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Abstract
Airbus is investigating COTS multicore platforms for safety-critical avionics applications, pursu-
ing helicopter-style autonomous and electric aircraft. These aircraft need to be ultra-lightweight
for future mobility in the urban city landscape. As a step towards certification, Airbus identi-
fied the need for new methods that preserve the ARINC 653 single core schedule of a Helicopter
Terrain Awareness and Warning System (HTAWS) application while scheduling additional safety-
critical partitions on the other cores.

As some partitions in the HTAWS application are memory-intensive, static memory band-
width throttling may lead to slow down of such partitions or provide only little remaining band-
width to the other cores. Thus, there is a need for dynamic memory bandwidth isolation. This
poses new challenges for scheduling, as execution times and scheduling become interdependent:
scheduling requires execution times as input, which depends on memory latencies and conten-
tion from memory accesses of other cores – which are determined by scheduling. Furthermore,
execution times depend on memory access patterns.

In this paper, we propose a method to solve this problem for slot-based time-triggered systems
without requiring application source-code modifications using a number of dynamic memory
bandwidth levels. It is NoC and DRAM controller contention-aware and based on the existing
interference-sensitive WCET computation and the memory bandwidth throttling mechanism. It
constructs schedule tables by assigning partitions and dynamic memory bandwidth to each slot
on each core, considering worst case memory access patterns. Then at runtime, two servers – for
processing time and memory bandwidth – run on each core, jointly controlling the contention
between the cores and the amount of memory accesses per slot.
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2:2 Contention-Aware Dynamic Memory Bandwidth Isolation With Predictability

As a proof-of-concept, we use a constraint solver to construct tables. Experiments on the
P4080 COTS multicore platform, using a research OS from Airbus and EEMBC benchmarks,
demonstrate that our proposed method enables preserving existing schedules on a core while
scheduling additional safety-critical partitions on other cores, and meets dynamic memory band-
width isolation requirements.

1998 ACM Subject Classification D.4.7 Organization and Design

Keywords and phrases dynamic memory bandwidth isolation, safety-critical avionics, COTS
multicores

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.2

1 Introduction

For future mobility, Airbus is pursuing autonomous aircraft targeting urban landscape to
ease traffic, for instance, Uber-like CityAirbus [12], and the Vahana aircraft [17]. These
helicopter-style aircraft will be electrically powered, requiring ultra-light weight to boost their
power-to-weight ratio. They will need most avionics applications used in current aircraft,
along with a DAL-A (the highest design assurance level) sense-and-avoid application for
autonomous flying, unavailable today. Further, the electronic systems used in current aircraft
need to be redesigned to reduce size, weight, and power consumption (SWaP), by integrating
more avionics applications on the same number of processors, which is not feasible with
single-core processors. The power consumption of current electronic systems is marginal
compared the envisaged electric propulsion system. However, limiting it will eliminate the
need for active cooling, further reducing SWaP. It will also eliminate the risk of a failure of
the cooling system. Airbus is investigating COTS multicores to meet these future demands.

Safety-critical avionics hardware and software demand certification from certification
authorities, which requires that the processes used in the design of digital hardware must
relate to the DAL of the intended use [9]. However, COTS multicores are designed primarily
for mass market and average-case performance and do not customarily follow DAL-based
design processes. The CAST-32a position paper [27] describes the issues in the certification
of COTS multicores, but the concrete implementation details are still open. Airbus is aiming
at an incremental transition step towards the use of full COTS multicore performance: In
the first step existing safety-critical single-core avionics application will be ported to a COTS
multicore by preserving the original ARINC 653 schedule as well as the source code while
executing it on only one core. Additional applications must be assigned to another core of the
COTS multicore. This step reduces certification cost since documentation and verification
of the software is already available. In the second (future) step, an application can be
distributed over all the available cores. This paper focuses on the first step.

The Helicopter Terrain Awareness and Warning System (HTAWS), selected as reference
application, is a pilot supporting system rated as DAL-C. It shows the helicopter pilot the
surrounding topographical layout (including large buildings, power lines) with “flyable” areas
together with warnings when the helicopter approaches rough terrain, e.g., when vision is
degraded. Such a system also needs to be integrated into future autonomous aircraft to
allow the aircraft to perform autonomous path planning and in-flight re-planning. HTAWS
application is currently implemented on a dedicated avionics computer which is not feasible
for ultra-light autonomous aircraft due to their SWaP constraints.

One of the major obstacles in certifying COTS multicores for use in safety-critical avionics
systems is the contention between cores. The contention between cores arises due to the
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implicit sharing of hardware resources like the network-on-chip, memory controller and main
memory. When left unmitigated, it can slow down the partitions, resulting in deadline misses
or even system failure. For example, the authors in [20] showed in an experimental setup,
using the P4080 8-core COTS multicore platform, that the latency of a single store request
is increased by a factor of 25.82 when the number of active cores is increased from 1 to 8.
Approaches based on static memory bandwidth throttling, such as MemGuard [31], have been
shown to be useful and gained adoption. In addition to controlling the amount of memory
bandwidth available to cores, they allow the use of existing scheduling algorithms with minor
modifications, as the effect of throttling can be seen as a slower processor. Measurements
from the HTAWS application on a COTS multicore with only one active core show that
some partitions are memory-intensive. Using static memory bandwidth isolation may lead to
slow down of such partitions or provide only little remaining bandwidth to the other cores.

Static memory bandwidth isolation mechanisms assign a constant amount of memory
bandwidth Qsmn

to each core Nn before runtime. This limits the worst-case number of
contentions any partition on a core can experience at any time, which allows computation of
execution time separately from scheduling. However, under dynamic memory bandwidth
isolation, as scheduling impacts the contention from the other cores and the dynamic memory
bandwidth, execution time computation and scheduling cannot be performed independently.
Specifically, the execution time of a partition depends on (a) the time taken for memory
accesses which depends on the contention from the other cores, and (b) its worst-case memory
access pattern and the dynamic memory bandwidth assigned in each slot during its execution.

Contention-aware dynamic memory bandwidth throttling can solve these issues but is
not straightforward as it introduces an interdependency between scheduling, execution time,
memory bandwidth, and contention: Scheduling requires execution time of a partition as
input, which depends on the memory bandwidth and the worst-case memory access pattern.
Memory bandwidth depends on the contention between cores and the number of memory
accesses from each core, which depend on scheduling. Thus, determination of dynamic
memory bandwidth and scheduling of partitions cannot be done in separate steps.

In this paper, we propose a method which solves the dynamic memory bandwidth isolation
problem for time-triggered systems using a number of dynamic memory bandwidth levels. It
is NoC and memory controller contention-aware and is based on the existing interference-
sensitive WCET computation [22] and the memory bandwidth throttling mechanism [31],
which it extends by including delay due to contention in the on-chip network and the DRAM
controller as well. It constructs the schedule tables offline and assigns partitions and memory
bandwidth to each slot on each core. Then, at runtime, two servers – processing time server
and memory bandwidth server – run on each core, jointly controlling the contention between
cores in each slot.

As a proof-of-concept, we generate schedule tables performing executing time computation
and scheduling in the same step using a constraint solver. Experiments on a COTS multicore
P4080, using a research OS from Airbus and EEMBC benchmarks, further demonstrate the
feasibility of our proposed method.

Contributions

We introduce a new scheduling problem for COTS multicores derived from a real avionics
application – HTAWS, in which some partitions are memory-intensive.
We present a method that solves the problem for time-triggered systems using a fixed
number of dynamic memory bandwidth levels, is NoC and memory contention-aware, and
based on the existing interference-sensitive WCET computation and memory bandwidth
throttling mechanism.
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2:4 Contention-Aware Dynamic Memory Bandwidth Isolation With Predictability

We show the execution time computation for a partition under dynamic memory band-
width using worst-case memory access pattern.

Paper structure. The remainder of the paper is organised as follows: Section 2 presents
the HTAWS application used in helicopters from Airbus. Section 3 presents the system
model and the notation used in this work. Section 4 describes how the server-based runtime
mechanism provides dynamic memory bandwidth isolation. Section 5 describes the scheduling
and execution time computation for a partition under dynamic memory bandwidth using the
worst-case memory access pattern, in a single step. Section 6 presents the implementation
and evaluation of the proposed method. Section 7 presents the related work. Section 8
concludes the paper and also presents the future work.

2 Helicopter Terrain Awareness and Warning System Application

For future mobility, Airbus is pursuing autonomous electric aircraft targeting urban landscape
to ease traffic. In addition to the avionics applications used in current aircraft, DAL-A sense-
and-avoid applications for autonomous flying are needed, which still need to be developed.
Nevertheless, as a starting point, a non-autonomous version of a sense-and-avoid application
known as Helicopter Terrain Awareness and Warning System (HTAWS) is available today.
This application is an optional feature of Airbus’ helicopters.

HTAWS enables safer flying by assisting the pilot especially in degraded visual environ-
ments like flying at night, poor visibility conditions due to fog, rough terrain, and low-altitudes,
useful for search and rescue mission by air ambulances and coastguards. Furthermore, it
contains a map of power transmission lines and other obstacles which are hard to detect even
in good weather conditions. This application is a DAL-C certified safety-critical avionics
application executing on a single-core processor running VxWorks 653 RTOS from Wind
River [25].

2.1 Single-core Data

HTAWS includes eight partitions with a major time frame H (MAF) of 66ms. Figure 1 shows
its ARINC 653 partition-level schedule. At runtime, the inter-partition scheduler schedules
the partition based on a static schedule. Table 1 shows the partition-level timing constraints.
I/O operations are not part of the study here.

2.2 Measured Data on COTS Multicore

Cassidian, part of the Airbus group, performed measurements on the real HTAWS application
in a test setup using a dual-core COTS P5020 platform running VxWorks with only 1 active
core. A core is considered active if, in the time interval under consideration, it is allowed
to issue memory accesses. Table 2 shows the maximum execution time and the maximum
number of memory accesses for each partition observed in 1000 runs. Partitions π4, π5, and
π7, are memory-intensive.

Airbus Innovations, using its proprietary OS for research, provided the maximum observed
memory latencies for a different number of active cores. Table 3 lists these values for two
COTS multicore platforms: the dual-core P5020 platform and the eight-core P4080 platform.
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Time (ms) →
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

π1 π2 π3 π4 π5 π6 π7 π8

Figure 1 DAL-C certified ARINC 653 single-core schedule of the HTAWS application from
Airbus. Dotted red lines indicate the maximum observed execution time of each of the partition,
without contention, as shown in column 3 of Table 2.

Table 1 HTAWS application: Partition-level timing data.

Partition πi abs. release time ri (ms) abs. deadline di (ms) Duration
(ms)

π1 0 8 8
π2 8 12 4
π3 12 16 4
π4 16 32 16
π5 32 42 10
π6 42 46 4
π7 46 62 16
π8 62 66 4

Table 2 HTAWS application: Measurements on the dual-core COTS P5020 platform with only 1
active core.

Partition
Max. obs.

num. memory
accesses

Max. obs.
ET (ms)

π1 6618 4.88
π2 2764 3.12
π3 7381 2.97
π4 477886 16.00
π5 262962 10.00
π6 4275 3.44
π7 477886 16.00
π8 7020 2.32

Table 3 Maximum observed memory latencies δj (in ns) for different number of active cores j on
COTS multicores P5020 and P4080.

COTS Multicore Mem. Lat. δ1 (ns) Mem. Lat. δ2 (ns)
P5020 24.17 49.17
P4080 34.17 136.67

ECRTS 2017



2:6 Contention-Aware Dynamic Memory Bandwidth Isolation With Predictability

3 Models and Notation

This section presents the models and notation considered in this work for the COTS multicores,
slots, servers, and the partitions.

3.1 COTS Multicore
We consider a COTS multicore comprising two types of hardware resources: homogeneous
processing cores and a shared hardware resource consisting of a shared on-chip network and
a shared DRAM sub-system including the DRAM controllers and the DRAM device.

Set N represents the homogeneous processing cores {N1, ..., N|N |}. We consider for the
shared hardware resource a set of contention-aware shared hardware resource latencies ∆,
where each element δj denotes the maximum latency of a load/store request issued from a
core under maximum contention from j active cores. A core is considered active if, in the
time interval under consideration, it is allowed to issue memory accesses. Further, we assume
that the latencies are non-decreasing with an increasing number of active cores i.e. δj

j ≤
δj+1
j+1 .

This assumption allows to safely bound the time taken by a memory access accounted with
e.g. δj latency while at runtime it may experience a lower latency δ1 due to no contention
from the j − 1 active cores.

We assume that the COTS multicore provides a platform-level shared hardware timer and
a hardware performance counter for each core to count accesses to the memory. Examples of
compatible COTS multicore include Qualcomm P4080 with 8 cores [8], Qualcomm P5020
with 2 cores [23].

Figure 2 shows the hardware architecture of the 8-core COTS platform P4080 [8] from
Qualcomm (initially Freescale and then NXP). On the top-left corner are the eight processing
cores. The shared resource latency δj with j active cores includes the time taken to read/write
to the DRAM device1 for a fixed cache line size (64 bytes for P4080 and P5020 platforms)
as well as the additional maximum contention delay (including arbitration time) due to
j active cores in (a) the NoC – CoreNet Coherency Fabric and (b) the DRAM controller.
For simplicity, we refer to the considered shared hardware resource as memory and shared
hardware resource latency as memory latency in the rest of the paper.

The contention-aware memory latencies can be obtained from the hardware architecture
model using static-analysis-based approach. However, Qualcomm did not provide the
hardware architecture model for any of the two platforms – P4080 and P5020. An alternate
approach to obtain these latencies is using measurements, described in detail in [19], previous
work by Airbus Innovations (previously EADS). Table 3 and 4 show the maximum observed
latencies provided by Airbus Innovations. The latencies listed in these tables for the P4080
platform have also been used in these existing works [20, 22].

3.2 Slots and Servers
We divide the timeline into fixed length time slices called slots, where slot duration of each
slot Sx is duration(S). It is the system designer who determines a suitable slot duration and
it’s time unit. For the rest of the paper, we consider slot duration in the order of ms. S
represents the set of slots.

Our proposed method uses a server-based runtime mechanism on each core. Server τspn

represents a processing time server on core a Nn that relates to processing resource, where

1 Not shown in Figure 2.
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Table 4 Eight-core P4080 platform: Maximum observed memory latencies δj (ns) for different
number of active cores j.

No. act. cores j Mem. Lat. δj (in ns)
1 34.17
2 136.67
3 204.17
4 385.83
5 430.83
6 614.17
7 653.33
8 839.17

Figure 2 Architecture of the 8-core COTS platform Qualcomm P4080 [7].

sp denotes server processing. Server τsmn represents the memory resource on a core Nn,
where sm denotes server memory. Tspn

and Tsmn
denote the period of each of the respective

servers on a core Nn. In this work, we assume the period of all servers in the system equal
to the slot duration duration(S). We also assume that all servers are released synchronously
on all cores.

Qspn,x (in ms) denotes the processing time server budget (simply called processing budget)
in slot Sx on a core Nn. Qsmn,x (in memory accesses) denotes the memory access server
budget value (simply called memory budget) in slot Sx on a core Nn. Similarly, qspn,x and
qsmn,x denote the remaining budget during runtime for each of the corresponding servers.

3.3 Partition

The set Γ represents a set of partitions which are safety-critical i.e. their deadlines must be
met. Each partition πi is characterized by the tuple 〈ri, di, Csi ,MAi, C

m
i 〉, where

ri is the absolute release time,
di is the absolute deadline,
Csi is the core-local execution time excluding the time taken for memory accesses,

ECRTS 2017



2:8 Contention-Aware Dynamic Memory Bandwidth Isolation With Predictability

MAi is the maximum number of memory accesses (read/write requests) to the memory,
and
Cmi is the multicore execution time (in slots) computed offline that includes the execution
time needed for (a) Csi and (b) MAi memory accesses considering possible runtime
contentions from other cores, under dynamic memory bandwidth. For the rest of the
paper, we use the terms – execution time and multicore execution time – interchangeably.

Csi and MAi can, for instance, be acquired using a combination of static timing analysis
tools like aiT and measurements as shown in [22]. We assume ri and di to be integer multiples
of duration(S). Our proposed method is independent of the runtime memory access pattern
of each partition. Thus, our partition model does not need to contain information on when
and how many memory accesses a partition issues at runtime.

4 Server-Based Runtime Mechanism

Our proposed runtime mechanism provides dynamic memory bandwidth isolation, when
integrated with the inter-partition scheduler. It is NoC and DRAM subsystem contention-
aware and is based on MemGuard [31], an existing memory throttling mechanism .

It uses two servers per core – processing time server τsp and memory access server τsm –
with a synchronised server period equal to the system-wide slot duration duration(S).

4.1 Processing time server
On each core Nn a processing time server τspn

regulates the execution time in each server
instance. A processing time server budget decreases with the progression of time in a slot for
each active core. During runtime, a partition on core Nn, executing in slot Sx consumes the
server budget Qspn,x for the core-local execution time on core Nn and the time taken for
memory accesses under contention from other cores. Due to the dynamic memory bandwidth,
the processing budget may differ in distinct slots.

4.2 Memory Access Server
On each core Nn, a memory access server τsmn regulates the total number of memory accesses
in each server instance. Due to the dynamic memory bandwidth, the memory budget may
differ in distinct slots. At runtime, an executing partition πi on core Nn in slot Sx uses
the memory budget Qsmn,x only for memory accesses. Each access results in a decrease of
remaining server budget by 1.

4.3 Runtime Behaviour
During runtime, each inter-partition-level scheduler, at the start of each slot Sx, sets the
corresponding processing and memory budgets for each server based on the schedule table
found in the offline phase. The server budgets need not be same in each slot. The processing
time server budget decreases with the progression of time in a slot for each active core. The
memory access server budget decreases by 1 on each memory access issued by an executing
partition in the corresponding slot. A partition continues to execute in a slot Sx on a core
Nn while both the servers have budgets greater than 0, i.e. qsmn,x > 0 ∧ qspn,x > 0. If in
a slot Sx on a core Nn any of the two servers exhausts its budget, the partition is stalled
until the next server instance and the core is idle. If any of the two servers have a remaining
server budget, it is discarded.
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Jointly, the two servers on each core guarantee that the servers budgets provided for each
slot in the offline schedule table, hold at runtime. This enables contention-aware dynamic
memory bandwidth isolation between cores.

5 Scheduling for Dynamic Memory Bandwidth

Static memory bandwidth isolation mechanisms assign a constant amount of memory band-
width to each core before runtime. This limits the worst-case number of contentions any
partition on a core can experience at any time, which allows computation of execution time
separately from scheduling. However, under dynamic memory bandwidth isolation, the
execution time of a partition depends on (a) the time taken for memory accesses which
depends on the contention from the other cores, and (b) its worst-case memory access pattern,
which depends on the dynamic memory bandwidth assigned in each slot during its execution.
As scheduling decides the amount of contention between cores which can vary between slots
due to dynamic memory bandwidth, we cannot perform execution time computation and
scheduling separately.

In the next sections, we show how to resolve each of the two dependencies of execution
time – contention and memory access pattern. Later, we show how to perform scheduling and
execution time computation together for a general case under dynamic memory bandwidth.
Finally, we show an example with dynamic memory bandwidth for 2-cores.

5.1 Resolving Dependency – Contention
Under dynamic memory bandwidth, resolving contention dependency for execution time
computation of a partition on a core requires knowledge of the number of active cores in
each slot and the maximum contentions that can be introduced by each active core in each
slot. In the next section, we describe a way to resolve this dependency considering |N |+ 1
dynamic bandwidth levels. Later, we show how to consider an arbitrary number of dynamic
bandwidth levels.

5.1.1 |N | + 1 Dynamic Bandwidth Levels
Instead of a constant memory budget for each core, we consider |N |+ 1 dynamic memory
bandwidth levels. For simplicity, in each level, we divide the memory bandwidth equally
between the active cores j. Each level corresponds to a memory budget Qjsm, which associates
with a memory latency δj , providing contention-awareness to the memory bandwidth. It
allows estimating the contention between cores in a slot just by knowing the number of
active cores in that slot, without requiring knowledge of which partitions are scheduled on
the other cores, and their exact number of memory accesses. Thus, for each memory access
server instance τsmn,x on a core Nn, there are |N |+ 1 possible budgets. For each processing
time server instance τspn,x we consider only two fixed budgets: Q0

sp = 0 and Q1
sp = X. X is

a fixed value determined by a system designer such that 0 < X ≤ duration(S).
Equation (1) computes the different memory budgets based on the existing interference-

sensitive WCET computation [22, 20] with equal memory budget distribution between the
active cores in a slot. It also shows the relationship between the two servers and the memory
latencies.

∀δj ∈ ∆ , Qjsm =
⌊
Q1
sp

δj

⌋
(1)

ECRTS 2017



2:10 Contention-Aware Dynamic Memory Bandwidth Isolation With Predictability

Table 5 Per core memory access server budgets Qj
sm with equal distribution of accesses correspond-

ing to memory latencies from Table 3 for processing time server budget Q1
sp of duration(S) = 1ms.

COTS Multicore Mem. bud. Q0
sm Mem. bud. Q1

sm Mem. bud. Q2
sm

P5020 0 41379 20338
P4080 0 29268 7317

E.g., consider a duration(S) of 1ms and a processing budget Q1
sp equals to duration(S).

Then, Table 5 shows the memory budgets Qjsm considering the memory latencies from Table 3.
When a core is not active in a slot, we assume its memory budget and processing budget
equal to 0. For computation purposes, we assume the memory latency δ0 equals ∞. Thus,
the use of dynamic memory bandwidth levels limits the maximum contentions each core can
experience in each slot from the other cores.

5.1.2 Arbitrary Number of Dynamic Bandwidth Levels

Our proposed method also works for an arbitrary number of dynamic memory bandwidth
levels and unequal distribution between active cores. A set Qsm =

⋃|N |
j=1 Q̂

j
sm, where j is the

number of active cores, represents memory budget distributions. A set Q̂jsm with j active
cores, represents distinct valid memory budget distributions between the j active cores. For
all the remaining cores, the assigned memory budget is 0. A memory budget distribution,
sorted in increasing order of memory budgets, {y1, ..., yj} for j active cores, is valid if the
condition in Equation 2 holds.

j∑
k=1

(yk − yk−1) ∗ δj−k+1 ≤ Q1
sp , where y0 = 0 . (2)

This is based on the interference-sensitive WCET computation [20, 22] and means that, in a
slot, only a maximum of y1 memory accesses from each active core will experience memory
latency δj , y2 − y1 will experience latency δj−1 and so on.

In slot Sx on an active core Nn with j − 1 active cores, an offline scheduler can assign
any memory budget from a valid budget distribution {y1, ..., yj} to a memory access server
instance τsmn,x that has not been assigned to memory access servers of j − 1 active cores.
For example, a set Q̂2

sm can contain {7000, 34137} as a valid memory budget distribution
for 2 active cores using P5020 memory latencies (row 2 of Table 3). If, in a slot S2 on core
N1 an offline scheduler assigns a memory access server a budget of 7000, then the memory
access server of the second other active core in slot S2 will be assigned a budget of 34137.
Another valid memory budget distribution for 2 active cores using P5020 memory latencies
is {20338, 20338} as listed in Table 5 (row 2 column 4). The set Qsm is either provided as
input to the offline scheduler by the system designer or generated by an offline scheduler
based on the properties of an application.

For the rest of Section 5, to simplify the description, we limit to |N | + 1 dynamic
bandwidth levels with equal distribution of memory budgets between the active cores as
described in Section 5.1.1. However, note that the ensuing description is still applicable to
arbitrary bandwidth levels.
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Table 6 Example slots to depict the interaction between memory access patterns and dynamic
memory access server budgets.

Slot Sx S1 S2 S3 S1′ S2′ S3′

Mem. ser. bud. Qsm1,x 45 100 15 100 45 15
Proc. ser. bud. Qsp1,x 1 1 1 1 1 1

5.2 Resolving Dependency – Memory Access Pattern and Dynamic
Bandwidth

Static memory bandwidth isolations mechanisms assign same memory budget in each server
instance on a core. Such mechanisms are agnostic of the number of active cores in each slot
and need to consider the worst-case memory latency corresponding to a maximum number
of active cores. Therefore, the use of a static memory budget per core considering worst-case
memory latency ensures that if a partition performs a memory access in any of its assigned
slots, a partition’s execution time does not increase. However, under dynamic memory
bandwidth, a partition may receive different memory budgets in each slot. Further, since the
latencies of memory requests may differ between different memory budgets, the interaction
between memory budgets and a partition’s memory access pattern impacts a partition’s
execution time. The example in the next section highlights this interaction.

5.2.1 Example
Consider a partition π1: 〈r1 = 0, d1 = 3, Cs1 = 1,MA1 = 60〉.

An offline scheduler identifies three slots for π1 on core 1. Let us consider two illustrative
runtime memory access patterns of π1 considering memory budgets and processing budgets
as shown in Table 6 (columns 2,3 and 4):
1. If this partition uses slot S1 for its core-local execution time Cs1 , and slot S2 for its

MA1 = 60 memory accesses, then slots {S1, S2} are sufficient to meet its Cs1 and MA1
requirements.

2. On the other hand, if π1 uses slot S1 for 45 memory accesses, slot S2 for its Cs1 , and slot
S3 for the remaining 15 memory accesses, then π1 requires slots {S1, S2, S3} to meet its
requirements.

If the memory budgets of the three slots were different as shown in columns 5,6 and 7 in
Table 6, then using the previously considered memory access pattern 2, π1 may use slot S1
for 45 memory accesses and the remaining 0.55 time units in the slot for a part of its Cs1 ,
slot S2 for its remaining 0.45 time units of Cs1 with the remaining slot for its 15 memory
accesses. Thus, it just requires 2 slots. Similarly, using previously considered memory access
pattern 1, the partition will need three slots.

Our proposed method is independent of the runtime memory access patterns of a partition
as we consider the worst-case memory access pattern of a partition for assigned memory
budgets in each slot.

5.2.2 Worst-case Memory Access Pattern
The example in the previous section illustrated the need to construct a worst-case memory
access pattern for each partition to ensure the slots with dynamic memory budgets under
consideration will meet the partition’s requirements. Static WCET analysis tools in combin-
ation with measurements can help to find a worst-case memory access pattern. However,
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Nn // // // //
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Qsmn,u

πi

Qsmn,v−1
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o
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Figure 3 General case when an offline scheduler considers slots ∀Sx ∈ [u, v] on some core Nn for
partition πi with possibly different memory budgets.

pragmatically such an approach is infeasible due to the computational complexity involved.
Further such methods need to explore all valid inputs. To overcome these issues, our method
uses a worst-case memory access pattern that only requires information about the partition
model and the memory budget assigned to it in each slot.

The worst-case memory access pattern for a partition πi assigned to execute on Nn in slots
Sx ∀x ∈ [u, v] manifests when a partition πi uses Cs

i

Q1
sp

slots ∈ [u, v] with the largest assigned
memory budgets for its core-local execution time Csi requirement, and the remaining slots
for its MAi memory access requirement. Figure 3 shows this general case with exemplary
dynamic memory access server budgets for slots Su, Sv−1 and Sv.

Note, that the worst-case memory access pattern may not manifest at runtime. Nev-
ertheless, considering it allows an offline scheduler to provide execution time guarantees,
irrespective of the runtime memory access patterns. In the next section, we present a
combined scheduling and execution time computation step.

5.3 Combined Scheduling and Execution Time
This section describes how scheduling and execution time computation are performed together.

When scheduling offline, consider a general case as shown in Figure 3 with a partition
πi: 〈ri, di, Csi ,MAi, C

m
i 〉, assigned to a core Nn. An offline scheduler considers the slots

Sx ∈ [u, v] to assign to πi and needs to check if these slots will meet Csi and MAi requirements
of a partition πi. For each slot Sx, each memory access server’s budget Qsmn,x relates to a
valid memory budget distribution described in Section 5.1.

The offline scheduler must check if the slots Sx ∀x ∈ [u, v] on core Nn are sufficient to meet
the Csi and MAi requirements of a πi partition. Using the worst-case memory access pattern
described in Section 5.2.2, the offline scheduler sorts and renumbers the slots Sx ∀x ∈ [u, v]
in descending order according to their memory budget Qsmn,x. [u′v′] represents the sorted
and renumbered order of slots. Then the offline scheduler determines the number of slots
needed to meet the core-local execution time requirement of πi given by the Equation (3).

µ = Csi
Q1
sp

(3)

It may happen that µ is not an integer, so the offline scheduler computes the amount of
memory accesses possible in the remaining part of slot Su′+dµe i.e.

ρ =
⌈
(dµe − µ) ∗Qsmn,u′+dµe

⌉
.

Then the offline scheduler sums the memory budgets of the remaining slots from [u′ + dµe, v′]
i.e.

∀x′ ∈ [u′ + dµe, v′] , ψ =
∑

Qsmn,x′ .
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Figure 4 Illustrative example of our proposed method with three dynamic bandwidth levels.

If MAi ≤ ρ + ψ, then the slots ∀Sx ∈ [u, v] will meet the partition’s requirements. Thus,
using the valid memory budget distributions and the worst-case memory access pattern
allows scheduling and execution time computation in a single step for dynamic memory
bandwidth.

5.4 Example
Figure 4 shows an illustrative example of our proposed method for 2-cores using memory
latencies for P4080 platform (row 3 in Table 3). Each core Nn has two servers: processing
time server τspn

and memory access server τsmn
, with the period of each server is equal to

the slot duration of 1ms. We consider 3 different dynamic bandwidth levels as described
in Section 5.1.1, with valid budget distributions shown in row 3 of Table 5. The two levels
relate to valid budget distributions {{29268}, {7317, 7317}}. The third level simply assigns
each inactive core a 0 memory budget. For each server, the dotted horizontal lines depict
the possible server budgets. During runtime, at the start of each slot, each inter-partition
scheduler sets the corresponding server budgets for each server on its respective core, based
on the offline schedule table (shown via budgets and partition assignment in Figure 4).

In slot S1, i.e. at t = 0, both the cores are active and each inter-partition scheduler sets
the corresponding memory budget Q2

sm = 7317 and processing budget to 1ms. At the start
of slot S2 (at time t = 1ms), only partition π1 is active and is assigned a memory budget of
Qsm1,2 = Q1

sm = 29268 and processing budget of 1ms. In the time interval [1, 1.33)ms, the
partition π1 issues memory accesses as indicated by the corresponding decrease in remaining
memory budget. In the time interval [1.33, 1.5)ms, π1 does not perform any memory accesses
as indicated by the memory budget being constant. Later, π1 again briefly issues memory
accesses for the next 100µs. In the time interval [1.6, 2)ms, since only the processing budget
decreases and not the memory budget, the partition π1 only performs computations.

At the end of slot S3, the partition π2 completes execution and the inter-partition
scheduler of core N2 discards the unused memory budget of the server instance τsm1,3. In slot
S4 (at time t = 3ms), as only core N1 is active, the memory budget Qsm1,4 equals Q1

sm. The
partition π1 issues memory accesses in the first half of the slot as indicated by the decrease in
the remaining memory budget. Then, for the next 200µs, the partition π1 does not issue any
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memory accesses as the memory budget does not decrease and at time t = 4ms, π1 completes
execution.

6 Experimental Evaluation

Section 6.1 describes a proof-of-concept schedule table generation using a constraint solver.
Section 6.2 presents the integration of our proposed runtime mechanism in a proprietary
research OS for Qualcomm P4080 COTS multicore platform and the evaluation of our
proposed method using EEMBC AutoBench benchmarks for a number of dynamic memory
bandwidth levels.

6.1 Schedule Tables Generation
As a proof-of-concept, we modelled the partition allocation and scheduling problem for the
Gecode [10] constraint programming (CP) solver, to find a valid schedule table for each of
the two cores. The specified constraints schedule the HTAWS application on 1 core and
additional partitions on the other core under dynamic memory bandwidth, while preserving
the single-core HTAWS schedule.

6.1.1 Preparation of the HTAWS Application Data
The numbers shown in Table 2 Section 2 are the sole input to the study presented here as
actual application internals are confidential. They give maximum observed execution times
and memory accesses for each partition but do not mention the distribution of read/write
requests as well as how many requests end in L3 cache. Our partition model needs the
core-local execution times, which are not given. Thus, the observed data had to be “reverse
engineered” for this study, making safe assumptions about the number of memory accesses
and core-local execution time of each partition. We use the memory latencies shown in
Table 3 to obtain core-local execution times shown in column 2 of Table 7. Partition
π5 requires on average, 73% of memory bandwidth using δ1 memory latency. Column 3
shows the minimum constant memory bandwidth that needs to be reserved using existing
interference-sensitive WCET computation [20, 22], to meet each partition’s Csi and MAi

requirements with only 1 active core. The memory latencies are the largest observed latencies
for the different number of active cores under different combinations of read and write
memory requests. The execution time computation further assumes that the core stalls on
each memory request. As a consequence, the processed data is pessimistic, calling for more
detailed information available from the original application. The processed data is, however,
safe for the experiments in this study.

6.1.2 Application and Schedule Table
As no real avionics application with more than one active core at the same time exists today,
we construct a scenario by replicating some partitions such that multiple cores are active at
the same time. We obtained schedule tables using the Gecode constraint solver with a model
specified using our proposed method. Figure 5 shows one such schedule found by the Gecode
solver in which partitions π1, π2, and π8 are replicated on the second core. Appendix A lists
the formulation of the key constraint that checks if the slots under consideration meet a
partition’s πi requirements of Csi and MAi as described in the Section 5.3 using a number of
bandwidth levels with equal memory budget distribution. It demonstrates the feasibility of
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Table 7 “Reverse-engineered” core-local execution time and minimum constant memory band-
width that needs to be using reserved using existing interference-sensitive WCET computation [20, 22]
for the HTAWS application.

Partition
Computed
core-local

ET Cs
i (ms)

Min. mem. b/w (in %) reqd.
throughout partition

considering
δ1 latency

π1 4.72 4.88
π2 3.05 7.03
π3 2.79 14.74
π4 4.45 100.00
π5 3.64 100.00
π6 3.34 15.66
π7 4.45 100.00
π8 2.15 9.17

C
or
es

N1

N2

Time (ms) →
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

π1
1 π1

2 π1
3 π1

4 π1
5 π1

6 π1
7 π1

8

π2
1 π2

2 π2
8

Figure 5 Partition schedule generated through Gecode constraint solver using our proposed
method for the HTAWS application with some replicated partitions, such that existing HTAWS
schedule is preserved.

scheduling and computing execution time offline, in the same step, under dynamic memory
bandwidth, overcoming the inter-dependency challenge. At runtime, our proposed server-
based runtime mechanism, described in Section 4, will execute the offline-computed scheduling
decisions including assigning of the server budgets on each core in each slot.

Complexity. Slot duration plays a major role, for a larger slot duration reduces the length
of the major time frame H (in slots), thereby restricting the search space. Further, the search
space also depends on the number of cores, the number of partitions, and the different server
budgets allowed. Due to the computational complexity of the problem, in the future, we
plan to integrate our proposed method in our in-house heuristic-based offline scheduler.

6.2 Execution Time
We use the Qualcomm P4080 platform with eight e500mc cores. It is widely used by various
groups conducting academic and industrial research.

6.2.1 Integration of Runtime Mechanism
We integrated our proposed runtime mechanism in a proprietary OS for research by Airbus
that runs on the P4080 platform. For each core’s processing time server, we use the multicore
programmable interrupt controller (MPIC) timer, a hardware timer with auto-reload feature.
It ensures slot-level synchronisation amongst all cores and provides a unique interrupt
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Table 8 Number of memory accesses MAi for EEMBC benchmarks obtained using configuration 1.
Core-local execution time Cs

i is obtained by a “reverse-engineering” step.

Benchmark MAi Cs
i (ms)

cacheb 1725 5.39
a2time 659 13.35
rspeed 591 0.621

cacheb a2time rspeed
0

5

10

15

EEMBC Benchmark

E
x
ec
u
ti
on

ti
m
e
(m

s)

conf1 obs.
conf2 obs. 2 cores
conf2 obs. 8 cores

comp.

Figure 6 Execution time for EEMBC benchmarks: maximum observed values in configuration 1,
maximum observed values in configuration 2 using our proposed method for 2 active cores and 8
active cores, and the computed execution time using our method based on the budgets assigned per
slot in configuration 2.

instance [7] to each core on each interrupt. For the memory access server, we use the
core-level hardware performance counter that counts the requests to the on-chip network [7]
from each core.

6.2.2 Testbed Setup
In our experiments, we configure the platform clock frequency to 600 MHz and each core’s
clock frequency to 1200 MHz. The hardware timers used: MPIC timer, and Timebase timer,
are configured to 37.5 MHz. The Timebase timer is used to generate timestamps for the
benchmark under test. L1 and L2 caches are enabled, while L3 caches are disabled. We use
both the available memory controllers.

6.2.3 Experiments
We ran benchmarks from the EEMBC AutoBench benchmark suite [28] in two different
configurations for 10 runs each. Configuration 1 runs the benchmark in isolation with
no memory throttling to obtain largest observed execution times and number of memory
accesses. This configuration is required to obtain core-local execution time for each benchmark.
Configuration 2 integrates our proposed server-based mechanism with duration(S) = Q1

sp =
1ms and runs each of the benchmark on one core and a contending benchmark (matrix)
replicated on the rest of the active cores. The memory budgets for the core executing the
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benchmark under test are generated randomly for each of the 10 slots which are repeated in
a schedule table. Thus, the schedule table contains 10 dynamic memory bandwidth levels.
The memory budgets for the other active cores in each slot relate to the first core’s memory
budgets computed using Equation (2) with equal budget assignment. Table 8 shows the
maximum number of memory accesses observed for each benchmark using configuration 1.
This data is used to obtain core-local execution times by “reverse-engineering” using memory
latencies from Table 3 (row 3). Figure 6 shows the largest observed execution time in
configuration 1, in configuration 2 with 2 active cores and 8 active cores, and the computed
execution time using our method based on the budgets assigned per slot in configuration 2.
It shows that the observed execution times are less than or equal to the computed execution
times using our method. We also observed per stall overhead due to the processing time
server and memory access server of 10µs which is 1% of the considered slot duration of
1ms [21]. All measured execution times shown in Figure 6 exclude these stall overheads.

7 Related Work

Over the last years, several different scheduling approaches for COTS multicores have
been presented. Schranzhofer et al. [26], Pellizzoni et al. [24], Boniol et al. [4] proposed
deterministic execution models to control the access to shared resources. The basic concept is
to divide program execution into multiple phases and restrict their capabilities. Schranzhofer
et al. [26] proposed to divide each task into superblocks where each superblock consists of
three phases: acquisition phase, execution phase and replication phase. A task is allowed to
access the shared hardware resource only in acquisition and replication phases. Further, no
two co-executing tasks on different cores can have overlapping acquisition and replication
phases. Pellizzoni et al. [24] proposed the PRedictable Execution Model (PREM) for single-
core COTS processors, introducing co-scheduling for shared resources. It splits each task
into a sequence of non-preemptable intervals: predictable intervals, and compatible intervals.
Predictable intervals are used to pre-load all data and instructions into local caches, while
system calls and interrupt preemptions are prohibited. System calls and interrupt preemptions
are, however, allowed in compatible intervals. Each predictable interval is further divided
into two phases: execution phase and memory phase. Traffic from peripheral devices is only
permitted during the execution phase of a predictable interval, resulting in an architecture
with very few contentions for accesses to the shared resources. Boniol et al. [4] presented
a sliced execution model. It splits each task into sub-tasks and each sub-task further into
execution slices and communication slices. The access to a shared resource is only allowed in a
communication slice. Such approaches are known to poorly utilise the respective resource [15].
In addition, to support transition from single-core processors to COTS multicore processors,
such approaches require modification of the source code of legacy applications [11], which is
a non-trivial step.

Another popular approach is joint analysis. To address sharing of resources those
approaches analyse the program flows on all cores using the considered shared resource.
Therefore, detailed knowledge of the state of execution is required. Yan and Wang [29]
applied WCET analysis to multicore processors with shared L2 caches by analysing inter-
thread dependencies. The analysis is based on the program control flow and accounts for
all possible conflicts on the shared cache. Li et al. [16] extended the analysis by identifying
possibly overlapping threads. Hardy et al. [13] further extended it by reducing the number
of possible conflicts between overlapping threads. Chattopadhyay et al. [6, 5] and Kelter et
al. [14] proposed combined shared cache and shared bus analysis and applied a TDMA bus
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arbitration. Chattopadhyay et al. [5] combine cache and bus analysis with other architectural
features such as pipelines and branch prediction. Overall, the joint analysis approaches have
to explore huge state spaces due to the various possible interactions between different tasks,
resulting in huge computational complexity.

With respect to monitoring, Bellosa [3, 2] introduced the idea to leverage built-in processor
counters to acquire additional task runtime information. Yun et al. [32] proposed controlling
memory accesses from all but one cores to limit contentions experienced by hard real-time
tasks executing on one core to ensure that they meet their deadlines. Yun et al. extended
the work in [31] by introducing a memory throttling mechanism – MemGuard, that regulates
memory accesses using a memory server on each core. It assumes that memory bandwidth is
statically partitioned between cores before runtime for safety-critical systems. Behnam et
al. [1] propose a method to isolate the behaviour of different cores. They apply a hierarchy of
servers to all cores using a server-based approach which assigns a certain limit on the amount
of cache misses. Yao et al. [30] present a method to bound variability in execution time of
each task on all cores considering round-robin arbitration between cores for memory accesses.
Mancuso et. al. [18] present a method to compute the WCET under static partitioning
of memory bandwidth between cores, which takes into account the amount of locked data
in caches. The main difference of our proposed method against these works is our focus
on dynamic memory bandwidth isolation and guarantees for safety-critical systems. Also,
the goal of preserving static schedule on a core differentiates this paper from other server-
based approaches. Moreover, most of these works do not consider additional arbitration
and contention delay introduced by the shared on-chip network and the DRAM memory
controller in the analysis.

The authors in [20, 22] consider a process frame that consists of co-executing tasks and
introduced the interference-sensitive WCET (is-WCET) computation that computes, in
offline phase, the execution time of each process considering contentions from the worst-case
number of memory accesses from each of co-executing processes in a process-frame. Our
proposed method is based on the same is-WCET computation, but allows a finer granularity
of resource control (slots) instead of partition level. This enables our method to further relax
the strong start time constraints imposed by [20, 22], that is, a new process can only be
scheduled after the completion of all processes in a process frame.

8 Conclusion and Future Work

In this paper, we presented a method for a step in the investigation of Airbus using COTS
multicores for safety-critical avionics applications. It addresses the need of preserving the
ARINC 653 single core schedule of a Helicopter Terrain Awareness and Warning System
application while scheduling additional safety-critical partitions on the other cores. As some
partitions are memory-intensive, dynamic memory bandwidth isolation is needed, which
requires performing the computation of execution times and scheduling together.

Our method solves this problem for slot-based time-triggered systems using a number of
dynamic memory bandwidth levels. The method is NoC and DRAM controller contention-
aware and is based on the existing interference-sensitive WCET computation and memory
bandwidth throttling mechanisms and does not require application source-code modifications.
It constructs schedule tables assigning partitions and dynamic memory bandwidth to each
slot on each core. Then at runtime, two servers – for processing time and memory bandwidth –
run on each core, jointly controlling the contention between the cores and the amount of
memory accesses per slot. Thus, the number of active cores can vary over time.
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As a proof of concept, we generated schedule tables performing executing time computation
and scheduling in the same step using a constraint solver. The basic concepts can be included
in a variety of offline algorithms for schedule table construction. We considered a generic
case for execution time computation with scheduling that can be used, e.g., in search based
algorithms.

We implemented our proposed runtime mechanism part in a proprietary research operating
system from Airbus and EEMBC benchmarks, executed on a Qualcomm P4080 multicore
platform, demonstrating its practicality. We evaluated our runtime mechanism and execution
time computation under dynamic memory bandwidth levels and showed that the observed
execution times are less than or equal to the computed execution times.

For future work, we will turn the focus away from the specific application and hardware
settings in this paper to generalise our method. Instead of the proof-of-concept constraint
solver used here, we will extend our in-house heuristic-based offline scheduling framework
to integrate the proposed offline phase. This will allow us to focus on the complexity
performance of the offline part of the method and its integration in existing tool chains.
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2:22 Contention-Aware Dynamic Memory Bandwidth Isolation With Predictability

A Core-local Execution Time and Memory Accesses Constraints

Constraint (4), specified in our constraint-solver model, is a key constraint that ensures that
the number of slots allocated to a partition meet its requirements of core-local execution time
and the number of memory accesses, under fixed number of dynamic memory bandwidth
levels with equal budget distribution between the active cores in each slot.

slot1(i) represents the number of slots with memory budget Q1
sm = 41379 considering 1

active core assigned to a partition πi. slot2(i) represents the number of slots with memory
budget Q2

sm = 20338 considering 2 active core assigned to a partition πi.

∀i ∈ Γ ,(
slot1(i) == 0 ∧ slot2(i) ==

⌈
Csi
Q1
sp

+ MAi
Q2
sm

⌉)
∨
(
slot1(i) ==

⌈
Csi
Q1
sp

+ MAi
Q1
sm

⌉
∧ slot2(i) == 0

)

∨

(slot1(i) > 0 ∧ slot2(i) > 0)
∧
(
slot1(i) ≥ Csi ∧ part(i) == slot1(i) ∗Q1

sm − Csi ∗Q1
sm

)
∧
(
slot2(i) ∗Q2

sm + part(i)−MAi < Q2
sm

)
∧
(
slot2(i) ∗Q2

sm + part(i)−MAi ≥ 0
) (4)

∨

slot1(i) < Csk

∧
(
part(i) == −slot1(i) ∗Q1

sm + Csi ∗Q1
sm

)
∧
(
slot2(i) + part(i)

Q1
sm

)
∗Q2

sm −MAi < Q2
sm

∧
(
slot2(i) + part(i)

Q1
sm

)
∗Q2

sm −MAi ≥ 0
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