-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Contego: An Adaptive Framework for Integrating
Security Tasks in Real-Time Systems

Monowar Hasan!, Sibin Mohan?, Rodolfo Pellizzoni®, and
Rakesh B. Bobba*

1 University of Illinois at Urbana-Champaign, Urbana, IL, USA
mhasanl11@illinois.edu

2 University of Illinois at Urbana-Champaign, Urbana, IL, USA
sibin@illinois.edu

3 University of Waterloo, Ontario, Canada
rodolfo.pellizzoni@uwaterloo.ca

4 Oregon State University, Corvallis, OR, USA
rakesh.bobba@oregonstate.edu

—— Abstract

Embedded real-time systems (RTS) are pervasive. Many modern RTS are exposed to unknown
security flaws, and threats to RTS are growing in both number and sophistication. However, until
recently, cyber-security considerations were an afterthought in the design of such systems. Any
security mechanisms integrated into RT'S must (a) co-exist with the real-time tasks in the system
and (b) operate without impacting the timing and safety constraints of the control logic. We
introduce Contego, an approach to integrating security tasks into RT'S without affecting temporal
requirements. Contego is specifically designed for legacy systems, wviz., the real-time control
systems in which major alterations of the system parameters for constituent tasks is not always
feasible. Contego combines the concept of opportunistic execution with hierarchical scheduling to
maintain compatibility with legacy systems while still providing flexibility by allowing security
tasks to operate in different modes. We also define a metric to measure the effectiveness of such
integration. We evaluate Contego using synthetic workloads as well as with an implementation
on a realistic embedded platform (an open-source ARM CPU running real-time Linux).

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems
Keywords and phrases real-time systems, security, hierarchical scheduling

Digital Object Identifier 10.4230/LIPIcs. ECRTS.2017.23

1 Introduction

Embedded real-time systems (RTS) are used to monitor and control physical systems and
processes in many domains, e.g., manned and unmanned vehicles including aircraft, spacecraft,
unmanned aerial vehicles (UAVs), submarines and self-driving cars, critical infrastructures
like the electric grid and process control systems in industrial plants, to name just a few. They
rely on a variety of inputs for correct operation and have to meet stringent safety and timing
requirements. Failures in RTS can have catastrophic consequences for the environment, the
system, and/or human safety [1, 10].

Traditionally, RTS were designed using proprietary protocols, platforms and software
and were not connected to the rest of the world, i.e., they were air gapped. As a result
cyber-security was not a design priority in such systems. However, the drive towards remote
monitoring and control facilitated by the growth of the Internet, the rise in the use of

© Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni, and Rakesh B. Bobba;
37 licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).

Editor: Marko Bertogna; Article No. 23; pp. 23:1-23:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/84868921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2

An Adaptive Framework for Integrating Security Tasks in Real-Time Systems

commercial-off-the-shelf (COTS) components, standardized communication protocols and
the high value of these systems to adversaries have been challenging the status quo. While
safety and fault-tolerance have long been important design considerations in such systems,
traditional fault-tolerance techniques that were designed to counter and survive random or
accidental faults are not sufficient to deal with cyber-attacks orchestrated by an intelligent
and capable adversary. A number of high-profile attacks on real systems, e.g., Stuxnet [15]
and attack demonstrations by researchers on automobiles [20, 10] and medical devices [12]
have shown that the threat is real.

Given the increasing cyber-security risks, it is essential to have a layered defense and
integrate resilience against such attacks into the design of controllers and actuators (i.e.,
embedded RTS). It is also critical to retrofit existing controllers and actuators with protection,
detection, survival and recovery mechanisms. However, any security mechanisms have to
co-exist with real-time tasks in the system and have to operate without impacting the timing
and safety constraints of the control logic. This creates an apparent tension between security
requirements (e.g., having enough cycles for effective monitoring and detection) and the
timing and safety requirements. For example, how often and how long should a monitoring
and detection task run to be effective but not interfere with real-time control or other
safety-critical tasks? While this tension could potentially be addressed for newer systems at
design time, it is especially challenging in the retrofitting of legacy systems for which the
control tasks are already in place and perhaps cannot be modified. Another challenge is to
ensure that an adversary cannot easily evade such mechanisms. Further, the deterministic
nature of task schedules in RT'S may provide attackers with known windows of opportunity
in which they can run undetected [11, 41].

Our focus in this work is on retrofitting security mechanisms into legacy RTS, for which
modification of existing real-time tasks’ parameters (such as run-times, period, task execution
order, etc.) is not always feasible. In contrast to existing mechanisms [24, 42], the proposed
method does not require any architectural modifications and hence is particularity suitable
for systems designed using COTS components. The framework developed in this paper
is based on our earlier work [18] in which we proposed to incorporate monitoring and
detection mechanisms by implementing them as separate sporadic tasks and executing them
opportunistically, that is, with the lowest priority so that real-time tasks are not affected.
However, if the security tasks always execute with lowest priority, they suffer more interference
(i.e., preemption from high-priority real-time tasks) and the consequent longer detection
time (due to poor response time) will make the security mechanisms less effective. In order
to provide better responsiveness and increase the effectiveness of monitoring and detection
mechanisms, we now propose a multi-mode framework called Contego'. For the most part,
Contego executes in a PASSIVE mode with opportunistic execution of intrusion detection
tasks as before [18]. However, Contego will switch to an ACTIVE mode of operation to
perform additional checks as needed (e.g., fine-grained analysis, used as an example in
Section 6.2). This ACTIVE mode potentially executes with higher priority, while ensuring
the schedulability of real-time tasks. Thus Contego subsumes the approach in our earlier
work [18] and provides faster detection.

The contributions of this paper can be summarized as follows:

We introduce Contego, an extensible framework to integrate security tasks into legacy

RTS (Section 2).

Contego allows the security tasks to execute with minimal perturbation of the scheduling

1A preliminary version [19] of this work was presented at a workshop without published proceedings.

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba

order of the real-time tasks while guaranteeing their timing constraints (Sections 4-5).

The proposed method can adapt to changes due to malicious activities by switching its
mode of operation.

We propose a metric to measure the security posture of the system in terms of frequency
of execution (Section 3).

We evaluate the schedulability and security of the proposed approach using a range of
synthetic task sets and a prototype implementation on an ARM-based development board
with real-time Linux (Section 6).

2 Security and System Model

2.1 Attack Model

RTS face threats in various forms, depending on the system and the goals of an adversary.

For example, adversaries may insert, eavesdrop on or modify messages exchanged by system
components, may manipulate the processing of sensor inputs and actuator commands
and/or could try to modify the control flow of the system [42]. Further, rather than try
to crash the system aggressively, an intruder in reconnaissance mode may want to monitor
the system behavior and gather information for later use. For instance, an intruder may
utilize side-channels to monitor the system behavior and infer system information (e.g.,
hardware/software architecture, user tasks and thermal profiles, etc.) that may eventually
help maximize the impact of an attack [11].

Let us consider an RTS (say an avionics electronic control unit) developed using a
multi-vendor model [30], viz., its components are manufactured and integrated by different
vendors. For example, tasks in the system component manufactured by vendor v; are very
sensitive and considered classified or mission-critical (e.g., images captured by the camera
on the surveillance UAV). It may be undesirable for any vendor v; # v; to gain unintended
information about sensitive contents, even if, say, vendor v; is trusted with control tasks for
controlling the RTS. Similarly, the control laws from vendor v; may contain a proprietary

algorithm and vendor v; may not want other vendors to gain knowledge about the algorithm.

Protected communications and network monitoring/detection mechanisms are necessary but
insufficient to deal with such threats. Therefore, additional security tasks may need to be
added into the system to deal with such threats [25]. The security mechanisms could be
protection, detection or response mechanisms, depending on the system requirements. For
example, a sensor measurement correlation task may be added to detect sensor manipulation,
a change detection task may be added to detect intrusions or additional state-cleansing
tasks [26, 30, 27] can be added to deal with stealthy adversaries trying to glean sensitive
information through side channels.

It is worth mentioning that the addition of such security mechanisms may necessitate
changes to the schedule of real-time tasks. Contego is different from earlier work in which
integration of security impacted the schedulability [27, 26, 30], required modification of the
existing schedulers [39, 21], or necessitated architectural modifications [24, 42]. In contrast,
Contego aims to integrate such security tasks without impacting the timeliness constraints
(i.e., schedulability) required for safe operation (in both modes) and retaining the original
schedule of real-time tasks most of the time (e.g., in PASSIVE mode when security tasks are
executing opportunistically with lowest priority). We highlight that rather than designing
specific intrusion detection tasks that target specific attack behaviors, the generic framework
proposed in this work allows one to integrate a given security mechanism (referred to as

23:3

ECRTS 2017

23:4 An Adaptive Framework for Integrating Security Tasks in Real-Time Systems

,—| Security Task 1

(Passive Mode)

- - - Security Task 2
(Passive & Active Mode)

RT Task 1 ‘ ‘ ‘ ‘ 2. Anomaly detected,
Perf dditi | check:

RrTascz [] (Sitch to Actve Mode)

oo | I N O] - [

1. Passive Mode, IlT_e ________
Security Task Execute
with lowest priority)

e W W] - W

3. Active Mode, Security 4. Find everything normal or
Tasks Execute with timeout

higher priority than RT (Switch back to Passive
Task 2 Mode)

Figure 1 Contego: Flow of operations depicting the PASSIVE and ACTIVE modes for the security
tasks.

security tasks) into the system without perturbing the system parameters (e.g., period of the
real-time tasks, execution order, etc.).

2.2 Overview of Contego

As illustrated in Fig. 1, Contego improves the security posture of the system (that contains a
set of real-time tasks) by integrating additional security tasks and allowing them to execute
in two different modes (viz., PASSIVE and ACTIVE). If the system is deemed to be clean
(i.e., not compromised), security routines can execute opportunistically® (e.g., when other
real-time tasks are not running). However if any anomaly or unusual behavior is suspected,
the security policy may switch to ACTIVE mode (e.g., more fine-grained checking or response)
and execute with higher priority for a limited amount of time (since our goal is to ensure
security with minimum perturbation of the scheduling order of the real-time tasks). The
security routines may go back to normal (e.g., PASSIVE) mode if:

No anomalous activity is found within a predefined time duration, say T4C; or

The intrusion is detected and malicious entities are removed (or an alarm triggered if
human intervention is required).

Although we allow the security tasks to execute with higher priority than some of the real-
time tasks in ACTIVE mode, the proposed framework ensures that the timeliness constraints
(e.g., deadlines) for all of the real-time tasks are always satisfied in both modes. By using this
strategy, Contego not only enables compatibility with legacy systems (e.g., in normal situation
real-time scheduling order is not perturbed), but also provides flexibility to promptly deal
with anomalous behaviors (i.e., the security tasks are promoted to higher priority so that
they can experience less preemption and achieve better response times).

2 Which is also the default mode of operation.

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba

2.3 System Model
2.3.1 Real-Time Tasks

In this paper we consider the widely used fixed-priority sporadic task model [28]. Let
us consider a uniprocessor system consisting of m fixed-priority sporadic real-time tasks
I'r ={m, 72, - ,Tm}. Bach real-time task 7; € I'g is characterized by (C;, T}, D;), where
C; is the WCET, T is the minimum inter-arrival time (or period) between successive releases
and Dj is the relative deadline. We assume that priorities are distinct and assigned according
to the rate monotonic (RM) [22] order.

The processor utilization of 7; is defined as U; = %J Let hpgr(7;) and Ipr(7;) denote
the sets of real-time tasks that have higher and lower priority than 7;, respectively. We
assume that the real-time task-set I'g is schedulable by a fixed-priority preemptive scheduling
algorithm. Therefore, the worst-case response time w; is less than or equal to the deadline D;

and the following inequality is satisfied for all tasks 7; € I'r: w; < Dj, where w; = wf“ = w;?
is obtained by the following recurrence relation [2]:
k+1 wy
w?ij, wj+ =C;+ Z ?j Ch. (1)
ThERPR(TH) h

k

In Eq. (1), > FF)L—‘ C}, is the worst-case interference to 7; due to preemption by the
ThE€hpR(T;)

tasks with higher priority than 7; (e.g., hpr(7;)). The recurrence will have a solution if

k+1

wj

= w;-“ for some k.

2.3.2 Security Tasks

With a view of integrating security into the system, let us add additional fixed-priority
security tasks that will be executed in PASSIVE and ACTIVE modes. We model PASSIVE
and ACTIVE mode security tasks as independent sporadic tasks. The PASSIVE and ACTIVE
mode tasks are denoted by the sets I'¢" = {71,702, , 7, } and I'¢" = {71,702, , T, }»
respectively. We assume that security tasks in both modes follow RM priority order. Each
security task 7; € {I'%" UT'%} is characterized by the tuple (Cy, T4, T/ w;), where C; is
the WCET, T is the most desired period between successive releases (hence Fi¢* = Ti
is the desired execution frequency of a security routine) and 7;"%* is the maximum allowable
period beyond which security checking by 7; may not be effective. The parameter w; > 0
is a designer-provided weighting factor that may reflect the criticality of the security task?
7;. Critical security tasks would have larger w;. The security tasks have implicit deadlines,
e.g., D; = T;,Vr; that implies security tasks should complete before their next monitoring
instance. We do not make any specific assumptions about the security tasks in different
modes. For instance, both PASSIVE and ACTIVE mode task-sets may contain completely
different sets of tasks (e.g., {I'G" NT'%} = 0) or may contain (partially) identical tasks with
different parameters (e.g., period and/or criticality requirements).

In PASSIVE mode, security tasks are executed with lower priority than the real-time

tasks. Hence the security tasks do not have any impact on real-time tasks and cannot perturb

3 As an example, the default configuration of Tripwire [36], an intrusion detection system (IDS) for Linux
that we use as case study in Section 6.2, has different criticality levels (viz., weights), i.e., High (for
scanning files that are significant points of vulnerability), Medium (for non-critical files that are of
significant security impact) and so forth.

23:5

ECRTS 2017

23:6

An Adaptive Framework for Integrating Security Tasks in Real-Time Systems

the real-time scheduling order. In ACTIVE mode, we allow the security tasks to execute
with a priority higher than that of certain low priority real-time tasks. This provides us
with a trade-off mechanism between security (e.g., responsiveness) and system constraints
(e.g., scheduling order of real-time tasks). Since the task priorities are distinct, there are
m priority-levels for real-time tasks (indexed from 0 to m — 1 where level 0 is the highest
priority). Among the m priority-levels, we assume that ACTIVE mode security tasks can
execute with a priority-level up to lg (0 < lg < m), lg € Z. Although any period T; within
the range T7¢* < T; < T/"** is acceptable for PASSIVE (e.g., 7; € I's") and ACTIVE (e.g.,
7; € T'Y) mode security tasks, the actual period T; is not known a priori. Furthermore,
for ACTIVE mode security tasks (e.g., 7; € I'Y), we need to find out the suitable priority
level | € [lg,m]. Therefore our goal is to find the suitable period (for both PASSIVE and
ACTIVE mode security tasks) as well as the priority-level (for ACTIVE mode security tasks)
that achieve the best trade-off between schedulability and defense against security breaches
without violating the real-time constraints.

3 Period Adaptation

As already mentioned, one fundamental problem in integrating security tasks is to determine
which security tasks will be running when. This brings up the challenge of determining the
right periods (viz., the minimum inter-execution times) for the security tasks. For instance,
some critical security routines may be required to execute more frequently than others.
However, if the period is too short (e.g., the security task repeats too often) then it will use
too much of the processor time and eventually lower the overall system utilization. As a
result, the security mechanism itself might prove to be a hindrance to the system and reduce
the overall functionality or, worse, safety. In contrast, if the period is too long, the security
task may not always detect violations, since attacks could be launched between two instances
of the security task.

One may wonder why we cannot assign the desired period (e.g., T; = Tides) in both
PASSIVE and ACTIVE modes and set the ACTIVE mode priority level as [= lg so that
the security tasks can always execute with the desired frequency (i.e., Fides = ﬁ) and

experience less interference (e.g., preemption) from real-time tasks. However, since our goal is
to integrate security mechanisms in legacy systems with minimal* or no perturbation, setting
T, = Tides, V7; in either or both mode(s) may significantly perturb the real-time scheduling
order. If the schedulability of the system is not analyzed after the perturbation, some (or all)
of the real-time tasks may miss their deadlines and thus the main safety requirements of the
system will be threatened. The same argument is also true for ACTIVE mode if we set | = [g
(or arbitrarily from the range [ls,m]) and do not perform schedulability analysis carefully.

3.1 Tightness of the Monitoring

As mentioned earlier, the actual period as well as the priority-levels of the security tasks
are unknown and we need to adapt the periods within acceptable ranges. We measure the
security of the system by means of achievable periodic monitoring. Let T; be the period of
the security task 7; € {T'%" UT'%} that needs to be determined. Our goal is to minimize the

4 In ACTIVE mode Contego does not introduce any timing violations for the real-time tasks, but their
execution might be delayed due to interference from high-priority security tasks (e.g., the tasks with
priority-level I € [lg, m]).

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba

gap between the achievable period T; and the desired period Tides and therefore we define
the following metric:

Tdes
i = 27’ 2
= (2)

that denotes the tightness of the frequency of periodic monitoring for the security task ;.

Thus n?* = > win; and 9 = > w;n; denote the cumulative tightness of the achievable
T erne T €0

periodic monitoring for PASSIVE and ACTIVE mode, respectively. This monitoring frequency

metric, provides for instance, one way to trade-off security with schedulability. Recall that if

the interval between consecutive monitoring events is too large, the adversary may remain

undetected and harm the system between two invocations of the security task. Again, a very

frequent execution of security tasks may impact the schedulability of the real-time tasks.

This metric n() will allow us to execute the security routines with a frequency closer to the
desired one while respecting the temporal constraints of the other real-time tasks.

3.2 Problem Overview

One may wonder why we cannot schedule the security tasks in the same way that the existing
real-time tasks are scheduled. For instance, a simple approach to integrating security tasks
in PASSIVE mode without perturbing real-time scheduling order is to execute security tasks
at a lower priority than all real-time tasks. Hence, the security routines will be executing
only during slack times when no other higher-priority real-time tasks are running. Likewise,
in ACTIVE mode, security tasks can be executed at a lower priority than more critical,
high-priority real-time tasks. Hence, the security tasks will only be executing when other
real-time tasks with priority-levels higher than /g are not running.

When both real-time and security tasks follow RM priority order, we can formulate
a nonlinear optimization problem for PASSIVE mode with the following constraints that
maximizes the cumulative tightness of the frequency of periodic monitoring;:

(P1)
pa
tax
Subject to: Z G < (m+mn,)(27"*1"? —-1) - Z G (3a)
i P T;
T €T T7;€lR
T; > max T; V1 e TR (3b)
T elr
Ties <T; < T Vr e IR (3c)
where TP* = [T}, T3, - - ,Tnp}T is the optimization variable for PASSIVE mode that needs to

be determined. The constraint in Eq. (3a) ensures that the utilization of the security tasks
are within the remaining RM utilization bound [22]. The RM priority order for real-time and
security tasks is ensured by the constraints in Eq. (3b), while Eq. (3c) ensures the restrictions
on periodic monitoring,.

Recall that in ACTIVE mode, we allow the security tasks to execute when the real-time
tasks with priority-levels higher than lg are not running. Hence, to ensure the RM priority
order in ACTIVE mode, we need to modify the constraints in Eq. (3b) as follows:

T; > max Tj, V1 € Fgc (4)

i GFR}Lp(lS)

23:7

ECRTS 2017

23:8

An Adaptive Framework for Integrating Security Tasks in Real-Time Systems

where T° Rupg) Yepresents the set of real-time tasks that are higher priority than level Ig.
In addition, the constraints in Eq. (3a) and Eq. (3¢) also need to be updated to consider
ACTIVE mode task-sets (e.g., I'4’) and the number of active mode security tasks (nq). Thus
for ACTIVE mode we can formulate an optimization problem similar to that of P1 with
the objective function: max n®, where T = [Ty, Ty,---,Ty,,]" is the ACTIVE mode
optimization variable.

One of the limitations of the above approach is that the overall system utilization is

limited by the RM bound which has the theoretical upper bound of processor utilization
only about lim n(2% — 1) = In2 ~ 69.31% [22], where n is the total number of tasks
n—oo

under consideration. Further, the security tasks’ periods need to satisfy the constraints in
Eq. (3b) and Eq. (4) (for PASSIVE and ACTIVE modes, respectively) to follow RM priority
order. In addition, instead of focusing only on optimizing the periods of the security tasks,
Contego aims to provide a unified framework that can achieve other security aspects (viz.,
responsiveness). Thus we follow an alternative approach similar to one we proposed in earlier
work® [18]. Specifically, we had proposed to use a server [13] to execute security tasks. Our
security server is motivated by the needs of hierarchical scheduling [35]. Under hierarchical
scheduling, the system is composed of a set of components (e.g., real-time tasks and a security
server, in our context) and each of which comprises multiple tasks or subcomponents (e.g.,
security tasks). The server abstraction not only allows us to provide better isolation between
real-time and security tasks, but also enables us to integrate additional security properties
(such as responsiveness) as we discuss in the following.

4 The Security Server

The server [13] is an abstraction that provides execution time to the security tasks according
to a predefined scheduling algorithm. Our proposed security server is characterized by
the capacity @ and replenishment period P. The server is executed with lowest-priority
in PASSIVE mode. However, in ACTIVE mode, the server can switch to any allowable
priority-level® within the range [lg,m].

4.1 Reformulation of the Period Adaptation Problem using Servers

When security tasks execute within the server, we need to modify the constraints in the
period adaption problem considering the server parameters @@ and P. In the following we
briefly discuss how to customize the period adaptation problem with the inclusion of the
server.

Let us use UBg(qg,p),r to denote the utilization bound for the set of tasks I' executing
within the server. When the smallest period of the task is greater than or equal to 3P — 2Q),
it has been shown [31] that the upper bound of the utilization factor for the security tasks is

Q N\
given by UBs(q,p)r =1 < 5 PQ > — 1], where n is number of tasks in the set I'.
’ 3—2%
P

Thus with the inclusion of the server in PASSIVE mode, we can modify the constraints in

5 The approach we proposed in our earlier work [18] is analogous to the PASSIVE mode of Contego.
6 Calculation of the server priority-level is described in Section 5.

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba

Egs. (3a) and (3b) as follows:

1

C 5 Qre np

G yzzzi

% o, <Q) ! (50
ey Pra

T, > 3PP —2QP0, r, € T (5b)

Therefore, selection of the periods for security tasks in PASSIVE mode is a nonlinear
constrained optimization problem that can be formulated as follows:

(P2)

Tlides)
max Z w; T Subject to: (5a), (5b), (3c).

TiGFga

where QP® and PP® are the server capacity and replenishment period in PASSIVE mode,
respectively. The formulation of the PASSIVE mode period adaptation problem presented
above is similar to that we proposed in earlier work [18]. Similarly, in ACTIVE mode, the
period adaptation problem can be reformulated as follows:

(P3)
Tides
max Y wir
TiEFg,u
C; 3L\
. . 71 Pac _
Subject to: Z T < ng (3_2Qac> 1 (7a)
TiEFg“ Ppac
T, > 3P% —2Q% Vr; €Y (7b)
Tides < Tz < Timax VTZ‘ c F%c (70)

where Q% and P are the server capacity and replenishment period in ACTIVE mode,
respectively.

4.2 Selection of the Server Parameters

The period adaptation problem illustrated in Section 4.1 is derived based on a given set of
server parameters, e.g., (Q(')7 P(')). However, a fundamental problem is to find a suitable pair
of server capacity Q() and replenishment period P() that respects the real-time constraints
of the tasks in the system. Our approach to selecting the server parameters in PASSIVE and
ACTIVE mode is described below.

4.2.1 Parameter Selection in Passive Mode

Recall that in PASSIVE mode, the server will execute with the lowest priority to have
compatibility with existing real-time tasks. Since the security tasks execute within the server,
we need to ensure the following two constraints:
The server is schedulable: that is the server’s capacity and interference from higher
priority real-time tasks are less than the replenishment period; and
The security tasks are schedulable: the minimum supply by the server to the security
tasks is greater than the worst-case workload generated by the security tasks.

23:9

ECRTS 2017

23:10

An Adaptive Framework for Integrating Security Tasks in Real-Time Systems

Note that since the server is running with lowest priority, the real-time constraints (e.g.,
w; < Dj, V1, € I'r) and the task execution order are not affected in the PASSIVE mode.
Based on the above two constraints, we illustrate an approach for determining the server
parameters by formulating it as a constraint optimization problem.

The security server is referred to as schedulable if the worst-case response time of the
server does not exceed its replenishment period [13]. Thus, following an approach similar
to ones in earlier work [18, 40], the server schedulability constraint can be represented as
follows:

QP + Agpa < PP (8)

where Agpa = > (PTI; ‘4 1) C}, is the worst-case interference experienced by the
ThE€hpR(Tspa)
server when preempted by the higher priority real-time tasks. In the above equation, the set

of real-time tasks with higher priority than the server (i.e., hpr(7&") = ') is fixed.

Let us use hp''(7;) to denote the set of PASSIVE mode security tasks that are higher
priority than 7; € I'%". To ensure schedulability of the security tasks, we can derive the
minimum supply of the server delivered to the security tasks by using the periodic resource
model from the literature [35, 40, 18]. In particular, the constraints on the server supply to
ensure schedulability of the security tasks [18] can be expressed as:

Qr
pra

[T; — (PP* — Q") — Agra] > IP*, V1, € TR (9)

where [P = C; + > [%—‘ C}, is the worst-case workload generated by the security

ThERPY® (T4)
task 7; and hpga(n) during the time interval of T;. This workload is a constant for a given
input.
Since we need to ensure maximal processor utilization for the security tasks without
violating the real-time constraints of the system, we define the following objective function:

pa

max gm. With this objective function and the constraints in Eqs. (8)—(9), the PASSIVE

mode server parameter selection problem can be formulated as follows:

(P4)

pa

oA S Subject to: (8), (9)

where server parameters QP* and PP® are the optimization variables.

4.2.2 Parameter Selection in Active Mode

In ACTIVE mode, the security server is no longer the lowest priority task. Since the server
can execute with priority lg, there could be up to m — lg low priority real-time tasks than
that of the server. Thus we need to ensure the schedulability of the real-time tasks that
are executing with a priority lower than the server. Hence, in addition to the constraints
described in Section 4.2.1 (i.e., Egs. (8)-(9)), we need to consider the following:
The real-time tasks with lower priority than the server are schedulable: that is, the
interferences from the server and other higher priority real-time tasks do not violate the
deadlines for these low-priority tasks.

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba

We therefore define the following constraints to ensure the schedulability of the low-priority
real-time tasks:

D; D; , .
Cj + Z ’VT;-‘ Ch + (Pajc + 1) Qac < Dj, VT]‘ € lpR(Tgc) (11)
Th GhPR(TJ)
where > [%j‘ C', is the interference experienced by 7; from other real-time tasks and
ThERPR(TH) '

Dy
Pac
illustrated in Section 5, we iterate through the allowable priority ranges (e.g., [ls, m]) to find
the server priority in ACTIVE mode. Note that for a given priority-level, the set of tasks
Ip(74°) is predefined. Thus the only variables for the constraints in Eq. (11) are the server
capacity @Q“¢ and replenishment period P°c.
Let us use hp%’(7;) to denote the set of ACTIVE mode security tasks that are higher
priority than 7 € I'¢°. Just as in P4 we can now formulate the ACTIVE mode parameter

selection problem as follows:

+ 1) Q% is the worst-case interference caused to 7; by the server in ACTIVE mode. As

(P5)
ac
OMAX. . Pac Subject to: (11) and
Qac+ Z pac +1) 0, < poe (12&)
Ty, -
ThERPR(Tsac)

Qac ac ac ac ac
Pac [T; — (P — Q%) — Agac] > I#¢ V1, €T'§ (12Db)
where the set of real-time tasks with higher priority than the server (i.e., hpr(72°) C T'r)
is a constant for a given priority-level and I = C; + > {;ﬂh—‘ C}, is the worst-case

Th €hpE (1)
workload generated by the security task 7; and hp%°(r;). Note that the schedulability of the

ac

higher priority real-time tasks (e.g., V7; € hpr(74°)) is already ensured by definition.

» Remark. The formulation of the period adaptation and server parameter selection problems
are nonlinear constraint optimization problems and are nontrivial to solve in their current
form. However, these problems can be transformed into a geometric programming (GP) [6]
problem. In addition, it is also possible to reformulate the non-convex GP representation into
equivalent convex form that can be solved using known algorithms such as interior point [7,
Ch. 11] method. For details of this reformulation, we refer the readers to earlier work [18].

4.3 Discussion on Mode Switching

As mentioned earlier, by default, Contego operates in PASSIVE mode. However, when a

malicious activity is suspected, a PASSIVE-to-ACTIVE mode change request will be issued.

Similarly, an ACTIVE-to-PASSIVE mode change request will be placed if the system seems
clean after fine-grained checking, or a malicious entity is found and removed. In steady-state
(e.g., when security tasks are executing in PASSIVE or ACTIVE mode), the schedulability of
the real-time tasks is already guaranteed by the analysis presented in Section 4.2.

When Contego switches from PASSIVE mode to ACTIVE mode, the schedulability of
real-time tasks will not be affected. The reason this that all the real-time tasks are higher
priority than the security tasks in PASSIVE mode and hence do not suffer any additional

23:11

ECRTS 2017

23:12

An Adaptive Framework for Integrating Security Tasks in Real-Time Systems

interference from security tasks during mode change. Therefore, the schedulability of real-
time tasks during PASSIVE-to-ACTIVE mode switching is already covered by steady-state
analysis (Section 4.2.1).

During ACTIVE-to-PASSIVE mode switching, observe that schedulability of the real-time
tasks that have a priority higher than the server (i.e., hpr(7¢°)) is not affected. When
the mode switch request is issued, the ACTIVE mode server (and the security tasks) stop
execution and the control is then switched to the lowest priority PASSIVE mode server. Note
that the constraints in Eq. (11) that ensures the schedulability of the low-priority real-time
tasks already captures the worst-case interference introduced by the server. Hence the server
will not impose any more interference (even if the mode switch is performed in the middle
of the execution of a busy interval) on the low-priority real-time tasks than what we have
calculated in the steady-state analysis (Section 4.2.2). Therefore if both the PASSIVE and
ACTIVE modes task-sets are schedulable, the system will also be schedulable with mode
changes.

5 Algorithm Development

We develop a simple scheme to obtain the security task’s period (for both PASSIVE and
ACTIVE mode) and priority-level (for ACTIVE mode). The overall algorithm, Algorithm 1,
works as follows.

To find the PASSIVE mode parameters, we initialize the security task’s period with the
desired period and solve the server parameter selection problem P4 (Lines 10-11). If there
exists a solution (e.g., the constraints are satisfied), we then obtain the periods of the security
tasks by solving P2 (Line 13). In the event that neither of these optimization problems
returns a solution, we report the task-set as unschedulable (Line 20), since it is not possible
to execute security tasks opportunistically without violating real-time constraints.

To select ACTIVE mode parameters, the algorithm iterates through each of the acceptable
priority-levels [lg, m] and tries to obtain the periods that maximize tightness for periodic
monitoring without violating the real-time constraints (Lines 26-36). If there exists a solution
(e.g., constraints in P5 and P3 are mutually consistent), we store the solution in a candidate
list. The algorithm then finds the best priority-level from the candidate solution sets that
provides the maximum tightness (Line 39). In the event that no candidate solutions are found
for any of the allowable priority ranges, the algorithm reports the task-set as unschedulable.

If both the PASSIVE and ACTIVE mode tasks are schedulable, then Algorithm 1 returns
the corresponding periods and the ACTIVE mode priority-level (Line 4). Otherwise, the
system is considered as unschedulable (Line 7) since it is not possible to integrate security
tasks with desired requirements. This unschedulability result hints that the designers of the
system should update system parameters (e.g., the number of security tasks, desired and
maximum allowable periods of the security tasks, periods of the real-time tasks, if permissible,
etc.) in order to integrate security mechanisms.

6 Evaluation

We evaluate Contego with randomly generated synthetic workloads (Section 6.1) as well as
a proof-of-concept implementation on an ARM-based embedded development board and
real-time Linux (Section 6.2).

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba

Algorithm 1 Feasibility Checking and Parameter Selection

Input: Set of real-time tasks, I'r, PASSIVE and ACTIVE mode security tasks Fga and I'¢°, allowable
priority ranges [ls,m]

Output: The tuple {I*, TP* QP PP? T*¢ Q%, P*°}, e.g., ACTIVE mode server priority-level, ACTIVE
and PASSIVE mode periods of the security tasks and ACTIVE and PASSIVE mode server parameters if
the task-set is schedulable; Unschedulable otherwise

1: Obtain PASSIVE and ACTIVE mode parameters using the functions
PASSIVEMODEPARAMSELECTION (IR, Fg“) and ACTIVEMODEPARAMSELECTION(T' g, 'S, lg)

2: if Solution Found in BOTH Modes then

3 /* return the parameters *

4 return {{*, TP% QP PP% T*¢, Q%, P*}

5: else

6

7

8

/* not possible to integrate security tasks in the system */
return Unschedulable
. end if

9: function PAsSIVEMODEPARAMSELECTION(T g, %)
10: Initialize PASSIVE mode period T; := Tid€57VT,~ eIy’

11: Solve P4 to obtain server parameters

12: if SolutionFound then

13: Solve P2 to obtain security periods

14: if SolutionFound then

15: /* return the parameters */

16: return TP QP¢ PP® where QP?, PP® and TP® are the solutions obtained by P4 and P2
17: end if

18: else

19: /* unable to integrate PASSIVE mode security tasks */
20: return Unschedulable

21: end if

22: end function

23: function ACTIVEMODEPARAMSELECTION(T g, 'S, Is)
24: Schedulable := false

25: Initialize ACTIVE mode security task’s period T(I')y [1g,m] := [Tides]gﬂerasc
26: for each priority level I’ € [lg,m] do
27: Solve P5 to obtain server parameters
28: if SolutionFound then
29: Solve P3 to obtain security periods
30: if SolutionFound then
31: /* store the parameters for priority level ' where Q*, P* and T* are the solutions obtained
by P5 and P3 */
32: Q) =", PIl'):=P",T(') :=T*
33: Schedulable := true
34: end if
35: end if
36: end for
37: /* obtain the parameters that provide best metric */
38: if Schedulable then
39: Find the priority-level I* from the solution vector T'(I')vi/ (14, m]| tasks at I/ is schedulable that gives
the maximum cumulative tightness n¢ = ZT e i
g S
40: Set T .= T(*), Q% :=Q(I*), P* := P(I*)
41: /* return the parameters */
42: return [*, T*¢, Q*°, P*°
43: else
44: /* unable to integrate ACTIVE mode security tasks */
45: return Unschedulable
46: end if

47: end function

23:13

ECRTS 2017

23:14

An Adaptive Framework for Integrating Security Tasks in Real-Time Systems

05 !
o,
o B

Acceptance Ratio (%)

Effectiveness of Security

—e-Active Mode
—+Passive Mode

% o1 02 03 04 o5 06 07 08 oo 1 0 o1 02 03 04 05 06 07 08 09 1 91 02 08 o0s¢ 05 o5 07 os o9
Total Utilization Total Utilization Total Utilization

Difference in Cumulative Tightness

(a) Difference in cumulative (b) Effectiveness of security in (c) Schedulability of task-sets
tightness. different system utilization. in both modes.

Figure 2 Experiments with synthetic task-sets: (a) PASSIVE mode vs. ACTIVE mode: difference
in cumulative tightness of achievable periodic monitoring, n* — nP*. Non-zero difference indicates
that the ACTIVE mode tasks achieve better tightness than PASSIVE mode tasks. Each of the data
points represents schedulable task-sets. (b) The effectiveness of security vs. total utilization of the
system. The closer the y-axis values to 1, the nearer each security task’s period is to the desired
period. (c) Schedulability of real-time and security tasks in both modes. The acceptance ratio is
defined by the ratio of the number of accepted task sets over the total number of generated tasks.
For each of the data points, 500 individual task-sets were tested. In figure (a) and (b), task-sets
from different base-utilization groups are distinguished by different colors.

6.1 Experiment with Synthetic Task-sets
6.1.1 Simulation Setup

In order to generate task-sets with an even distribution of tasks, we grouped the real-time and
security task-sets by base-utilization from [0.01 4+ 0.1-4,0.1+ 0.1 -], where t € ZA0 < ¢ < 9.
Each utilization group contained 500 task-sets. In other words, a total of 5000 task-sets were
tested for each of the experiments. The utilization of the real-time and security tasks were
generated by the UUniFast [4] algorithm and we used GGPLAB [29] to solve the optimization
problems.

We used the parameters similar to those used in earlier research [26, 18]. In particular,
each task-set instance contained [3,10] real-time and [2,5] security tasks in each of the
modes. Each real-time task 7; € I'g had a period T; € [10 ms, 100 ms| and we assumed
ls = [0.4m]. The desired periods for the security tasks Vr; € {T'%" UT'%} were selected from
[1000 ms, 3000 ms] and the maximum allowable period was assumed to be T/ = 10T,
We considered w; = 1, V7; € {T%" UT'%} and the total utilization of the security tasks was
assumed to be no more than 30% of the real-time tasks.

6.1.2 Results
6.1.2.1 Impact on Cumulative Tightness

In Fig. 2a one can see the difference in the tightnesses of the periodic monitoring obtained
by PASSIVE and ACTIVE mode (i.e., n* — nP%). For fair comparison we used the same
task-sets for both modes. The x-axis of Fig. 2a represents the total system utilization (e.g.,
utilization of both real-time and security tasks). The positive values in the y-axis of Fig. 2a
imply that the ACTIVE mode tasks obtain better tightness that the PASSIVE mode tasks.
The figure shows that ACTIVE mode tasks can achieve better cumulative tightness, and
that the cumulative tightness nP* is comparatively better in low to medium utilization. The
main reason is that in ACTIVE mode security tasks are allowed to execute with higher priority,

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba

that causes less interference and eventually increases the feasible region in the optimization
problems (and hence provides better tightness). For higher utilizations the difference is close
to zero. This is because, as utilization increases there is less slack in the system, making it
difficult to schedule security tasks frequently and resulting in similar levels of tightness for
both modes.

6.1.2.2 Effectiveness of Security

The parameter n() is given by the total number of security tasks and provides insights on
cumulative measures of security. However, in this experiment (refer to Fig. 2b) we wanted
to measure the effectiveness of the security of the system by observing whether each of the

security tasks in any mode can achieve an execution frequency closer to the desired one.

* des
Hence we used the following metric: £ =1 — | IT" T2 where T* is the solution obtained

ITmax_Tdes H2

from Algorithm 1, T4 = [T%]] ~and T™a* = [T;"*]]_ are the desired and maximum

period vector (refer to Section 6.1.1), respectively, and |-||, denotes the Euclidean norm.

The closer the value of £ to 1, the nearer each of the security task’s period is to the desired
period. As the total utilization increases, the feasible set of the period adaptation problem
that respects all constraints in the optimization problems becomes more restrictive. As a
result, we see the degradation in effectiveness (in terms of £) for the task-sets with higher
utilization. However, from our experiments we find that Contego can achieve periods that
are within 18% of the desired periods.

6.1.2.3 Impact on the Schedulability

We used the acceptance ratio metric to evaluate schedulability. The acceptance ratio (y-axis
in Fig. 2c) is defined as the number of accepted task-sets (e.g., the task-sets that satisfied all
the constraints) over the total number of generated ones. As depicted in Fig. 2¢ the ACTIVE
mode task-set achieves better schedulability compared to the PASSIVE ones. Recall that
ACTIVE mode task-sets can be promoted up to priority level Ig. As a result ACTIVE mode
security tasks potentially experience less interference than the PASSIVE ones. This flexibility
gives the optimization routines a larger feasibility region to satisfy all the constraints.

6.2 Experiment with Security Applications in an Embedded Platform

To observe the performance of the proposed scheme in a practical setup, we implemented
Contego on an embedded platform. Our experimental platform [3] was configured with 1 GHz
ARM Cortex-A8 single-core processor and 512 MB RAM. We used Linux as the operating
system — that allowed us to utilize the existing Linux-based IDSes (refer to Section 6.2.2) for
the evaluation. Since the vanilla Linux kernel is unsuitable for hard real-time scheduling, we
enabled the real-time capabilities with the Xenomai [38] 2.6.3 real-time patch (kernel version
3.8.13-r72) on top of an embedded Debian Linux console image.

We measured the WCET of the real-time and security tasks using ARM cycle counter
registers (e.g., CCNT), giving us nanosecond-level precision. Since these registers are not
enabled by default, we developed a Linux kernel module to access the registers from our
application codes. Our prototype implementation was developed in C and uses a fixed-priority
scheduler powered by the Xenomai real-time patch. Sporadic real-time and security tasks in
the system were defined by Xenomai rt_task create() function and were suspended after
the completion of corresponding instances using the rt_task wait_period() function.

23:15

ECRTS 2017

23:16

An Adaptive Framework for Integrating Security Tasks in Real-Time Systems

Table 1 Real-time task parameters for the UAV control system.

Task Function Period
(ms)
Guidance Select the reference trajectory (i.e., altitude and heading) 1000
Controller Execute closed-loop control functions (e.g., actuator commands) 5000
Reconnaissance Read radar/camera data, collect sensitive information and send 10000

data to the base control station

Table 2 Security tasks used in the experiments.

Task Function Mode
Check own binary of the secur- Scan files (viz., compare their hash ACTIVE
ity routine (Tripwire) value) in the following locations:

/usr/sbin/siggen, /usr/sbin/tripwire,
/usr/sbin/twadmin, /usr/sbin/twprint,

/usr/local/bro/bin
Check critical executables Scan file-system binary (/bin, /sbin) ACTIVE and
(Tripwire) PASSIVE
Check critical libraries (Trip- Scan file-system library (/1ib) ACTIVE
wire)
Monitor network traffic (Bro) Scan predefined network interface (en0) ACTIVE and

PASSIVE

6.2.1 Real-time Tasks

For a real-time application, we considered a UAV control system (refer to Table 1). We
implemented it using an open-source UAV model [37]. The original application codes were
based on the STM32F4 micro-controller (ARM Cortex M4) and developed for FreeRTOS [16].
Because of differences in library support and execution semantics, we updated the source
codes accordingly and ported them to Linux.

6.2.2 Security Tasks

To integrate security in the aforesaid control system, we included additional security tasks. For
the security tasks, we considered two lightweight open-source intrusion detection mechanisms,
(i) Tripwire [36], that detects integrity violations by storing clean system state during
initialization and using it later to detect intrusions by comparing the current system state
against the stored clean values, and (ii) Bro [8] that monitors anomalies in network traffic. As
Table 2 shows, we consider several security tasks in both modes, e.g., protecting security task’s
own binary files, protecting system binary and library files, monitoring network traffic. In
each mode, we set the desired and maximum allowable periods of the security tasks such
that utilization of the security tasks did not exceed 50% of the total system utilization.

6.2.3 Experience and Evaluation
6.2.3.1 Performance Impact in Different Modes

In the first set of experiments, we measured the average CPU load when the security tasks
were executing in PASSIVE and ACTIVE modes. For that, we executed the security tasks

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba

]
i
1
i

I

o
>

Passive Mode
CPU Load (%)

0 100 200 300 400 500

i

°
=

Empirical CDF

(
‘ — With Mode Change
i |-~ Without Mode Change
L

100 200 300 400 500 0 0.5 1 15 2 25 3 35 4
Time (s Detection Time (Cycle Count) x10°

(a) CPU load in different (b) Empirical CDF of detec-
modes. tion time.

Active Mode
CPU Load (%)

o
)

Figure 3 Experiments with synthetic task-sets: (a) The CPU load when the security tasks
executed in PASSIVE (top) and ACTIVE (bottom) mode, respectively. The dotted line represents
average load over the observation duration (500 s). (b) The empirical distribution of time to detect
the intrusions when mode change was allowed vs when security tasks were run only in PASSIVE
mode. We used ARM cycle counter registers to measure the detection time. A total of 50 individual
experiment instances were examined to obtain the timing traces.

independently for 500 s in PASSIVE and ACTIVE modes and observed the CPU load using
/proc/stat interface (represents the y-axis of Fig. 3a).

As Fig. 3a shows, running security tasks in ACTIVE mode increased the average CPU
load compared to running them in PASSIVE mode. This is because ACTIVE mode contains
more security tasks (e.g., 4 compared to 2, refer to Table 2) and they execute more frequently
than in PASSIVE mode. Because of the nature of applications, most RTS prefer predictability
over performance. The overhead of running security tasks in ACTIVE mode comes with
increased security guarantees that will suffice for many RTS.

6.2.3.2 Impact on Detection Time

To study the detection performance we injected malicious code into the system that mimics

anomalous behaviors. We assumed that an attacker can take over”

one of the low-priority
real-time tasks (referred to as the victim task) and is able to insert malicious code that can
execute with a privilege similar to that of legitimate tasks. We launched the attack at both
the network and host-level. We defined network-level DoS attacks as too many rejected
usernames and passwords submitted from a single address and used a real FTP DoS trace
[17] to demonstrate the attack. Malware (such as LRK, tOrn, Adore, etc.) in general-purpose
Linux environments causes damage to the system by modifying or overwriting the system
binary [14, Ch. 5]. Thus we follow a similar approach to demonstrate a host-level attack, viz.,
we injected ARM shellcode [33] to override the victim task’s code and launched the attack
by modifying the contents in the file-system binary. We obtained the periods of the security
tasks in both modes by solving the period adaptation problem (Algorithm 1) and set it as

the period of security tasks (by using the Xenomai rt_task set_ periodic() function).

For each of the experiments, the work-flow was as follows. We started with a clean (e.g.,
uncompromised) system state, launched the DoS attack at any random time of the program
execution and then injected the shellcode after a random interval, and finally logged the time
required by security tasks to detect the attacks. Initially the security tasks ran in PASSIVE

7 One way to override a task could be to use an approach similar to one presented in the literature [11]
that exploits the deterministic behavior of the real-time scheduling.

23:17

ECRTS 2017

23:18

An Adaptive Framework for Integrating Security Tasks in Real-Time Systems

mode. When the network-level attack was suspected by the security task (e.g., Bro), a
mode change request was placed and the control was switched to ACTIVE mode with the
corresponding ACTIVE mode tasks (see Table 2). As mentioned in Section 2.2, our focus is
not on the effectiveness of a particular IDS here but on the effectiveness of integration of the
IDSes into RTS. Therefore we controlled the experimental environment so that the results
were not affected by the false positive/negative rates of the IDS used in the evaluation. In
particular, both of the launched attacks were detectable by the respective IDSes used in
the evaluation. Detection times were measured using ARM cycle counter registers (CCNT).
To ensure the accuracy of the detection time measurements, we disabled all the frequency
scaling features in the kernel (by using the cpufrequtils utility) and allowed the platform to
execute with a constant frequency (e.g., 1 GHz, the maximum frequency of our experimental
platform).

We compared the performance of Contego with that of an earlier approach [18] that
has no provision for mode changes and in which the security tasks are run with the lowest
priority (similar to the PASSIVE mode of operation in Contego). Specifically, we measured
the time to detect both the host and network-level intrusions, and plot the empirical
cumulative distribution function (CDF) of those detection times in Fig. 3b. The x-axis
in Fig. 3b represents the detection time (in cycle count) and the y-axis represents the
probability that the attack would be detected by that time. The empirical CDF is defined

«

as F, () = é ZH[QSJ]’ where « is the total number of experimental observations, (; is the

time taken tolaletect the attack in the i-th experimental observation, and j represents the
r-axis values (viz., the detection times in cycle count) in Fig. 3b. The indicator function Iy
outputs 1 if the condition [] is satisfied and 0 otherwise.

From Fig. 3b we can see that Contego provides better detection time (i.e., fewer cycle
counts required to detect the intrusions). From our experiments we find that on average
Contego detects attacks 27.29% faster than the reference scheme does. The approach from
the literature [18] allows the security tasks to run only when other real-time tasks are not
running, leading to more interference (e.g., higher response times), and does not provide any
mechanisms to adapt against abnormal behaviors (e.g., the DoS attack in the experiments).
In contrast, Contego allows quick response to anomalies (by switching to ACTIVE mode when
a DoS attack is suspected). Since ACTIVE security tasks can run with higher priority and
less interference without impacting the timeliness constraints of real-time tasks, Contego had
a superior detection rate in general for most of the experiments without impacting safety.

7 Discussion

Although Contego provides an integrated approach to guarantee safety and security in RTS,
this framework can be extended in several directions. In the following, we briefly analyze
Contego against different threat models and discuss the limitations of the current framework
with possible directions of improvement.

7.1 Threat Analysis

The security mechanism will collapse if the adversary can compromise all the security
tasks. To do so, the adversary would need to intrude into the system, remain undetected
and monitor the schedule [11] (to override the security tasks) over a long period of time.
Guaranteeing the integrity of the security tasks is an interesting research problem by itself
and will be investigated in our future work. While compromising all the security tasks

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba

could be difficult in practice, it nevertheless would be worthwhile to harden the security
posture of Contego further by randomizing task schedules while guaranteeing the safety of
the real-time tasks by using approaches similar to one recently proposed in the literature
[41]. Randomizing the schedule of real-time and security tasks reduces the determinism
(and thus the predictability of security tasks’ execution) and further reduce the chance of
information leakage. Randomizing task schedules in RTS, unlike traditional systems, is not
straightforward since it leads to priority inversions [32] that, in turn, cause missed deadlines,
and hence, put the safety of the system at risk. We intend to incorporate randomization
protocols on top of Contego in future work.

The underlying detection algorithms in security tasks could raise false positive errors that
may cause the system to switch modes unnecessarily. Again, a clever adversary may remain
undetected and provide a fake indication of malicious activity. This may cause Contego
to frequently switch modes thus reducing performance and availability. Although Contego
guarantees that the system will remain schedulable (and hence safe) even with mode changes
(refer to Section 4.3), running of security tasks in ACTIVE mode could impose additional
overheads (i.e., increased load as we have seen in Fig. 3a) that designers of the system may
want to avoid. The false positive/negative errors can be mitigated by carefully designing the
detection algorithms based on application requirements. Further, we argue that forced mode
changes would require an adversary to intrude in the system and remain undetected for a
long time. In practice that could be difficult and unlikely in the presence of several intrusion
detection tasks.

7.2 Limitations and Improvement

In Contego each security task has a desired frequency of execution for better security coverage.

Security tasks so far have been treated as independent and preemptive, but in practice, some
security monitoring may need atomicity or non-preemptive execution. Further, security
tasks may have dependencies wherein one task depends on the output from one or more
other tasks. For example, an anomaly detection task might depend on the outputs of
multiple scanning tasks, or, the scheduling framework might need to follow certain precedence
constraints for security tasks. In order to ensure the integrity of monitoring security, the
security application’s own binary might need to be examined first before it checks the system
binary files. In that case, the cumulative tightness of the achievable periodic monitoring
proposed in Section 3 might no longer be a reasonable metric. Constraints to ensure that the
dependent security tasks are executed often enough should be included and the optimization
problem may need to be reformulated and evaluated with different metrics.

While time-to-detect is a useful metric, it is hard to quantify in a comprehensive way
as it depends on a number of factors such as the efficacy of monitoring tasks, the kind of
intrusion etc. and is a lagging metric. Identifying and designing better security metrics is
an important and challenging problem. In future work we will undertake it in the narrow
context of integrating monitoring and detection tasks into RTS.

8 Related Work

In our earlier work [18] we proposed to use a server to integrate security tasks and execute
them opportunistically at a lower priority than real-time tasks. That approach was useful for
legacy RTS where perturbing the schedule of real-time tasks was not an option — however,
the downside was longer time for detection. In contrast, Contego can respond to anomalous

23:19

ECRTS 2017

23:20

An Adaptive Framework for Integrating Security Tasks in Real-Time Systems

activities in an adaptive manner and provide improved monitoring frequency and detection
time when needed.

A state cleanup mechanism has been introduced [26], and further generalized [30, 27] such
that the fixed-priority scheduling algorithm was modified to mitigate information leakage
through shared resources. A new scheduler [39] and enhancements to an existing dynamic
priority scheduler [21] were proposed to meet real-time requirements while maximizing
the level of security achieved. Researchers have also proposed a schedule obfuscation
method [41] aimed at randomizing the task schedule while providing the necessary real-time
guarantees. Such randomization techniques can improve the security posture by minimizing
the predictability of the deterministic RTS scheduler. Recent work [24, 42] on architectural
frameworks has aimed to protect RTS against security threats. However, those approaches
came at the cost of reduced schedulability or may require architectural/scheduler-level
modifications. In comparison, Contego aims to integrate security without any significant
modification of the system properties and does mot violate the temporal constraints or
schedulability of the real-time tasks.

Although not in the context of security in RTS, there exists other work [5] in which the
authors statically assign the periods for multiple independent control tasks by considering
control delay as a cost metric and estimating the delay through an approximate response time
analysis. In contrast, our goal is to ensure security without violating the timing constraints
of the real-time tasks. Hence, instead of minimizing response time, we attempt to assign the
best possible periods and priority-levels so that we can minimize the perturbation between
the achievable period and desired period for all the security tasks.

An on-demand fault detection and recovery mechanism has been proposed [23] in which
the system can operate in different modes. Specifically, when a fault is detected, a high-
assurance controller is activated to replace the faulty high-performance controller. While
fault-tolerance may also be a design consideration, Contego focuses primarily on integrating
mechanisms that can foil cyber-attacks. There also exist work in the context of mixed-
criticality systems (MCS) where application tasks of different criticality requirements (e.g.,
deadline and execution time) share same computation and/or communication resources (refer
to literature [9] for a survey of MCS). MCS is different than the problem considered in this
work due to the fact that security properties (i.e., adaptive switching depending on runtime
behavior or frequent execution of monitoring events for faster detection) are often different
than temporal requirements (e.g., satisfying deadline constraints for mixed-criticality tasks).
However, the theory and concepts emerged from MCS can also be applied to the real-time
security problems to further harden the security posture of future RTS.

9 Conclusion

The sophistication of recent attacks on UAVs [34], automobiles [20, 10], medical devices
[12] as well as an industrial control systems [15], indicates that RTS are becoming more
vulnerable. In this paper we are making steps towards the development of a comprehensive
framework to integrate security mechanisms and provide a glimpse of security design metrics
for RTS. Designers of RTS are now able to improve their security posture, which will also
improve overall safety — and that is essentially the main goal of such systems.

—— References

1 Marshall Abrams and Joe Weiss. Malicious control system cyber security attack case
study—Maroochy Water Services, Australia. McLean, VA: The MITRE Corporation, 2008.

M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba

10

11

12

13

14

15

16
17

18

19

20

21

22

Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Applying
new scheduling theory to static priority pre-emptive scheduling. SE Journal, 8(5):284-292,
1993.

BeagleBone Black. https://beagleboard.org/black.

Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
RTS Journal, 30(1-2):129-154, 2005.

Enrico Bini and Anton Cervin. Delay-aware period assignment in control systems. In IEEE
RTSS, pages 291-300, 2008.

Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A tutorial on
geometric programming. Opt. & Eng., 8(1):67-127, 2007.

Stephen Boyd and Lieven Vandenberghe. Conver optimization. Cambridge University
Press, 2004.

The Bro Network Security Monitor. https://www.bro.org.

Alan Burns and Robert Davis. Mixed criticality systems — a review. Technical report,
University of York, 2013. [Online]. URL: https://www-users.cs.york.ac.uk/~burns/
review.pdf.

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno, et al.
Comprehensive experimental analyses of automotive attack surfaces. In USENIX Sec.
Symp., 2011.

Chien-Ying Chen, Rakesh B. Bobba, and Sibin Mohan. Schedule-based side-channel attack
in fixed-priority real-time systems. Technical report, University of Illinois, 2015. [Online].
URL: http://hdl.handle.net/2142/88344.

Shane S. Clark and Kevin Fu. Recent results in computer security for medical devices. In
MobiHealth, pages 111-118, 2011.

Rob Davis and Alan Burns. An investigation into server parameter selection for hierarchical
fixed priority pre-emptive systems. In IEEE RTNS, 2008.

Ethical hacking and countermeasures: Secure network operating systems and infrastruc-
tures, 2017.

Nicolas Falliere, Liam O. Murchu, and Eric Chien. W32. Stuxnet dossier. White paper,
Symantec Corp., Security Response, 5:6, 2011.

FreeRTOS. http://www.freertos.org.

FTP Brute-force attack trace. https://github.com/bro/bro/blob/master/testing/
btest/Traces/ftp/bruteforce.pcap.

Monowar Hasan, Sibin Mohan, Rakesh B. Bobba, and Rodolfo Pellizzoni. Exploring op-
portunistic execution for integrating security into legacy hard real-time systems. In IEEE
RTSS, pages 123-134, 2016.

Monowar Hasan, Sibin Mohan, Rakesh B. Bobba, and Rodolfo Pellizzoni. A server model
to integrate security tasks into fixed-priority real-time systems. In IEFFE CERTS, pages
61-68, 2016.

Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno, Stephen
Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, et al. Ex-
perimental security analysis of a modern automobile. In IEEE S&P, pages 447-462, 2010.
Man Lin, Li Xu, Laurence T. Yang, Xiao Qin, Nenggan Zheng, Zhaohui Wu, and Meikang
Qiu. Static security optimization for real-time systems. IEEE Trans. on Indust. Info.,
5(1):22-37, 20009.

Chung Laung Liu and James W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. JACM, 20(1):46-61, 1973.

23:21

ECRTS 2017

https://beagleboard.org/black
https://www.bro.org
https://www-users.cs.york.ac.uk/~burns/review.pdf
https://www-users.cs.york.ac.uk/~burns/review.pdf
http://hdl.handle.net/2142/88344
http://www.freertos.org
https://github.com/bro/bro/blob/master/testing/btest/Traces/ftp/bruteforce.pcap
https://github.com/bro/bro/blob/master/testing/btest/Traces/ftp/bruteforce.pcap

23:22

An Adaptive Framework for Integrating Security Tasks in Real-Time Systems

23

24

25

26

27

28

29

30

31
32
33
34
35
36
37
38
39

40

41

42

Xue Liu, Hui Ding, Kihwal Lee, Qixin Wang, and Lui Sha. ORTEGA: An efficient and
flexible software fault tolerance architecture for real-time control systems. In IJEEE ECRTS,
pages 125-134, 2008.

Daniel Lo, Mohamed Ismail, Tao Chen, and G. Edward Suh. Slack-aware opportunistic
monitoring for real-time systems. In IEEE RTAS, pages 203-214, 2014.

Sibin Mohan. Worst-case execution time analysis of security policies for deeply embedded
real-time systems. ACM SIGBED Review, 5(1):8, 2008.

Sibin Mohan, Man-Ki Yoon, Rodolfo Pellizzoni, and Rakesh B. Bobba. Real-time systems
security through scheduler constraints. In IJEEE ECRTS, pages 129-140, 2014.

Sibin Mohan, Man-Ki Yoon, Rodolfo Pellizzoni, and Rakesh B. Bobba. Integrating security
constraints into fixed priority real-time schedulers. RTS Journal, 52(5):644-674, 2016.
d0i:10.1007/s11241-016-9252-5.

A.K. Mok. Fundamental design problems of distributed systems for the hard-real-time
environment. Technical report, Massachusetts Institute of Technology, 1983.

Almir Mutapcic, Kwangmoo Koh, Seungjean Kim, Lieven Vandenberghe, and Stephen
Boyd. GGPLAB: a simple Matlab toolbox for geometric programming, 2006. URL: https:
//stanford.edu/~boyd/ggplab/.

Rodolfo Pellizzoni, Neda Paryab, Man-Ki Yoon, Stanley Bak, Sibin Mohan, and Rakesh B.
Bobba. A generalized model for preventing information leakage in hard real-time systems.
In IEEE RTAS, pages 271-282, 2015.

Saowanee Saewong, Ragunathan (Raj) Rajkumar, John P. Lehoczky, and Mark H. Klein.
Analysis of hierarchical fixed-priority scheduling. In IEEE ECRTS, pages 173-181, 2002.
Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Trans. on Comp., 39(9):1175-1185, 1990.
Shellcode on ARM architecture. http://shell-storm.org/shellcode.

Daniel P. Shepard, Jahshan A. Bhatti, Todd E. Humphreys, and Aaron A. Fansler. Eval-
uation of smart grid and civilian UAV vulnerability to GPS spoofing attacks. In Proc. of
the ION GNSS Meeting, volume 3, 2012.

Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarantees.
In IEEE RTSS, pages 2—-13, 2003.

Open Source Tripwire. https://github.com/Tripwire/tripwire-open-source.

UAYV Control Codes. https://github.com/Khan-drone/flight-control.

Xenomai — Real-time framework for Linux. https://xenomai.org.

Tao Xie and Xiao Qin. Improving security for periodic tasks in embedded systems through
scheduling. ACM TECS, 6(3):20, 2007.

Man-Ki Yoon, Jung-Eun Kim, Richard Bradford, and Lui Sha. Holistic design parameter
optimization of multiple periodic resources in hierarchical scheduling. In DATE, pages
1313-1318, 2013.

Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and Lui Sha. TaskShuffler: A schedule
randomization protocol for obfuscation against timing inference attacks in real-time systems.
In IEEE RTAS, pages 1-12, 2016.

Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. SecureCore: A
multicore-based intrusion detection architecture for real-time embedded systems. In IEEF
RTAS, pages 21-32, 2013.

http://dx.doi.org/10.1007/s11241-016-9252-5
https://stanford.edu/~boyd/ggplab/
https://stanford.edu/~boyd/ggplab/
http://shell-storm.org/shellcode
https://github.com/Tripwire/tripwire-open-source
https://github.com/Khan-drone/flight-control
https://xenomai.org

	Introduction
	Security and System Model
	Attack Model
	Overview of Contego
	System Model
	Real-Time Tasks
	Security Tasks

	Period Adaptation
	Tightness of the Monitoring
	Problem Overview

	The Security Server
	Reformulation of the Period Adaptation Problem using Servers
	Selection of the Server Parameters
	Parameter Selection in Passive Mode
	Parameter Selection in Active Mode

	Discussion on Mode Switching

	Algorithm Development
	Evaluation
	Experiment with Synthetic Task-sets
	Simulation Setup
	Results

	Experiment with Security Applications in an Embedded Platform
	Real-time Tasks
	Security Tasks
	Experience and Evaluation

	Discussion
	Threat Analysis
	Limitations and Improvement

	Related Work
	Conclusion

