the total size is O(
∑m
i=0 ni). Since

ni = O(f(ni−1)/ logni−1) = O(log5 ni−1), it is clear that ni = O(n/2i−1) by an inductive
argument. As a result, the total size is O(

∑m
i=0 ni) = O(

∑m
i=0 n/2i−1) = O(n). J

4 Planar connected subdivision

We describe a point location structure for a connected subdivision S with n vertices. It uses
O(n) space and processes any online query sequence σ in O(|σ| log logn+ n+ OPT) time.

We need a balanced geodesic triangulation of a simple polygon P [7]. Let k be the number
of vertices of P . Pick three vertices v1, vk/3, v2k/3 of P (which divide the boundary of P into
chains of roughly equal sizes). The three geodesic paths among v1, vk/3, v2k/3 bound the
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(a) (b) (c)

Figure 5 (a) Kite and the geodesic triangle inside (shown shaded). (b) Divide into triangles and
boomerangs. (c) Triangulation.

so-called kite. Refer to Figure 5(a) for an example. The part of the kite with an non-empty
interior is a geodesic triangle τ , whose boundary consists of three reflex chains. Next, compute
the geodesic paths from v1 and vk/3 to vk/6, the middle vertex in the chain between v1 and
vk/3. This creates another kite joining v1, vk/6 and vk/3 and hence another geodesic triangle
τ ′ inside this kite. The same process is repeated to other parts of P recursively. In the end,
we obtain a balanced geodesic triangulation, which can be computed in O(|P |) time [7].

We simulate the decomposition as sketched in Section 2 using balanced geodesic triangu-
lations. Let conv(S) denote the convex hull of S. We divide the exterior face of conv(S) into
triangles as described in Section 2. Each region r inside conv(S) is a simple polygon. We first
compute a balanced geodesic triangulation ∆̃r of r. We triangulate each geodesic triangle τ
in ∆̃r as follows. We shoot two rays inward from each vertex of τ . They intercept each other
and form four triangles. Figure 5(b) shows an example. These four triangles are surrounded
by three boomerangs. The boomerangs are triangulated as described in Section 3.1, and this
process places O(logn) vertices on the boundaries of three of the triangles in the middle. We
connect these vertices to triangulate these three triangles. Figure 5(c) shows an example.
This complete the triangulation of τ . The triangulations of all geodesic triangles in ∆̃r form
the triangulation ∆r. Any triangle that lies in r intersects O(log2 n) triangles in τ , implying
that any triangle that lies in r intersects O(log3 n) triangles in ∆r. The collection of all
triangles obtained above form the triangulation ∆S . It takes O(n) time to compute ∆S . We
apply Theorem 1 to ∆S to obtain a point location structure DS .

Define Dσ
min for S as in Section 3.1.3. A leaf of Dσ

min corresponds to a triangle t that lies
in a region r of S, so t intersects O(log3 n) in ∆S . It means that we can expand the leaf
nodes of Dσ

min into linear decision subtrees of height O(log logn) so that the expanded linear
decision tree D′ takes Dσ

min(σ) +O(|σ| log logn) time to locate the query points in σ in ∆S .
The total processing time by DS (including the preprocessing time) is DS(σ) +O(n), which
by Theorem 1 is O(D′(σ) +n) = O(Dσ

min(σ) +n+ |σ| log logn) = O(OPT +n+ |σ| log logn).

I Theorem 10. Let S be a planar connected subdivision with n vertices. There is a point-line
comparison based data structure that uses O(n) space and processes any online sequence σ of
point location queries in S in O(|σ| log logn+ n+ OPT) time, where OPT is the minimum
time needed by any point location linear decision tree for S to process σ. The time bound
includes the O(n) preprocessing time.

5 Conclusion

The performance of our data structure is asymptotically optimal when compared with static
point location linear decision trees. It is an open problem to obtain optimal performance when
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compared with linear decision trees that may reorganize themselves. This open problem may
be difficult as it is related to the dynamic optimality conjecture by Sleator and Tarjan [17],
which conjectures that the performance of a splay tree is no more than O(n) plus a constant
times the time required by any binary search tree algorithm. The dynamic optimality
conjecture is still open after over thirty years.
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