
Semi-Partitioned Scheduling of Dynamic
Real-Time Workload: A Practical Approach Based
on Analysis-Driven Load Balancing
Daniel Casini1, Alessandro Biondi2, and Giorgio Buttazzo3

1 Scuola Superiore Sant’Anna, Pisa, Italy
daniel.casini@santannapisa.it

2 Scuola Superiore Sant’Anna, Pisa, Italy
alessandro.biondi@santannapisa.it

3 Scuola Superiore Sant’Anna, Pisa, Italy
giorgio.buttazzo@santannapisa.it

Abstract
Recent work showed that semi-partitioned scheduling can achieve near-optimal schedulability
performance, is simpler to implement compared to global scheduling, and less heavier in terms
of runtime overhead, thus resulting in an excellent choice for implementing real-world systems.
However, semi-partitioned scheduling typically leverages an off-line design to allocate tasks across
the available processors, which requires a-priori knowledge of the workload. Conversely, several
simple global schedulers, as global earliest-deadline first (G-EDF), can transparently support
dynamic workload without requiring a task-allocation phase. Nonetheless, such schedulers exhibit
poor worst-case performance.

This work proposes a semi-partitioned approach to efficiently schedule dynamic real-time
workload on a multiprocessor system. A linear-time approximation for the C=D splitting scheme
under partitioned EDF scheduling is first presented to reduce the complexity of online scheduling
decisions. Then, a load-balancing algorithm is proposed for admitting new real-time workload
in the system with limited workload re-allocation. A large-scale experimental study shows that
the linear-time approximation has a very limited utilization loss compared to the exact technique
and the proposed approach achieves very high schedulability performance, with a consistent
improvement on G-EDF and pure partitioned EDF scheduling.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems

Keywords and phrases semi-partitioned scheduling, dynamic workload, real-time

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.13

1 Introduction

Many real real-time systems are characterized by a dynamic workload where computational
activities (tasks) can join and leave the system, e.g., depending on the occurrence of specific
events in their operating environment. Representative examples are modern multimedia
software systems [17] (including those widely available in smartphones and tablets), cloud
services [28], real-time databases, and open environments in which software components may
join the system while the rest of the components continue to operate. Indeed, the possibility
to spawn tasks at runtime is given by several real-time operating systems, including VxWorks,
QNX and Linux. Such operating systems offer global scheduling policies such as global fixed-
priority (G-FP) and global earliest-deadline first (G-EDF), which have the precious benefit of
providing an automatic load balancing across the available processors, thus providing to the

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 13; pp. 13:1–13:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84868914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Semi-Partitioned Scheduling of Dynamic Real-Time Workload

application designer a simple and application-transparent scheduling mechanism. This benefit
likely determined the popularity of such schedulers; however, they have been demonstrated
being not optimal and generally exhibit poor worst-case performance due to several difficulties
that have been identified in the literature [18]. For this reason, numerous efforts have been
spent in studying and analyzing different techniques for scheduling real-time workload on
multiprocessor systems. In particular, several optimal multiprocessor scheduling algorithms
have been proposed, such as RUN [37], U-EDF [33], QPS [32] and LLREF [16], which are
generally more complex (and hence more difficult to implement) and more expensive in terms
of run-time overhead with respect to G-FP and G-EDF. Besides global schedulers, alternative
approaches have been proposed based on partitioned and semi-partitioned scheduling. The
former class of schedulers relies on a static allocation of the workload to the processors,
which is generally suitable for hard real-time systems with fixed task sets. Semi-partitioned
scheduling allows improving the performance of partitioned schedulers when a valid workload
allocation cannot be found or simply does not exist. While some tasks are statically allocated
to the processors, others are split across multiple processors, i.e., they are subject to a
controlled (and limited) migration at specific time instants during their execution. As for
partitioned schedulers, semi-partitioned schedulers typically leverage an off-line phase for
allocating the tasks, which makes them less prone to support dynamic workload. Recently,
Brandenburg and Gül [12] demonstrated that by clever task partitioning, semi-partitioned
EDF scheduling with C=D splitting [13] allows achieving near-optimal performance, while
being a much simpler and lighter (in terms of run-time overhead) approach with respect to
global schedulers. As most of the papers targeting multiprocessor real-time scheduling, their
work focused on static task sets only. However, the relevance of such a result suggests that
also dynamic workload may benefit of semi-partitioned scheduling. Nonetheless, considerable
challenges arise when aiming at supporting the C=D semi-partitioned scheduling of dynamic
workload. In particular, the C=D splitting algorithm has a high computational complexity
and therefore it cannot be adopted on-line without incurring in high overheads. Furthermore,
load-balancing algorithms are needed to support the dynamic allocation and splitting of
incoming workload.

Contribution. This paper makes the following three contributions. First, it proposes linear-
time approximate methods for performing the C=D splitting, which enable making practically
viable online scheduling decisions. Second, it presents load-balancing algorithms for C=D
semi-partitioned scheduling to admit new workload, and performing limited re-allocations to
facilitate the admission of future workload. Third, it reports on two large-scale experimental
studies that have been conducted to assess the performance of the proposed methods.

Paper structure. The rest of the paper is organized as follows. Section 2 introduces the
system model, reviews the essential background, and presents the adopted notation. Section 3
proposes three linear-time approximate methods for performing the C=D splitting. Section 4
presents some load-balancing algorithms for admitting new workload and performing limited
workload re-allocations. Section 5 reports on the experimental results. Section 6 discusses
the related work. Finally, Section 7 concludes the paper and illustrates some future work.

2 System Model and Background

This paper considers the problem of scheduling dynamic workload consisting of an arbitrary
number of reservation servers uponm identical processors. A reservation ri is characterized by

D. Casini, A. Biondi, and G. Buttazzo 13:3

a budget of execution time Ci and a minimum inter-replenishment time Ti. Such reservation
servers can arbitrarily enter or leave the system. However, each of them must pass an
acceptance test (based on parameters Ci and Ti) before being admitted into the system; those
that do not pass the test are rejected (i.e., ignored). At any point in time, R denotes the set
of reservations that are currently admitted for execution. Each reservation server ri ∈ R
generates a potentially infinite number of instances: in each instance, the server executes
for at most Ci time units and then is de-descheduled. An instance of the server begins
when (i) the budget of the server is replenished and (ii) the server has pending workload to
execute. An instance terminates either (i) when the budget is exhausted or (ii) the server
does not have anymore pending workload to execute. Note that the beginning times of the
instances follow a sporadic pattern. Reservations are considered to be independent (i.e., they
do not share resources other than the processors). The results presented in this work are not
limited to a specific reservation algorithm, but the server behavior has to comply with some
requirements that are discussed in the next section. We say that a reservation ri is schedulable
if, in every instance of the server, the system is able to guarantee the execution of its entire
budget Ci (used to serve pending workload running upon the server) before the time at which
the budget will be replenished. The goal of the acceptance test is to ensure that all the
reservations into the set R are always schedulable. In this work, the acceptance test employs
an on-line load balancing algorithm that allocates the reservations to the processors, which
will be presented in Section 4. Each reservation can be used for manifold purposes, including
(i) serving the execution of a single periodic/sporadic real-time task; (ii) implementing a
hierarchical scheduling framework [39], i.e., managing a local scheduler upon the reservation
that in turn manages a set of real-time tasks; and (iii) serving the execution of non-real-time
(i.e., best-effort) workload. Note that the adoption of reservation servers also provides the
benefit of guaranteeing a temporal isolation of the workload, protecting the system from tasks’
overruns or processor-eager best-effort computational activities. This feature is particularly
suited for systems running dynamic workload, for which – conversely to static, safety-critical
real-time systems – accurate estimates of the tasks’ worst-case execution time (WCET)
are often not available. Such a computational model is also of practical relevance, as it is
analogous to the one supported by the SCHED_DEADLINE scheduling class of Linux, today
available in the main distribution of the kernel and hence present in billions of machines and
devices around the world. Nonetheless, the approach proposed in this paper is also valid
for sporadic tasks with implicit deadlines. In this work, the reservations that are admitted
for execution are scheduled under semi-partitioned EDF scheduling with the C=D splitting
scheme [12, 13], which is briefly reviewed in the next section.

2.1 C=D Semi-partitioned Scheduling of Reservations
Semi-partitioned scheduling allows improving the schedulability performance of pure parti-
tioned scheduling when valid static allocations of the reservations cannot be found or simply
do not exist. With this approach, some reservations are statically allocated to processors,
while others are split across multiple processors, thus involving the migration of the workload
executing upon such reservations. More specifically, the budget of some reservations is
divided into multiple portions (i.e., chunks) that are executed on different processors with
precedence constraints. Among the various methods that one may imagine to split the
budget, the so called C=D splitting scheme has been found to perform particularly well. One
of the first proposals of this method is due to Kato and Yamasaki [26]: the authors assumed
partitioned fixed-priority scheduling as a baseline scheduling algorithm while ensuring that
the split portions of budget are executed with the highest priority on each processor. Since a

ECRTS 2017

13:4 Semi-Partitioned Scheduling of Dynamic Real-Time Workload

reservation scheduled at the highest priority does not suffer temporal interference from the
other reservations allocated on the same processor, it is guaranteed that its budget C will
be always consumed within a deadline of D = C time units from its release. The authors
exploited this property to facilitate the splitting phase. Later, Burns et al. [13] proposed
an improved C=D scheme under partitioned EDF scheduling, which exploits scheduling
deadlines to guarantee the system schedulability in the presence of splitting. Following their
approach, a budget is split into n portions, each allocated on n different processors. The first
n− 1 portions are scheduled with a scheduling deadline equal to the corresponding duration
of the portion – i.e., they have always zero laxity. Differently from [26], the last portion is
scheduled with a deadline greater than or equal to the duration of the portion, hence it may
suffer temporal interference from other reservations. Recently, Brandenburg and Gül [12]
proposed an extension of the Burns et al.’s approach where the execution order of the portions
of budget is flipped. This approach allows taking advantage of slack reclamation, which in
turn provides the benefit of reducing the number of migrations in the average-case. In this
paper, the latter splitting scheme is considered for the run-time scheduling mechanism.

Run-time scheduling mechanism. As soon as a server is admitted, its budget is immediately
replenished. If an instance of a server ri begins at a time t, the next budget replenishment
is set at time t+ Ti. As typical for EDF scheduling, each reservation server ri is assigned
a relative deadline Di. Each instance of ri beginning at time t is scheduled with absolute
deadline t+Di. The servers execute without self-suspensions: i.e., the budget is discharged if
the server has pending workload that is not ready to execute and is depleted when the server
stops having pending workload. Following semi-partitioned scheduling, some reservations
servers are statically allocated to processors (i.e., they never migrate across processors) –
for this reason they are referred to as partitioned reservations. Partitioned reservations
have a relative deadline equal to their minimum inter-replenishment time, that is Di = Ti.
Other reservations are split across multiple processors and are referred to as semi-partitioned
reservations. Consider a semi-partitioned reservation ri whose budget Ci is split into two
portions, say C ′

i and C ′′
i such that Ci = C ′

i + C ′′
i . Following the approach proposed in [12],

the first portion of budget is scheduled on a processor P ′ with relative deadline D′
i = Ti−C ′′

i

and minimum inter-replenishment time Ti, while the second one is scheduled on a different
processor P ′′ 6= P ′ with relative deadline D′′

i = C ′′
i and minimum inter-replenishment time Ti.

This split gives rise to two sub-reservations, denoted as head reservation and tail reservation,
respectively. At run-time, the execution of the workload executing upon a semi-partitioned
reservation ri is subject to the following rules. Suppose that an instance of ri begins at
time t and that the server has continuously pending workload to execute. The first C ′

i units
of budget of ri are served by its head reservation, i.e., on processor P ′. Then, every time
the budget C ′

i is exhausted, the workload executing upon ri is migrated to processor P ′′,
where it will be served by the ri’s tail reservation. If the head reservation is schedulable
within its relative deadline D′

i, this event is guaranteed to happen at a time t′ ≤ t + D′
i.

Contextually, the head reservation is de-scheduled and its budget will be replenished at
time t+ Ti. If the tail reservation is schedulable within its relative deadline D′′

i = C ′′
i , the

C=D approach [12] guarantees that C ′′
i units of time are served before time t + Ti, thus

guaranteeing the schedulability of ri. Once the budget of the tail reservation is exhausted,
also this server is de-scheduled and its budget will be replenished at time t′′ + Ti, where t′′
is the arrival time of its last instance. The pending workload upon ri will then be able to
restart the execution from processor P ′ (thus involving another migration) at time t+ Ti.
Note that, although the two sub-reservations have the same minimum inter-replenishment

D. Casini, A. Biondi, and G. Buttazzo 13:5

head

t5 15 20 25 30 35 45 50 55

tail

t5 10 15 20 25 30 35 40 45 50 55 60

t

chead(t)

5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

t

ctail(t)

5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

preemption

server execution

ri

Figure 1: H-CBS Reservations : Schedule Example

1

Figure 1 Example of semi-partitioned scheduling of a reservation ri (Ci = 10, Ti = 20) under
C=D splitting. The budget of ri is split into two portions of length 5 time units, executing on two
processors. Up-arrows denote the beginning of an instance of the servers. Down-arrows denote the
absolute deadlines of each instance. Dotted arrows denote the migration of the workload executing
upon ri across the two processors.

time, their replenishment times are generally not synchronized. The approach can be further
generalized by considering budget splits in more than two portions: in this case, a reservation
is split into one head reservation and multiple tail reservations. For each processor P , at
each point in time the system selects for execution the reservation allocated to P that has (i)
a pending instance and (ii) the earliest absolute deadline. To better clarify the scheduling
mechanism, consider a reservation ri with Ci = 10 and Ti = 20 that is split into: (i) one
head reservation configured with C ′

i = 5 and D′
i = 15; (ii) one tail reservation configured

with C ′′
i = 5, D′′

i = 5. A possible schedule of such sub-reservations is illustrated in Figure 1,
together with the evolution of their budgets over time (indicated by functions chead(t) and
ctail(t), respectively).

It is worth observing that the C=D approach implicitly poses the limitation that no more
than one tail reservation can be allocated on each processor. For the sake of simplicity, in this
work we also pose this limitation for head reservations: this is reflected only in a restriction
of the possible allocation configurations. One of the main issues with semi-partitioned
scheduling consists in splitting and allocating the reservations. Previous work assumed a
static workload and leveraged an off-line design phase to solve this problem. This phase
typically consists in the combination of (i) bin-packing heuristics (such as variants of first-fit
and worst-fit) to allocate the reservations and (ii) a splitting algorithm to decide how to size
the budget portions of the semi-partitioned reservations. The next section briefly reviews
the C=D splitting algorithm proposed by Burns et al. [13], which has also been adopted by
Brandenburg and Gül in [12].

2.2 Burns et al.’s C=D Splitting Algorithm

Whenever a reservation ri cannot be statically allocated to a single processor, Burns et
al. [13] proposed to accomplish the splitting with the following two-phase approach:
(i) Given a processor Pk, an algorithm is used to compute the maximum C ′′

i < Ci for which
a tail reservation with budget C ′′

i , deadline D′′
i = C ′′

i and minimum inter-replenishment
time Ti can be allocated to Pk such that all the reservations running on Pk are schedulable.

(ii) The remaining portion of budget C ′
i = Ci − C ′′

i is then allocated to another processor
6= Pk following a bin-packing heuristic (or is in turn selected for being split).

ECRTS 2017

13:6 Semi-Partitioned Scheduling of Dynamic Real-Time Workload

The core of their proposal consists in the algorithm adopted in phase (i). Such an algorithm
starts from the value of C ′′

i for which the selected processor Pk is fully utilized (i.e., such that∑
ri∈Rk

Ci/Ti = 1) after allocating the tail reservation; then, it allocates the tail reservation
to Pk and applies the following steps:
1. Perform the Quick convergence Processor-demand Analysis (QPA) [42] to determine

whether the set of reservations allocated to Pk is schedulable.
2. If not, recompute a reduced value of C ′′

i by means of a fixed-point iteration based on the
failure point of the QPA (please refer to [13] for further details). Then, re-iterate the
procedure from step 1 until the QPA does not fail.

3. If, at any iteration, the computed value of C ′′
i reduces to 0, then the tail reservation

cannot be allocated to processor Pk.
This algorithm is optimal, in the sense that it founds the maximum value of C ′′

i for which
a tail reservation can be safely allocated to processor Pk. However, it suffers from a
high computational complexity. The QPA has a pseudo-polynomial time complexity when
the utilization of the analyzed processor is strictly lower than one, while has exponential
complexity in the case of a fully-utilized processor. Note that the latter case corresponds
to the starting condition of the algorithm and that the QPA is applied multiple times. In
addition, it requires the execution of fixed-point iterations that further increase the algorithm
complexity. To the best of our knowledge, the actual complexity of this algorithm is unknown:
anyway, it is clearly unsuitable for performing on-line decisions concerning the splitting of
the reservations, especially if multiple alternatives for the splitting must be evaluated by a
load balancing algorithm – which is the primary objective of this work.

2.3 Notation and Table of Symbols
The m processors are referred to as P1, P2, . . . , Pm. The set of nk reservations allocated to
processor Pk (both statically or resulting from a split) is denoted by Rk, with

⋂m
k=1Rk = ∅.

The utilization of a reservation ri is denoted as Ui = Ci/Ti. Two functions tail(Pk) =
{true, false} and head(Pk) = {true, false} are used to indicate whether a tail and a head
reservation is allocated to Pk, respectively. If tail(Pk) = true, then rtail,k ∈ Rk denotes the
tail reservation allocated to Pk. Similarly, if head(Pk) = true, then rhead,k ∈ Rk denotes the
head reservation allocated to Pk. The set of nPk partitioned reservations allocated to Pk is
denoted as RPk ⊆ Rk. Given a tail reservation rtail,k (resp., head reservation rhead,k), the
father reservation from which the split has been originated is denoted as F(rk,tail) (resp.,
F(rk,head)). The notation adopted in this paper is summarized in Table 1.

3 An Approximated Algorithm For C=D Splitting

This section presents a new approach for computing the C=D splitting discussed in Section 2.2.
The proposed algorithm provides an approximate solution to compute a safe lower-bound
on the maximum zero-laxity portion of budget that can be allocated to a processor. The
algorithm has been designed to have a linear time complexity in order to be efficiently applied
for on-line load balancing. The baseline approach is first presented in Section 3.1. Then, two
possible extensions are proposed in Section 3.2 to improve the algorithm precision. Finally,
Section 3.3 discusses some implementation issues and the algorithm complexity.

3.1 The Baseline Approach
The method proposed in this paper is based on the processor-demand criterion (PDC)
proposed by Baruah et al. [6]. The PDC analysis is based on the notion of demand bound

D. Casini, A. Biondi, and G. Buttazzo 13:7

Table 1 Main notation adopted throughout the paper.

Symbol Description
R set of reservations admitted into the system
Pk k-th processor
Rk set of reservations allocated to processor Pk
RPk set of partitioned reservations allocated to processor Pk
nk number of reservations allocated to processor Pk
nPk number of partitioned reservations allocated to processor Pk
ri ith reservation
Ci budget of ri
Ti minimum inter-replenishment time of ri
Di relative deadline of ri
Ui utilization of ri
rhead,k head reservation allocated to Pk
rtail,k tail reservation allocated to Pk
F(ri) father reservation of a tail or head reservation ri

σ Q Q+ σ 2Q 2Q+ σ

(a)

t

dbfi
P
(t)

•

0 Ti 2Ti 3Ti

Ci

2Ci

3Ci

1

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
H

i (t)

(b)

•
•

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

•
•

•

(c)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

1

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
H

i (t)

(b)

•
•

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

•
•

•

(c)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

1

σ Q Q+ σ 2Q 2Q+ σ

t

dbf i(t)

•
•

(d)

0 Ti 2Ti

Ci

2Ci

3Ci

1

Figure 2 Illustrations of the demand bound functions introduced in Section 3.1 (solid lines). The
dashed lines in insets (a), (b) and (c) depict functions dbfi(t), while the dashed line in inset (d)
depicts function dbfi

T (t).

function and provides an exact schedulability test for a set of constrained-deadline sporadic
tasks executing upon a single processor under EDF scheduling. Since the reservation
servers considered in this work behave as sporadic tasks [12], the schedulability of the
reservations allocated to a given processor Pk can be verified by checking the PDC as
∀t ≥ 0,

∑
ri∈Rk

dbfi(t) ≤ t, where dbfi(t) is the demand bound function of ri, defined as

dbfi(t) =
⌊
t+ Ti −Di

Ti

⌋
Ci.

To design the approximate splitting algorithm, the demand bound function of each reservation
is first approximated by an upper bound, which is a particular case of the one proposed by
Fisher et al. [20]. In particular, three types of upper bounds are distinguished depending on
whether a reservation is partitioned, head or tail.

ECRTS 2017

13:8 Semi-Partitioned Scheduling of Dynamic Real-Time Workload

Partitioned reservation. The demand bound function of a partitioned reservation ri is
upper-bounded with function dbfi

P (t), defined as

dbfi
P (t) =

{
0 if t < Ti,

Uit if t ≥ Ti.

Head reservation. The demand bound function of a head reservation ri is upper-bounded
with function dbfi

H(t), defined as

dbfi
H(t) =

0 if t < Di,

Ci if Di ≤ t < Ti +Di,

2Ci + Ui(t− Ti −Di) if t ≥ Ti +Di.

Tail reservation. Finally, the demand bound function of a tail reservation ri is upper-
bounded with function dbfi

T (t), defined as

dbfi
T (t) =

0 if t < Di,

kCi if (k − 1)Ti +Di ≤ t < kTi +Di, k = 1, 2
3Ci + Ui(t− 2Ti −Di) if t ≥ 2Ti +Di.

Graphical representations of these three functions are reported in Figures 2(a), 2(b)
and 2(c). To keep a compact notation, the following function is also defined:

dbfi(t) =

dbfi

P (t) if ri is partitioned,
dbfi

H(t) if ri is head,
dbfi

T (t) if ri is tail.

Based on these bounds, it is possible to formulate a sufficient PDC-based condition to verify
the schedulability of the reservations allocated to a processor, which is expressed by the
following theorem.

I Theorem 1. A set of reservations Rk is EDF-schedulable on a single processor if∑
ri∈Rk

Ui ≤ 1 and

∀t ∈
⋃

ri∈Rk

ξ(ri),
∑
ri∈Rk

dbfi(t) ≤ t

where

ξ(ri) =

{Ti} if ri is partitioned,
{Di, Ti +Di} if ri is head,
{Di, Ti +Di, 2Ti +Di} if ri is tail.

Proof. By construction, ∀t ≥ 0, dbfi(t) ≥ dbfi(t). Hence, if ∀t ≥ 0,
∑
ri∈Rk

dbfi(t)) ≤ t

holds, then also the original PDC condition is satisfied. Note that dbfi(t) is a stepwise
not-decreasing function composed by either constant segments or linear segments, so also
W (t) =

∑
ri∈Rk

dbfi(t) has the same shape with discontinuities in correspondence to the
discontinuities of functions dbfi(t). Let ∆1,∆2, . . . ,∆j , . . . be the ordered sequence of the

D. Casini, A. Biondi, and G. Buttazzo 13:9

points t in which function W (t) has a discontinuity. Consider one of such points t = ∆j .
If W (t) is constant in [∆j ,∆j+1) (constant segment), then it is sufficient to check that
W (∆j) ≤ ∆j to guarantee that ∀t ∈ [∆j ,∆j+1), W (t) ≤ t. Now, consider the other case in
which W (t) has a linear segment in [∆j ,∆j+1). By the hypothesis

∑
ri∈Rk

Ui ≤ 1, it follows
that every linear segment of W (t) has a slope that cannot be larger than 1. Hence, it is
again sufficient to check that W (∆j) ≤ ∆j . Overall, the condition W (t) ≤ t must be checked
only in the discontinuities of functions dbfi(t), which occur for the points expressed by the
set ξ(ri). Hence, the theorem follows. J

With the above theorem in place, the considered optimization problem can be defined.
Consider a set of reservations Rk allocated to a processor Pk that does not already include a
tail reservation. By Theorem 1, a safe budget Ctail for a tail reservation rtail with minimum
inter-replenishment time Ttail, such that rtail can be safely allocated to Pk, can be computed
by solving the following optimization problem:

maximize Ctail

subject to
∑
ri∈Rk

Ci
Ti

+ Ctail

Ttail
≤ 1

∑
ri∈Rk

dbf i(t) + dbfi
T (t) ≤ t, ∀t ∈

⋃
ri∈{Rk∪rtail}

ξ(ri)

This optimization problem can be manipulated to obtain a sub-optimal solution in a closed-
form. To this end, the problem is rewritten by means of J+1 constraints Ctail ≤ Vj(Rk, Ttail)
(with j = 0, . . . , J) in which the functions Vj(Rk, Ttail) are independent of Ctail, so that the
solution can be easily computed as Ctail = minj=0,...,J Vj(R, Ttail). In other words, given
the parameters of the reservations in set Rk and the minimum inter-replenishment time Ttail
of the tail reservation, the expressions Vj(Rk, Ttail) must result in constant terms. First of
all, note that the constraint

∑
ri∈Rk

Ci
Ti

+ Ctail
Ttail
≤ 1 (corresponding to a very simple necessary

condition for feasibility) originates a trivial upper bound on the value of Ctail, that is

Ctail ≤ CMAX
tail =

(
1−

∑
ri∈Rk

Ui

)
Ttail.

Leveraging the bound CMAX
tail, the terms Vj(R, Ttail) can be derived by considering the con-

straints originated by the check-points in the set
⋃
ri∈{Rk∪rtail} ξ(ri). First, note that

functions dbf i(t) are piece-wise defined in intervals that depend on the check-point t. When
considering the check-points of the tail reservations (i.e., those in the set ξ(rtail)), the value
of functions dbf i(t) for the partitioned and the head reservations cannot be expressed in
a closed-form as their value depend on the optimization variable Ctail (that is unknown),
thus introducing a sort of circular dependency in the equations. The following lemma allows
overcoming this issue.

I Lemma 2. If the three conditions
Ctail ≤ minri∈Rk

(Di)− ε (a)∑
ri∈Rk

dbfi(Ttail + CMAX
tail) + 2Ctail ≤ Ttail +Dtail (b)∑

ri∈Rk
dbfi(Ttail + CMAX

tail) + 3Ctail ≤ 2Ttail +Dtail (c)

hold (with ε > 0 arbitrary small), then

∀t ∈ ξ(rtail),
∑
ri∈Rk

dbf i(t) + dbfi
T (t) ≤ t.

ECRTS 2017

13:10 Semi-Partitioned Scheduling of Dynamic Real-Time Workload

Proof. Each of the three conditions corresponds to an element of the set ξ(rtail). Condition
(a) is needed for verifying the constraint

∑
ri∈Rk

dbf i(Dtail) + dbf
T

i (Dtail) ≤ Dtail. If the
tail reservation (configured with Ctail = Dtail) does not have the smallest deadline among
the reservations allocated to Pk, then it may be preempted, thus inevitably missing its
deadline. Therefore, a solution exists only if Ctail = Dtail < minri∈Rk

(Di), which then gives∑
ri∈Rk

dbf i(Dtail) = 0 and the constraint for point Dtail is implicitly verified. Conditions
(b) and (c) verify the constraint

∑
ri∈Rk

dbf i(t) +dbf
T

i (t) ≤ t for points t = Ttail +Dtail and
t = 2Ttail+Dtail. Since functions dbf i(t) are monotonic non-decreasing and Ctail ≤ CMAX

tail, then
dbf i(Ttail+Dtail) ≤ dbf i(Ttail+CMAX

tail). Similarly, also dbf i(2Ttail+Dtail) ≤ dbf i(2Ttail+CMAX
tail).

The lemma follows by noting that, in the two points, the value of dbfTi (t) corresponds to
2Ctail and 3Ctail, respectively. J

Before proceeding with the constraints originated by the check-points of the head and
partitioned reservations, it is necessary to introduce a new demand bound function dbf tail(t),
which is explicitly conceived to deal with the contribution originated by the tail reservation.
This function is illustrated in Figure 2(d) and allows removing the circular dependency that
would have been introduced by the use of dbfTi (t).

I Lemma 3.

∀t ≥ 0, dbf tail(t) ≥ dbfi
T (t),

where

dbf tail(t) =

Ctail if t < Ttail

2Ctail if Ttail ≤ t < 2Ttail

3Ctail + Utail(t− 2Ttail) if t ≥ 2Ttail

Proof. Let us consider separately the three cases in which dbf tail(t) is defined. If t < Ttail,
then dbfTi (t) can be either equal to 0 or Ctail; hence dbf

T

i (t) ≤ Ctail. Since 0 < Dtail < Ttail,
if Ttail ≤ t < 2Ttail, then dbf

T

i (t) can be either equal to Ctail or 2Ctail; hence dbf
T

i (t) ≤
2Ctail. For the same reason, if t ≥ 2Ttail, then dbf

T

i (t) can be either equal to 2Ctail or
3Ctail + Utail(t − 2Ttail − Dtail). Since for t ≥ 2Ttail we have Utail(t − 2Ttail) ≥ 0, then
dbf

T

i (t) ≤ 3Ctail + Utail(t− 2Ttail). Hence the lemma follows. J

Thanks to this upper bound, it is now possible to remove the circular dependency in the
constraints originated by the check-points of the head reservation (i.e., those in the set
ξ(rhead,k)).

I Lemma 4. If the two conditions{∑
ri∈Rk

dbf i(Dhead) + dbf tail(Dhead) ≤ Dhead∑
ri∈Rk

dbf i(Thead +Dhead) + dbf tail(Thead +Dhead) ≤ Thead +Dhead

hold, then

∀t ∈ ξ(rhead,k),
∑
ri∈Rk

dbf i(t) + dbfi
T (t)(t) ≤ t.

Proof. The lemma directly follows from Lemma 3 and the definition of the set ξ(ri). J

D. Casini, A. Biondi, and G. Buttazzo 13:11

Similarly, the same bound can be applied to the constraints originated by the check-points
of the partitioned reservations.

I Lemma 5. If

∀t ∈
{
Ti | ri ∈ RPk

}
,
∑
ri∈Rk

dbf i(Ti) + dbf tail(Ti) ≤ Ti

holds, then

∀t ∈
⋃

ri∈RP
k

ξ(ri),
∑
ri∈Rk

dbf i(t) + dbfi
T (t) ≤ t.

Proof. The lemma directly follows from Lemma 3 and the definition of the set ξ(ri). J

Finally, the results of Lemma 2, Lemma 4 and Lemma 5 are combined in the following
theorem, which provides a closed-form expression for computing a safe bound on Ctail.

I Theorem 6. A set of reservations Rk composed of nPk partitioned reservations, at most
one head reservation and a tail reservation with minimum inter-replenishment time Ttail, can
be safely EDF-scheduled on a single processor Pk if

Ctail = Dtail = minj=0,...,J{Vj(Rk, Ttail)}

where V0(Rk, Ttail), . . . , VJ(Rk, Ttail) are defined as in Table 2.

Proof. The set of reservations Rk is schedulable if the conditions of Theorem 1 hold.
Lemma 2, 4 and 5 provide sufficient conditions for which Theorem 1 holds. The terms in
Table 2 are obtained by simple algebraic transformations of the conditions of such lemmas,
which have been reformulated in the form ∀j = 0, . . . , J, Ctail ≤ Vj(Rk, Ttail).1All of such
constraints are verified if Ctail = minj=0,...,J{Vj(Rk, Ttail)}. Hence the theorem follows. J

To avoid incurring in algebraic errors, the derivation of the equations reported in Table 2 has
also been mechanized with the Wolfram Mathematica tool: the corresponding file is publicly
available on-line [15].

3.2 Extensions
The method presented in the previous section can be extended to further increase the precision
of the solution provided by Theorem 6. Two of such extensions are presented here, which are
not discussed in details due to lack of space: a detailed discussion is available in an on-line
appendix of this paper [15].

Extension 1. As argued in Lemma 3, the bound dbf tail(t) on the demand bound function of
the tail reservation has been derived by considering zero as a lower-bound on Ctail. Leveraging
a different lower bound CLBtail , it is possible to obtain a demand bound function tighter than

1 In particular, terms V1 and V2 are derived from Lemma 2, terms V3, . . . , V2+nP
k

are derived from
Lemma 5, and terms V3+nP

k
and V4+nP

k
are derived from Lemma 4.

ECRTS 2017

13:12 Semi-Partitioned Scheduling of Dynamic Real-Time Workload

Table 2 List of terms Vj(Rk, Ttail) (j = 0, . . . , J) for Theorem 6, where J = nk + 2 if head(Pk) =
false or J = nk + 3 if head(Pk) = true.

Constraint for point t = Dtail

V0(Rk, Ttail) = min
{
CMAX

tail,minri∈Rk{Di} − ε
}

Constraints for points t = zTtail +Dtail, z = 1,2

Vz(Rk, Ttail) = 1
z

(
zTtail −

∑
ri∈RP

k

dbfi
(
zTtail + CMAX

tail
))

Constraints for points t = Ti, ∀ri ∈ RPk (z = 1, . . . , nPk)

V2+z(Rk, Ttail) =

1
2

(
t−
∑

ri∈Rk
dbfi (t)

)
if Ttail ≤ t < 2Ttail

Ttail
t+Ttail

(
t−
∑

ri∈Rk
dbfi (t)

)
if t ≥ 2Ttail

Constraints for points t = zThead +Dhead, z = 1,2

V2+nP
k

+z(Rk, Ttail) =

1
2

(
t− zChead −

∑
ri∈RP

k

dbfi (t)
)

if Ttail ≤ t < 2Ttail

Ttail
t+Ttail

(
t− zChead −

∑
ri∈RP

k

dbfi (t)
)

if t ≥ 2Ttail

dbf tail(t), thus increasing the precision of the result provided by Theorem 6. Such an
improved function can be expressed as follows (its derivation is analogous to Lemma 3):

dbf tail
(
t, CLBtail

)
=

0 if t < CLBtail

Ctail if CLBtail ≤ t < Ttail + CLBtail ,

2Ctail if Ttail + CLBtail ≤ t < 2Ttail + CLBtail ,

3Ctail + Utail(t− 2Ttail − CLBtail) if t ≥ 2Ttail + CLBtail

A sequence of safe lower bounds CLBtail can be obtained in an iterative fashion. That is, it
is possible to design an algorithm that starts with CLBtail = 0, use Theorem 6 to compute a
value of Ctail and then sets CLBtail = Ctail. This latter value can in turn be used to repeat
the computation of a new (possibly higher) value of Ctail by means of Theorem 6, and so
on for a desired number λ of times or until converging to a desired tolerance. Surprisingly,
the experiments reported in Section 5.1 show that just two iterations (λ = 2) provide a
significant improvement.

Extension 2. The demand bound functions introduced in the previous section approximate
the exact functions by considering a limited number of discontinuities and then a linear
upper-bound. Specifically one, two, and three discontinuities have been adopted for the
demand bound functions of the partitioned, head, and tail reservations, respectively. The
precision of the method can be increased by refining such approximations, i.e., considering
additional x discontinuities for each of such functions. Then, it is sufficient to iterate the
number x from zero up to a desired value β applying Theorem 6 at each iteration, and finally
taking the maximum value obtained for Ctail. Also in this case, the experiments reported in
Section 5.1 show that just two iterations (β = 2) provide a significant improvement.

3.3 Implementation and Complexity
In this work, the methods proposed in the previous sections were derived to be used on-line
for admitting a new reservation by means of C=D splitting. Therefore, considering the case

D. Casini, A. Biondi, and G. Buttazzo 13:13

in which a set of reservations Rk is already allocated to Pk, the value of Ctail has to be
computed for evaluating the possibility of allocating a tail reservation to Pk. In this case, the
baseline approach presented in Section 3.1 allows implementing a linear-time algorithm for
computing the C=D splitting. In fact, all the terms in the constraints Ctail ≤ Vj(Rk, Ttail)
(see Table 2) that do not depend on Ttail can be pre-computed and stored in a table each time
a reservation (partitioned or head) is allocated to Pk (e.g., as using dynamic programming):
this operation can be done in O(nk) time. Then, the resulting splitting algorithm only
consists in computing (i) the upper bound CMAX

tail, which can be done in constant time, (ii)
the sum of demand bound functions in V1(Rk, Ttail) and V2(Rk, Ttail), which can be done
in O(nk) time, and (iii) the minimum required by Theorem 6, which can be done in O(nk)
time. Extension 1 discussed in Section 3.2 consists in repeating the baseline approach λ

times, hence has complexity O(λnk): fixing a constant number of iterations λ, the resulting
algorithm has again linear-time complexity. The same applies to Extension 2 with respect to
the number of iterations β.

4 Load Balancing

This section presents a load balancing algorithm for managing the allocation and the splitting
of the reservations under C=D semi-partitioned scheduling. The algorithm has been designed
to be as simple as possible (to be practically used online) and employs a minimal number of
re-allocations of the reservations. At a high level, the algorithm reacts to two events: (i) the
arrival of a new reservation, where its admission must be evaluated by finding a proper
allocation; and (ii) the exit of a reservation, which consists in performing some re-allocations
in order to favor the admission of future reservations. It is worth observing that the admission
of a new reservation cannot be generally done immediately when another reservation leaves
the system or it is reconfigured during a re-allocation (so freeing some utilization bandwidth).
This is because the leaving (or modified) reservation may have already affected the execution
of the other reservations, and hence the system is subject to a transient (also referred to as
mode-change by some authors). However, note that this issue is not specifically related to
semi-partitioned scheduling, as it also occurs in uniprocessor systems [14, 36] (and hence
under partitioned scheduling) and under global scheduling [35, 29]. Several solutions are
available for analyzing the transient [14, 35], which allow deriving a safe bound on the time
that must be waited before admitting a new reservation or let re-allocations to take effect.
The design of improved methods that are tailored to C=D semi-partitioned scheduling is
out of the scope of this paper and is left as future work. The following two sections discuss
how to handle the arrival and the exit of a reservation. Then, Section 4.3 discusses some
extensions that allow improving the performance of the load balancing algorithm, but at the
cost of increasing its computational complexity.

4.1 Admission of a New Reservation
Whenever the system receives a request for admitting a new reservation ri, the following
operations are performed:
1. First, the algorithm tries to find a static allocation of ri to a processor (i.e., as with

standard partitioned scheduling) by using a partitioning heuristic. In particular, in our
experiments the best-fit heuristic has been found to perform best. If a valid allocation is
found, then ri is admitted into the system.

2. If step 1 fails, then ri is split into a head reservation rhead and a tail reservation rtail. The
method presented in Section 3 is used for computing the value of Ctail for each processor

ECRTS 2017

13:14 Semi-Partitioned Scheduling of Dynamic Real-Time Workload

Pk (k = 1, . . . ,m): the maximum of such values is selected as the budget of rtail and the
tail reservation is allocated to the corresponding processor. Then, the head reservation
rhead is configured with budget Chead = Ci−Ctail and relative deadline Dhead = Ti−Ctail.
Finally, the algorithm tries to allocate rhead to a processor following the same strategy
used in step 1. If the allocation of the head reservation fails, then ri is rejected; otherwise
it is admitted into the system.

Note that both the steps require evaluating whether a reservation can safely be allocated
to a processor. If a processor Pk contains only partitioned reservations, then a simple
utilization test is adopted: this operation can be performed in constant time (storing the
processor utilization in an incremental fashion). Otherwise, Theorem 1 is used, whose cost is
O(nk). As discussed in Section 3.3, the computation of Ctail for a processor Pk has O(nk)
complexity. Hence, the overall computational cost of the above operations is O(mnMAX),
where nMAX = maxk=1,...,m{nk}.

4.2 Handling the Exit of a Reservation
Whenever a partitioned reservation ri ∈ RPk (i.e., allocated to processor Pk) leaves the
system, then the following operations are performed:
1. If tail(Pk) = true, let rj = F(rk,tail) and try to allocate rj to Pk after removing rk,tail.

That is, the algorithm tries to re-assemble the semi-partitioned reservation rj . If rj cannot
be allocated to Pk, then the method presented in Section 3 is used for re-computing the
value of Ctail for processor Pk to inflate the budget of rk,tail, contextually decreasing the
budget of the corresponding head reservation of rj .

2. If head(Pk) = true, let rj = F(rk,head) and try to allocate rj to Pk after removing rk,head.
Whenever a semi-partitioned reservation ri ∈ R leaves the system, let rk,head (allocated to
Pk) and rz,tail (allocated to Pz) be its head and tail reservations, respectively. Then, rk,head
is removed from Rk and step 1 is performed on Pk. Also, rz,tail is removed from Rz and
step 2 is performed on Pz. These operations require (i) checking at most twice whether a
reservation can be allocated to a processor, which costs O(nMAX) time, and (ii) computing
Ctail for a single processor (see step 1), which can also be performed in O(nMAX) time.

4.3 Extensions
This section describes three extensions that have been found to be effective for improving
the performance of the load balancing algorithm.

(TAS) – Try all possible splits. Step 2 in Section 4.1 can be improved to increase the
chances of admitting a new reservation by means of splitting. The algorithm can be modified
as follows: for each processor Pk (k = 1, . . . ,m) in decreasing order with respect to their
utilization U (k) =

∑
ri∈Rk

Ui, (i) compute the value of Ctail and use it for configuring
the tail reservation, and (ii) try to allocate the resulting head reservation to a processor
6= Pk (following the same strategy used in step 1). Since for each processor the algorithm
tries to allocate the head reservation on the other processors, this approach increases the
computational cost of the load balancing algorithm, which results O(m2nMAX).

(MS) – Multi-splitting. The splitting schemes discussed above consider the splitting in only
two sub-reservations (one head and one tail). In the presence of several reservations that have
a heavy utilization (i.e., greater than 0.5), the performance of the load balancing algorithm
can be improved by employing an enhanced splitting scheme that considers multiple tail

D. Casini, A. Biondi, and G. Buttazzo 13:15

reservations. The algorithm can be modified as follows. First, try to admit the new reservation
ri by splitting it into two sub-reservations. If this fails, let Ctail

(1), . . . , Ctail
(m) be the sequence

of the values of Ctail for each processor Pk (k = 1, . . . ,m) in decreasing order. Then, find
the maximum index x < m such that

∑x
j=1 Ctail

(j) < Ci and configure a head reservation
with budget Chead = Ci −

∑x
j=1 Ctail

(j) and relative deadline Dhead = Ti −
∑x
j=1 Ctail

(j).
Subsequently, configure x tail reservations with budgets Ctail

(1), . . . , Ctail
(x), allocate them

to the corresponding processors and finally try to allocate the head reservations on one of
the remaining processors. If this strategy fails, check also if

∑x+1
j=1 Ctail

(j) ≥ Ci: in this case,
the first x tail reservations are allocated as previously discussed and the head reservation
is configured with Chead = Dhead = Ci −

∑x
j=1 Ctail

(j).2 This approach does not increase
the asymptotic complexity of the load balancing algorithm, but it increases the run-time
overhead due the multiple migrations incurred by the multi-split reservations.

(RPR) – Re-allocate partitioned reservations. Whenever the algorithm does not find
a valid allocation for a new reservation ri, the chances of admitting ri can be increased
by trying to re-allocate a previously-allocated partitioned reservation. In particular, the
following heuristic has been found to be effective while employing minimal re-allocations
limited to a single reservation. For each processor Pk (k = 1, . . . ,m), check if after de-
allocating the partitioned reservation rj ∈ RPk that has the highest utilization (i.e., rj ∈
RPk | Uj = maxrx∈RP

k
Ux) it is possible to allocate ri to Pk. If yes, then try to re-allocate

rj following steps 1 and 2 in Section 4.1. When the first valid re-allocation is found, rj
is re-allocated, ri is allocated to Pk and the algorithm terminates. The computational
complexity of this extension depends on the technique selected for splitting rj . If the baseline
approach (presented in Section 4.1) is used, then the algorithm has O(m2nMAX) complexity.
Conversely, if this extension is adopted in conjunction with the TAS extension, then the
algorithm has O(m3nMAX) complexity, while has O(m2nMAX) complexity if it is adopted in
conjunction with the MS extension.

5 Experimental Results

This section presents the results of two large-scale experimental studies that have been
conducted to evaluate the approach presented in this paper. The first study, discussed
in Section 5.1, has been carried out to assess the performance of the approximate C=D
splitting algorithms presented in Section 3 with respect to the exact algorithm proposed
by Burns et al. in [13]. The second study, discussed in Section 5.2, has been carried out to
evaluate the performance of the load balancing algorithms presented in Section 4 (adopted in
conjunction with the C=D splitting approximation of Section 3), comparing them to G-EDF
and partitioned EDF scheduling under different configurations.

5.1 C=D splitting: Approximated vs. Exact

A first experimental study has been carried to evaluate the utilization loss introduced by the
approximate C=D splitting algorithms presented in Section 3 with respect to the exact Burns
et al.’s [13] method. The study considers a single processor on which a set of reservations is

2 This is a special case where a head reservation is allocated as if it would be a tail reservation, which
allows overcoming the limitation that only at most one head reservation can be allocated to a processor.

ECRTS 2017

13:16 Semi-Partitioned Scheduling of Dynamic Real-Time Workload

already allocated and aims at computing the maximum zero-laxity budget (with different
approaches) to allocate a tail reservation on the considered processor.

Reservation set generation. Given n reservations and a target utilization U =
∑n
i=1 Ui,

the utilizations Ui of the n reservations are generated with the UUnifast algorithm [9]. For
each reservation, the minimum inter-replenishment time Ti is randomly generated in the
range [1, 1000] ms with uniform distribution and the budget is then computed as Ci = UiTi.
Among the n reservations, one, say ri, is randomly selected to be the head reservation: the
relative deadline of ri is then randomly generated with uniform distribution in the interval
[Ci+β(Ti−Ci), Ti], with β = 0.9 (that makes the interval representative of the configurations
generated by C=D splitting). The remaining n− 1 reservations are partitioned and hence
are configured with implicit deadline.

Experiments. The utilization U has been varied in the range [0.05, 0.95] with step 0.05
and the number n of reservations has been varied from 2 to 20. 3 For each combination of
these two parameters, 5000 reservation sets have been tested, for a total of almost 2 million
reservation sets. For each reservation set R, a random period Ttail for a tail reservation rtail
has been randomly generated in the range [1, 1000] ms with uniform distribution. Then, the
value of Ctail such that the set of reservations rtail ∪R can be safely EDF-scheduled on a
single processor has been computed by (i) the exact method of [13] and (ii) the approximate
methods proposed in this paper under four different approaches (all of them have linear-time
complexity). Specifically, BASELINE is adopted to refer the approach presented in Section 3.1;
EXT1 to refer Extension 1 of Section 3.2 configured with λ = 2; EXT2 to refer Extension
2 of Section 3.2 configured with β = 2; and EXT1+EXT2 to refer EXT1 and EXT2 applied in
conjunction. The approximate methods have then been compared to the exact method in
terms of utilization loss: that is, given the exact value CEXA

tail (by [13]) and an approximate
value CAPP

tail ≤ CEXA
tail , the utilization loss introduced by the approximation is defined as(

CEXA
tail /Ttail

)
−
(
CAPP
tail /Ttail

)
.

The experimental results for four different configurations are reported in Figure 3. The
complete set of results is available online [15]. As it can be observed from Figures 3(a)
and 3(b), the utilization loss introduced by all the tested approaches decreases as the number
of reservation increases, approaching values lower than 1% for n > 18. In particular, the
combination of EXT1 and EXT2 (denoted as EXT1+EXT2) originates a very limited average
utilization loss that is always lower than about 2%. Figures 3(c) and 3(d) show the dependency
of the results on the utilization U : EXT1 is particularly effective for low values of utilization,
while EXT2 increases its effectiveness as U increases. Also varying the utilization, the
EXT1+EXT2 approach exhibits a very good performance. By looking at the complete results
collected in this study, it is possible to derive some guidelines for designing an efficient
algorithm that – empirically speaking – introduces an average utilization loss lower than 3%,
that is: use EXT1+EXT2 for n ∈ {2, 3}, use EXT1 for n ≥ 4 and U ≤ 0.45, and use EXT2 for
n ≥ 4 and U > 0.45. Furthermore, BASELINE can be adopted in the presence of a higher
number of reservations (e.g., n > 12).

3 In the special case of a single reservation (n = 1), the exact maximum portion of zero-laxity budget
that can be safely allocated to a processor can be computed by solving a simple equation (the details
are available in an on-line appendix of this paper [15]). The number of reservations has been limited to
20 because the results show that the error introduced by the proposed approximation decreases as the
number of reservations increases, approaching very low values for more than 20 reservations.

D. Casini, A. Biondi, and G. Buttazzo 13:17

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

n

A
V
G

U
ti
liz

at
io
n
L
os
s
(%

) (a) U = 0.4

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

n

A
V
G

U
ti
liz

at
io
n
L
os
s
(%

) (b) U = 0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

U

A
V
G

U
ti
liz

at
io
n
L
os
s
(%

) (c) n = 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

U

A
V
G

U
ti
liz

at
io
n
L
os
s
(%

) (d) n = 13

BASELINE EXT1 EXT2 EXT1 + EXT2

Figure 3 Average utilization loss introduced by the approximate algorithms for C=D splitting
(presented in Section 3) as a function of the number of reservations n (insets (a) and (b)) and
the utilization U (insets (c) and (d)). The results are related to four representative configurations
identified by the fixed parameter reported in the caption above the graphs.

Running Times. Another experiment has been carried out to evaluate the running times
of the proposed methods against the one of the exact C=D splitting algorithm. The tests
have been executed on a machine equipped with an Intel Core i7-6700K @ 4.00GHz. The
Microsoft VC++2015 compiler has been used to compile literal implementations (i.e., not
designed for being extremely efficient) of the algorithms. The exact C=D splitting algorithm
exhibited maximum running times in the order of a few seconds, with an increasing trend
as a function of the utilization and the number of reservations. The proposed approximate
methods showed running times under the precision offered by the Windows API for measuring
the time executed by a process with performance counters.

5.2 Proposed Approach vs. G-EDF and P-EDF

A second experimental study has been done to evaluate the performance of C=D semi-
partitioned scheduling managed by the load balancing algorithms presented in Section 4 –
that in turn make use of the approximate splitting algorithms of Section 3 – against G-EDF
and partitioned EDF (P-EDF) scheduling. For G-EDF scheduling, a relatively favorable
condition has been considered in which the acceptance test is performed by combining
four state-of-the-art polynomial-time tests (suitable for being executed on-line), which are:
GFB [24], BAK [3], a polynomial-time approximation of LOAD [5, 22] and I-BCL [8]
(configured with 3 iterations, as suggested by the authors). In other words, if any of these
tests is passed, then a new reservation is admitted. For P-EDF, three common partitioning
heuristics have been tested: first-fit, best-fit and worst-fit. The study is based on synthetic
dynamic workload, which have been generated as follows.

ECRTS 2017

13:18 Semi-Partitioned Scheduling of Dynamic Real-Time Workload

Generation of Dynamic Workload. A sequence of NE events is generated, where each
event can be of type ARRIVAL or EXIT. An ARRIVAL event consists in a new reservation ri
that is tried to be admitted into the system. The utilization of each reservation has been
generated with the beta distribution [4], which allows ensuring a given average UAVG and
a given variance Uσ, thus controlling the statistical validity across all the generated values.
The distribution has been configured for generating the utilization of each reservation in the
fixed range [Umin, Umax] = [0.01, 0.9].

The minimum inter-replenishment time Ti of each reservation was generated in the range
[1,1000] ms with uniform distribution, and the budget was then computed as Ci = UiTi. The
EXIT event corresponds to the exit of a random reservation among those previously generated.
Each sequence s is generated as follows: a random real number x ∈ [0, 1] is generated
NE times with uniform distribution, then if x ∈ [0,Λ], an ARRIVAL event is generated and
enqueued to s, else an EXIT event is generated and enqueued to s. The term Λ is a variable
threshold that controls the generation and has been set to Λ = (1− Uopt/m) + ψ(Uopt/m)
with the following interpretation. The parameter Uopt is the utilization accepted by an
optimal scheduling algorithm that has been stimulated by the previously-generated events.
The first term in the definition of Λ is provided to increase the probability of generating
an ARRIVAL event when the system load is low. The second term depends on a parameter
ψ ∈ [0, 1], which is used to control the tendency of a sequence to loading the processors; i.e.,
the higher ψ the higher the average load demanded by a sequence.

Experiments. The average UAVG of the utilizations of the generated reservations has been
varied in the range [0.1, 0.7] with step 0.05, whereas the variance Uσ has been varied in the
range [0.05, 0.50], with step 0.05. The number of processors m has been varied in the set {4,
8, 16, 32} and the parameter ψ in the set {0.6, 0.7, 0.8, 0.9}. For each combination of the
varied parameters, 1000 sequences of 10000 events have been generated, for a total of more
than 4 billion events. Each generated sequence has been tested with G-EDF, P-EDF and the
approaches proposed in this paper, measuring the average load accepted by each algorithm
across the whole sequence. This measure is subsequently normalized to the hypothetical
average load that would have been accepted by an optimal scheduling algorithm. This index
expresses the quality of an algorithm in terms of acceptance rate (the higher the better and
100% corresponds to the performance of an optimal algorithm).4 Figure 4 reports the results
for six representative configurations with ψ = 0.9. The complete set of results is available
online [15]. The labels P-EDF-FF, P-EDF-WF and P-EDF-BF in the legend indicate first-fit,
worst-fit and best-fit partitioning, respectively; C=D-LB indicates the proposed approach
based on load balancing with no extensions enabled; C=D-LB+EXT refers to C=D-LB applied
in conjunction with all the extensions presented in Section 4.3. As can be observed from
Figures 4(a), 4(b) and 4(c), the performance of the algorithms is significantly affected by
the utilization of the tested reservations (as also previously observed in other works). The
C=D-LB+EXT approach allows achieving high performance, keeping the average accepted load
above the 87% in all the configurations, even in the presence of several reservations with
high utilization. In particular, it allows achieving a performance improvement up to 40%
over G-EDF and up to 25% over P-EDF. The algorithms based on P-EDF show relatively

4 Note that the typical schedulability ratio metric makes little sense in the presence of dynamic workload,
as the behavior of the different algorithms may significantly differ depending on the previous workload.
For instance, an algorithm may reject a lot of “small” (low utilization) reservations because it previously
accepted a “heavy” (high utilization) reservation.

D. Casini, A. Biondi, and G. Buttazzo 13:19

0.1 0.2 0.3 0.4 0.5 0.6 0.7
50
60
70
80
90

100

UAVG

A
V

G
A

cc
ep

te
d

L
oa

d
(%

)
(a) m = 8, Uσ = 0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7
50
60
70
80
90

100

UAVG

A
V

G
A

cc
ep

te
d

L
oa

d
(%

)

(b) m = 4, Uσ = 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7
50
60
70
80
90

100

UAVG

A
V

G
A

cc
ep

te
d

L
oa

d
(%

)

(c) m = 32, Uσ = 0.1

0.1 0.2 0.3 0.4 0.5
50
60
70
80
90

100

Uσ
A

V
G

A
cc

ep
te

d
L

oa
d

(%
)

(d) m = 8, UAVG = 0.35

G-EDF P-EDF-BF P-EDF-FF P-EDF-WF C=D-LB C=D-LB+EXT

0.1 0.2 0.3 0.4 0.5 0.6 0.7
70

80

90

100

UAVG

A
V

G
A

cc
ep

te
d

L
oa

d
(%

)

(e) m = 8, Uσ = 0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7
70

80

90

100

UAVG

A
V

G
A

cc
ep

te
d

L
oa

d
(%

)

(f) m = 16, Uσ = 0.4

C=D-LB C=D-LB-TAS C=D-LB-MS C=D-LB-RPR C=D-LB+EXT

Figure 4 Average accepted load obtained by different scheduling approaches as a function of the
average UAVG of the utilizations of the generated reservations (insets (a), (b), (c), (e) and (f)) and
the variance Uσ (inset (d)). The results are related to six representative configurations identified by
the fixed parameters reported in the caption above the graphs.

good performance up to values of UAVG that are close to 0.5. Surprisingly, basic partitioned
scheduling with simple heuristics has been found to always outperform G-EDF. Figure 4(d)
shows the dependency on the variance Uσ of the utilizations, which is found to be limited
for the C=D-LB+EXT. In general, the proposed approach has been found to be robust to the
presence of reservations with heterogeneous utilization. Finally, Figures 4(e) and 4(f) show
the performance of the baseline load-balancing approach (C=D-LB) in conjunction with a
single extension. As it can be observed from the graphs, the adoption of the RPR extension
provides the highest performance. It is worth observing that the curves tend to show a
non-monotonic behavior for the following reason. In the presence of high values of UAVG, the
acceptance or the rejection of a reservation corresponds to a significant difference in terms of
instantaneous accepted load. Since this phenomenon also occurs in the case of an optimal
scheduling algorithm (to which the performance is normalized), the processors tend to be
less loaded across a sequence independently of the tested algorithm, which is a situation that
favors non-optimal algorithms. The non-monotonic behavior of the performance of G-EDF
has been found to depend on the combination of multiple acceptance tests; in particular, the
I-BCL test tends to perform better than the others at high values of UAVG.

ECRTS 2017

13:20 Semi-Partitioned Scheduling of Dynamic Real-Time Workload

6 Related Work

The problem of scheduling real-time workload on a multicore platform has been extensively
investigated. A detailed discussion of all the results proposed in the literature is too vast to
fit in the space available in this paper and readers interested in the topic can refer to the
survey written by Davis and Burns [18]. For this reason, this section focuses on techniques
based on semi-partitioned scheduling, which are more relevant to the proposed approach.
Semi-partitioned scheduling has been firstly introduced by Anderson et al. [1] in 2005. Later,
numerous semi-partitioned scheduling algorithms have been presented, including the proposals
of Andersson et al. [2] and Kato et al. [25, 26, 27]. In 2011, Bastoni et al. [7] presented a
thorough comparison of several semi-partitioned scheduling algorithms, illustrating their
benefits with respect to other scheduling approaches. The method described in this paper has
been motivated by a recent development due to Brandenburg and Gül [12], who showed that,
by adopting clever task-allocation heuristics, the C=D splitting algorithm proposed by Burns
et al. [13] allows achieving a near-optimal performance in the presence of static real-time
workload. As in [12], the proposed approach also combines C=D scheduling with processor
reservations, but in a more dynamic environment where reservations can be created and
destroyed at runtime. Brandenburg and Gül also reports on a solid evaluation of the overhead
introduced by C=D scheduling demonstrating its practical effectiveness. An overhead-aware
analysis for semi-partitioned scheduling algorithms has been also proposed by Souto et
al. [40]. The problem of taking online scheduling decisions for real-time workload has been
investigated in many works. In particular, the difficulty of the problem has been discussed
in the seminal work of Deterzous and Mok [19] and by Fisher et al. [21]. Lee and Shin [29]
and Nélis et al. [35] proposed techniques for analyzing the effect of system transients under
global scheduling, which may also be very useful C=D scheduling. Block and Anderson [11]
and Block et al. [10] addressed dynamic workload in the context of task reweighting under
partitioned and P-Fair scheduling, respectively. Manimaran and Murthy [23] proposed a
scheduling algorithm for parallel and divisible real-time workload, however the authors did
not provide any analysis and assessed the algorithm performance only by means of scheduling
simulations. Mamat et al. [31, 30] addressed the problem of performing load balancing
of aperiodic tasks with known arrival times in clustered-based computing. Other authors
addressed the same problem in the context of uniprocessor systems: most relevant to us are
the works by Stoimenov et al. [41], Santinelli et al. [38] and Nie et al. [34].

7 Conclusions and Future Work

This work addressed the problem of scheduling real-time dynamic workload upon a symmetric
multiprocessor platform. The workload executes upon reservation servers that can arbitrarily
join and leave the system, but each of them must pass an admission test before being admitted
for execution. The reservations are scheduled under C=D semi-partitioned scheduling. A set
of linear-time approximate methods for performing the C=D splitting have been presented
to reduce the complexity of online scheduling decisions. Then, load balancing algorithms
have been proposed for admitting new real-time workload in the system and performing
limited workload re-allocation for facilitating the admission of future reservations. Both
the contributions have been evaluated with large-scale experimental studies. The linear-
time approximate splitting methods have been shown to originate a very limited utilization
loss with respect to the exact technique previously proposed by Burns et al. [13]. In
particular, a combination of such methods originates an average utilization loss that is
below the 3%. The proposed scheduling approach based on C=D semi-partitioning and

D. Casini, A. Biondi, and G. Buttazzo 13:21

load balancing algorithms allows achieving very high schedulability performance, with a
consistent improvement over G-EDF and partitioned EDF scheduling with different bin-
packing heuristics. As a representative result, the proposed approach allows keeping the
average system load above the 87% in most of the tested scenarios, even in the presence
of reservations with very high utilizations, with an improvement up to 40% over G-EDF
and up to 25% over P-EDF. Considered the simplicity and the limited overhead of C=D
semi-partitioned scheduling, as identified in [12], the results concluded in this work suggest
its usage even in the presence of dynamic workload. Future work include the derivation of
methods that are tailored to C=D semi-partitioned scheduling for handling system transients,
the support for elastic reservations [14] to favor the admission of new workload and the
consideration of synchronization issues. Moreover, additional research on load balancing
algorithms may allow to further increase the performance of the proposed approach.

References

1 J. Anderson, V. Bud, and U.C. Devi. An EDF-based scheduling algorithm for multipro-
cessor soft real-time systems. In 17th Euromicro Conference on Real-Time Systems (ECRTS
05), Palma de Mallorca, Spain, July 6-8 2005.

2 B. Andersson, K.Bletsas, and S. Baruah. Scheduling arbitrary-deadline sporadic task sys-
tems on multiprocessors. In Real-Time Systems Symposium, 2008, Barcelona, Spain, Nov
30 – Dec 3 2008.

3 T.P. Baker. Multiprocessor EDF and deadline monotonic schedulability analysis. In 24th
IEEE International Real-Time Systems Symposium (RTSS 03), Cancun, Mexico, Dec, 3-5
2003.

4 N. Balakrishnan and V.B. Nevzorov. A Primer on Statistical Distributions. Wiley, 2003.
5 S. Baruah and T.P. Baker. Global EDF schedulability analysis of arbitrary sporadic task

systems. In Euromicro Conference on Real-Time Systems (ECRTS 08), Prague, Czech
Republic, July, 2-4 2008.

6 S.K. Baruah, L. E. Rosier, and R.R. Howell. Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks on one processor. Real-time systems,
2(4):301–324, 1990.

7 A. Bastoni, B. B. Brandenburg, and J.H. Anderson. Is semi-partitioned scheduling prac-
tical? In 23rd Euromicro Conference on Real-Time Systems, Porto, Portugal, July, 5-8
2011.

8 M. Bertogna, M. Cirinei, and G. Lipari. Schedulability analysis of global scheduling al-
gorithms on multiprocessor platforms. IEEE Transactions on Parallel and Distributed
Systems, 20(4):553–566, April 2009.

9 E. Bini and G.C. Buttazzo. Measuring the performance of schedulability tests. Real-Time
Systems, 30(1):129–154, May 2005.

10 A. Block, J. H. Anderson, and G. Bishop. Fine-grained task reweighting on multiprocessors.
In 11th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA’05), Hong Kong, China, July, 17-19 2005.

11 A. Block and J.H. Anderson. Accuracy versus migration overhead in real-time multipro-
cessor reweighting algorithms. In 12th International Conference on Parallel and Distributed
Systems – (ICPADS’06), Minneapolis, USA, July, 12-15 2006.

12 B. Brandenburg and M. Gül. Global scheduling not required: Simple, near-optimal mul-
tiprocessor real-time scheduling with semi-partitioned reservations. In Proceedings of the
37th IEEE Real-Time Systems Symposium (RTSS 2016), Porto, Portugal, November 29 –
December 2 2016.

ECRTS 2017

13:22 Semi-Partitioned Scheduling of Dynamic Real-Time Workload

13 A. Burns, R. Davis, P. Wang, , and F. Zhang. Partitioned EDF scheduling for multipro-
cessors using a C=D task splitting scheme. Real-Time Systems, 48:3–33, 2012.

14 G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic scheduling for flexible workload
management. IEEE Transactions on Computers, 51(3):289–302, March 2002.

15 D. Casini, A. Biondi, and G. Buttazzo. Semi-partitioned scheduling of dynamic real-time
workload: A practical approach based on analysis-driven load balancing, online material.
URL: https://retis.sssup.it/~d.casini/sp-dyn.

16 H. Cho, B. Ravindran, and E.D. Jensen. An optimal real-time scheduling algorithm for
multiprocessors. In Proceedings of the 27th IEEE Real-Time Systems Symposium (RTSS
2006), Rio de Janeiro, Brazil, 5-8 December 2006.

17 T. Cucinotta, L. Abeni, L. Palopoli, and G. Lipari. A robust mechanism for adaptive
scheduling of multimedia applications. Journal ACM Transactions on Embedded Computing
Systems, 10(4):1–24, Nov. 2011.

18 R. Davis and A. Burns. A Survey of Hard Real-Time Scheduling for Multiprocessor Systems.
ACM Computing Surveys, 43(4):35:1–35:44, 2011.

19 M.L. Dertouzos and A.K. Mok. Multiprocessor On-Line Scheduling of Hard-Real-Time
Tasks. IEEE Transactions on Software Engineering, 15(12):1497–1506, Dec. 1989.

20 N. Fisher, T. P. Baker, and S. Baruah. Algorithms for determining the demand-based load
of a sporadic task system. In 12th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA’06), Sydney, Australia, Aug, 16-18
2006.

21 N. Fisher, J. Goossens, and S. Baruah. Optimal online multiprocessor scheduling of sporadic
real-time tasks is impossible. Real-Time Systems, 45(1):26–71, June 2010.

22 N.W. Fisher. The Multiprocessor Real-Time Scheduling of General Task Systems. PhD
thesis, University of North Carolina at Chapel Hill, 2007.

23 G.Manimaran and C. S.R. Murthy. An efficient dynamic scheduling algorithm for mul-
tiprocessor real-time systems. IEEE Transactions on Parallel and Distributed Systems,
9(3):312–319, Mar. 1998.

24 J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task systems
on multiprocessors. Real-Time Systems, 25(2):187–205, Sept. 2003.

25 S. Kato and N. Yamasaki. Portioned static-priority scheduling on multiprocessors. In 2008
IEEE International Symposium on Parallel and Distributed Processing, Miami, Florida,
USA, April, 14-18 2008.

26 S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling on multiprocessors.
In 15th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS
2009), San Francisco, CA, USA, April 13-16 2009.

27 S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned scheduling of sporadic task
systems on multiprocessors. In 21st Euromicro Conference on Real-Time Systems, Dublin,
Ireland, July, 1-3 2009.

28 K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou. Admission control for elastic
cloud services. In 2012 IEEE Fifth International Conference on Cloud Computing, Hon-
olulu, HI, USA, June, 24-29 2012.

29 J. Lee and K.G. Shin. Schedulability analysis for a mode transition in real-time multi-core
systems. In Proceedings of the 2013 IEEE 34th Real-Time Systems Symposium (RTSS
2013), Washington, DC, USA, December 2013.

30 A. Mamat, Y. Lu, J. Deogun, and S. Goddard. An efficient algorithm for real-time divisible
load scheduling. In 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, Stockholm, Sweden, April, 12-15 2010.

https://retis.sssup.it/~d.casini/sp-dyn

D. Casini, A. Biondi, and G. Buttazzo 13:23

31 A. Mamat, J. Deogun Y. Lu, and S. Goddard. Real-time divisible load scheduling with
advance reservations. In 2008 Euromicro Conference on Real-Time Systems, Prague, Czech
Republic, July, 2-4 2008.

32 E. Massa, G. Lima, P. Regnier, G. Levin, and S. Brandt. Quasi-partitioned scheduling: op-
timality and adaptation in multiprocessor real-time systems. Real-Time Systems, 52(5):566–
597, 2016.

33 G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic. U-EDF: An unfair but op-
timal multiprocessor scheduling algorithm for sporadic tasks. In 24th Euromicro Conference
on Real-Time Systems (ECRTS 2012), Pisa, Italy, July 11-13 2012.

34 W. Nie, S. Zhou, K. J. Lin, and S.D. Kim. An on-line capacity-based admission control
for real-time service processes. IEEE Transactions on Computers, 63(9):2134–2145, Sept.
2014.

35 V. Nélis, J. Marinho, B. Andersson, and S.M. Petters. Global-EDF scheduling of mul-
timode real-time systems considering mode independent tasks. In Proceedings of the 23rd
Euromicro Conference on Real-Time Systems (ECRTS 2011), Porto, Portugal, July 6-8
2011.

36 J. Real and A. Crespo. Mode change protocols for real-time systems: A survey and a new
proposal. Real-Time Systems, 26(2):161–197, March 2004.

37 P. Regnier, G. Lima, E. Massa, G. Levin, , and S. Brandt. Multiprocessor scheduling by
reduction to uniprocessor: an original optimal approach. Real-Time Systems, 49(4):436–
474, 2013.

38 L. Santinelli, G. Buttazzo, and E. Bini. Multi-moded resource reservations. In 17th IEEE
Real-Time and Embedded Technology and Applications Symposium, Chicago, Illinois, USA,
April, 11-13 2011.

39 I. Shin and I. Lee. Compositional real-time scheduling framework with periodic model.
Journal ACM Transactions on Embedded Computing Systems, 7(3):1–39, April 2008.

40 P. Souto, P. B. Sousa, R. I. Davis, K. Bletsas, and E. Tovar. Overhead-aware schedulability
evaluation of semi-partitioned real-time schedulers. In 21st International Conference on
Embedded and Real-Time Computing Systems and Applications, Hong Kong, China, August
19-21 2015.

41 N. Stoimenov, L. Thiele, L. Santinelli, and G. Buttazzo. Resource adaptations with serv-
ers for hard real-time systems. In 10th International Conference on Embedded Software
(EMSOFT 2010), Scottsdale, Arizona, USA, October, 24-29 2010.

42 F. Zhang and A. Burns. Schedulability analysis for real-time systems with EDF scheduling.
IEEE Trans. Computers, 58(9):1250–1258, 2009.

ECRTS 2017

	Introduction
	System Model and Background
	C=D Semi-partitioned Scheduling of Reservations
	Burns et al.'s C=D Splitting Algorithm
	Notation and Table of Symbols

	An Approximated Algorithm For C=D Splitting
	The Baseline Approach
	Extensions
	Implementation and Complexity

	Load Balancing
	Admission of a New Reservation
	Handling the Exit of a Reservation
	Extensions

	Experimental Results
	C=D splitting: Approximated vs. Exact
	Proposed Approach vs. G-EDF and P-EDF

	Related Work
	Conclusions and Future Work

