
Cache-Conscious Offline Real-Time Task
Scheduling for Multi-Core Processors∗

Viet Anh Nguyen1, Damien Hardy2, and Isabelle Puaut3

1 University of Rennes 1/IRISA, Rennes, France
anh.nguyen@irisa.fr

2 University of Rennes 1/IRISA, Rennes, France
damien.hardy@irisa.fr

3 University of Rennes 1/IRISA, Rennes, France
isabelle.puaut@irisa.fr

Abstract
Most schedulability analysis techniques for multi-core architectures assume a single Worst-Case
Execution Time (WCET) per task, which is valid in all execution conditions. This assumption is
too pessimistic for parallel applications running on multi-core architectures with local instruction
or data caches, for which the WCET of a task depends on the cache contents at the beginning
of its execution, itself depending on the task that was executed before the task under study.

In this paper, we propose two scheduling techniques for multi-core architectures equipped with
local instruction and data caches. The two techniques schedule a parallel application modeled as
a task graph, and generate a static partitioned non-preemptive schedule. We propose an optimal
method, using an Integer Linear Programming (ILP) formulation, as well as a heuristic method
based on list scheduling. Experimental results show that by taking into account the effect of
private caches on tasks’ WCETs, the length of generated schedules is significantly reduced as
compared to schedules generated by cache-unaware scheduling methods. The observed schedule
length reduction on streaming applications is 11% on average for the optimal method and 9% on
average for the heuristic method.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems

Keywords and phrases real-time scheduling, cache-conscious scheduling, many-core architec-
tures, ILP, static list scheduling

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.14

1 Introduction

Many-core platforms are increasingly used to execute high performance hard real-time
applications since they provide enough computing power to satisfy the applications’ demand
while reducing their size, weight, and power requirements. However, guaranteeing the real-
time constraints of safety-critical parallel applications on such platforms is quite challenging.

One important challenge is to precisely estimate the Worst-Case Execution Times
(WCETs) of codes executing on multi-cores. Many WCET estimation methods have been
designed in the past for single-core architectures [34]. Such techniques take into account
both the program paths and the core micro-architecture. Extending them to multi-core
architectures is challenging, because some hardware resources, such as caches or buses are

∗ This work was supported by PIA project CAPACITES (Calcul Parallèle pour Applications Critiques en
Temps et Sûreté), reference P3425-146781.

© Viet Anh Nguyen, Damien Hardy, and Isabelle Puaut;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 14; pp. 14:1–14:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84868913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Cache-Conscious Offline Real-Time Task Scheduling for Multi-Core Processors

T2
(DFT)

T5
(DFT)

T4
(DFT)

T3
(DFT)

T6
(Com-
bine)

T7
(Com-
bine)

T8
(Com-
bine)

T9
(Com-
bine)

T10
(Com-
bine)

T13
(Com-
bine)

T12
(Com-
bine)

T11
(Com-
bine)

T1
(Splitt

-er)

T14
(Out)

Entry task

Exit task

Figure 1 Task graph of a parallel version of a 8-input Fast Fourier Transform (FFT) application [2].

shared between cores, which makes the WCET of a task dependent on the tasks executing
on the other cores [20, 10]. Additionally, on architectures with local caches, the WCET of
a task depends on the cache contents when the task starts executing, which depends on
the scheduling strategy. The WCET of one task is thus no longer unique. It depends on
the execution context of the task (tasks executed before it, concurrent tasks), the execution
context being defined by the scheduling strategy. We thus believe that scheduling strategies
that are aware of the multi-core hardware (in particular local caches) have to be defined.

Many multi-core scheduling strategies assume a single context-insensitive WCET per
task. In this paper, we propose instead cache-aware scheduling strategies, that take benefit
of cache reuse between tasks. Each task has distinct WCET values depending on which
other task has been executed before it on the same core (WCETs are context-sensitive). The
proposed scheduling strategies map tasks on cores and schedules tasks on cores; the objective
is to account for cache reuse to obtain the shortest schedules. For the scope of this paper,
we focus on a single parallel application, modeled as a task graph, in which nodes represent
tasks and edges represent dependence relations between them.

To further motivate our work, let us consider, as an example, a 8-input Fast Fourier
Transform application. Its task graph is shown in Figure 1. This application contains both
code and data reuse between tasks. For instance, T2 and T3 feature code reuse since they
call the same function, and T2 and T6 feature data reuse since the output of T2 is the
input of T6. On that example, we observe a WCET reduction of 10.7% on average when
considering the cache affinity between pairs of tasks that may execute consecutively on the
same core. The schedule length for that parallel application was reduced by 8% by using the
Integer Linear Programming (ILP) technique presented in Section 4.1 as compared to its
cache-agnostic equivalent.

In this paper, we propose two different methods to determine a static partitioned non-
preemptive schedule aiming at minimizing the schedule length, for a parallel application by
taking into account the variation of tasks’ WCETs due to reuse of code and data between
tasks. The first method is based on an Integer Linear Programming (ILP) formulation
and produces optimal schedules. The second method is a heuristic technique that produces
schedules very fast with schedule lengths close to the optimal ones.

V.A. Nguyen, D. Hardy, and I. Puaut 14:3

The main contributions of our work are as follows:
We argue and experimentally validate the importance of addressing the effect of private
caches on tasks’ WCETs in scheduling.
We propose an ILP-based scheduling method and a heuristic scheduling method to
statically find a partitioned non-preemptive schedule of a parallel application modeled as
a directed acyclic graph.
We provide experimental results showing, among others, that the proposed scheduling
techniques result in shorter schedules than their cache-agnostic equivalent.

The rest of this paper is organized as follows. Section 2 surveys related work. Section 3
describes our system model and formulates the scheduling problem. Section 4 introduces the
proposed ILP formulation and the proposed heuristic scheduling method. We experimentally
evaluate our proposed scheduling methods in Section 5. Finally, we summarize the contents
of the paper and provide directions for future work in Section 6.

2 Related work

Schedulability analysis techniques rely on the knowledge of the Worst-Case Execution Times
of tasks. Originally designed for single-core processors, static WCET estimation techniques
were extended recently to cope with multi-core architectures. Most research have focused on
modeling shared resources (e.g., shared cache, shared bus, shared memory) in order to capture
interferences between tasks which execute concurrently on different cores [15, 18, 6, 28, 13, 1].
Most extensions of WCET estimation techniques for multi-cores produce a WCET for a
single task in the presence of concurrent executions on the other cores. By construction,
those extensions do not account for caches effects between tasks as our scheduling techniques
do. The scheduling techniques we propose have to rely on WCET estimation techniques to
estimate the effect of local caches on tasks’ WCETs.

Some WCET estimation techniques pay attention to the effect of private caches on
WCETs. In [21], when analyzing the timing behavior of a task, Nemer et al. take into
account the set of memory blocks that has been stored in the instruction cache (by the
execution of previous tasks on the same core) at the beginning of its execution. Similarly,
Potop-Butucaru and Puaut [26], assuming task mapping on cores known, jointly perform
cache analysis and timing analysis of parallel applications. These two WCET estimation
techniques assume task mapping on core and task schedule on each core known. In this
paper, in contrast, task mapping and scheduling are selected to take benefit of cache reuse
to have the shortest possible schedule length.

Much research effort has been spent on scheduling for multi-core platforms. Research on
real-time scheduling for independent tasks is surveyed in [7]. This survey gives a taxonomy
of multi-core scheduling strategies: global vs. partitioned vs. semi-partitioned, preemptive
vs. non preemptive, time-driven vs. event-driven. The scheduling techniques we propose in
this paper generate offline time-driven non-preemptive schedules. Most of the scheduling
strategies surveyed in [7] are unaware of the hardware effects and consider a fixed upper
bound on tasks’ execution times. In contrast, the scheduling techniques we propose in this
paper address the effect of private caches on tasks’ WCETs. Our work integrates this effect in
the scheduling and mapping problem by considering multiple WCETs for each task depending
on their execution contexts (i.e. cache contents at the beginning of their execution).

Some scheduling techniques that are aware of hardware effects were proposed in the past.
They include techniques that simultaneously schedule tasks and the messages exchanged
between them [5, 30, 27]; such techniques take into consideration the Network-On-Chip

ECRTS 2017

14:4 Cache-Conscious Offline Real-Time Task Scheduling for Multi-Core Processors

CPU

I$

Shared memory

Core 1 Core 2 Core n

…

D$

CPU

I$ D$

CPU

I$ D$

Bus

Figure 2 Considered multi-core architecture.

(NoC) topology in the scheduling process. Some other techniques aim at scheduling tasks
in a way that minimizes the contentions when accessing shared resources (e.g., shared bus,
shared caches) [4, 11, 9]. Besides, some approaches [35, 3, 23, 22, 24] schedule tasks according
to execution models that guarantee temporal isolation between co-running tasks. In that
way, scheduled tasks are guaranteed to be free from the contentions when accessing shared
resources. In [29], Suhendra et al. consider data reuse between tasks to perform task
scheduling for multi-core systems equipped with scratchpad memory (SPM); in their work,
the most frequently accessed data are allocated in SPM to reduce the accesses latency to an
off-chip memory. Our scheduling solutions in this paper differ from the above-mentioned
previous works because we pay attention to the effect of private caches on tasks’ WCETs.
In our proposed scheduling methods, tasks are scheduled to get benefit from the effect of
private caches.

Related studies also address the effect of private caches when scheduling tasks on multi-
core architectures [33, 25, 31]. However, they are based on global and preemptive scheduling
techniques, in which the cost of cache reload after being preempted or migrated has to be
accounted for. Compared to these works, our technique is partitioned and non preemptive.
We believe such a scheduling method allows to have better control on cache reuse during
scheduling. Furthermore, [25] and [31] focus on single core architectures while our work
target multi-core architectures.

3 System model and problem formulation

3.1 Hardware model
The class of architectures addressed in this work is the class of identical multi-core architec-
tures, in which each core is equipped with a private instruction cache and a private data
cache, as illustrated in Figure 2.

Clocks of all cores are assumed to be synchronized. Furthermore, it is assumed that the
architecture is either (preferably) free from contention to access shared resources (shared
bus, shared memory) or provides a way to bound the cost of interference, and in that latter
case the cost of interference is included in tasks’ WCETs. The issue of hardware resource
sharing is thus considered outside the scope of this paper.

3.2 Task and execution model
Each application is modeled as a Directed Acyclic Graph (DAG) [16], as previously illustrated
in Figure 1. A node in the DAG represents a task, denoted τi. An edge in the DAG represents

V.A. Nguyen, D. Hardy, and I. Puaut 14:5

a precedence relation between the source and target tasks, as well as possibly a transfer of
information between them. A task can start executing only when all its direct predecessors
have finished their execution, and after all data transmitted from its direct predecessors are
available. A task with no direct predecessor is an entry task, whereas a task with no direct
successor is an exit task. Without loss of generality it is assumed that there is a single entry
task and a single exit task per application.

The structure of the DAG is static, with no conditional execution of nodes. The volume
of data transmitted along edges (possibly null) is known offline. Each task in the DAG is
assigned a distinct integer identifier.

A communication for a given edge is implemented using transfers to and from a dedicated
buffer located in shared memory. To simplify the description of the scheduling algorithms,
the worst-case communication cost for a given edge is assumed constant, and is integrated
in the WCETs of the sending and receiving tasks. However, we believe that non constant
communication costs (e.g. depending on task mapping), could be easily integrated in the
proposed scheduling algorithms.

Due to the effect of caches, each task τj is not characterized by a single WCET value
but instead by a set of WCET values. The most pessimistic WCET value for a task, noted
WCETτj

, is observed when there is no reuse of cache contents loaded by a task executed
immediately before τj . A set of WCET values noted WCETτi→τj

represent the WCETs of
task τj when τj reuses some information, loaded in the instruction and/or data cache by a
task τi that is executed immediately before τj on the same core.

3.3 Problem formulation
Our proposed scheduling methods take as inputs the number of cores of the architecture
and the DAG of a parallel application decorated with WCET information for each task, and
produce an offline time-driven partitioned non-preemptive schedule of the application. More
precisely, the produced schedule for each core determines the start and finish times of all
tasks assigned to the core.

4 Cache-conscious task scheduling methods

For solving the formulated scheduling problem, we propose two methods:
An ILP formulation that allows to reach the optimal solution, i.e. the one that minimizes
the application schedule length) (see Section 4.1);
A heuristic method, based on list scheduling, that allows to find a valid schedule very
fast and generally very close to the optimal one (see Section 4.2).

The notations used in the description of the scheduling methods are summarized in
Table 1. The first block defines frequently used notations to manage the task graph. The
second block defines integer constants, using upper case letters, used throughout the paper.
Finally, the third block defines the variables, using lower case letters, used in the ILP
formulation.

4.1 Cache-conscious ILP formulation (CILP)
In this section, we present the cache-conscious ILP formulation, noted CILP (for Cache-
conscious ILP) hereafter. As mentioned before, one output of the scheduling methods is
the mapping of tasks on cores. Since cores are identical, the exact core onto which a task
is mapped does not matter. Based on that observation, CILP focuses on finding the sets

ECRTS 2017

14:6 Cache-Conscious Offline Real-Time Task Scheduling for Multi-Core Processors

Table 1 Notations used in the proposed scheduling methods.

Symbol Description Data type
τ The set of tasks of the parallel application set

dPred(τj) The set of direct predecessors of τj set
dSucc(τj) The set of direct successors of τj set
nPred(τj) The set of tasks that are neither direct nor indirect pre-

decessors of τj (τj excluded)
set

nSucc(τj) The set of tasks that are neither direct nor indirect suc-
cessors of τj (τj excluded)

set

K The number of cores of the processor integer
WCETτj The worst-case execution time of τj when not reusing

cache contents
integer

WCETτi→τj The worst-case execution time of τj when executing right
after τi

integer

sl The length of the generated schedule integer
wcetτj The worst-case execution time of τj integer
stτj The start time of τj integer
ftτj The finish time of τj integer
fτj Indicates if τj is the first task running on a core or not binary

oτi→τj Indicates if τj is a co-located task of τi and executes right
after τi or not

binary

of co-located tasks with their running orders. The assignment of sets of co-located tasks to
cores is then straightforward (i.e. one set per core).

The objective function of CILP is to minimize the schedule length sl of the parallel
application which is expressed as follows:

minimize sl (1)

Since the schedule length for the parallel application has to be larger than or equal to
the finish time ftτj

of any task τj , the following constraint is introduced:

∀τj ∈ τ,
sl ≥ ftτj

(2)

The finish time ftτj
of a task τj is equal to the sum of its start time stτj

and its worst
case execution time wcetτj :

∀τj ∈ τ,
ftτj

= stτj
+ wcetτj

(3)

In the above equation, variable wcetτj
is introduced to model the variations of tasks’

WCETs due to the effect of private caches and is computed as follows:

∀τj ∈ τ,

wcetτj = fτj ∗WCETτj +
∑

τi∈ nSucc(τj)

oτi→τj ∗WCETτi→τj
(4)

The left part corresponds to the case where task τj is the first task running on a core
(fτj

= 1). The sum in the right part corresponds to the case where the task τj is scheduled
just after another co-located task τi (oτi→τj

= 1). As shown later, only one binary variable
among fτj and variables oτi→τj will be set by the ILP solver, thus assigning one and only
one of the WCET values to τj depending on which other task is executed before it.

V.A. Nguyen, D. Hardy, and I. Puaut 14:7

Constraints on tasks’ start times

A task can be executed only when all of its direct predecessors have finished their execution.
In other words, its start time has to be larger than or equal to the finish times of all its
direct predecessors.

∀τj ∈ τ,∀τi ∈ dPred(τj),
stτj
≥ ftτi

if dPred(τj) 6= ∅
stτj ≥ 0 otherwise

(5)

In the above equation, when the task has no predecessor, its start time has to be larger
than or equal to zero.

Furthermore, in case there is a co-located task τi scheduled right before τj , τj cannot
start before the end of τi. In other words, the start time of τj has to be larger than or equal
to the finish time of τi. Note that, τj can be scheduled only after a task τi that is neither its
direct nor indirect successor.

∀τj ∈ τ,∀τi ∈ nSucc(τj),
stτj ≥ oτi→τj ∗ ftτi

(6)

For linearizing equation (6), we use the classical big-M notation which is expressed as:

∀τj ∈ τ,∀τi ∈ nSucc(τj),
stτj
≥ ftτi

+ (oτi→τj
− 1) ∗M

(7)

where M , is a constant1 higher than any possible ftτj
.

Constraints on tasks’ ordering

A task has at most one co-located task scheduled right after it, which is expressed as follows:

∀τj ∈ τ, if nPred(τj) 6= ∅∑
τi∈nPred(τj)

oτj→τi
≤ 1 . (8)

Note that, task τj can be only scheduled before task τi which is neither its direct nor indirect
predecessor.

Furthermore, a task has one co-located task scheduled right before it which is neither its
direct nor indirect successor or it is the first scheduled task, thus:

∀τj ∈ τ,∑
τi∈nSucc(τj)

oτi→τj
+ fτj

= 1 . (9)

Finally, since the number of cores is K, the number of tasks that can be the first to be
scheduled on cores is at most K:∑

τj∈τ
fτj
≤ K . (10)

1 For the experiments, M is the sum of all tasks’ WCETs when not reusing cache contents, to ensure that
M is higher than the finish time of any task.

ECRTS 2017

14:8 Cache-Conscious Offline Real-Time Task Scheduling for Multi-Core Processors

The result of the mapping/scheduling problem after being solved by an ILP solver is then
defined by two sets of variables. Task mapping is defined by variables fτj

and oτi→τj
that

altogether define the set of co-located tasks and their execution order. The static schedule
on every core is defined by variables stτj and ftτj , that define the start and finish time of
the tasks assigned to that core.

4.2 Cache-conscious list scheduling method (CLS)
Finding an optimal schedule for a partitioned non-preemptive scheduling problem is NP-
hard [14]. Therefore, we developed a heuristic scheduling method that efficiently produces
schedules that are close to the optimal ones. The proposed heuristic method is based on list
scheduling (see [17] for a survey of list scheduling methods).

The proposed heuristic method (CLS, for Cache-conscious List Scheduling) first constructs
a list of tasks to be scheduled. Then, the list of tasks is scanned sequentially, and each task
is scheduled without backtracking. When scheduling a task, all cores are considered for
hosting the task and a schedule that respects precedence constraints is constructed for each.
The core which allows the earliest finish time of the task is selected and the corresponding
schedule is kept.

The ordering of the tasks in the list has to follow topological ordering such that precedence
constraints are respected. Here, we select a topological order that also takes into account
the WCETs of tasks. Since a task may have different WCETs according to the other task
executed before it, we associate to each task a weight that approximates its WCET variation.
The weight of a task τj , noted twτj

, is defined as follows:

twτj
= 1
K
∗minτi∈nSucc(τj)(WCETτi→τj

) + (1− 1
K

) ∗WCETτj
. (11)

This formula integrates the likeliness that the WCET of task τj is reduced, which decreases
when the number of cores increases. Different definitions of tasks weights were tested to
take into account the WCET variation of tasks. Since we did not observe major difference
between them, we selected this simple definition.

Given tasks’ weights, the order of tasks in the list is determined based on two classical
metrics, both respecting topological order. The first metric is called in the following bottom
level. It defines for task τj the longest path from τj to the exit task (τj included), cumulating
tasks’ weights along the path:

bottom_levelexit = twexit

bottom_levelτj
= max(bottom_levelτi

+ twτj
),∀τi ∈ dSucc(τj) (12)

The second metric is called top level. Symmetrically, it defines for task τj the longest
path from the entry task to τj (τj excluded):

top_levelentry = 0
top_levelτj

= max(top_levelτi
+ twτi

),∀τi ∈ dPred(τj) (13)

As it will be shown in Section 5.2 none of the two metrics was shown to outperform the
other for all task graphs, we thus kept both variations. In the following:

CLS_BL refers to a sorting of tasks according to their bottom levels; in case of equality,
their top levels is used to break ties; if a tie still exists, the task identifier is used to sort
tasks.
CLS_TL refers to a sorting of tasks according to their top levels, with bottom level and
task identifier as tie breaking rules.
CLS refers to the method, among CLS_BL and CLS_TL, resulting in the shortest
schedule length for a given task graph.

V.A. Nguyen, D. Hardy, and I. Puaut 14:9

T1	

T2	
 T3	
 T4	

T5	

τj

τi T1 T2 T3 T4 T5 Weight Bottom Level

T1 10 – – – – 10 42.5
T2 15 20 10 20 – 15 27.5
T3 20 15 25 25 – 20 32.5
T4 15 20 20 20 – 17.5 30
T5 15 10 10 10 15 12.5 12.5

Figure 3 Illustrative example for CLS_BL.

T1	
 T3	
 T4	
 T2	
 T5	

T3	
 T4	
 T2	
 T5	

T4	
 T2	
 T5	

T2	
 T5	

T5	

T1	

T1	
 T3	

T4	

T1	
 T3	

T1	
 T3	

T4	

T2	

T1	
 T3	
 T2	

T4	

T5	

Core 1 Time (cycles)
Core 2

Core 1
Core 2

Core 1

Core 1

Core 1

Core 2

Core 2

Core 2

List
0 10

0 10 30

0 10 30

10 30

0 10 30 40

10 30

0 10 30 40 50

10 30

Figure 4 Illustration of CLS_BL.

We illustrate the execution of CLS_BL on a very simple task graph whose characteristics
are given in Figure 3. The left part of Figure 3 gives the task graph. The right part gives the
WCETs of tasks when not reusing cache contents (WCETτj

, diagonal of the left part of the
table) and values of WCETτi→τj ; the next two columns give the weights and the bottom
levels of tasks.

The execution of CLS_BL is illustrated in Figure 4 for a dual-core architecture. First,
the tasks are ordered in a list according to their bottom levels. Then, the task at the head
of the list (T1) is scheduled and T1 is removed from the list. Here, T1 is assigned to the
first core. Next task in the list (here, T3) is then scheduled and removed from the list; T3 is
mapped to the first core, which meets the precedence constraint between T1 and T3 and
minimizes the finish time of T3 (date 30 on core 1 as opposed to date 35 on core 2). This
process is repeated until the list is empty.

5 Experimental evaluation

In this section we evaluate the quality of generated schedules and the required time for
generating them for the two proposed cache-conscious scheduling methods. We also evaluate
the impact of several parameters, such as the number of cores, on the generated schedules.

ECRTS 2017

14:10 Cache-Conscious Offline Real-Time Task Scheduling for Multi-Core Processors

Experimental conditions are described in Section 5.1. Experimental results are then detailed
in Section 5.2.

5.1 Experimental conditions

5.1.1 Benchmarks
In our experiments, we use 26 benchmarks of the StreamIt benchmark suite [32]. StreamIt is
a programming environment that facilitate the programming of streaming applications. We
use that infrastructure to generate a sequential version of each benchmark in C++ and to
get a representation of its Synchronous Data Flow graph (SDF). In the SDF graph, nodes
represent filters or split-join structure and edges represent data dependencies between nodes.
Each filter in the SDF consumes and produces a known amount of data. Each filter then
has to be executed a certain number of times to balance the amount of data produced and
consumed.

Each benchmark in the StreamIt benchmark suite starts with an initialization of the data
for the initial execution of filters, followed by a steady state where the execution of filters
is repeated. In our experiments, we focus on the execution of one iteration of the steady
state. To obtain a task graph corresponding to our task model, we transformed manually
the sequential version generated by the compiler to expose parallelism. We validated our
transformations by systematically comparing the outputs of the sequential and parallel
versions.

The characteristics of the obtained task graphs are summarized in Table 2. In the table,
the maximum width of a task graph is defined as the maximum number of tasks with the
same rank2. The maximum width defines the maximum parallelism in the benchmark. The
average width is an average of the number of tasks for all ranks. The average width defines
the average parallelism of the application. The higher the average width, the better the
potential to benefit from a high number of cores. The depth of a task graph is defined as the
longest path from the entry task to the exit task.

Additional information on the benchmarks is reported in Table 3. Reported information
is the code size for the entire application, the average and standard deviation of code size
per task, and the average amount of data communicated between tasks.

5.1.2 Hardware and WCET estimation
Our target architecture is the Kalray MPPA-256 machine [8], more precisely its first generation,
named Andey. The Kalray MPPA-256 is a many-core platform with 256 compute cores
organized in 16 compute clusters of 16 cores each. Each compute cluster has 2MB of shared
memory. Each compute core is equipped with an instruction cache and a data cache of 8KB
each, both set-associative with a Least Recently Used (LRU) replacement policy. An access
to the shared memory, in case no contention occurs takes 9 cycles with 8 bytes fetched on
each consecutive cycle [3].

Many techniques exist for WCET estimation [34] and could be used in our study to
estimate WCETs and gains resulting from cache reuse. Since WCET estimation is not at the
core of our scheduling methods, WCET values were obtained using measurements on the
platform. Measurements were performed on one compute cluster, with no activity on the

2 The rank of a task is defined as the longest path in term of the number of nodes to reach that task
from the entry task.

V.A. Nguyen, D. Hardy, and I. Puaut 14:11

Table 2 Summary of the characteristics of StreamIt benchmarks in our case studies.

Benchmark No. of
tasks

No. of
Edges

Maximum
graph
width

Average
graph
width

Graph
Depth

AudioBeam 20 33 15 3.3 6
Autocor 12 18 8 2.4 5

Beamformer 42 50 16 4.2 10
BitonicSort 50 66 4 2.1 24

Cfar 67 129 64 16.8 4
ChannelVocoder 264 512 201 33 8

Cholesky 95 148 11 2.3 41
ComparisonCounting 37 67 32 6.2 6

DCT 13 15 3 1.3 10
DCT_2D 10 11 2 1.3 8

DCT_2D_reference_fine 148 280 64 18.5 8
Des 247 468 48 9.9 25

FFT_coarse 192 254 64 12.8 15
FFT_fine_2 115 150 16 3.7 31
FFT_medium 131 204 16 4.7 28
FilterBank 34 45 8 2.4 14
FmRadio 67 85 20 5.6 12
IDCT 16 19 3 1.3 12

IDCT_2D 10 11 2 1.3 8
IDCT_2D_reference_fine 548 1072 256 68.5 8

Lattice 45 53 2 1.3 36
MergeSort 31 37 8 2.6 12
Oversampler 36 61 16 3.6 10
RateConverter 6 6 2 1.2 5
VectorAdd 5 4 2 1.3 4
Vocoder 71 94 7 2.2 32

other cores, providing fixed inputs for each task. The execution time of a task is retrieved
using the machine’s 64-bit timestamp counter counting cycles from boot time [8]. The effect
of the timestamp counter on the execution time of a task turned out to be negligible. Since
data caches are not coherent, they have to be flushed after each inter-core communication.
We further observed that thanks to the determinism of the architecture, when running a
task several times, in the same execution context, the execution time is constant (the same
behavior was observed in [19]). For each task, we record its execution time when not reusing
cache contents, as well as when executed after any possible other task.

Table 4 summarizes the obtained execution times. This table shows the average and
standard deviation of tasks’ WCET without cache reuse. It also shows the weighted average
WCET reduction for each benchmark, computed as follows. For each task τj we calculate its
average WCET reduction in percent:

rτj
= 100 ∗

∑
τi∈nSucc(τj)

WCETτj −WCETτi→τj

WCETτj

|nSucc(τj)|
(14)

Since tasks with low WCETs tend to have high WCET reductions although they have low
impact on schedule length, we weighted each value by its WCET, yielding to the following

ECRTS 2017

14:12 Cache-Conscious Offline Real-Time Task Scheduling for Multi-Core Processors

Table 3 The size of code and communicated data for each benchmark (average µ and standard
deviation σ).

Benchmark Code size (Bytes) Communicated
data (Bytes)

Entire application µ / σ of tasks µ

AudioBeam 38076 1458 / 1897 6
Autocor 12348 1014 / 538 66

Beamformer 333424 1879 / 718 10
BitonicSort 57952 1154 / 503 9

Cfar 181808 1906 / 5513 6
ChannelVocoder 302012 881 / 159 6

Cholesky 87336 916 / 667 22
ComparisonCounting 33564 893 / 840 20

DCT 23180 1188 / 831 8
DCT_2D 17248 1704 / 1101 9

DCT_2D_reference_fine 120392 724 / 145 12
Des 212808 783 / 185 12

FFT_coarse 418576 2161 / 467 52
FFT_fine2 122428 1060 / 574 9

FFT_medium 178660 1358 / 408 27
FilterBank 101096 834 / 192 4
FmRadio 374812 1072 / 679 4
IDCT 24336 1507 / 1239 7

IDCT_2D 17608 1740 / 1063 9
IDCT_2D_reference_fine 452924 802 / 154 7

Lattice 37812 817 / 274 5
MergeSort 34208 1088 / 366 16
Oversampler 56824 777 / 115 4
RateConverter 12348 683 / 247 11
VectorAdd 3080 593 / 148 4
Vocoder 125272 1064 / 1319 6

definition of weighted average reduction:

wr =
∑
τj∈τ (rτj

∗WCETτj
)∑

τj∈τ WCETτj

(15)

5.1.3 Experimental environment

We use Gurobi optimizer version 6.5 [12] for solving our proposed ILP formulation. The
solving time of the solver is limited to 20 hours. The ILP solver and heuristic scheduling
algorithms are executed on 3.6 GHz Intel Core i7 CPU with 16GB of RAM.

V.A. Nguyen, D. Hardy, and I. Puaut 14:13

Table 4 Tasks’ WCETs (average µ / standard deviation σ) and weighted average WCET
reduction.

Benchmark WCET in cycles (µ/σ) Weighted
average
WCET
reduction

AudioBeam 1479.0 / 2869.6 13.3
Autocor 3163.0 / 1855.1 5.5
Beamformer 4896.9 / 2950.2 4.5
BitonicSort 678.0 / 391.6 22.8
Cfar 2767.0 / 11612.7 13.0
ChannelVocoder 8084.5 / 26265.9 3.8
Cholesky 1512.5 / 3152.3 10.7
ComparisonCounting 1249.6 / 1477.5 14.4
DCT 718.3 / 685.0 19.1
DCT_2D 812.7 / 741.4 18.6
DCT_2D_reference_fine 1072.6 / 1519.2 17.1
Des 893.2 / 1236.2 23.4
FFT_coarse 3465.9 / 3062.3 9.8
FFT_fine_2 745.5 / 469.6 19.5
FFT_medium 1470.7 / 1456.3 11.6
FilterBank 3634.0 / 3701.0 4.6
FmRadio 2802.5 / 2652.1 5.5
IDCT 687.7 / 632.9 21.2
IDCT_2D 805.6 / 743.5 18.7
IDCT_2D_reference_fine 1538.5 / 3864.9 14.9
Lattice 515.6 / 381.8 28.6
MergeSort 1010.4 / 662.1 17.4
Oversampler 4195.3 / 684.5 6.5
RateConverter 19779.0 / 34471.5 0.9
VectorAdd 923.8 / 979.6 20.1
Vocoder 804.1 / 1227.8 15.8

5.2 Experimental results
5.2.1 Benefits of cache-conscious scheduling
In this sub-section, we show that cache-conscious scheduling, should it be implemented using
an ILP formulation (CILP) or a heuristic method (CLS), yields to shorter schedules than
equivalent cache-agnostic methods. This is shown by comparing how much is gained by CILP
as compared to NCILP, the same ILP formulation as CILP except that cache effects are
not taken into account (variable wcetτj

is systematically set to the cache-agnostic WCET,
WCETτj). The gain is evaluated by the following equation, in which sl stands for the
schedule length:

gain = slNCILP − slCILP
slNCILP

∗ 100. (16)

The gain is also evaluated using a similar formula for the heuristic method CLS (shorter
schedule among CLS_BL and CLS_TL) as compared to its cache-agnostic equivalent NCLS.

Results are reported on Figures 5 and 6 for a 16 cores architecture. In Figure 5, only
the benchmarks for which the optimal solution was found in a time budget of 20 hours are
depicted. These figures show that both CILP and CLS reduce the length of schedules, and

ECRTS 2017

14:14 Cache-Conscious Offline Real-Time Task Scheduling for Multi-Core Processors

Aud
ioB

ea
m

Aut
oc

or

Bea
m

fo
rm

er

Bito
nic

-s
or

t

Cho
les

ky
DCT

DCT2D

FFT_f
ine

_2

Filte
rB

an
k

Fm
Rad

io
ID

CT

ID
CT2D

La
ttic

e

M
er

ge
Sor

t

Ove
rs

am
ple

r

Rat
eC

on
ve

rte
r

Vec
to

rA
dd

Voc
od

er
0

5

10

15

20

25

30

35

G
ai

n
(%

)

Figure 5 Gain of CILP as compared to NCILP (gain = slNCILP − slCILP
slNCILP

∗ 100) on a 16 cores
system.

this for all benchmarks. The gain is 11% on average for CILP and 9% on average for CLS.
The higher reductions are obtained for the benchmarks with the higher weighted WCET
reduction as defined in Table 2.

5.2.2 Comparison of optimal (CILP) and heuristic (CLS) scheduling
techniques

In this sub-section, we compare CILP and CLS according to two metrics: the quality of the
generated schedules, estimated through their lengths (the shorter the better) and the time
required to generate the schedules. All results are obtained on a 16 cores system.

Table 5 gives the lengths of generated schedules (slCILP and slCLS), the run time of
schedule generation and the gap (in percent) between the schedule lengths, computed by the
following formula:

gap = slCLS − slCILP
slCILP

∗ 100. (17)

The shorter the gap, the closer CLS is from CILP. The gap between CLS and CILP is given
only when CILP finds the optimal solution in a time budget of 20 hours.

The table shows that CLS offers a good trade-off between the efficiency and the quality of
its generated schedules. CLS generates schedules very fast as compared to CILP (i.e., about 1
second for the biggest task graph IDCT_2D_reference_fine which contains 548 tasks). When
scheduling big task graphs, such as DES , ChannelVocoder and IDCT_2D_reference_fine,
CILP is unable to find the optimal solution in 20 hours. When CILP finds the optimal
solution, the gap between CILP and CLS is very small (0.7% on average).

The highest gap (7.3%) is observed for the Lattice benchmark. The reason is that Lattice
contains a reuse pattern (illustrated in Figure 7) where reuse is higher between indirect
predecessors than between direct predecessors. For example, the reduction of the WCET of
T6 when executing directly after T1 (37.3%) is higher than when executing directly after

V.A. Nguyen, D. Hardy, and I. Puaut 14:15

Aud
ioB

ea
m

Aut
oc

or

Bea
m

fo
rm

er

Bito
nic

-s
or

t
Cfa

r

Cha
nn

elV
oc

od
er

Cho
les

ky

Com
pa

ris
on

Cou
nt

ing DCT

DCT2D

DCT_2
D_r

ef
er

en
ce

_f
ine Des

FFT_c
oa

rs
e

FFT_f
ine

_2

FFT_m
ed

ium

Filte
rB

an
k

Fm
Rad

io
ID

CT

ID
CT2D

ID
CT_2

D_r
ef

er
en

ce
_f

ine

La
ttic

e

M
er

ge
Sor

t

Ove
rs

am
ple

r

Rat
eC

on
ve

rte
r

Vec
to

rA
dd

Voc
od

er
0

5

10

15

20

25

30

G
ai

n
(%

)

Figure 6 Gain of CLS as compared to NCLS (gain = slNCLS − slCLS
slNCLS

∗ 100) on a 16 cores
system.

T5 (22.6%). Similarly, the reduction of the WCET of T9 when executing directly after T4
(50.1%) is higher than when executing directly after T7 (31.3%). For such an application,
the static sorting of CLS never places indirect precedence-related tasks (for which the higher
reuse occurs) contiguously in the list, and then does not fully exploit the cache reuse present
in the application.

5.2.3 Impact of the number of cores on the gain of CLS against NCLS

In this section, we evaluate the gain in term of schedule length of CLS against its cache-
agnostic equivalent when varying the number of cores. The results are depicted in Figure 8
for a number of cores from 2 to 64.

In the figure, we can observe that whatever the number of cores, CLS always outperforms
NCLS, meaning that our proposed method is always able to take advantage of the WCET
reduction due to cache reuse to reduce the schedule length. Another observation is that the
gain decreases when the number of cores increases, up to a given number of cores. This
behavior is explained by the fact that when increasing the number of cores, the tasks are
spread among cores which provides less opportunity to exploit cache reuse since exploiting
the parallelism of the application is more profitable. However, even in that situation, the
reduction of the schedule length achieved by CLS against NCLS is most of the time significant.

5.2.4 Impact of the number of cores on schedule length

In this section, we study the impact of the number of cores on schedule length for the CLS
scheduling technique. This is expressed by depicting the ratio of the schedule length on one

ECRTS 2017

14:16 Cache-Conscious Offline Real-Time Task Scheduling for Multi-Core Processors

Table 5 Comparison of CILP and CLS (schedule length and run time of schedule generation).

Benchmarks sl_CILP sl_CLS time_CILP (s) time_CLS (s) gap (%)
AudioBeam 20746o 20746 < 1 < 1 0.00
AutoCor 17455o 17455 < 1 < 1 0.00

Beamformer 29778o 29803 2 < 1 0.08
BitonicSort 15445o 15616 78 < 1 1.11

Cfar 120370f 120476 72000 < 1
ChannelVocoder x 302933 72000 < 1

Cholesky 113474o 114539 < 1 < 1 0.94
ComparisonCounting 19618f 19640 72000 < 1

DCT 6613o 6613 < 1 < 1 0.00
DCT2D 5856o 5867 < 1 < 1 0.19

DCT_2D_reference_fine 33337f 32572 72000 < 1
Des 100632f 98596 72000 < 1

FFT_coarse x 134873 72000 < 1
FFT_fine_2 30007o 30326 66984 < 1 1.06
FFT_medium 89782f 87144 72000 < 1
FilterBank 47083o 47185 15 < 1 0.22
FmRadio 29969o 30125 4376 < 1 0.52
IDCT 7268o 7268 < 1 < 1 0.00

IDCT2D 5803o 5826 < 1 < 1 0.40
IDCT_2D_reference_fine x 101970 72000 1

Lattice 13253o 14217 < 1 < 1 7.27
MergeSort 14501o 14563 1 < 1 0.43
Oversampler 39143o 39279 8 < 1 0.35
RateConverter 117278o 117278 < 1 < 1 0.00
VectorAdd 3704o 3704 < 1 < 1 0.00
Vocoder 32759o 32916 9 < 1 0.48
Average 0.72

–) x: no solution is found in 20 hours
–) f: feasible solution is found
–) o: optimal solution is found

core sl1Cores to the schedule length on n cores slnCores: slRationCores = sl1Core
slnCores

. Results
are given in Figure 9 for a number of cores n = 2, 4, 8, 16, 32 and 64. The higher the ratio,
the better CLS is able to exploit the multi-core architecture for a given benchmark.

The figure shows that for all benchmarks the ratio increases up to a certain number of
cores and then reaches a plateau. The plateau is reached when the benchmark does not have
sufficient parallelism to be exploited by the scheduling algorithm, which is correlated to the
width of its task graph as presented in Table 2.

It can be noticed that for some benchmarks (ChannelVocoder , DCT_2D_reference_fine,
FFT_coarse and IDCT_2D_reference_fine) the plateau is never reached because these
benchmark have too much parallelism for the number of cores. Even if the average width is
below 64, we observe for these benchmarks that the maximal width is above 64 and up to
256 for IDCT_2D_reference_fine which explains why the plateau is not reached for these
benchmarks.

V.A. Nguyen, D. Hardy, and I. Puaut 14:17

T1

T2

T3 T4

T5

T6

T8 T9

T7

T
10

wcetT 6 −wcetT1→T 6

wcetT 6
*100 = 37.3

wcetT 9 −wcetT 4→T 9

wcetT 9
*100 = 50.1

wcetT 6 −wcetT 5→T 6

wcetT 6
*100 = 22.6

wcetT 9 −wcetT 7→T 9

wcetT 9
*100 = 31.3

Figure 7 The reuse pattern found in the Lattice benchmark.

An exception is observed for RateConverter where there is absolutely no improvement.
The graph of this benchmark is an almost linear chain of tasks with only a pair of tasks that
may execute in parallel. However, there is cache reuse between these two tasks and thus the
best schedule, whatever the number of available cores, is obtained when assigning all tasks
to the same core.

Finally, for most benchmarks, the ratio does not increase linearly with a slope of 1,
because task graphs contain precedence relations.

5.2.5 Comparison of schedule lengths for CLS_TL and CLS_BL
In this sub-section, we study the impact of the sorting technique of the list scheduling technique
on the quality of schedules. For each benchmark, Figure 10 depicts the ratio of the length
of the schedules generated by CLS_TL to that of CLS_BL as slRatioCLS_TL/CLS_BL =
slCLS_TL
slCLS_BL

. A ratio of 1 indicates that the two techniques generate schedules with identical

length. Results are given for different numbers of cores (4, 8, 16, 32 and 64).
The figure shows that there is no method which dominates the other for all benchmarks.

Furthermore, the lengths of schedules generated by CLS_TL and CLS_BL are most of the
time very close to each other.

There is a significant difference between CLS_TL and CLS_BL only in two cases,
ChannelVocoder on 4 cores and FmRadio on 8 cores. The distances between the lengths
of the schedules generated by CLS_TL and CLS_BL in these cases are then 3% and 8%
respectively. It shows that in some special cases, the change in the order of tasks in the list
significantly affects the mapping of tasks, hence the quality of generated schedules. Since
both CS_TL and CLS_BL generate schedules very fast, we have throughout this paper
always used both and selected the best result obtained.

5.2.6 Cost of estimating cache reuse
The information given in Table 6 allows to evaluate the cost of estimating cache reuse
(estimation of values of WCETτi→τj) for the StreamIt benchmarks. The table reports for
each benchmark its number of tasks, the number of task pairs that may be executed one after

ECRTS 2017

14:18 Cache-Conscious Offline Real-Time Task Scheduling for Multi-Core Processors

Aud
ioB

ea
m

Aut
oc

or

Bea
m

fo
rm

er

Bito
nic

-s
or

t
Cfa

r

Cha
nn

elV
oc

od
er

Cho
les

ky

Com
pa

ris
on

Cou
nt

ingDCT

DCT2D

DCT_2
D_r

ef
er

en
ce

_f
ineDes

FFT_c
oa

rs
e

FFT_f
ine

_2

FFT_m
ed

ium

Filte
rB

an
k

Fm
Rad

io
ID

CT

ID
CT2D

ID
CT_2

D_r
ef

er
en

ce
_f

ine

La
ttic

e

M
er

ge
Sor

t

Ove
rs

am
ple

r

Rat
eC

on
ve

rte
r

Vec
to

rA
dd

Voc
od

er
0

5

10

15

20

25

30

G
ai

n(
%

)

Scheduling on 2 cores
Scheduling on 4 cores
Scheduling on 8 cores
Scheduling on 16 cores
Scheduling on 32 cores
Scheduling on 64 cores

Figure 8 Impact of the number of cores on the gain of CLS against NCLS.

Aud
ioB

ea
m

Aut
oc

or

Bea
m

fo
rm

er

Bito
nic

-s
or

t
Cfa

r

Cha
nn

elV
oc

od
er

Cho
les

ky

Com
pa

ris
on

Cou
nt

ingDCT

DCT2D

DCT_2
D_r

ef
er

en
ce

_f
ineDes

FFT_c
oa

rs
e

FFT_f
ine

_2

FFT_m
ed

ium

Filte
rB

an
k

Fm
Rad

io
ID

CT

ID
CT2D

ID
CT_2

D_r
ef

er
en

ce
_f

ine

La
ttic

e

M
er

ge
Sor

t

Ove
rs

am
ple

r

Rat
eC

on
ve

rte
r

Vec
to

rA
dd

Voc
od

er
1

2

3

4

5

6

7

8

sl
R

at
io

nC
or

es

Scheduling on 2 cores
Scheduling on 4 cores
Scheduling on 8 cores
Scheduling on 16 cores
Scheduling on 32 cores
Scheduling on 64 cores

Figure 9 Impact of the number of cores on schedule length (CLS method).

V.A. Nguyen, D. Hardy, and I. Puaut 14:19

Aud
ioB

ea
m

Aut
oc

or

Bea
m

fo
rm

er

Bito
nic

-s
or

t
Cfa

r

Cha
nn

elV
oc

od
er

Cho
les

ky

Com
pa

ris
on

Cou
nt

ingDCT

DCT2D

DCT_2
D_r

ef
er

en
ce

_f
ineDes

FFT_c
oa

rs
e

FFT_f
ine

_2

FFT_m
ed

ium

Filte
rB

an
k

Fm
Rad

io
ID

CT

ID
CT2D

ID
CT_2

D_r
ef

er
en

ce
_f

ine

La
ttic

e

M
er

ge
Sor

t

Ove
rs

am
ple

r

Rat
eC

on
ve

rte
r

Vec
to

rA
dd

Voc
od

er
0.96

0.98

1

1.02

1.04

1.06

1.08

sl
R

at
io

C
LS

_T
L/

C
LS

_B
L

Scheduling on 4 cores
Scheduling on 8 cores
Scheduling on 16 cores
Scheduling on 32 cores
Scheduling on 64 cores

Figure 10 Comparison of schedule lengths for CLS_TL and CLS_BL.

Table 6 Cost of estimating cache reuse.

Benchmark No. of tasks No. of possible pairs Profiling time (s)
AudioBeam 20 295 5
AutoCor 12 94 5

Beamformer 42 1326 7
BitonicSort 50 1341 7

Cfar 67 4227 11
ChannelVocoder 264 57481 170

Cholesky 95 7108 18
ComparisonCounting 37 1162 7

DCT 13 83 5
DCT_2D 10 47 5

DCT_2D_reference_fine 148 15414 49
Des 247 38185 135

FFT_coarse 192 34428 97
FFT_fine_2 115 7799 23
FFT_medium 131 10043 37
FilterBank 34 774 6
FmRadio 67 3841 11
IDCT 16 126 5

IDCT_2D 10 47 5
IDCT_2D_reference_fine 548 219238 625

Lattice 45 999 7
MergeSort 31 688 6
Oversampler 36 785 6
RateConverter 6 16 5
VectorAdd 5 11 5
Vocoder 71 2961 11

ECRTS 2017

14:20 Cache-Conscious Offline Real-Time Task Scheduling for Multi-Core Processors

the other due to precedence constraints, and the time taken to evaluate all WCET values
using measurements. The number of task pairs to be considered depends on the structure
of the task graph. The worse observed profiling time is 10 minutes for the most complex
benchmark structure IDCT_2D_reference_fine.

6 Conclusion

In this paper, we proposed two cache-aware scheduling techniques for applications modeled
as task graphs, that generate static time-driven partitioned non-preemptive schedules for
multi-core platforms. We proposed an ILP formulation as well as a heuristic scheduling
method. Experimental results show that by taking into account the effect of private caches
on tasks’ WCETs our proposed scheduling methods produce better schedules (in term of
schedule length reduction) than their cache-agnostic equivalent. The proposed heuristic
scheduling method shows a good trade-off between efficiency and the quality of generated
schedules. In the future, a direct extension would be to test if exploiting reuse between more
than two consecutive tasks is worth the extra complexity. We will also extend our work to
deal with contentions on shared hardware resources.

Acknowledgments. The authors would like to thank Dumitru Potop-Butucaru, Benjamin
Rouxel, and Biswabandan Panda for comments on earlier versions of this paper.

References
1 S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke. A generic and

compositional framework for multicore response time analysis. In International Conference
on Real Time and Networks Systems, RTNS ’15, pages 129–138, 2015.

2 J. H. Bahn, J. Yang, and N. Bagherzadeh. Parallel FFT algorithms on network-on-chips.
In Fifth International Conference on Information Technology: New Generations (ITNG
2008), pages 1087–1093, 2008.

3 M. Becker, D. Dasari, B. Nikolic, B. Akesson, V. Nélis, and T. Nolte. Contention-free
execution of automotive applications on a clustered many-core platform. In 28th Euromicro
Conference on Real-Time Systems, ECRTS, pages 14–24, 2016.

4 J. M. Calandrino and J. H. Anderson. On the design and implementation of a cache-aware
multicore real-time scheduler. In 21st Euromicro Conference on Real-Time Systems, pages
194–204, 2009.

5 T. Carle, M. Djemal, D. Potop-Butucaru, R. de Simone, and Z. Zhang. Static mapping of
real-time applications onto massively parallel processor arrays. In Proceedings of the 2014
14th International Conference on Application of Concurrency to System Design, ACSD ’14,
pages 112–121, 2014.

6 S. Chattopadhyay, A. Roychoudhury, and T. Mitra. Modeling shared cache and bus in
multi-cores for timing analysis. In Proceedings of the 13th International Workshop on
Software & Compilers for Embedded Systems, SCOPES ’10, pages 6:1–6:10, 2010.

7 R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems.
ACM Computing Surveys, 43(4):35:1–35:44, 2011.

8 B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager. Time-critical computing
on a single-chip massively parallel processor. In Proceedings of the Conference on Design,
Automation & Test in Europe, DATE ’14, pages 97:1–97:6, 2014.

9 H. Ding, Y. Liang, and T. Mitra. Shared cache aware task mapping for WCRTminimization.
In 8th Asia and South Pacific Design Automation Conference, ASP-DAC, pages 735–740,
2013.

V.A. Nguyen, D. Hardy, and I. Puaut 14:21

10 G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and F. J. Cazorla.
Contention in multicore hardware shared resources: Understanding of the state of the
art. In 14th International Workshop on Worst-Case Execution Time Analysis, OpenAccess
Series in Informatics (OASIcs), pages 31–42, 2014.

11 N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and analysis for multicores.
In Proceedings of the Seventh ACM International Conference on Embedded Software, EM-
SOFT ’09, pages 245–254, 2009.

12 Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2015.
13 D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for multi-

core processors with shared instruction caches. In Proceedings of the 30th IEEE Real-Time
Systems Symposium, RTSS, pages 68–77, 2009.

14 H. Kasahara and S. Narita. Practical multiprocessor scheduling algorithms for efficient
parallel processing. IEEE Trans. Comput., 33(11):1023–1029, 1984.

15 T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury. Static analysis
of multi-core tdma resource arbitration delays. Real-Time Syst., 50(2):185–229, 2014.

16 Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph scheduling
algorithms. In Journal of Parallel and Distributed Computing, volume 59, pages 381–422,
1999.

17 Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs
to multiprocessors. ACM Computing Surveys, 31(4):406–471, 1999.

18 Y. Liang, H. Ding, T. Mitra, A. Roychoudhury, Y. Li, and V. Suhendra. Timing analysis of
concurrent programs running on shared cache multi-cores. Real-time Systems, 48(6):638–
680, 2012.

19 V. Nélis, P. M. Yomsi, and L. M. Pinho. The variability of application execution times
on a multi-core platform. In 16th International Workshop on Worst-Case Execution Time
Analysis (WCET 2016), OpenAccess Series in Informatics (OASIcs), pages 1–11, 2016.

20 V. Nélis, P. M. Yomsi, L. M. Pinho, J. C. Fonseca, M. Bertogna, E. Quiñones, R. Vargas,
and A. Marongiu. The challenge of time-predictability in modern many-core architectures.
In 14th International Workshop on Worst-Case Execution Time Analysis, volume 39 of
OpenAccess Series in Informatics (OASIcs), pages 63–72, 2014.

21 F. Nemer, H. Cassé, P. Sainrat, and A. Awada. Improving the worst-case execution time
accuracy by inter-task instruction cache analysis. In IEEE Second International Symposium
on Industrial Embedded Systems, SIES, pages 25–32, 2007.

22 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A
predictable execution model for cots-based embedded systems. In Proceedings of the 2011
17th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS ’11,
pages 269–279, 2011.

23 Q. Perret, P. Maurère, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet. Mapping hard
real-time applications on many-core processors. In Proceedings of the 24th International
Conference on Real-Time Networks and Systems, RTNS ’16, pages 235–244. ACM, 2016.

24 Q. Perret, P. Maurère, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet. Temporal
isolation of hard real-time applications on many-core processors. In 2016 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 37–47, 2016.

25 G. Phavorin, P. Richard, J. Goossens, T. Chapeaux, and C. Maiza. Scheduling with pree-
mption delays: Anomalies and issues. In Proceedings of the 23rd International Conference
on Real Time and Networks Systems, RTNS ’15, pages 109–118, 2015.

26 D. Potop-Butucaru and I. Puaut. Integrated worst-case execution time estimation of mul-
ticore applications. In 13th International Workshop on Worst-Case Execution Time Ana-
lysis, volume 30, pages 21–31, 2013.

ECRTS 2017

14:22 Cache-Conscious Offline Real-Time Task Scheduling for Multi-Core Processors

27 W. Puffitsch, E. Noulard, and C. Pagetti. Off-line mapping of multi-rate dependent task
sets to many-core platforms. Real-Time Systems, 51(5):526–565, 2015.

28 H. Rihani, M. Moy, C. Maiza, R. I. Davis, and S. Altmeyer. Response time analysis of
synchronous data flow programs on a many-core processor. In Proceedings of the 24th
International Conference on Real-Time Networks and Systems, RTNS ’16, pages 67–76,
2016.

29 V. Suhendra, C. Raghavan, and T. Mitra. Integrated scratchpad memory optimization
and task scheduling for mpsoc architectures. In International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, CASES ’06, pages 401–410, 2006.

30 P. Tendulkar, P. Poplavko, I. Galanommatis, and O. Maler. Many-core scheduling of data
parallel applications using SMT solvers. In 17th Euromicro Conference on Digital System
Design, DSD, pages 615–622, 2014.

31 C. Tessler and N. Fisher. BUNDLE: real-time multi-threaded scheduling to reduce cache
contention. In IEEE Real-Time Systems Symposium, RTSS, pages 279–290, 2016.

32 W. Thies and S. Amarasinghe. An empirical characterization of stream programs and its
implications for language and compiler design. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’10, pages 365–
376, 2010.

33 B. C. Ward, A. Thekkilakattil, and J. H. Anderson. Optimizing preemption-overhead
accounting in multiprocessor real-time systems. In Proceedings of the 22Nd International
Conference on Real-Time Networks and Systems, RTNS ’14, pages 235:235–235:243, 2014.

34 R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,
and P. Stenström. The worst-case execution-time problem: Overview of methods and
survey of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53, 2008.

35 G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. Memory-centric scheduling for
multicore hard real-time systems. Real-Time Systems, 48(6):681–715, 2012.

	Introduction
	Related work
	System model and problem formulation
	Hardware model
	Task and execution model
	Problem formulation

	Cache-conscious task scheduling methods
	Cache-conscious ILP formulation (CILP)
	Cache-conscious list scheduling method (CLS)

	Experimental evaluation
	Experimental conditions
	Benchmarks
	Hardware and WCET estimation
	Experimental environment

	Experimental results
	Benefits of cache-conscious scheduling
	Comparison of optimal (CILP) and heuristic (CLS) scheduling techniques
	Impact of the number of cores on the gain of CLS against NCLS
	Impact of the number of cores on schedule length
	Comparison of schedule lengths for CLS_TL and CLS_BL
	Cost of estimating cache reuse

	Conclusion

