
WCET-Driven Dynamic Data Scratchpad
Management With Compiler-Directed
Prefetching∗

Muhammad R. Soliman1 and Rodolfo Pellizzoni2

1 University of Waterloo, Waterloo, ON, Canada
mrefaat@uwaterloo.ca

2 University of Waterloo, Waterloo, ON, Canada
rpellizz@uwaterloo.ca

Abstract
In recent years, the real-time community has produced a variety of approaches targeted at man-
aging on-chip memory (scratchpads and caches) in a predictable way. However, to obtain safe
WCET bounds, such techniques generally assume that the processor is stalled while waiting to
reload the content of the on-chip memory; hence, they are less effective at hiding main memory
latency compared to speculation-based techniques, such as hardware prefetching, that are largely
used in general-purpose systems. In this work, we introduce a novel compiler-directed prefetch-
ing scheme for scratchpad memory that effectively hides the latency of main memory accesses by
overlapping data transfers with the program execution. We implement and test an automated
program compilation and optimization flow within the LLVM framework, and we show how to
obtain improved WCET bounds through static analysis.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems

Keywords and phrases scratchpad, LLVM, prefetching, real-time, genetic algorithm

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.24

1 Introduction

The performance of computer programs can be significantly affected by main memory latency,
which has largely remained similar in recent years [18]. As a consequence, cache prefetching
has been extensively researched in the architecture community [16]. Prefetching techniques
incorporate hardware and/or software to hide cache miss latency by attempting to load
cache lines from main memory before they are accessed. The essence of these techniques is
speculation of the data locality and the cache behavior, which makes them unsuitable to
provide Worst-Case Execution Time (WCET) guarantees for real-time programs.

In the context of real-time systems, there has been significant attention to the management
of on-chip memory in recent times. In particular, a large number of allocation schemes for
scratchpad memories have been proposed in the literature; compared to caches, ScratchPad
Memory (SPM) requires an explicit management of transfers from/to main memory. We
note that cache memories can also be managed in a predictable manner similar to SPM, for
example employing cache locking [9]. These techniques allow the derivation of tighter WCET

∗ This work was supported in part by NSERC DG 402369-2011 and CMC Microsystems. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the sponsors.

© Muhammad R. Soliman and Rodolfo Pellizzoni;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 24; pp. 24:1–24:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 WCET-Driven Data SPM Management With Compiler-Directed Prefetching

bounds by statically determining if a memory instruction will access the on-chip memory or
the main memory. However, they do not solve the fundamental memory latency problem,
because they generally assume that the core is stalled while the content of on-chip memory
is reloaded.

To address such issue, in this paper we present a novel compiler-directed prefetching
scheme that optimizes the allocation of program data in on-chip memory with the objective
to minimize the WCET. Our method relies on a Direct Memory Access (DMA) controller to
move data between on-chip memory and main memory. Compared to related work, we do
not stall the program while transferring data; instead, we rely on static program analysis to
determine when the data is used in the program, and we prefetch it into the on-chip memory
ahead of its use so that the time required for the DMA transfer can be overlapped with the
program execution. As we show in our evaluation, for certain benchmarks our solution allows
to efficiently reduce the stall time due to memory latency. More in details, we provide the
following contributions:

We describe an allocation mechanism for SPM that manages DMA transfers with minimum
added overhead to the program. For simplicity and as a proof of concept, we implement
our mechanism using a dedicated SPM controller, but we argue that a similar scheme
could be supported by other platforms with the required DMA functionality. To statically
determine which accesses target the SPM, we introduce a program representation and
allocation constraints based on refined code regions.
We develop an allocation algorithm for data SPM that takes into account the overlap
between DMA transfers and program execution.
We show how to model the proposed mechanism in the context of static WCET analysis
using a standard data-flow approach for processor analysis.
We fully implement all required code analysis, optimization and transformation steps
within the LLVM compiler framework [12], and test it on a collection of benchmarks.
Outside of loop bound annotations, our prototype is able to automatically compile and
optimize the program without any programmer intervention.

The rest of the paper is organized as follows. We recap related work in Section 2. We
then introduce a motivating example in Section 3. We detail the region-based program
representation in Section 4, and our proposed allocation mechanism in Section 5. Section 6
discusses the allocation algorithm, and Section 7 introduces the WCET abstraction for our
prefetch mechanism. Finally, we present the compiler implementation in Section 8 and
experimental results in Section 9, and provide concluding remarks in Section 10.

2 Related Work

SPM management has been widely explored in the literature, both for code and data
allocation. We focus on data SPM as it drew more attention in the literature due to the
challenges connected to data usage analysis and optimization. Many approaches target
improving the average case performance [17, 24, 2, 29, 5, 7]. Other mechanisms optimize the
allocation for WCET in real-time systems [21, 26, 11, 6]. In general, management techniques
are divided between static or dynamic. Static methods partition the data memory between
SPM and main memory with fixed allocation of the SPM at compile-time [2, 21]. On the
other hand, dynamic methods adapt to the changing working data set of the program by
moving objects between SPM and main memory during run-time [17, 24, 6, 7, 26, 29]. Since
our proposed scheme allows us to more efficiently hide the cost of data transfers, we focus on
dynamic allocation.

M.R. Soliman and R. Pellizzoni 24:3

The closest related work in the scope of dynamic methods for data SPM are [29, 5, 8],
which apply prefetching through DMA. In [29], the authors proposed a data pipelining
technique for SPM that utilizes DMA to achieve data parallelization for multiple iterations
of a loop based on the iteration access patterns of arrays. The work in [5] proposes a
general prefetching scheme for on-chip memory. It exploits the usage of DMA priorities and
pipelining to prefetch arrays with high reuse to minimize the energy and maximize average
performance. In [8], the authors add a dedicated DMA engine to the processor to control the
DMA transfers using a job queue, similarly to the mechanism proposed in our work. They
also provide high level functions to manage the DMA. However, no optimized allocation
scheme is discussed. Furthermore, all three discussed works target the average case rather
than the worst case.

In the context of real-time systems, the closest line of work is the PRedictable Execution
Model (PREM) [19, 22, 3]. Under PREM, the data and code of a task are fetched into
on-chip memory before execution, preferably using DMA. A variety of co-scheduling schemes
(see for example [15, 1]) have been proposed to avoid stalling the processor by scheduling the
DMA operations for one task with the execution of another task on the same core. However,
we argue that such approaches suffer from three main limitations, that we seek to lift in this
work.
1. Statically loading all data and code before the beginning of the program severely limits

the flexibility and precision of the allocation.
2. DMA transfers cannot be overlapped with the execution of the same task, only other

tasks. This makes the proposed approaches less suitable for many-core systems, where it
might be preferable to execute a single task/thread on each core.

3. With the exception of [14], the proposed approaches assume manual code modification,
which we find unrealistic in practice. An automated compiler tool-chain is described
in [14], but since it relies on profiling, it cannot guarantee WCET bounds.

3 Motivating Example

In this section, we present an example that shows the benefit of data prefetching in SPM-
based systems. Given a set of data objects used by a program, the general SPM allocation
problem is to determine which subset of objects should be allocated in SPM to minimize
the WCET of the program. Since the latency of accessing an object in the SPM is less than
in main memory, we can compute the benefit in terms of WCET reduction for each object
allocated in the SPM. We model the program’s execution with a Control Flow Graph (CFG)
where nodes represent basic blocks, i.e., straight-line pieces of code.

In particular, Figure 1 shows the CFG of a program where object x is read/modified in
basic blocks BB2 and BB4 and object y is read in BB4. Note that BB2 and BB4 are loops,
since they include back-edges (i.e., the program execution can jump back to the beginning of
the block); hence, x and y can be accessed many times. Assume that the SPM can only fit x
or y. A static SPM allocation approach will choose to allocate either x or y for the whole
program execution. A dynamic SPM allocation approach will try to maximize the benefit by
possibly evicting one of the two objects to fit the other during the program execution.

Let the benefit of accessing x from the SPM instead of the main memory be 100 cycles
for BB2 and 10 cycles for BB4. Similarly, the benefit of accessing y from the SPM in BB4
is 70 cycles. Let the cost to transfer x from main memory to the SPM or vice-versa be
20 cycles, and the cost for y be 40 cycles. Then, for static allocation, the total benefit of
allocating x is 100 + 10 = 110 cycles and the cost is 2*20 cycles (fetch x from memory to

ECRTS 2017

24:4 WCET-Driven Data SPM Management With Compiler-Directed Prefetching

DMA_COPY(x)

BB1

BB2

BB3

BB4

CHECK_DMA(x)

DMA_COPY_BACK(x)
DMA_COPY(y)

CHECK_DMA(x)
CHECK_DMA(y)

Stall = 0

Stall = 20

With PrefetchWithout Prefetch

y

BB5

COPY_BACK(x)

COPY(x)

COPY(y)

Stall = 20

Stall = 20

x

x

Stall = 40

DMA(x)

DMA(y)

DMA(x)

Figure 1 Motivating Example.

SPM at the beginning of the program and write it back from SPM to main memory at the
end). Similarly, the benefit for allocating y is 70 cycles and the cost is 40 cycles (fetch only
as y is not modified, so there is no need to write it back to main memory). The optimal
allocation would choose x as it has a net benefit of 70 cycles versus 30 cycles for y.

In previous approaches that adopt dynamic allocation, the program execution has to be
interrupted to transfer objects either using a software loop or a DMA unit. We represent
this case in the without prefetch box in Figure 1. In the example, x is fetched before BB2
and written back after BB2 to empty the SPM for y. Then, y is fetched before BB4. Since
x is allocated in the SPM for BB2 and y is allocated for BB4, this results in a total benefit
of 100 + 70 = 170. The program will stall before BB2 to fetch x, after BB2 to write-back x,
and before BB4 to fetch y resulting in total cost of 20 + 20 + 40 = 80 cycles. The net benefit
is 170− 80 = 90 cycles, which is 20 cycles better than the static allocation.

However, if memory transfers can be parallelized with the execution of the program,
we next show that we can exploit the SPM more efficiently. We illustrate the prefetching
sequence in the with prefetch box in Figure 1. Let us assume that the amount of execution
time that can be overlapped with DMA transfers is 30 and 40 cycles for BB1 and BB3,
respectively. We start prefetching x before BB1 by configuring the DMA to copy x from
main memory to SPM. Then, we poll the DMA before BB2 where x is first used to ensure
that the transfer has finished. Since transferring x requires less cycles than the maximum
overlap for BB1 (20 versus 30), the prefetch operation for x finishes in parallel with the
execution of BB1; hence, there is no need to stall the program before x can be accessed
from the SPM in BB2. Before BB3, we first write-back x so that we have enough space
in the SPM to then prefetch y. We propose to schedule both transfers back-to-back, e.g.
using a scatter-gather DMA, in parallel with the execution of BB3. Since the amount of
overlap for BB3 is 40, the write-back for x completes after 20 cycles, leaving 20 additional
cycles of overlap for the prefetch of y. Hence, by the time BB4 is reached, the CPU stalls
for 40− 20 = 20 cycles to complete prefetching y before using it in BB4. For the described
prefetching approach, the benefit is the same as the dynamic allocation. However, the cost is
lower as the CPU only stalls for 20 cycles. The net benefit is 170−20 = 150 cycles, compared
to 90 cycles without prefetching.

M.R. Soliman and R. Pellizzoni 24:5

4 Region-Based Program Representation

The motivating example shows that the cost of copying objects between main memory and
SPM can be reduced by overlapping DMA transfers with program execution. However, to
achieve a positive benefit, we also need to predict whether any given memory access targets
the SPM rather than main memory. In general, programs contain branches and function
calls, making such determination possibly dependent on the execution path. To produce
tight WCET bounds, a fundamental goal of our approach is to statically determine which
memory accesses are in the SPM regardless of the flow through the program. To achieve this
objective, in this section we consider a program representation based on code regions [10]
and we add constraints on how objects can be allocated in the SPM based on regions.

We consider a program composed of multiple functions. Let Gf = (Nf , Ef) be the CFG
for function f , where Nf is the set of nodes representing basic blocks and Ef is the set of
edges. A Single Entry Single Exit (SESE) region is a sub-graph of the CFG that is connected
to the remaining nodes of the CFG with only two edges, an entry edge and an exit edge. A
region is called canonical if there is no set of regions that can be combined to construct it.
Any two canonical regions are either disjoint or completely nested. The canonical regions of
a program can be organized in a region tree such that the parent of a region is the closest
containing region, and children of a region are all the regions immediately contained within
it. Two regions are sequentially composed if the exit of one region is the entry of the following
region. Note that a basic block with multiple entry/exit edges does not construct a region
by itself.

Figure 2a shows an example CFG and its canonical regions. The corresponding region
tree is shown in Figure 2b. In this example, region r1 is the parent of regions r2, r3 and r4.
Regions r2 and r3 are sequentially composed; this is represented by a solid-line box in the
figure.

In the rest of the paper, we use the term allocation to refer to the act of reserving a space
for an object in the SPM at a given address during the execution of the program code. In
our solution, we restrict the allocation of objects on a per-region basis: space for an object is
reserved upon entering a region, and the object is then evicted from the SPM upon exiting
the same region. This guarantees that the object is available in the SPM independently of
which path the program takes through the region; as an example, if we allocate object x in r1,
then we statically know that any reference to x in BB5 will access the SPM independently
of whether the program flows through BB2 −BB3 or BB4, or of how many iterations of the
loop in BB3 are taken.

Unfortunately, the proposed region-based allocation has two limitations: (1) we cannot
allocate an object in BB1 only, because BB1 is not a region; (2) in the example, BB4
performs a call to another function g(). Since the entirety of BB4 is a region, we cannot
decide to allocate an object only for the call to g(), or only for the rest of the code of BB4.
To address these limitations, we propose to construct a refined region tree that allows a finer
granularity of allocation.

To obtain the refined regions, we first construct a modified graph Ḡf = (N̄f , Ēf) from
Gf , where N̄f is the set of basic block nodes, call nodes and merge/split nodes and Ēf is
the set of edges such that:

Each call to a function in Gf is split into a separate call node.
A merge/split node is inserted before/after a basic block/call node with multiple entry/
exit edges.

Note that after the transformation, every node in Ḡf that is not a merge/split node has a
single entry and a single exit; hence, it is a region. We denote a region that consists of a

ECRTS 2017

24:6 WCET-Driven Data SPM Management With Compiler-Directed Prefetching

BB4

BB2

BB3

BB5

BB1

r2

r1

r4

r3

g()

(a) Program CFG

r1

r2 r3 r4

(b) Region tree

Figure 2 Program CFG Gf and region tree.

BB4b

BB2

BB3

BB5

BB1

r2

r1

r3
BB4a

g()

r'8

r'5

r4r'7

r'11

r'6

r'9

r'10

(a) Refined program CFG

r1

r'5 r'6 r'11

r4r'7

r'10r2 r3

r'8

r'9

(b) Refined region tree

Figure 3 Refined program CFG Ḡf and region tree.

sequence of sequentially composed regions as a sequential region. A sequential region is not
canonical as it is constructed by combining other regions. Finally, we construct the refined
region tree by considering both canonical regions and maximal sequential regions, i.e., any
sequential region that encompasses a maximal sequence of sequentially composed regions. It
is proved in [25] that adding maximal sequential regions to the tree still results in a unique
region tree.

Figure 3 shows the refined CFG and region tree for the example in Figure 2. We added
merge points before BB3 and BB5, and split points after BB1 and BB3. Assuming that
function g() is called at the beginning of BB4, we split BB4 to a call node BB4a that
contains the function call and a basic block BB4b for the rest of the instructions in BB4. In
the refined region tree in Figure 3b, regions r1 to r4 are the same as in the original region
tree, while regions r′5 to r′11 are added as a result of the refinement process. Regions r1, r′7
and r4 are sequential regions. We refer to r′9 as a call region as it contains the call node
BB4a. Finally, we use the term trivial region to denote any leaf of the refined region tree
(r′5, r′11, r2, r′8, r′9 and r′10 in the example); note that by definition, each trivial region must
comprise either a single basic block or a single call node, i.e., trivial regions represent code
segments in the program. Since allocations are based on regions, for simplicity we will omit
individual nodes when representing CFGs and instead draw regions.

M.R. Soliman and R. Pellizzoni 24:7

5 Allocation Mechanism

We now present our proposed allocation mechanism in detail. In the rest of the paper, we
assume the following:

We focus solely on the allocation of data SPM, as it is generally more challenging. We
assume a separate instruction SPM that is large enough to fit the code.
The allocation is object-based, meaning that we do not allow allocation of parts of an
object. Data pipelining techniques for loops and field-based allocation for data structures
could further improve the allocation, especially for small sizes of SPM. We keep this
possible expansion to future work.
We assume that the target program does not use recursion or function pointers and that
local objects have fixed or bounded sizes. We argue that these assumptions conform with
standard conventions for real-time applications.
We assume that all loops in the program are bounded. The bounds can be derived using
compiler analysis, annotations or profiling.
We consider global and stack objects only for allocation. We rely on pointer analysis to
determine the references of the load/store instructions. For stack objects, we convert
large local objects to global objects before allocation as we discuss in Section 8. While
our method can be extended to handle dynamic pointers as shown in technical report [20],
we do not discuss it here due to space constraints.
For simplicity, we consider a system comprising a single core running one program with
no preemption. However, the proposed method could be extended to a multicore system
supporting a predictable arbitration for main memory as long as each core is provided
with private or partitioned SPM.

As discussed in the motivating example, to efficiently manage the dynamic allocation
of multiple objects we require a DMA unit capable of queuing multiple operations. In
general, many commercial DMA controllers with scatter-gather functionality support such
requirement, albeit the complexity of managing the DMA controller in software could increase
with the number of transfers. As a proof of concept, we based our implementation on a
dedicated unit, which we call the SPM controller ; we reserve implementation on a COTS
platform as future work 1.

Our proposed mechanism works by inserting allocation commands in the code of the
program, which are then executed by the SPM controller. The process of allocating an
object starts with reserving space in the SPM and prefetching the object from main memory
if necessary (ALLOC command). Then, once the prefetch operation is complete, the SPM
address is read and passed to the memory references that access the object (GETADDR
command). Finally, the object is evicted from the SPM and written back to main memory
if necessary (DEALLOC command). As discussed in Section 4, we restrict object allocation
based on regions; hence, the ALLOC command is always inserted at the beginning of a region,
and the corresponding DEALLOC command at the end of the same region. In the rest of the
section, we first detail the operation of the SPM controller, followed by the semantic of the
allocation commands. Finally, we provide a comprehensive allocation example.

1 For example, the Freescale MPC5777M SoC used in previous work [22] includes both SPM memory and
a dedicated I/O processor that could be used to implement the described management functionalities.

ECRTS 2017

24:8 WCET-Driven Data SPM Management With Compiler-Directed Prefetching

CPU

SPM
Controller

DMA D-SPMMemory

I-SPM

DMA Queue

Object Table
Control

Unit

CPU

DMA

CMD Decoder

Figure 4 SPM-based System.

5.1 SPM controller
Figure 4 shows the proposed SPM controller and its connections to an SPM-based system.
There is a separate instruction SPM (I-SPM) that is assumed to fit the code of the program.
The data SPM (D-SPM) is managed by the SPM controller. Since the processor must
be able to access the SPM directly, the SPM is assigned an address range distinct from
main memory. The SPM controller is also a memory mapped unit, since the CPU sends
allocation commands to the SPM controller by reading/writing to its address range. Note
that we assume physical memory addresses in this implementation, i.e., no virtual address
mapping is used. The system incorporates a DMA unit for memory transfers. The D-SPM is
assumed to be dual-ports, which means that access to the SPM by the CPU and transferring
data between SPM and main memory using DMA can occur simultaneously. The proposed
allocation method and WCET analysis can be applied for single-port SPM, but this will
offer less opportunity to overlap the memory transfers. The DMA is connected to a shared
bus with the main memory. This bus can be used by either the CPU or the DMA. To
efficiently support the parallelization of memory transfers with the execution time, the DMA
is designed to work in transparent mode: it transfers an object only when the CPU is not
using the main memory. Whenever the CPU requests the memory bus, the DMA yields to
the request and stalls any ongoing transfer until the memory bus is released.

The SPM controller consists of command decoder, object table, DMA queue and control
unit as shown in Figure 4. As discussed, allocation commands are encoded as load/store
instructions to the SPM controller. So, the command decoder reads the address and the
data of the memory operation and decodes them into one of the allocation commands; the
control unit then executes the command using the object table and the DMA queue.

The object table tracks the state of the program objects. Note that only the subset
of program objects that can be allocated in the SPM are tracked by the object table. An
object table with 32 entries is sufficient in our tests. However, if the number of objects in
the program exceeds the number of entries in the object table, the object table can hold only
the allocated objects at each program point. An entry in the object table contains the main
memory address, the size of the object, the SPM address and allocation flags that reflect the
status of the object:

A (A)llocated in the SPM
PF_OP (P)re(F)etching (OP)eration has been scheduled
WB_OP (W)rite-(B)ack (OP)eration has been scheduled
WB (W)rite-(B)ack the object when de-allocated if it is used
U (U)sed in the SPM
USERS number of current users of the object

The USERS field records the number of allocations that have issued an ALLOC command
for the object and are still using the object in the SPM, i.e., the corresponding DEALLOC

M.R. Soliman and R. Pellizzoni 24:9

has not been reached. It is incremented by ALLOC and decremented by DEALLOC . We show
an example for the usage of this field in Section 5.3. The DMA is configured with source
address, size and destination address extracted from an entry in the object table. DMA
operations are added to the DMA queue that allows scheduling multiple memory transfers
and executing them in FIFO order.

5.2 Allocation Commands
ALLOC command reserves the space in the SPM and schedules a DMA transfer if necessary.
The command has the following syntax: ALLOC.XX (TBL_IDX, MEM_ADDR) , where TBL_IDX
is the table index for the object and MEM_ADDR is the allocation address in the SPM. There
are four versions of ALLOC.XX command according to the directives XX : ALLOC , ALLOC.P ,
ALLOC.W , ALLOC.PW . The P directive directs the controller to prefetch the object from
main memory. The SPM controller will schedule a prefetch transfer for the object and set
PF_OP flag in the object entry. If the P directive is not used, the object is allocated directly
and flag A is set. Otherwise, flag A is set once the prefetch transfer completes. The W
directive sets the WB flag in the object entry which directs the controller to copy back the
object to the main memory when de-allocated. The P directive is used in two cases: (1) if,
during the execution of the region where the object is allocated, the current value of the
object is read or (2) the object is partially modified, e.g. writing some elements of an array.
The W directive is used if the object is modified, so that the main memory is updated with
the new values after de-allocating the object. Note that for local objects defined in a function,
there is no need to prefetch the object before its first use in the function or write-back the
object after its last use in the function.

DEALLOC command de-allocates the object in table index TBL_IDX from the SPM:
DEALLOC (TBL_IDX) . If the WB and U flags are set in the object entry at TBL_IDX , the
controller will schedule a write-back transfer, set WB_OP flag and reset A flag. Otherwise, the
object will be de-allocated by simply resetting A flag.

GETADDR command returns the current address of the object associated with entry
TBL_IDX in the object table: GETADDR (TBL_IDX) . If PF_OP or WB_OP flag is set in the
table index TBL_IDX , the controller stalls until the DMA completes transferring the object.
If no transfer is scheduled or after the transfer finishes, the controller returns the SPM address
if A flag is set and the main memory address otherwise. GETADDR command is only added
before the first use of the object after an allocation/de-allocation. The address returned by
the command is then applied for all the next uses until another allocation/de-allocation occurs.
This process is compiler-automated and does not require per-access address translation from
main memory to SPM addresses, as in related work [26]; hence, we do not add extra overhead
to the critical path of the processor.

If a prefetch transfer has been scheduled and a DEALLOC command is issued for the
object to be prefetched, the transfer is canceled as the object is not needed anymore. Also, if
a write-back transfer has been scheduled for an object and it was followed by ALLOC.XX for
the same object, the transfer is canceled if the object is allocated to the same SPM address,
otherwise the transfer is not canceled. This is particularly important for allocations within
loops, when the object can be allocated to the same address over multiple iterations.

5.3 Example
Figure 5 shows an allocation example for two objects x and y corresponding to entries 3
and 5 in the object table. Figure 5a shows the CFG of two functions where r1-r10 represent

ECRTS 2017

24:10 WCET-Driven Data SPM Management With Compiler-Directed Prefetching

PF(x)

PF(x)

WB(y)

WB(y)

r2

r3

r4

r5

r6

r8

r9

r10

DEALLOC(3)

GETADDR(3)

DEALLOC(5)

GETADDR(5)
ALLOCW(5,a1)

ALLOCP(3,a1)

2

7

6

1

y

x

f()

f()

ALLOCP(3,a2)

GETADDR(3)

DEALLOC(3)
x

5

4

3 8

9

10

r1
r7

(a) Allocation Process

0x2000 80 a1 0 1 0 0 0 13

0x1000 40 0 0 0 0 0 05

0x2000 80 a1 0 1 0 0 0 13

0x1000 40 0 0 0 0 0 05

MM_ADDR SIZE SPM_ADDR A PF_OP WB_OP WB U USERSIDX MM_ADDR SIZE SPM_ADDR A PF_OP WB_OP WB U USERSIDX

0x2000 80 a1 1 0 0 0 1 13

0x1000 40 0 0 0 0 0 05

0x2000 80 a1 1 0 0 0 1 13

0x1000 40 0 0 0 0 0 05

0x2000 80 a1 1 0 0 0 1 23

0x1000 40 0 0 0 0 0 05

0x2000 80 a1 1 0 0 0 1 23

0x1000 40 0 0 0 0 0 05

0x2000 80 a1 1 0 0 0 1 23

0x1000 40 0 0 0 0 0 05

0x2000 80 a1 1 0 0 0 1 23

0x1000 40 0 0 0 0 0 05

0x2000 80 a1 1 0 0 0 1 13

0x1000 40 0 0 0 0 0 05

0x2000 80 a1 1 0 0 0 1 13

0x1000 40 0 0 0 0 0 05

0x2000 80 0 0 0 0 0 03

0x1000 40 a1 1 0 0 1 1 15

0x2000 80 0 0 0 0 0 03

0x1000 40 a1 1 0 0 1 1 15

0x2000 80 a2 0 0 0 0 0 03

0x1000 40 a1 0 0 1 0 0 05

0x2000 80 a2 0 0 0 0 0 03

0x1000 40 a1 0 0 1 0 0 05

0x2000 80 a2 0 1 0 0 0 13

0x1000 40 a1 0 0 1 0 0 05

0x2000 80 a2 0 1 0 0 0 13

0x1000 40 a1 0 0 1 0 0 05

0x2000 80 a2 1 0 0 0 1 13

0x1000 40 0 0 0 0 0 05

0x2000 80 a2 1 0 0 0 1 13

0x1000 40 0 0 0 0 0 05

0x2000 80 a2 0 0 0 0 0 03

0x1000 40 0 0 0 0 0 05

0x2000 80 a2 0 0 0 0 0 03

0x1000 40 0 0 0 0 0 05

2

3

4

5

6

7

8

9

1

10

(b) Object Table: Entries (3 , 5)

2

3

4

5

6

7

8

9

1

10

PF(x)PF(x)PF(x)

WB(y)WB(y)WB(y)

WB(y)WB(y)PF(x) WB(y)PF(x)

(c) DMA Queue

Figure 5 Allocation Example.

regions. x is read in r3 and r9, and y is written in r5. Note that function f , comprising
regions r7 to r10, is called from two different call regions, r4 and r6. In the example, we
assume that x is allocated at address a1 in the SPM in sequentially composed regions r2, r3
and r4. Then, it is evicted to empty enough space for y to be allocated in r5. However, x is
also allocated inside function f at a different address a2. Note that f could also be called
from other, non represented call regions in the program, and assigning address a2 to x might
be required to fit x in the SPM together with other objects allocated in the unrepresented
call regions.

We use program points ¶ to ¿ to follow the allocation process. Entries 3 and 5 of
the object table are traced in Figure 5b; and the DMA queue is shown in Figure 5c. At ¶,
x is allocated to address a1 with P directive. In the object table, PF_OP is set to indicate
x is being prefetched and USERS is incremented. A prefetch transfer PF (x) is scheduled in

M.R. Soliman and R. Pellizzoni 24:11

the DMA queue. At ·, GETADDR (3) checks entry 3 for the address; if PF (x) has not
finished at this point, the CPU stalls until the prefetch finishes; then x is allocated, PF_OP is
reset, and A is set; and the CPU continues execution. Also, U is set to mark x as used in
the SPM. In r4, function f is called. At ¸, an allocation of x to a2 is issued; however, x is
already in the SPM at address a1. So, no new allocation at a2 is performed, and USERS is
incremented in entry 3 to indicate that two ALLOC commands (users) have been executed
for x. GETADDR (3) at ¹ returns a1. When x is deallocated at º, USERS is decremented in
entry 3 . However, x is not evicted as there is another user for it. When x is deallocated at
», x is evicted as this is the last user of x in the SPM. There is no need to write-back x as
WB was not set. y is also allocated to a1 at » with W directive. So, no prefetch is scheduled
and flags A and WB are set in entry 5 . Before y is used in r5, GETADDR (5) is executed
which sets U flag in entry 5 and returns address a1. At ¼, y is deallocated and a write-back
transfer is scheduled as both WB and U flags are set. f is called again in r6. At ½, a prefetch
is issued for x to a2. The DMA queue will have both WB(y) and PF (x) scheduled. At ¾,
WB(y) has finished while PF (x) is still ongoing. The execution is stalled until the prefetch
for x is complete, then GETADDR (3) returns a2. Finally at ¿, x is deallocated.

An essential observation is that the state of the SPM and the sequence of DMA operations
in function f depend on which region calls f : if f is called from r4, then x is already available
in SPM at address a1, and the allocation to a2 is not used. If instead f is called from r6, x
is allocated to a2 and the object must be prefetched from main memory. Therefore, let σ be
the context under which a region executes, i.e., the sequence of call regions starting from the
main function; note that since the main function of the program is not called by any other
function, the only valid context for regions in the main is σ = ∅. We denote the execution
of a region rn in a context σ as rσn, which we call a region-context pair. Then, allocation
decisions, which involve adding allocation commands in the code, must be based on regions,
but the state of the SPM and DMA operations, which are needed for WCET estimation,
depend on region-context pairs. Intuitively, this is equivalent to considering multiple copies
of each region rn, one for each context in which rn can execute.

6 Allocation Problem

We now discuss how to determine a set of allocations for the entire program with the objective
to minimize the WCET of the program. For the remaining of the section, we use SSPM to
denote the size of the SPM. V = {v1, . . . , vj , . . .} is the set of allocatable objects, where S(vj)
denotes the size of object vj . We let R = {r1, . . . , rn, . . .} be the set of program regions across
all functions. Without loss of generality, we assume that region indexes are topologically
ordered, so that each parent region has smaller index than its children, each call region has
smaller index than the regions in the called function, and sequentially composed regions have
sequential indexes; this is also the order used in Figure 5. Note that such topological order
must exist since the refined region tree for each function is unique, and furthermore the call
graph has no loops due to the absence of recursion. Finally, to define the relation between
region-context pairs we introduce a parent function ℘(rσn) for a region-context rσn in function
f as follows: if rn is the root region of the refined region tree for f , then ℘(rσn) = rσ

′

m , where
rσ
′

m is the region-context that calls f in context σ. Otherwise, ℘(rσn) = rσm, where rm is the
parent region of rn. As an example based on Figure 5, assume that r4 executes in context σ.
Then when r7 is called from r4, r7 executes in context σ∪ r4. We further have ℘(rσ∪r4

7) = rσ4 ,
while for example ℘(rσ∪r4

8) = rσ∪r4
7 .

We begin by formalizing the conditions under which a set of allocations is feasible as
a satisfiability problem. This is similar to a multiple knapsack problem where regions are

ECRTS 2017

24:12 WCET-Driven Data SPM Management With Compiler-Directed Prefetching

knapsacks (available space in SPM), except that we add additional constraints to model the
relation between regions. Remember that to allocate an object vj in a region rn, we have
to assign an address in the SPM to the object. Hence, an allocation solution is represented
by an assignment to the following decision variables over all regions rn ∈ R and all objects
vj ∈ V :

alloc
vj
rn =

{
1, if vj is allocated in rn
0, otherwise

assign
vj
rn = address assigned to vj in rn

An allocation solution is feasible if the allocated objects fit in the SPM at any possible
program point. As discussed in Section 5.3, the state of the SPM depends on the context
under which a region is executed. Hence, we introduce new helper variables to define the
availability of an object vj in a region-context rσn:

avail
vj
rσn

=
{

1, if vj is available in SPM for execution of rσn
0, otherwise

address
vj
rσn

= address of vj in the SPM during execution of rσn

We can determine the value of the helper variables based on the allocation:

∀vj , rσn : allocvjrn ∨ avail
vj
℘(rσn) ⇔ avail

vj
rσn
. (1)

Equation 1 simply states that vj is available in the SPM during the execution of rσn if either
vj is allocated in rn, or if vj was already available in the SPM during the execution of the
parent region-context pair.

∀vj , rσn : availvj℘(rσn) ⇒ address
vj
rσn

= address
vj
℘(rσn). (2)

∀vj , rσn : ¬availvj℘(rσn) ∧ alloc
vj
rn ⇒ address

vj
rσn

= assignvjrn . (3)

Equations 2, 3 specify the address in the SPM. If the object was already available in the
parent region-context, then the address is the same. Otherwise, if the object is allocated in
rn, then the address is the one assigned by the allocation.

Example: refer to the example in Figure 5, where x is allocated with assigned address a1 in
r2, r3 and r4 and with address a2 in r8 and r9. For context σ∪r6, we have availxrσ∪r6

7
= 0, since

x is not available in rσ6 , the parent of r
σ∪r6
7 . Hence, we also have addressx

r
σ∪r6
8

= a2. However,
for context σ ∪ r4 we obtain availx

r
σ∪r6
7

= 1 and addressx
r
σ∪r6
7

= a1, hence addressxrσ∪r6
8

= a1.
Finally, given the object availability and address for each region-context pair, we can

express the feasibility conditions for the allocation problem such that the allocated objects
fit within the SPM and concurrent allocated objects have non-overlapping address ranges.

∀vj , rσn : availvjrσn ⇒ address
vj
rσn

+ S(vj) ≤ SSPM . (4)

∀vj , vk, rσn, j 6= k : (availvjrσn ∧ avail
vk
rσn

)⇒

(addressvjrσn + S(vj) ≤ addressvkrσn) ∨ (addressvkrσn + S(vk) ≤ addressvjrσn). (5)

Equation 4 states that if vj is in the SPM during the execution of rσn, then it must fit within
the SPM size. Equation 5 states that if both vj and vk are in the SPM during the execution
of rσn, then their addresses must not overlap.

As long as Equations 4, 5 are satisfied for a given solution in all region-context pairs, all
objects fit in the SPM; hence, the allocation problem can be feasibly implemented. To do so,
we next discuss how to determine the list of commands (ALLOC / DEALLOC / GETADDR) that

M.R. Soliman and R. Pellizzoni 24:13

must be added to each region. For a region rn that is not sequentially composed, an ALLOC
is inserted at the beginning of the region and a DEALLOC at the end of the region. In the
case of sequential regions, to reduce the number of DMA operations, we note the following:
if the same object vj is allocated in two sequentially composed regions rp and rq with the
same assigned address, then there is no need to DEALLOC vj at the end of rp and ALLOC
it again at the beginning of rq. Hence, we consider the maximal sequence of sequentially
composed regions rp, . . . , rq such that for every region rn in the sequence: allocvjrn = 1 and
the address assignvjrn assigned to vj is the same. We then add the ALLOC command at the
beginning of rp and the DEALLOC command at the end of rq. The P and W flags of the
ALLOC command are set as discussed in Section 5.2 based on the usage throughout the
whole sequence.

I Example. Refer to the example in Figure 5, where x is allocated in two regions in sequence
(r8 and r9). ALLOC is inserted before r8 and DEALLOC is inserted after r9. P flag is set in
ALLOC even though x is not used in r8, but it is read in r9. Similarly, W is not set as x is
not modified in neither r8 nor r9.

Finally, to compute the WCET for the program, we need to determine whether an ALLOC
/ DEALLOC command triggers a DMA operation; this again depends on the context σ in
which a given region rn is executed, as demonstrated by the example in Section 5.3. As in
Equation 2, we know that the ALLOC will be canceled if vj was already available in the
parent region-context; hence, for a region rn that performs an ALLOC on vj and a context
σ, the ALLOC generates a DMA prefetch on vj only if both the P flag in the ALLOC is set
and availvj℘(rσn) = 0 (similarly for DEALLOC , a DMA operation is generated if the W flag is
set and availvj℘(rσn) = 0).

6.1 WCET Optimization
For a given allocation solution {allocvjrn , assign

vj
rn |∀vj , rn}, the described procedure determines

the set of objects available in the SPM and the set of DMA operations for each region-context
rσn. Assuming that bounds on the time required for SPM and main memory accesses are
known, this allows us to determine the benefit (WCET reduction) for every trivial region
in context σ, as well as the length of DMA operations. For a dynamic allocation approach
without prefetch, the length of DMA operations could simply be summed to the execution
time of the corresponding region, since DMA operations stall the core.

However, for our proposed prefetching approach, the cost of DMA operations depends on
the overlap: since the DMA works in transparent mode, for a trivial region the maximum
amount of overlap is equal to the execution time of its code minus the time that the CPU
accesses main memory directly. Furthermore, since the length of DMA operations is generally
longer than the execution of a trivial region, the total overlap depends on the program flow.
Therefore, we compute the amount of overlap as part of an integrated WCET analysis, which
we present in Section 7. We solve the allocation problem by adopting a heuristic approach
that first searches for feasible allocation solutions, and then run the WCET analysis on
feasible solutions to determine the best allocation; we discuss it next in Section 6.2.

Finally, we note that the proposed region-based allocation scheme is a generalization of
the approaches used in related work on dynamic allocation. In [21], the authors applied a
structured analysis to choose a set of variables for static allocation. They analyzed innermost
loop as Directed Acyclic Graph (DAG) for worst case path and then collapsed the loop
into a basic block to analyze the outer loop. The region tree representation captures these
structures such as loops, conditional statements and functions as regions. The dynamic

ECRTS 2017

24:14 WCET-Driven Data SPM Management With Compiler-Directed Prefetching

Algorithm 1 Address Assignment
Input: region information, {allocvjrn |∀vj , rn}
1: for all region rn by increasing index starting with r1 do
2: end_addrrn ← ASSIGN_ADDRESSES(rn)

3: function ASSIGN_ADDRESSES(rn)
4: end_addrrn = maxσ{end_addr℘(rσn)}
5: if rn−1 is not sequentially composed with rn then
6: for all vj such that allocvjrn do
7: assign

vj
rn ← end_addrrn

8: end_addrrn ← end_addrrn + S(vj)
9: else

10: for all vj such that allocvjrn ∧ alloc
vj
rn−1 do

11: assign
vj
rn ← assign

vj
rn−1

12: for all vj such that allocvjrn ∧ ¬alloc
vj
rn−1 do

13: Compute assignvjrn using best fit based on already assigned addresses
14: end_addrrn ← max

vj s.t. alloc
vj
rn
{assignvjrn + S(vj)}

allocation in [24] is based on program points around loops, if statements and functions which
can be matched with an entry/exit of a region. In [6], Deverge et al. proposed a general graph
representation that allows different granularities of allocation. The authors formulated the
dynamic allocation problem based on the flow constraints which can also be applied to the
region representation. All such approaches use heuristics to determine the overall program
allocation. Hence, to allow a fair evaluation focused on the benefits of data prefetching, in
Section 9 we compare our proposed scheme against a standard dynamic allocation approach
with no overlap using the same region-based program representation and search heuristic.

6.2 Allocation Heuristic
The allocation heuristic adopts a genetic algorithm to search for near-optimal solutions to
the allocation problem.

Chromosome Model: The chromosome is a binary string where each bit represents one
of the allocvjrn decision variables. Note that we do not represent the assignvjrn decision
variables in the chromosome; instead, we use a fast address assignment algorithm as part
of the fitness function to find a feasible address assignment for a chromosome.
Fitness Function: The fitness fit of a chromosome represents the improvement in the
WCET of the program with this allocation if it is feasible. The fitness function first
applies the address assignment algorithm to the chromosome. If the allocation is not
feasible, the chromosome has fit = 0. Otherwise, we execute the WCET analysis after
the program is transformed to insert the allocation commands; the fitness of the allocation
is then assigned as fit = WCETMM −WCETalloc where WCETMM is the WCET with
all the objects in main memory and WCETalloc is the WCET for the analyzed solution.
Initialization: The initial population P (0) is generated randomly with feasible solutions,
i.e., fit > 0.
Evolution Operations: The evolution process incorporates random selection, one-point
crossover and random bit mutation to generate P ′(t+ 1). The elite chromosomes with
highest fitness from P (t) and P ′(t+ 1) are chosen to form the next population P (t+ 1).

M.R. Soliman and R. Pellizzoni 24:15

r2

r7

r5r4

r1

r6

r3

d d'

d"
t=8,tvj=7t=10,tvj=3

GETADDR(vj)

Figure 6 WCET Example: Merging states from different paths.

Termination: The algorithm is terminated after k generations or if the best chromosome
does not change for n generations.

The address assignment algorithm is depicted in Algorithm 1. Given a chromosome, the
region tree is traversed in topological order assigning addresses to the allocated objects in
each region. The topological order visits all the nodes with the same parent before visiting
the children. For the root of a function, all the parents (call regions) of the function are
visited before the root of the function. Also, for a sequence of sequentially composed regions,
the order of the sequence is maintained. After the objects in a region are assigned to SPM
addresses, an end address to the last allocated address is maintained. For each region rn, the
previous end address is the maximum of all parent regions (note that if rn is not the root of
its function, it has a single parent region). For a region that is not sequentially composed or
the first region in a sequence of regions, addresses are iteratively assigned to the allocated
objects starting from the previous end address. For a region in a sequence, an allocated
object maintains the same address as the previous region if the object is allocated in both.
Otherwise, a best fit algorithm is used to assign the remaining addresses. The end address
for each region is then computed as the maximum end address for any allocated object. Note
that the algorithm trivially ensures that objects allocated in a region cannot overlap with
any object that is available in a parent; hence, Equation 5 is always satisfied. However, the
algorithm is not optimal, since it does not consider that an allocation might not be required
in any context where the object is already available in the SPM. Finally, the allocation is
considered feasible only if the end address never exceeds the SPM size; this guarantees that
Equation 4 is also satisfied.

7 WCET Analysis

We discuss how to model the behavior of our prefetch mechanism in the context of static
timing analysis so that a safe bound to the WCET of the program running uninterrupted
can be computed. We assume a given allocation solution computed based on Section 6.
We rely on the standard approach of Data Flow Analysis (DFA) [27], where the detailed
state of the hardware is generalized into an abstract state based on the theory of abstract
interpretation [4, 23]. To avoid maintaining a different state for each path through the
program, the analysis relies on computing fixed points by “merging” states when paths joins
(i.e., branch join and loops entry/exit). In detail, given two abstract states d and d′, we need
to compute a join operator ∨ such that the resulting state d′′ = d ∨ d′ is more general than
either d or d′. We model time as natural numbers, processor clock cycles.

ECRTS 2017

24:16 WCET-Driven Data SPM Management With Compiler-Directed Prefetching

Consider as an example the execution of the CFG and associated region tree in Figure 6
in a context σ. Assume that the analysis for the path through rσ4 has determined an upper
bound to the execution time of the program up to this point equal to t = 10, and an upper
bound to the remaining time to complete a DMA fetch operation for an object vj equal to
tvj = 3. For the path through rσ5 , we instead have t = 8, tvj = 7, i.e., the execution takes
longer along the path through rσ4 than through rσ5 , but results in a shorter remaining DMA
time. Assume now that a GETADDR command on object vj is executed at the beginning of
region/context rσ7 . The amount of time that the command will block is then equal to tvj
minus the amount of overlap that the DMA operation has with rσ6 , or zero if the operation
completes during rσ6 . Assume a simple case where the execution through rσ6 requires ∆ units
of time and performs no access to main memory, so that the DMA operation can overlap
up to ∆. The program can then resume from GETADDR at time t + ∆ + max(tvj −∆, 0).
Hence, note that for ∆ = 7, the worst case path is through rσ4 , resulting in a time of 17 units
against 15 for the path through rσ5 . However, for ∆ = 3, the worst case path is through rσ5 ,
with a time of 15 time units against 13 for the path through rσ4 . In summary, we cannot
determine which path through a branch leads to the worst case unless we analyze the regions
following the branch in the CFG (rσ6 and rσ7 in the example).

If we do not want to keep both states after the branch, a trivial solution would be to
merge them by computing a join state with t = max(10, 8) = 10 and tvj = max(3, 7) = 7.
However, this would lead us to over-approximate the time for the GETADDR , resulting in 17
time units for ∆ = 3, rather than the computed bound of 15 time units. Therefore, we seek
to derive a tighter abstraction. Due to the inherent complexity in the theory of abstract
interpretation, in this section we present the main intuition about our abstraction and why
it results in a safe WCET bound; a formal proof of correctness is provided in the technical
report [20].

Intuitively, every abstract state d is composed of two information: the elapsed program
execution time d.t, and a set of timers {tvj}. For an object vj , d.tvj represents the worst case
time required to complete either a prefetch or write-back operation in the allocation queue;
since the allocation queue is served in FIFO order, this represents the time to transfer that
specific object, plus the time required for all operations ahead of it in the queue. For the
example in Figure 6, let d be the state through rσ4 and d′ be the state through rσ5 . Since there
is only one DMA operation in the queue, we have d.t = 10, d.tvj = 3 and d′.t = 8, d′.tvj = 7.
The join state d′′ = d ∨ d′ is then computed as follows:

d′′.t = tmax = max(d.t, d′.t), (6)

and for every timer tvj :

d′′.tvj = max
(
d.tvj − (tmax − d.t), d′.tvj − (tmax − d′.t)

)
. (7)

Based on Equations 6, 7, we compute a join state for the example d′′.t = max(10, 8) =
10, d′′.tvj = (3− (10−10), 7− (10−8)) = 5. Note that this abstraction is tighter compared to
the values t = 10, tvj = 7 obtained by the trivial over-approximation. In particular, it is easy
to see that for the provided example, the time for the GETADDR command computed based
on d′′ is exactly equal to the worst case between d and d′ for any value of ∆, albeit for more
complex cases involving multiple DMA operations it is still a (tighter) over-approximation.
The key intuition is that adding ∆ units of time to the execution time of the program is
always worse than adding ∆ units of time to the length of timers, since a GETADDR might
block the program for a time at most equal to the length of the corresponding timer. Hence,
if the execution time along two paths differs by a value ∆, we are guaranteed to obtain an

M.R. Soliman and R. Pellizzoni 24:17

upper bound if we consider the longest execution time but subtract ∆ units of time from the
timers along the shortest path, as performed in Equation 7.

Note that in general, a single DMA operation could overlap with many regions, and the
amount of overlap can be further modified by the path through each region and allocation
commands for both the same and other objects. Due to the presence of the max term in
Equation 7, modeling the WCET problem as an ILP (a technique also known as implicit
path enumeration) would require adding a large number of auxiliary variables. Therefore,
we propose to instead compute the WCET using a structure-based approach [27] using the
region tree, as summarized in Algorithm 2.

Algorithm 2 WCET Analysis
Input: initial program state d with d.t = 0, region information, allocation solution
1: d← ANALYZE_REGION(r1, ∅, d)
2: return d.t+ maxvj{d.tvj}

3: function ANALYZE_REGION(r, σ, d)
4: if r is trivial region then
5: d← STATE_TRANSFER(r, σ, d)
6: if r calls a region rn then
7: d← ANALYZE_REGION(rn, σ ∪ r, d)
8: else
9: for all paths pi in r do

10: di ← d

11: for all subregions rn along pi do
12: di ← ANALYZE_REGION(rn, σ, di)
13: d← JOIN(r, σ, {di})
14: return d

Starting from an initial abstract program state d and region r1, the root of the main
function, the algorithm recursively calls function ANALY ZE_REGION to update state
d based on the execution of region r in context σ. If r is a trivial region, then function
STATE_TRANSFER is used to update d based on the region’s code, including any
allocation command. Note that we need to pass the context σ to the function, since as
explained in Section 6, the availability and address of objects in the SPM depends on the
context for the region. If the region is a call region, we also need to recursively invoke
ANALY ZE_REGION on the called region after updating the context. If region r is not
trivial, then we need to recursively analyze all sub-regions along every path in r; this results
in an updated state di for each path pi. The states are then joined by function JOIN . If
region r has no backedge (i.e., it is not a loop), then the function simply applies the join
operator over all states di. If the region is a loop, then function JOIN performs a fixed-point
iteration over the abstract state based on loop iteration bounds. At the end of the analysis,
we return the total elapsed time plus the maximum timer length, to indicate the need to
complete any remaining write back operation.

Finally, note that while we focused on modeling the behavior of DMA operations, the
abstract state can also model both architectural states, such as the state of the processor
pipeline [23], as well as the value of program variables, which can be used to exclude invalid
paths (flow analysis) and compute loop bounds [13].

ECRTS 2017

24:18 WCET-Driven Data SPM Management With Compiler-Directed Prefetching

8 Implementation

A compiler-integrated flow is used to implement the allocation algorithm. The flow analyzes
the program, runs the allocation algorithm, applies the required transformations, and
generates an executable. We integrated our flow with the open-source LLVM compiler [12].
The following passes are applied on the Intermediate Representation (IR).

Convert Stack Objects to Globals. Each function frame in the stack has two components:
(1) temporary spilled registers and calling context; (2) local objects. Allocating the full
stack might be unfeasible if the maximum stack depth does not fit in the SPM. In order
to allow a flexible allocation scheme for the stack, a pass is implemented to promote
large local objects to global objects [11]. This reduces the maximum stack size, so that
the stack can be considered an object in the allocation algorithm, and allows allocating
local objects either in main memory or in the SPM without the need to manage multiple
stacks.
Region Tree Generation. We use the provided region analysis in LLVM to construct the
refined region tree.
SPM Allocation. The allocation algorithm generates an optimized allocation solution.
As discussed in Section 6.2, we compute the fitness of a feasible solution by analyzing the
WCET. So, the code is transformed to insert the allocation commands and to modify
the memory references and then the program is analyzed for WCET.
Code Transformation. Transforming the code includes inserting allocation commands
and modifying memory references. As each region is defined by two edges, we simply
insert a new basic block with the allocation commands (ALLOC / DEALLOC) on this edge
(entry/exit). Most of these basic blocks are optimized by the compiler and integrated with
other basic blocks when possible. For GETADDR commands, we find the first instruction
that references an object after an allocation/de-allocation and insert GETADDR before
it. After that, all the references to the object until the next allocation/de-allocation are
modified to the address returned by GETADDR command.
WCET Analysis. The LLVM IR code is compiled to assembly code for the target processor.
The execution time for each basic block is extracted from the program assembly based on
the processor model. We use the information from the compiler back-end to conduct the
WCET analysis.
Code Generation. The assembly code for the final allocation is generated and a linker
script that specifies the memory sections is used to produce the executable.

9 Evaluation

The evaluation of the prefetching approach for data SPM is performed using a simple MIPS
processor model with a 5-stages pipeline and no branch predictor. For memory instructions,
we consider a latency for a word access of 10 cycles to main memory, 1 cycle to SPM and 1
cycle to the SPM controller. For the DMA, we use a similar model as in [28] such that the
latency to initialize the transfer to/from main memory is 10 cycles and the latency per word
is 2 cycles.

We tested the allocation algorithm for multiple benchmarks from UTDSP, MediaBench,
and CHStone suites. We present 8 kernels from these suites. We avoided benchmarks that
have the following criteria: (1) benchmarks with system calls, as we cannot analyze their
WCET without the OS code; (2) benchmarks that access only the stack or have very small
sizes for static and local objects. Note that the stack always resides in the SPM as its size

M.R. Soliman and R. Pellizzoni 24:19

(a) aes (b) compress (c) histogram

(d) g272 (e) spectral (f) gsm

(g) lpc (h) edge detect

Figure 7 Ideality factor.

becomes small after converting stack variables to globals as discussed in Section 8 and its
access rate is usually high.

As the benchmarks available for real-time systems are usually small kernels, we focus
on the performance of the prefetching algorithm compared to dynamic allocation rather
than the total profit of the allocation. We were not able to apply the algorithm to other
suites with more realistic applications, e.g. SPEC2000, as they have system calls, recursion,
unknown loop bounds, and calls to standard libraries which makes it unsuitable to derive
WCET estimation. We plan to explore other benchmarks in the future.

We consider three cases: (1) dynamic allocation without prefetching (base); (2) dynamic
allocation with prefetching (pref); (3) and dynamic allocation with no cost (ideal). We
define the base case as the worst case for prefetching where the CPU has to stall for every
memory transfer. We also define the ideal case as the dynamic allocation with no cost
for memory transfer. Figure 7 shows the ideality factor as a function of the size of the
SPM. The ideality factor is computed as: ideality factor = WCET (base)−WCET (pref)

WCET (base)−WCET (ideal) . The
denominator of the ideality factor represents the best hypothetical improvement in WCET
that prefetching can achieve relative to the base dynamic allocation and the numerator is the
improvement for the prefetching case. The ideality factor is an indication for the performance
of the prefetching approach, with a value of 1 indicating a performance equivalent to the
ideal case, i.e., there is no allocation cost as all memory transfers are overlapped with CPU

ECRTS 2017

24:20 WCET-Driven Data SPM Management With Compiler-Directed Prefetching

execution. For each benchmark, we vary the range of the SPM sizes starting from the size in
which at least one object can fit in the SPM to the size that can fit all objects.

The solving time for the allocation algorithm depends on the number of regions in the
program, the number of objects that can fit in the SPM and the genetic algorithm parameters.
In the experiments, we used a population of 100 chromosomes and termination parameters
k = 500, n = 10. The solving time varied between few seconds to around 15 minutes.
Inserting the allocation commands increases the executable code size by at most 1.2% for
the tested programs.

9.1 Results Analysis

Benchmark ’histogram’ has two main arrays with size 1024 bytes each. When the size
of the SPM is 1024 bytes, it can fit only one of them and dynamic allocation is able to
arbitrate between the two arrays. Prefetching can overlap part of the cost needed for dynamic
allocation. When the SPM size is 2048, both arrays can fit in the SPM and also prefetching
technique can hide the whole memory time required to transfer the arrays as it can overlap
the transfer of one array with the use of the other array in the SPM.

For benchmark ’g272’, prefetching technique can only overlap part of the memory transfer
as the live range of the used objects are overlapped, i.e., the chance to transfer one object
while using the others is low.

Benchmark ’edge_detect’ has three arrays with size 64 Kbyte each and a small array
with size 36 bytes. For small SPM size, only the small array can fit and prefetching can
overlap its memory transfer time. When the SPM can fit one of the large arrays at any
program point, prefetching can overlap 25% of memory transfer time. Similarly, prefetching
can overlap 33% of the transfer time when the SPM can fit two large arrays. When the SPM
can fit all the large arrays, all the memory transfer time can be hidden through prefetching.

The other benchmarks have more objects and the live ranges are more nested. The
ideality factor varies as the SPM size increases and larger objects or more objects can fit
in the SPM; hence more memory transfers are introduced. If the added space is used to
arbitrate for objects, prefetching might not have enough time to overlap the memory transfers.
If the space allows objects to exist in the SPM simultaneously, prefetching performs better
as it has more opportunity to overlap the memory transfers.

Although the dynamic prefetching approach is able to exploit the opportunities to hide
the latency of memory transfers, object-based allocation fails short in terms of space and
time in some cases. That is, considering only objects that can fit entirely in the SPM at each
program point limits the allocation efficiency. We argue that the benefit of our approach will
increase for smaller allocation granularity. So, we plan to extend the framework to be able
to allocate parts of an array or data structure to allow more allocation flexibility, increase
the efficiency of allocation for smaller SPM sizes, and provide more chances for prefetching.

10 Conclusions

In this paper, we introduced a framework for predictable data SPM prefetching. Our
approach is automated within a compilation flow that is integrated with the LLVM compiler.
We provided a hardware/software design that includes an SPM controller, an allocation
algorithm and a WCET analysis. The experiments have shown the potential of our prefetching
technique to provide a predictable mechanism to hide the latency of main memory transfers
and efficiently manage the data SPM with low overhead.

M.R. Soliman and R. Pellizzoni 24:21

Our framework can be extended to handle pointer-based memory accesses for static, stack
and dynamically allocated objects. Using techniques like data pipelining can enhance the
efficiency of the allocation algorithm for small SPM sizes by allocating portions of an object.
We plan to integrate these mechanisms in our framework in future work.

Acknowledgements. We would like to thank Ondřej Lhoták for the helpful discussions and
support on compiler design and implementation.

References
1 A. Alhammad, S. Wasly, and R. Pellizzoni. Memory efficient global scheduling of real-time

tasks. In 21st IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 285–296, April 2015.

2 Oren Avissar, Rajeev Barua, and Dave Stewart. An optimal memory allocation scheme
for scratch-pad-based embedded systems. ACM Trans. Embed. Comput. Syst., 1(1):6–26,
November 2002.

3 P. Burgio, A. Marongiu, P. Valente, and M. Bertogna. A memory-centric approach to
enable timing-predictability within embedded many-core accelerators. In Real-Time and
Embedded Systems and Technologies (RTEST), 2015 CSI Symposium on, pages 1–8, Oct
2015.

4 P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static ana-
lysis of programs by construction or approximation of fixpoints. In Conference Record of
the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

5 M. Dasygenis, E. Brockmeyer, B. Durinck, F. Catthoor, D. Soudris, and A. Thanailakis.
A combined dma and application-specific prefetching approach for tackling the memory
latency bottleneck. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
14(3):279–291, March 2006.

6 Jean-Francois Deverge and Isabelle Puaut. Wcet-directed dynamic scratchpad memory
allocation of data. In Proceedings of the 19th Euromicro Conference on Real-Time Systems,
ECRTS’07, pages 179–190, Washington, DC, USA, 2007. IEEE Computer Society.

7 Angel Dominguez, Sumesh Udayakumaran, and Rajeev Barua. Heap data allocation to
scratch-pad memory in embedded systems. J. Embedded Comput., 1(4):521–540, December
2005.

8 Poletti Francesco, Paul Marchal, David Atienza, Luca Benini, Francky Catthoor, and
Jose M. Mendias. An integrated hardware/software approach for run-time scratchpad
management. In Proceedings of the 41st Annual Design Automation Conference, DAC’04,
pages 238–243, New York, NY, USA, 2004. ACM.

9 Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and
Rodolfo Pellizzoni. A survey on cache management mechanisms for real-time embedded
systems. ACM Comput. Surv., 48(2):32:1–32:36, November 2015.

10 Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree: Com-
puting control regions in linear time. In Proceedings of the ACM SIGPLAN 1994 Confer-
ence on Programming Language Design and Implementation, PLDI’94, pages 171–185, New
York, NY, USA, 1994. ACM.

11 Sungjun Kim. Using scratchpad memory for stack data in hard real-time embedded systems.
In Proceedings of the Memory Architecture and Organization Workshop, 2011.

12 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code Gener-

ECRTS 2017

24:22 WCET-Driven Data SPM Management With Compiler-Directed Prefetching

ation and Optimization: Feedback-directed and Runtime Optimization, CGO’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

13 Thomas Lundqvist. A WCET Analysis Method for Pipelined Microprocessors with Cache
Memories. PhD thesis, School of Computer Science and Engineering, Chalmers University
of Technology, Sweden, 2002.

14 R. Mancuso, R. Dudko, and M. Caccamo. Light-PREM: Automated software refactoring
for predictable execution on cots embedded systems. In 2014 IEEE 20th International
Conference on Embedded and Real-Time Computing Systems and Applications, pages 1–10,
Aug 2014.

15 Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela,
and Giorgio Buttazzo. Memory-processor co-scheduling in fixed priority systems. In
Proceedings of the 23rd International Conference on Real Time and Networks Systems,
RTNS’15, pages 87–96, New York, NY, USA, 2015. ACM.

16 Sparsh Mittal. A survey of recent prefetching techniques for processor caches. ACM Comput.
Surv., 49(2):35:1–35:35, August 2016.

17 Nghi Nguyen, Angel Dominguez, and Rajeev Barua. Memory allocation for embedded
systems with a compile-time-unknown scratch-pad size. ACM Trans. Embed. Comput. Syst.,
8(3):21:1–21:32, April 2009.

18 David Patterson and John L. Hennessy. Computer architecture: a quantitative approach.
Elsevier, 2012.

19 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A
predictable execution model for cots-based embedded systems. In 2011 17th IEEE Real-
Time and Embedded Technology and Applications Symposium, pages 269–279, April 2011.

20 Muhammad R. Soliman and Rodolfo Pellizzoni. Data Scratchpad Prefetching for Real-
time Systems. Technical report, University of Waterloo, UWSpace, 2017. URL: http:
//hdl.handle.net/10012/11837.

21 V. Suhendra, T. Mitra, A. Roychoudhury, and Ting Chen. Wcet centric data allocation to
scratchpad memory. In 26th IEEE International Real-Time Systems Symposium (RTSS’05),
pages 10 pp.–232, Dec 2005.

22 R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, and M. Cac-
camo. A real-time scratchpad-centric os for multi-core embedded systems. In 2016 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1–11,
April 2016.

23 Stephan Thesing. Safe and Precise WCET Determination by Abstract Interpretation of
Pipeline Models. PhD thesis, Universität des Saarlandes, 2004.

24 Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. Dynamic allocation for
scratch-pad memory using compile-time decisions. ACM Trans. Embed. Comput. Syst.,
5(2):472–511, May 2006.

25 Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined process structure tree. In
Proceedings of the 6th International Conference on Business Process Management, BPM’08,
pages 100–115, Berlin, Heidelberg, 2008. Springer-Verlag.

26 J. Whitham and N. Audsley. Studying the applicability of the scratchpad memory man-
agement unit. In 2010 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 205–214, April 2010.

27 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem: Overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3):36:1–36:53, May 2008. doi:10.1145/1347375.1347389.

http://hdl.handle.net/10012/11837
http://hdl.handle.net/10012/11837
http://dx.doi.org/10.1145/1347375.1347389

M.R. Soliman and R. Pellizzoni 24:23

28 Xuejun Yang, Li Wang, Jingling Xue, Tao Tang, Xiaoguang Ren, and Sen Ye. Improv-
ing scratchpad allocation with demand-driven data tiling. In Proceedings of the 2010 In-
ternational Conference on Compilers, Architectures and Synthesis for Embedded Systems,
CASES’10, pages 127–136, New York, NY, USA, 2010. ACM.

29 Y. Yang, M. Wang, Z. Shao, and M. Guo. Dynamic scratch-pad memory management with
data pipelining for embedded systems. In Computational Science and Engineering, 2009.
CSE’09. International Conference on, volume 2, pages 358–365, Aug 2009.

ECRTS 2017

	Introduction
	Related Work
	Motivating Example
	Region-Based Program Representation
	Allocation Mechanism
	SPM controller
	Allocation Commands
	Example

	Allocation Problem
	WCET Optimization
	Allocation Heuristic

	WCET Analysis
	Implementation
	Evaluation
	Results Analysis

	Conclusions

