
Bus-Aware Static Instruction SPM Allocation for
Multicore Hard Real-Time Systems∗

Dominic Oehlert1, Arno Luppold2, and Heiko Falk3

1 Hamburg University of Technology, Hamburg, Germany
dominic.oehlert@tuhh.de

2 Hamburg University of Technology, Hamburg, Germany
arno.luppold@tuhh.de

3 Hamburg University of Technology, Hamburg, Germany
heiko.falk@tuhh.de

Abstract
Over the past years, multicore systems emerged into the domain of hard real-time systems. These
systems introduce common buses and shared memories which heavily influence the timing behav-
ior. We show that existing WCET optimizations may lead to suboptimal results when applied
to multicore setups. Additionally we provide both a genetic and a precise Integer Linear Pro-
gramming (ILP)-based static instruction scratchpad memory allocation optimization which are
capable of exploiting multicore properties, resulting in a WCET reduction of 26% in average
compared with a bus-unaware optimization. Furthermore, we show that our ILP-based optimiza-
tion’s average runtime is distinctively lower in comparison to the genetic approach. Although
limiting the number of tasks per core to one and partially exploiting private instruction SPMs, we
cover the most crucial elements of a multicore setup: the interconnection and shared resources.

1998 ACM Subject Classification C.3 Special-Purpose and Application-Based Systems,
D.3.4 Processors, G.1.6 Optimization

Keywords and phrases compiler, optimization, WCET, real-time, multicore

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.1

1 Introduction

The Worst-Case Execution Time (WCET) of a program is defined as the worst possible time
the program needs from the start until the end of its execution. In hard real-time systems
where a task must provably finish its execution within a given amount of time, reducing the
WCET is crucial to the correct behavior of the system.

Within the last couple of years, increasing computational requirements led to the intro-
duction of multicore systems into the world of hard real-time systems. The drawback of these
systems is the much more complex timing analysis due to shared memories which are accessed
over common bus systems. Due to these common buses, the WCET of a program is heavily
influenced by the implemented bus scheduling policy. These effects have to be taken into
account during the analysis in order to determine a safe, yet tight WCET. Recent scientific
works [3, 11] tackle the precise analysis of these systems, but optimization techniques have
yet to catch up to these new challenges.

∗ This work received funding from Deutsche Forschungsgemeinschaft (DFG) under grant FA 1017/1-2.
This work was partially supported by COST Action IC1202: Timing Analysis On Code-Level (TACLe).

© Dominic Oehlert, Arno Luppold, and Heiko Falk;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 1; pp. 1:1–1:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84868909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time Systems

Over the last years, memory optimizations, especially those featuring a fast but small
Scratchpad Memory (SPM) have proven to be powerful tools to selectively optimize the
WCET of a program for singlecore systems [5, 18]. We therefore exemplary use a state of the
art ILP-based static WCET-aware instruction SPM allocation for singlecore systems to show
that those optimizations may yield suboptimal results when applied to multicore systems
without taking common memory buses into account. This even holds for relatively simple
bus access algorithms like TDMA with equally-sized fixed slot lengths.

To counter these issues, we extend the ILP model by a precise bus model for a TDMA
schedule with fixed slot lengths and show to be able to specifically optimize programs for
multicore systems. Our experiments show WCET reductions of up to 90% percent over the
bus-unaware SPM allocation. The presented approach covers precisely the potential blocking
times of an access to a shared memory due to the TDMA schedule. As reference for the
assessment of the quality of the ILP-based model, we additionally propose a bus-aware SPM
allocation based on a genetic algorithm.

This paper is outlined as follows: Section 2 gives an overview over the related work. In
Section 3, we give an overview of the used multicore architecture. Section 4 introduces a
motivating example, illustrating the necessity to consider bus-related effects during WCET-
driven optimizations for a multicore platform. In Section 5, we present the used base ILP
model, the bus-aware extensions, as well as an overview of the nomenclature and certain
preliminaries. Section 6 presents the evolutionary algorithm used for an instruction SPM
allocation on a multicore platform. The bus-aware extensions to the ILP model and the
evolutionary-based approach form the contributions of this paper. The evaluation of the
presented approaches is shown in Section 7. Section 8 concludes this paper and gives an
outlook on possible future work.

2 Related Work

Regarding hard real-time multicore systems, numerous parameters can be taken into account
in order to increase its performance. Kelter et al. [10] presented WCET-aware scheduling
optimizations for multicore systems. They showed a WCET-aware optimization centered on
the schedule parameters of a system, e.g., the bus scheduling policy, number of bus slots or
priorities of slots. Besides, they also presented an optimization featuring a WCET-oriented
instruction reordering. For both approaches, evolutionary algorithms were exploited.

Suhendra and Mitra [17] presented the effects of locking and partitioning caches inside a
multicore architecture, regarding the worst-case performance. They examined the timing
profits of locking or partitioning a shared L2 instruction cache, based on task or core level.
Both, dynamic and static cache locking, were discussed.

The optimization of programs in hard real-time systems using scratchpad memory
allocation has been discussed in several publications. An ILP-based optimization for a
WCET-aware data scratchpad memory (SPM) allocation for a singlecore architecture was
presented by Suhendra et al. [18]. Based upon this structure, an adapted version for
instruction memory allocation was introduced by Falk and Kleinsorge [5].

Liu and Zhang [15] presented different multicore architectures featuring multilevel scratch-
pad memories. They also demonstrated an ILP-based optimization to decrease the WCET
of a program by allocating certain parts of a program to the different SPMs available.
Static and dynamic SPM allocations were discussed, while also an evaluation concerning the
worst-case energy consumption was given. However, bus- or multicore-related factors like

D. Oehlert, A. Luppold, and H. Falk 1:3

I-SPM

Core 0

I-SPM

Core (N - 1)

... ARM7TDMI
Core

ARM7TDMI
Core

Shared
Flash

TDMA Bus

c

Figure 1 Overview of the proposed multicore architecture.

bus communication latencies are neglected in the presented timing models, thus lowering the
accuracy of the overall model.

Kim et al. [13] presented a WCET-aware approach for dynamic code management on
SPMs that focused on software-managed multicores. They proposed a multicore architecture
with private SPMs, in which every main memory access is forced to go through the SPM,
which issues a direct memory access (DMA). Based on this system, an ILP-based and a
heuristic technique to reduce the WCET of a program were presented. Also here, the
interconnection network between the SPMs and the main memory is neglected in terms of
timing, thus degrading the accuracy of the presented model.

Kafshdooz and Ejlali [9] presented an ILP- and heuristic-based approach in order to reduce
the WCET of a program, exploiting dynamic SPM allocation in a multicore-multiprocess
system. Each bus access was assumed to take the worst latency possible, leading to a heavy
over-approximation.

Chattopadhyay and Roychoudhury [2] introduced a static scratchpad allocation on a
multicore system, that features bus-awareness. They presented a heuristic approach to reduce
the worst-case response time (WCRT) of a multiprocessor program, based on a bus-aware
WCRT-analysis. This analysis result was iteratively used to find a proper SPM allocation.

In contrast to the discussed approaches, we present an ILP-model which features a precise
bus-awareness without the requirement to rely on the worst-case timing for each access.
Besides, we demonstrate an evolutionary-based approach in order to classify the figure of
merit of the presented model.

3 Multicore Architecture

This section presents the architecture used throughout this paper which is illustrated in
Figure 1. The system consists of Nc parallel homogeneous cores with private instruction
SPMs, a TDMA scheduled bus and a shared Flash memory which is connected to the bus.
An SPM typically consists of a static RAM which is placed closely to the processor, leading
to significantly lower access time in comparison to, e.g., Flash memories, yet limiting their
overall capacity. We assume one task per core. Due to the homogeneity of the cores and
the TDMA scheduled bus, the mapping of tasks to a core is not covered in this paper.
The ARM7TDMI core was used for evaluation purposes only. The presented ILP-model is,
however, generally applicable to other multicore architectures based on in-order processors.
To improve the predictability, all caches of the cores are disabled. The instruction SPM of
each core is private and can only be accessed via the attached core. Hence, no bus access is
necessary during a scratchpad memory access. The shared Flash memory has to be accessed
via the bus. The access delay of the Flash memory (excluding possible stalls before a bus
grant) is considerably higher (approx. factor 6) in comparison to the access delay of an SPM.
The bus is assumed to be TDMA scheduled, while the TDMA schedule consists of Nc slots.
Each core’s time slot length, during which it exclusively can access the bus, can be adjusted

ECRTS 2017

1:4 Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time Systems

T F

orr r3, r2, LSL #2 B
sub r3, r3, #4
ldr r1, [r3]
add r1, r1, #1024

C

add r0, r1, #5
eor r0, r6, r0

beq B
A...

Figure 2 Exemplary CFG I.

Table 1 WCET (in cycles) for the
exemplary program.

Basic Block Flash SPM
A 390 20
B 96 1
C 114 9

individually. It is assumed that all cores are globally synchronous. The execution of each
core’s task starts at a common point in time, which is assumed to be the first slot in the
TDMA schedule.

The ARM7TDMI architecture features a 3 staged pipeline, fetches each instruction
piecewise and supports a very basic form of branch „prediction“ (always not taken, even if
unconditional).

4 Motivating Example

In order to demonstrate the necessity to consider the bus-related effects while performing an
SPM allocation, we are assuming a small exemplary program, represented by the control
flow graph (CFG) shown in Figure 2.

Basic block (BB) A is not shown fully here due to space limitations and consists of 20
instructions in total. The second instruction (ldr) of basic block C is assumed to access the
.data section which is placed inside the shared Flash memory. As an exemplary system,
we assume the architecture presented in Section 3 with 4 parallel cores and a TDMA bus
with equally-sized slot lengths (each slot can accommodate 5 accesses to the shared Flash
memory). One Flash memory access is assumed to take 6 cycles. Furthermore, we assume
that each private SPM has a size of 20 Bytes. We assume the program to be executed on
core 0, which owns the first bus slot of every bus period inside the schedule.

Following the ILP-based static instruction SPM allocation for a singlecore system [5], the
WCET of the program is analyzed twice, once with all BBs placed inside the shared Flash
memory and once with all BBs placed inside the (virtually enlarged) private SPM of core 0.
These analyses return the WCET per BB denoted in Table 1. The BBs allocated to the
SPM are loaded into the SPM once prior to the actual execution of the program. Therefore,
the time required to initially load the BBs into the SPM can be neglected.

Since only basic blocks A and C are part of the worst case execution path (WCEP), but
the SPM has a limitation of only 20 Bytes (5 instructions), the ILP solver will decide to place
BB C into the SPM, resulting in an expected WCET reduction of 84 cycles. This reduction
already includes jump correction costs of 21 cycles. These additional cycles stem from jump
correction code, which has to be inserted subsequent to the SPM allocation decisions in order
to restore a working control flow. Since BB C is placed in a different memory region, it is
not subsequent (by means of physical addresses) to BB A anymore. Hence, an explicit jump
(most likely an indirect one to cope with the physical address offsets of the memory regions)
to C is required to be inserted at the end of BB A. However, a final WCET analysis with
the proposed SPM allocation done reveals a WCET of 511 cycles, resulting in an actually
worse timing after the optimization than before (504 cycles).

The cause of this misprediction is based on the bus-related latencies. Figure 3a shows the
WCET of the program in regard to the bus schedule in case BB A and C are allocated to
the shared Flash memory. The individual bus slots are shown along the x-axis, with one bus

D. Oehlert, A. Luppold, and H. Falk 1:5

Bus period

WCET BB A (Flash)

t

WCET BB C (Flash)

(a)
Bus period

WCET BB A (SPM)

WCET BB C (SPM)

t

(b)

Figure 3WCETs of BB A and C in regard to the bus schedule: (a) allocated to Flash, (b) allocated
to SPM.

WCET BB C (SPM)

WCET BB A (Flash)

t
Bus period

Figure 4 WCETs of BB A and C in regard to the bus schedule, „optimized“ Allocation.

period consisting of 4 bus slots. Core 0 (on which the program is allocated) owns the first
bus slot of every period. The areas marked in red show the actual execution of instructions.
Basic block A can be executed in exactly four slots, while BB C starts at the beginning of
the second slot of a bus period, hence the processor has to stall until another fetch can be
done. When the bus grant is regained, BB C can be executed within one bus slot.

Figure 3b shows the WCET for the second step, when all BBs have been allocated into
the private SPM. Due to the severely lower access times to the SPM, basic blocks A and B
can now be completely executed in the first bus slot.

Based upon these timings, the ILP solver assigns BB C to the SPM. The actual WCET
analysis of the allocated program in regard to the bus schedule can be seen in Figure 4. Basic
block A is executed in the same manner as seen in Figure 3a.

However, in difference to Figure 3b, the execution of basic block C now starts at the
beginning of the second bus slot. This is caused by the fact that the execution time of
the preceding basic block A is different to the timing analyzed when the whole program
was placed inside the SPM. The execution of BB C can be started, since the instructions
are placed inside the private SPM, but has to be stalled during the second instruction
(ldr, depicted with an arrow) until the .data section can be accessed. Additionally, jump
correction code has to be inserted to create a memory region crossing jump from basic block
A to C. These circumstances lead to a drastically higher WCET for basic block C than
expected, which again leads to a higher WCET in total.

This example shows the crucial sensitivity of a program’s timing in regard to the underlying
interconnection network. Neglecting bus-related timings strongly decreases the accuracy of
the SPM allocation optimization, thus easily resulting in an underestimated WCET. We see
that even though the presented optimization methods work fine for singlecore platforms, it
does not give an accurate result when being applied to a multicore platform. This is due to
the fact that the ILP model does not have a required notion of history to consider timing
effects which are induced by preceding allocation decisions.

ECRTS 2017

1:6 Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time Systems

5 ILP Model

In the following, we will present an ILP model which is able to predict the timing behavior
of the used bus architecture, thus enabling a WCET-centered instruction SPM allocation on
multicore platforms, avoiding mispredictions as shown in the previous section. First, we will
give a short overview of the notational conventions and ILP formulations used throughout
this paper. Subsequently, we will shortly introduce the base ILP model which our work
builds upon. Eventually, we are presenting our bus-aware extensions, which are enabling a
precise prediction of bus-related timing behaviors.

5.1 Notational Conventions
In the following, lower case italic Latin letters like i will be used for ILP variables. Upper
case italic Latin letters like A represent constants inside the ILP model. Letters in bold, e.g.,
o, depict intervals of bus offsets. Lastly, lower case italic Greek letters like ν are used to
denote a certain basic block.

Table 2 contains all ILP variables used in this paper, while Table 3 contains other
miscellaneous symbols and their description used in this paper.

5.2 Mathematical Preliminaries and ILP Formulations
In this section, we will present certain mathematical preliminaries and ILP formulations in a
general way which are used throughout the paper.

Modulo Function

We are using the definition of a modulo function described by Knuth [14]:

m = x mod y = x−
⌊
x

y

⌋
· y , if y 6= 0 (1)

where x and y are any integer numbers. The resulting value m has the same sign as the
divisor y. We reformulate (1) to the following equations:

x < (q + 1) · y (2)
x ≥ y · q (3)
m = x− q · y (4)

Equations (2) and (3) implement the floored division with q holding the result of bxy c.
Variable y is assumed to be always non-zero. The variable m is set to the modulo result by
Equation (4). In case we assume the divisor y to be constant, equations (2) - (4) are linear
and can be used inside an ILP formulation.

Conditional Assignment of ILP Variables

The following conditional assignment is given:

a =
{
u if c = 1,
v else.

(5)

D. Oehlert, A. Luppold, and H. Falk 1:7

Table 2 ILP decision variables used

Symbol Description
dν Additional number of

stall cycles preceding an
explicit data access dur-
ing the execution of block
ν in comparison to the
analysis results.

lν,µ Additional number of cy-
cles needed due to bus
stalling during the exe-
cution of jump correc-
tion code from block ν to
µ in comparison to the
analyzed interval. This
variable does not contain
the cycles required for
the execution of the code,
solely the cycles needed
to gain the first grant.

oIn
ν The incoming bus offset

interval at ν.
oOut
ν,µ,W Interval variable repre-

senting the outgoing bus
offset interval at BB ν

with considering poten-
tial jump correction to
its successor BB µ.

oOut
ν,WO Interval variable repre-

senting the outgoing bus
offset interval at BB ν

without considering a po-
tential jump correction.

oν,low, oν,high The lower and upper ele-
ments of the correspond-
ing bus offset interval oν .

rData
ν The number of cycles re-

quired to receive a bus
grant to access shared
data at the BB ν.

rJump
ν The number of cycles re-

quired to receive a bus
grant block during the
execution of jump correc-
tion code at BB ν.

wν The accumulated WCET
starting at BB ν.

xν Binary variable repre-
senting whether BB ν

is assigned to the SPM
(xν=1) or not.

Table 3 Miscellaneous symbols used

Symbol Description
AIn
ν,Flash, (AIn

ν,SPM) Incoming bus offset interval
at BB ν if the whole program
is allocated to Flash (SPM).

AOut
ν,Flash, (AOut

ν,SPM) Outgoing bus offset interval
at BB ν if the whole program
is allocated to Flash (SPM).

Cν,Flash,(Cν,SPM) WCET of 1 execution of BB
ν when allocated to the Flash
memory (SPM).

FSPM Access delay of the SPM.
FFlash Access delay of the Flash

memory (bus grant ac-
quired).

Gν Expected timing gain if a BB
ν is assigned to the SPM in
comparison to a Flash alloca-
tion.

Hν Binary constant set to 1 in
case BB ν contains an in-
struction which potentially
accesses the .data section

I A core ID (0 ... Nc-1).
Jµ,ν,SPM Cycles needed for the execu-

tion of jump correction code
from BB ν (in SPM) to µ

(in Flash), neglecting the re-
quired pipeline refill.

Nc Number of cores.
P Total bus period in cycles.

QFlash→SPM Bus offset after the execution
of jump correction code in
case the source BB is placed
inside the Flash memory and
its target BB resides in the
SPM.

RData
ν Required number of stall cy-

cles to receive the bus grant
for the shared memory access
at block ν, accounted by the
analysis.

Sν Code size of basic block ν.
SSPM Total size of a private SPM.

Tν,SPM Execution time window
of BB ν as a result of an
BCET/WCET analysis
when the whole program is
allocated to the SPM.

ν, µ Indexes representing BBs.

ECRTS 2017

1:8 Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time Systems

with a, u, v and c being ILP variables, whereas the condition variable c is restricted to
Boolean values. We are expressing equation (5) as a set of inequations in order to formulate
if-then-else structures inside an ILP model.

a ≥ u− (1− c) ·M (6)
a ≤ u+ (1− c) ·M (7)
a ≥ v − c ·M (8)
a ≤ v + c ·M (9)

We are using the so-called big-M method, where M is a sufficiently large constant. Equations
(6) and (7) fix variable a to the value of u in case c = 1, otherwise a is only constrained to
satisfy u−M ≤ a ≤ u+M . Analogously, equations (8) and (9) force the a to the value of v
in case c = 0, while in the opposite case a is solely constrained to v −M ≤ a ≤ v +M .

Min/Max Function

Given are the following two functions:

max(x, y) (10)
min(x, y) (11)

with x and y being ILP variables. In order to express these two functions in terms of ILP
constraints, we first create an ILP variable c restricted to Boolean values, used as a condition.

y ≤ x+ c ·M (12)
x ≤ y + (1− c) ·M (13)

M is a sufficiently large constant. Equations (12) and (13) set c to 1 in case y > x, otherwise
c is forced to 0. Based upon this, the functions max(x, y) and min(x, y) can be represented
using the following case statement:

max(x, y) =
{
y if c = 1,
x else.

(14)

min(x, y) =
{
x if c = 1,
y else.

(15)

The case statement used in equations (14) and (15) can be represented using the conditional
assignment of ILP variables as shown before.

5.3 Base Model
The optimization introduced by Falk and Kleinsorge [5] uses an ILP model which is based
on the model presented by Suhendra et al. [18]. We are using the exemplary program shown
in Figure 5 to demonstrate the model. This model will be extended in Section 5.4 to enable
bus-awareness.

Before the actual generation of the ILP model, the program needs to be analyzed twice in
terms of WCET. Conventional WCET analyzers like AbsInt aiT [1] are not able to analyze
bus-related latencies in a multicore setup, thus leading to an insufficient timing accuracy.
However, analysis methods like those proposed by Kelter et al. [12] or Chattopadhyay et

D. Oehlert, A. Luppold, and H. Falk 1:9

T F

orr r3, r2, LSL #2 B
sub r3, r3, #4
cmp r3, 0
beq E

C

add r0, r1, #5
eor r0, r6, r0

beq B
A...

add r1, r1, #1024
ldr r1, [r3]
b C

D

mvn r2, r1 E

T F

10x

Figure 5 Exemplary CFG II.

al. [3] can be used to analyze multicore architectures including bus-related effects. The first
analysis run is done with all basic blocks assigned to the Flash memory, while the second
analysis is executed with all BBs assigned to a (virtually enlarged) SPM. The analysis runs
are executed using multicore-enabled analyzing methods, so the analyzed timings include
bus-related timings. The results of these analysis runs can be used to extract the net WCET
per basic block ν, namely Cν,Flash and Cν,SPM, denoting to which memory basic block ν was
assigned to. Potential bus-related timings are included in the WCET of the basic blocks.
Using these net WCETs, a timing gain G can be defined per basic block:

Gν = Cν,Flash − Cν,SPM . (16)

G represents the timing profit in case a basic block is assigned to the SPM. Based on these
timings, the WCET of the program can be modeled successively by introducing a variable wν
which denotes the WCET of the path starting at basic block ν. We consider the timings of a
block in terms of clock cycles, therefore integer variables are suitable to model the WCET of
a basic block. The model is built up from the CFG’s sink nodes.

wB = CB,Flash − xB ·GB (17)
wE = CE,Flash − xE ·GE (18)

xν is a Boolean decision variable and represents whether basic block ν is assigned to the
SPM (xν = 1) or not (xν = 0). Subsequently, the control flow graph is traversed upwards.
For each successor of a basic block, one individual constraint is added, containing its own
net WCET and the corresponding successor’s WCET. Regarding basic block A, this results
in the following inequations:

wA ≥ CA,Flash − xA ·GA + wB (19)
wA ≥ CA,Flash − xA ·GA + wLoop (20)

The loop, which consists of basic blocks C and D, is modeled as a super-node. The partial
WCET wLoop starting at the entry of the loop is defined by its members, the loop bound
and its successor.

wLoop ≥ cLoop + CC,Flash − xC ·GC + wE (21)
cLoop ≥ 10 · wEntry (22)

wEntry ≥ CC,Flash − xC ·GC + wD (23)
wD ≥ CD,Flash − xD ·GD (24)

ECRTS 2017

1:10 Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time Systems

CC,Flash is accounted for 11 times, since it is the head of the loop and is therefore executed
one more time than the loop body. In order to restrict the number of basic blocks assigned
to the scratchpad memory, an additional constraint has to be introduced:

SSPM ≥ xA · SA + xB · SB + xC · SC + xD · SD + xE · SE (25)

where SSPM denotes the total size of the SPM and SA the code size of basic block A. The
overall WCET of the program can now be minimized by setting the objective function to
minimize the WCET of the entry basic block, here A.

min wA (26)

After assigning a block ν to the SPM, the control flow has to be repaired. This is required,
since the program flow can be broken in several ways. In case the predecessor of ν did not
contain an explicit jump to ν (e.g., see Figure 5: BB A → BB C), a new jump has to be
introduced. However, even if an explicit jump was existing, it is likely to be not sufficient
anymore, since the physical addresses of different memory regions presumably differ beyond
the offset capabilities of a direct jump. Therefore, also the potential size and execution time of
jump correction code has to be considered inside the ILP model using additional constraints.
For the sake of simplicity and since this topic has already been discussed by Oehlert et
al. [16], the additional ILP terms to consider such costs are omitted here. Nevertheless, the
ILP model presented in this paper includes these constraints and considers their additional
costs.

5.4 Bus-aware Extensions
As shown in Section 4, the WCETs extracted from the analysis runs of a BB are not safe
anymore in case the current memory allocation of the program differs from the one used
during analysis. More precisely, the WCET may differ if the temporal start of a basic block
in regard to the bus schedule (the so-called bus offset) is different to the one analyzed. In
regard to the program SPM allocation, this WCET change can be caused by two possibilities:
If a basic block is allocated to the private SPM, but contains instructions which are explicitly
accessing the shared memory, the bus offset during the access may be different, which may
introduce additional waiting cycles. This is the case for data accessing instructions, since we
assume the .data section to be placed inside the shared memory. In case the predecessor
of a BB ν is assigned to the SPM (while ν resides in the shared memory), the bus offset at
the execution start of ν may differ, which again may lead to a different WCET. Therefore,
we extend the ILP model to predict these bus offsets and calculate bus-related penalties (or
gains) based upon. We will retain the base model with its analyzed WCETs per block, but
add these bus-related timing differences to it.

We assume all TDMA slots to be equally-sized and to be fixed to the length of exactly
one Flash memory access delay FFlash. This restriction enforces all possible accesses to the
shared memory to be initiated during the first cycle of each core’s bus slot. Thereby, all bus
offsets at the beginning of a basic block placed inside the Flash are fixed and identical to the
ones analysed. Accesses to the shared memory now serve as a kind of synchronization point.
Since the bus offsets are known to be equal to the offsets during analysis, all WCETs of basic
blocks placed inside the Flash can be safely extracted from the analysis again. In regard
to the ARM7TDMI architecture used for evaluation purposes, this slot length restriction is
acceptable in terms of timing since it fetches every instruction piecewise. Methods to relax
this restriction while keeping the accuracy is part of our future work.

D. Oehlert, A. Luppold, and H. Falk 1:11

Z

add r0, r1, #5
eor r0, r6, r0
sub r6, r6, #7

ldr r3, [r9]

orr r1, r0, r2
cmp r1, r3
bne Y

...
...

(a) Before sub basic block splitting

Z
add r0, r1, #5
eor r0, r6, r0

add r6, r6, #7

...

Z'ldr r3, [r9]

Z''
mov r1, r0, r2

cmp r1, r3
bne Y

...

(b) With sub basic block splitting applied

Figure 6 An exemplary BB containing an instruction with an explicit access to shared memory.

Additionally, all basic blocks which contain instructions with potential access to a shared
memory are split up into sub basic blocks. These sub basic blocks either consist of multiple
instructions which never access the shared data memory, or exactly one instruction which
may then access the Flash. Example: An arbitrary BB Z is shown in Figure 6a. This basic
block contains an instruction which accesses shared memory.

Figure 6b shows the sub basic blocks created from the former basic block Z. Sub basic
block Z ′ now solely consists of the shared data memory accessing instruction.

This division of basic blocks is done in order to obtain the WCETs on a more detailed
scale, since common WCET analyzers return the WCET per BB as the lowest granularity
available. Using the timings of the sub basic blocks and the initial bus offset, the bus offset
during the access can be predicted without further modifying existing analyzing techniques.

Bus Offset Calculation

For each sub basic block, the incoming and outgoing bus offsets are determined inside the
ILP model. The incoming bus offset denotes the bus offset at the beginning of the execution
of a basic block. In analogy to this, the outgoing bus offset describes the bus offset at the
end of the execution of a basic block. Due to the different execution contexts of a basic
block, it can have different execution times, varying between its Best-Case Execution Time
(BCET) and its WCET. In this particular setup, these differing executions times are caused
by pipeline effects or instructions with a possible varying execution time. Thus, the bus
offset cannot be described as a scalar, but is rather an interval. This offset interval contains
the lowest offset possible as well as the greatest. Inside the ILP model, an offset interval o

is represented as two integer variables, olow and ohigh. The range of an offset variable like
olow or ohigh is limited to the range of [0, P -1], where P is the total length of one bus period.
In case of a wrap-around, i.e., olow > ohigh, the whole bus period is considered as a safe
over-approximation. For every sub basic block ν, an offset interval oIn

ν is added to the ILP
model, representing the incoming bus offset interval of sub basic block ν. This offset interval
is calculated as follows:

oIn
ν =

{
AIn
ν,Flash if xν = 0,⋃
µ∈Pred(ν) oOut

µ,ν,W else.
(27)

In case the Boolean SPM allocation variable xν is set to 0 (i.e., sub basic block ν would be
assigned to the Flash memory), the incoming offset interval is equal to the interval extracted
from the „all-in-Flash“ analysis. This is valid, since due to our restriction of slot lengths, we
know that the actual execution start of a block placed inside the Flash memory can only
happen at one single bus offset which we can extract from the analysis results. The potential

ECRTS 2017

1:12 Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time Systems

difference between the execution end of a preceding block and oIn
ν is later considered by

adding a penalty timing to the preceding block.
If block ν is assigned to the SPM, oIn

ν has to be determined as the union of the outgoing
bus intervals over all predecessors. The union over two given offset intervals oν and oµ is
defined using the following equations:

oν = (oν,low, oν,high) (28)
oµ = (oµ,low, oµ,high) (29)

oν ∪ oµ = (min(oν,low, oµ,low),max(oν,high, oµ,high)) (30)

The min() and max() functions used in equation (30) are implemented as presented in
Section 5.2. The interval oOut

µ,ν,W represents the outgoing bus interval at sub basic block µ to
successor ν, already including the effects of potential jump correction code.

Besides, for each successor of ν one offset interval oOut
ν,µ,W has to be inserted into the ILP

model (mind the switched indexes, since basic block ν is the source basic block in this case).
This differentiation between successors is necessary, since e.g., a jump from the private SPM
to the shared Flash memory requires an access to the bus to refill the pipeline, resulting in a
contrasting bus offset in case the jump was not taken. It is defined as follows:

oOut
ν,µ,W =

oOut
ν,WO if xν = xµ,

QFlash→SPM if xν = xµ = 0,
AIn
µ,Flash else.

(31)

In case sub basic block ν and its successor µ are both placed inside the same memory,
no additional jump correction is needed and the outgoing interval is identical to the offset
interval not considering any jump correction, namely oOut

ν,WO. If ν is placed inside the shared
Flash memory and its successor µ in the SPM, an additional jump needs to be considered.
Since the jump correction code will be placed inside the shared memory (where the ν resides),
its bus offset at the end of the execution is always constant. This is due to the fact that
the last instruction of a jump correction is always identical (an indirect jump). Because
this instruction is placed inside the shared Flash memory, the fetching of it serves as a
synchronization point. Therefore, the outgoing bus offset is constant under this circumstance
and can be determined prior to the optimization. This offset is denoted as QFlash→SPM.

In case sub basic block ν is assigned to the private SPM and its successor µ to the shared
memory, a jump correction has to be done as well. Due to the fact that the successor is
placed in the Flash memory, we can set the outgoing offset of ν to the analyzed incoming
offset of µ (extracted from the „all-in-Flash“ analysis). During the execution of the final
indirect jump as a part of the jump correction code, the processor needs to fetch the first
instructions of block µ, which are placed in the shared memory. This is needed in order to
refill the processor’s pipeline, so the succeeding block does not start its execution with an
empty pipeline (reminder: The ARM7TDMI architecture always assumes a jump not to be
taken, so during the time the final indirect jump went into the execution phase, the pipeline
was already filled with subsequent instructions from the SPM). Therefore, the outgoing offset
of the jump correction code will be synchronized to the offset interval extracted from the
analysis.

D. Oehlert, A. Luppold, and H. Falk 1:13

t

Bus period

oν,low oν,high

r ν

t
A Aν,low ν,high

t

1 cycleGrant cycle

Rν

Figure 7 Two exemplary bus offset intervals oν and Aν in regard to the bus schedule. The bus
slot of the third core is highlighted, as well as the grant cycle during which an access can be issued.

Besides the outgoing bus offset interval including potential jump correction costs, a bus
offset interval oOut

ν,WO is added to the ILP for each sub basic block ν, representing the outgoing
bus offset without considering any jump correction. It can be determined as follows:

oOut
ν,WO =

AOut
ν,Flash if xν = 0,

AOut
ν,SPM else if Hν = 1,

(oIn
ν + Tν,SPM) mod P else if |Tν,SPM| ≤ P,

[0, P − 1] else.

(32)

In analogy to the incoming bus offset interval, the outgoing interval will be identical to
the offset analyzed during the „all-in-Flash“ analysis run AOut

ν,Flash in case the sub basic block
ν is placed inside the Flash memory. This is valid, since due to the slot lengths restriction
we know that the bus offset during the start of the execution of block ν is fixed in this case.
Therefore, its execution and also its outgoing bus offset interval will be always identical,
independent from the temporal history.

If ν is assigned to the private SPM and has an explicit access to a shared memory region
(Hν = 1), oOut

ν,WO will be set to the outgoing offset analysed during the „all-in-SPM“ analysis
run. This is legitimate, since due to the sub basic block splitting, a sub basic block with a
potential shared data memory access can only consist of this instruction itself. Therefore,
the access can be regarded as a synchronization point, leading to the identical outgoing offset
as resulted in the SPM analysis run.

Otherwise, the outgoing offset interval has to be calculated based on the incoming offset
interval oIn

ν and the analyzed execution time window (the difference between WCET and
BCET) Tν,SPM when assigned to the SPM. However, in case the execution time window
exceeds one whole bus period P , all possible bus offsets have to be considered.

Due to the nature of ILP, all possibilities of each ILP offset interval variable are calculated
side by side and then chosen using a case distinction, implemented as presented in Section 5.2.

Bus-related Penalties

Based on the determined bus offset intervals per sub basic block, it is possible to predict
the occurring timing related effects. For this purpose, we introduce two possible new ILP
variables per sub basic block. The base penalty dν represents the additional cycles needed
for the execution of a sub basic block ν due to an explicit access to a shared memory.

ECRTS 2017

1:14 Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time Systems

dν can also be negative if the different bus offset causes a better bus alignment in
comparison to the previous analysis run. In this case, dν denotes a gain rather than a penalty.
It is defined as follows:

dν =
{
rData
ν −RData

ν if xν = Hν = 1,
0 else.

(33)

The ILP variable rData
ν describes the number of cycles needed at sub basic block ν to acquire

a bus grant. It is required that ν is assigned to the private SPM and consists of an instruction
which potentially accesses the shared memory through an explicit load/store instruction.
Otherwise, rData

ν is always zero and does not need to be created.
Example: Figure 7 illustrates two exemplary bus offset intervals oν and Aν in regard to

the bus schedule. An arbitrary program is assumed to run on the third core of the system
in its private SPM, possessing the third slot of each period which is highlighted. Since we
restrict the initiation of a bus access to the first cycle of the corresponding slot, this cycle
is highlighted in a lighter color as well. A sub basic block ν is assigned to the SPM and
contains an access to the shared data memory. This access is tried to be issued at the shown
bus offset interval oν . Considering the worst case, the processor has to stall at most rν cycles.
Here, rν matches the ILP variable rData

ν , representing the greatest number of stalling cycles
considering the current program allocation, until the bus grant is received.

The second offset interval Aν shown in the figure represents the bus offset interval
extracted from the WCET analysis at the same sub basic block ν. Therefore, Rν resembles
the constant RData

ν from Equation (33), namely the number of cycles accounted by the
WCET analyzer to gain the bus grant. Since the actual memory access delay is identical
during both executions and already accounted, only the difference in stalling cycles until the
bus grant is relevant to calculate. For this reason, the difference between rData

ν and RData
ν is

calculated. Regarding Figure 7, the ILP-chosen allocation of blocks leads to a lower number
of stall cycles needed at sub basic block ν in comparison to the „all-in-SPM“ allocation, since
rData
ν is lower than RData

ν .
In order to define rData

ν , the number of cycles between the bus offset interval oIn
ν and the

next granted bus slot of the corresponding core is calculated.

alow =
(
I · FFlash − oInν,low

)
mod P (34)

ahigh =
(
I · FFlash − oInν,high

)
mod P (35)

rData
ν =

{
P − 1 if oν,low ≤ I · FFlash + 1 ≤ oν,high,
max(alow, ahigh) else.

(36)

The term I · FFlash equals the bus offset of a core I at which a bus access is granted. The
constant RData

ν is calculated in the same manner, but using the bus offsets extracted from
the „all-in-SPM“ analysis run.

The second ILP variable introduced per sub basic block ν is lν,µ. This variable represents
the potential additional bus waiting cycles during the execution of jump correction code. It
is defined as follows:

lν,µ =
{
rJump
ν if xν = xµ = 1,

0 else.
(37)

Example: A sub basic block ν is assigned to the private SPM of the third core of a system,
while its successor µ resides in the shared Flash memory. This circumstance requires the

D. Oehlert, A. Luppold, and H. Falk 1:15

T F

orr r3, r2, LSL #2 B
sub r3, r3, #4
cmp r3, 0
beq E

C

add r0, r1, #5
eor r0, r6, r0

beq B
A...

mvn r2, r1 E

T F

10x

add r1, r1, #1024 D

ldr r1, [r3] D'

b C D''

Figure 8 Exemplary CFG from Figure 5 with sub basic block splitting applied.

introduction of jump correction code subsequent to ν. During the end of the execution of
the appended jump code, the first instructions of the succeeding block µ have to be fetched,
so µ does not start with an empty pipeline. Since block µ is placed inside the shared Flash
memory, the jump correction code will cause an additional bus access during the fetch of its
leading instructions. Referring to Figure 7, oν resembles the offset interval of sub basic block
ν when such an access is tried to be issued. The variable rJump

ν then describes the greatest
number of cycles which are needed, based on offset interval oOut

ν,WO, to reach a valid bus slot.
The variable rJump

ν is determined in the same fashion as rData
ν , but utilizing the offset

interval oOut
ν,WO. Since these timing costs did not exist in the initial analysis runs, no

subtractive term as in Equation (33) is added. All other timings of jump correction code
are constant and can be calculated upfront. Those timings are already considered inside the
jump correction costs of the base model.

Final ILP Model

The presented additions are integrated into the base ILP model. Prior to the initial WCET
analysis runs, the sub base block splitting is applied.

Regarding the exemplary control flow graph shown in Figure 5, the additional variables d
and l are added to the WCET constraints of the corresponding sub basic blocks. The CFG
with splitting applied is shown in Figure 8.

wA ≥ CA,Flash − xA ·GA + wB + lA,B (38)
wA ≥ CA,Flash − xA ·GA + wLoop + lA,Loop (39)
wB = CB,Flash − xB ·GB (40)

wLoop ≥ cLoop + CC,Flash − xC ·GC + wE + lC,E (41)
cLoop ≥ 10 · wEntry (42)

wEntry ≥ CC,Flash − xC ·GC + wD + lC,D (43)
wD ≥ CD,Flash − xD ·GD + wD′ + lD,D′ (44)
wD′ ≥ CD′,Flash − xD′ ·GD′ + wD′′ + lD′,D′′ + dD′ (45)
wD′′ ≥ CD′′,Flash − xD′′ ·GD′′ + lD′′,C (46)
wE = CE,Flash − xE ·GE (47)

SSPM ≥ xA · SA + xB · SB + xC · SC + ...+ xE · SE (48)

ECRTS 2017

1:16 Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time Systems

The data access penalty d is only introduced to sub basic block D′, since it is the only
block with a potential access to a shared memory region. The objective function is kept
from the base ILP. The constraints to consider the additional spatial costs of possible jump
correction code are derived from the base ILP as well, yet not shown here to avoid unnecessary
complications.

6 Evolutionary Algorithm

This section describes the genetic algorithm used as a reference for the ILP-based static
bus-aware multicore SPM allocation optimization. The optimization is a classical genetic
algorithm as described by Goldberg [7]. It starts with a set of individuals of which each
holds a set of binary decision variables xν,I denoting whether basic block ν of core I will be
assigned to SPM. We assume that there is no shared code between the cores.

Unless stated otherwise, a random selection is drawn from a uniform distribution. We
create the initial set of NInd individuals as follows:

The first individual is left with all basic blocks in Flash memory.
For all other individuals, we virtually assign all blocks to the SPM and then randomly
remove basic blocks of each core from SPM until the SPM memory is no longer overflowing.

For recombination of two individuals A and B, our tests showed good results with a
simple one-point recombination with multi-bit mutation. We first randomly determine the
core I to be crossed over. For the selected core, we randomly determine the position i at
which the two individuals will be merged.

The new individual C will have the following new assignment:

C = A[0, i− 1] | B[i,NB,I − 1] (49)

NB,I denotes the total amount of basic blocks contained by the task allocated to core I.
The first i decision variables of the new individual C will be taken from individual A, while
the second part is taken from individual B. Subsequently we randomly choose a number of
maximum mutations M for the SPM assignment in the crossed over core I.

We then randomly select M basic blocks to mutate. Whether or not the assignments of
these randomly selected basic blocks will be toggled is then again randomly determined for
each with a user-definable probability.

Using the allocation determined by the new individual C, a jump correction is performed
in order to repair the control flow graph. If this final SPM assignment including the inserted
jump correction code fits into the physically available SPM, no repair is necessary. If this is
not the case, either the number of basic blocks assigned to the SPM was too high, or the
jump correction code overfilled the SPM boundaries. In this case, we again randomly remove
blocks from the SPM and perform a jump correction respectively until the assignment is
valid.

Finally, the new individual is analyzed using the WCET analyzing methods proposed by
Kelter [11] to assess the new WCET. Because the WCET analysis automatically analyzes bus
penalties and accounts for them in the task’s worst execution timing behavior, the genetic
optimization is inherently bus-aware.

For the next generation, the NInd fittest individuals are selected. The allocation of a
program on one core does not interfere with the execution of a program on another core due
to the TDMA schedule with fixed slot lengths. As a result, our fitness function can simply
be chosen to minimize the sum over the WCETs of all tasks.

D. Oehlert, A. Luppold, and H. Falk 1:17

The optimization terminates if the WCET reduction of any core over 2 generations is
smaller than a user-definable threshold ε, or a user-definable amount of time has gone by.

7 Evaluation

The presented bus-aware ILP-based instruction SPM allocation and the one based on
evolutionary algorithms were implemented for a multicore ARM7TDMI architecture described
in Section 3. We use the resulting WCET of the bus-unaware ILP-based instruction SPM
allocation (described in Section 5) as a baseline. The access delay of the private SPM is
assumed to be 1 cycle, while the access delay of the shared Flash memory is assumed as
6 cycles in case the bus grant is acquired. In reference to the bus slot length restriction
described in Section 5.4, the bus schedule consists of equally-sized bus slots. The length of a
slot is set to the access delay of the Flash memory FFlash (6 cycles). The (sub) basic blocks
assigned to the scratchpad memory are loaded into the memory prior to the actual execution
of the program. Therefore, the initial cycles required to transfer the corresponding blocks
into the SPM do not need to be considered in terms of the WCET of a program.

The MRTC benchmark suite [8] was used for evaluation purposes with annotated loop
bounds from the TACLeBench project [4]. The duff benchmark was excluded from the
set of benchmarks, since it contains an irregular loop which can not be modeled using our
current ILP models. Besides, the benchmarks petrinet and statemate were excluded due
to timeouts (execution time > 15h) during the bus-aware ILP-based optimization. However,
the evolutionary approach was able to terminate in the given time limit for these benchmarks.
The WCET analyses for the ARM7TDMI multicore platform were done by using methods
described by Kelter [11].

For the instruction SPM allocation based on evolutionary algorithms, the parameters
were carefully chosen to compromise between execution time and effectiveness:

Initial population: 20
Number of parents per generation: 20
Number of offspring individuals: 20
Maximum number of generations: 50
Mutation probability: 0.2
Multibit mutation
Single-point crossover

All evaluations were performed on an Intel Xeon Server. ILPs were solved using Gurobi 7.0.1
using 20 threads. All benchmarks were compiled with the WCET-aware C compiler (WCC) [6]
and the -O2 flag applied which enables several ACET-oriented compiler optimizations. The
private scratchpad memory size is set individually for each benchmark, adjusting it to 50%
relative to the benchmark’s code size. All optimizations were performed for a dualcore,
quadcore and octacore target platform.

Figure 9 shows the WCET of each benchmark optimized using the bus-aware ILP-based
allocation and based on evolutionary algorithms, relative to the optimized WCET using
the bus-unaware ILP-based optimization. The programs were executed on one core of the
dualcore platform. Since we are using a TDMA scheduling policy for the bus, it is irrelevant
under which combinations the benchmarks are executed. The execution of a benchmark
on one core does not influence the WCET of a benchmark being executed on another core,
since the bus slot lengths are fixed for each platform. On average (geometric mean), the
bus-aware ILP-based optimization results in a WCET 23% lower than the unaware ILP-based
optimization. The benchmark crc yields the greatest reduction in terms of WCET with

ECRTS 2017

1:18 Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time Systems

ad
pc
m_

de
co
de
r

ad
pc
m_

en
co
de
r

bin
ary

sea
rch

bs
ort
10
0

com
pre
ssd
ata

cou
ntn

ega
tiv
e
cov

er crc ed
n
ex
pin
t facfdc

t
fft
1
fib
cal
l fir

ins
ert
sor
t

jan
ne
_c
om
ple
x

jfd
cti
nt

lcd
nu
mlm

s

lud
cm
p

ma
tm
ult

mi
nv
er
nd
es ns

pri
me

qso
rt-
ex
amqu

rt

rec
urs
ion
sel
ectsqr

t st

Av
era
ge

0

1

2

3
W

C
E

T
W

C
E

T
B

as
e

Bus-aware ILP
Evol. Algorithm

Figure 9 Relative optimized WCETs using the dualcore ARM7TDMI platform.

79%, while sqrt results in a 6% worse WCET. The bus-aware ILP-based optimization can
lead to a worse allocation in comparison to the unaware model in certain cases, since the
model potentially allocates blocks in a pessimistic way due to uncertainties related to bus
effects. Because the bus-unaware ILP model does not consider potential bus effects, it can
result in a lower WCET in case the bus-aware model is overly pessimistic.

The instruction SPM allocation based on evolutionary algorithms returns on average a
WCET which is 7% greater than the baseline WCET. The benchmark with the greatest
WCET reduction is prime with 79%, for which the bus-aware ILP optimization did not return
any noticeable WCET reduction. This is mostly caused by the fact that the ILP model is not
able to represent execution contexts, which leads to a harsh over-approximation regarding
the total WCET. This behavior of the benchmark prime can be observed independent from
the number of cores per system. On the contrary, the evolutionary algorithm is able to
evaluate these effects inherently, since the used WCET analyzing methods consider execution
contexts. However, the benchmark fft1 results in a WCET which is 241% greater than the
baseline WCET.

Figure 10 shows the results of the same experiment setup, but using a quadcore platform.
The results resemble the experiment on a dualcore platform, yet the extremes are pushed
further to either direction. In case of the bus-aware ILP-based optimization, still the crc
benchmark results in the best reduction with 86%. Yet again, sqrt represents the worst
result in this configuration with a 5% greater WCET. The bus-aware ILP optimization results
in a 28% lower timing in comparison to the baseline WCET on average per benchmark when
performed on a quadcore system.

On average, the evolutionary-based optimization leads to worse results in comparison
to the dualcore experiment with an average WCET 12% higher than the baseline. With a
WCET reduction of 72% compared against the baseline, the benchmark fir provides the
best result using the evolutionary approach on a quadcore platform. Same as in the dualcore
experiment, the fft1 benchmark returns the worst result also in this configuration with a
WCET 437% greater than the baseline WCET.

D. Oehlert, A. Luppold, and H. Falk 1:19

ad
pc
m_

de
co
de
r

ad
pc
m_

en
co
de
r

bin
ary

sea
rch

bs
ort
10
0

com
pre
ssd
ata

cou
ntn

ega
tiv
e
cov

er crc ed
n
ex
pin
t facfdc

t
fft
1
fib
cal
l fir

ins
ert
sor
t

jan
ne
_c
om
ple
x

jfd
cti
nt

lcd
nu
mlm

s

lud
cm
p

ma
tm
ult

mi
nv
er
nd
es ns

pri
me

qso
rt-
ex
amqu

rt

rec
urs
ion
sel
ectsqr

t st

Av
era
ge

0

1

2

3

4

5

6

W
C

E
T

W
C

E
T

B
as

e

Bus-aware ILP
Evol. Algorithm

Figure 10 Relative optimized WCETs using the quadcore ARM7TDMI platform.

ad
pc
m_

de
co
de
r

ad
pc
m_

en
co
de
r

bin
ary

sea
rch

bs
ort
10
0

com
pre
ssd
ata

cou
ntn

ega
tiv
e
cov

er crc ed
n
ex
pin
t facfdc

t
fft
1
fib
cal
l fir

ins
ert
sor
t

jan
ne
_c
om
ple
x

jfd
cti
nt

lcd
nu
mlm

s

lud
cm
p

ma
tm
ult

mi
nv
er
nd
es ns

pri
me

qso
rt-
ex
amqu

rt

rec
urs
ion
sel
ectsqr

t st

Av
era
ge

0

1

2

3

4

5

6

W
C

E
T

W
C

E
T

B
as

e

Bus-aware ILP
Evol. Algorithm

Figure 11 Relative optimized WCETs using the octacore ARM7TDMI platform.

ECRTS 2017

1:20 Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time Systems

x2 ILP x2 Evol x4 ILP x4 Evol x8 ILP x8 Evol

100

101

102

103

104
O
pt
im

iz
at
io
n
Ex

ec
ut
io
n
T
im

e
(s
)

Figure 12 Overall Execution Time of the Optimizations for different Platforms.

In Figure 11, the results extracted from the experiments performed on an octacore
ARM7TDMI platform are shown. In general, the results resemble a similar pattern as seen
in the previous experiments. The bus-aware ILP-based optimization results in average a
WCET which is 30% lower than the baseline WCET. The benchmark crc yields the lowest
WCET in comparison to the bus-unaware ILP optimization for the octacore platform with a
90% lower WCET, while cover results in a 5% higher WCET.

The average WCET per benchmark using the evolutionary-based instruction SPM alloca-
tion is 12% higher in comparison to the baseline WCET. The greatest timing reduction using
the evolutionary-based optimization in the octacore configuration is achieved for the prime
benchmark with a 90% lower WCET in comparison to the bus-unaware ILP optimization,
while fft1 results in a 556% higher WCET.

Overall, it is observable that the advantage of the bus-aware ILP optimization in compar-
ison to its unaware opponent rises with the number of cores in the system. This conclusion
is expectable, since the impact of bus-related effects also increases with the number of cores,
since the possible stalling times rise with a longer bus period. Meanwhile, the evolutionary-
based optimization’s quality degrades with an increasing number of cores. This is likely to be
the case, since the penalty induced by only one badly allocated basic block heavily increases
with an increasing number of cores, due to greater stalling times. Therefore, the evolutionary
algorithm requires a larger number of generations to reach a proper allocation. Since we set a
fixed upper bound of the maximum generations, it will get more likely that the optimization
will be canceled before an adequate allocation is reached with an increasing number of cores.

Figure 12 shows the overall execution times of the bus-aware ILP-based instruction SPM
allocation and the evolutionary-based approach, separated according to the number of cores
used in the platform.

The central mark of each box denotes the median, while the edges depict the 25th and
75th percentiles. The maximum whisker length is defined as 1.5 times the difference between
the 75th and 25th percentile. Execution times outside the region between the whiskers are
depicted with a „+“-symbol. It is noticeable that independent from the number of cores
used inside the system, the execution time of the ILP-based optimization is distinctively
lower in terms of the median in comparison the evolutionary-based optimization. This is
likely to be caused by the plenty of analysis runs required by the evolutionary algorithm,
while the ILP-based approach only relies on two runs. The time required by the evolutionary
algorithm could be decreased by decreasing the number of maximum generations or the

D. Oehlert, A. Luppold, and H. Falk 1:21

number of individuals per generation. However this would likely lead to a decreased quality
of optimization. Furthermore, the evolutionary approach’s timing can be still improved by
enabling parallelism, which is yet to be implemented.

8 Conclusion and Future Work

We showed a precise bus-aware ILP-based instruction scratchpad memory allocation to reduce
the worst-case execution time of a program. This approach includes the dynamic prediction of
bus offsets and their resulting timing effects inside the ILP model. We showed, that using this
optimization, it is possible to reduce the WCET of a program in comparison to a bus-unaware
ILP-based optimization by on average 26%, with an average runtime significantly lower than
the genetic approach. On the downside, the approach heavily increases the complexity of the
underlying model, especially for data intensive programs.

Besides, we showed a first approach based on evolutionary algorithms for instruction SPM
allocation in multicore platforms which considers the timing effects of the bus architecture.
Using this approach, the experiments returned a WCET reduction up to 90% in comparison
the a bus-unaware ILP-based optimization.

As a part of future work, we plan to consider caches in our bus-aware ILP model.
Integrating the results of cache analyses could greatly improve the WCET of a program
furthermore, since less bus accesses would be required.

Further we plan to relax the bus slot length restriction discussed in this paper and expand
the model to data scratchpad memory allocation.

Besides, we plan to further fine-tune our approach based on evolutionary algorithms
to speed up the convergence to near-optimal results. Therefore, we intend to introduce
parallelism during the fitness calculation of the individuals.

References
1 AbsInt Angewandte Informatik, GmbH. aiT Worst-Case Execution Time Analyzers, 2017.
2 Sudipta Chattopadhyay and Abhik Roychoudhury. Static Bus Schedule Aware Scratchpad

Allocation in Multiprocessors. In Proceedings of the 2011 SIGPLAN/SIGBED Conference
on Languages, Compilers and Tools for Embedded Systems, LCTES’11, pages 11–20, New
York, NY, USA, 2011. ACM. doi:10.1145/1967677.1967680.

3 Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Modeling Shared Cache
and Bus in Multi-cores for Timing Analysis. In Proceedings of the 13th International
Workshop on Software and Compilers for Embedded Systems, SCOPES’10, pages 6:1–6:10,
New York, NY, USA, 2010. ACM. doi:10.1145/1811212.1811220.

4 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Chris-
tine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon We-
gener. TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time Re-
search. In Proceedings of the 16th International Workshop on Worst-Case Execution Time
Analysis (WCET), OpenAccess Series in Informatics (OASIcs), pages 2:1–2:10, Toulouse,
France, 2016. doi:10.4230/OASIcs.WCET.2016.2.

5 Heiko Falk and Jan C. Kleinsorge. Optimal Static WCET-aware Scratchpad Allocation of
Program Code. In Proceedings of the 46th Annual Design Automation Conference, DAC,
pages 732–737, San Francisco, CA, USA, 2009. doi:10.1145/1629911.1630101.

6 Heiko Falk and Paul Lokuciejewski. A compiler framework for the reduction of
worst-case execution times. Real-Time Systems, 46(2):251–300, 2010. doi:10.1007/
s11241-010-9101-x.

ECRTS 2017

http://dx.doi.org/10.1145/1967677.1967680
http://dx.doi.org/10.1145/1811212.1811220
http://dx.doi.org/10.4230/OASIcs.WCET.2016.2
http://dx.doi.org/10.1145/1629911.1630101
http://dx.doi.org/10.1007/s11241-010-9101-x
http://dx.doi.org/10.1007/s11241-010-9101-x

1:22 Bus-Aware Static Instruction SPM Allocation for Multicore Hard Real-Time Systems

7 David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, Inc., Boston, MA, USA, 1989.

8 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET
Benchmarks: Past, Present And Future. In 10th International Workshop on Worst-Case
Execution Time Analysis (WCET 2010), OASIcs, pages 136–146, Dagstuhl, Germany, 2010.
doi:10.4230/OASIcs.WCET.2010.136.

9 Morteza Mohajjel Kafshdooz and Alireza Ejlali. Dynamic Shared SPM Reuse for Real-Time
Multicore Embedded Systems. ACM Transactions on Architecture and Code Optimization,
12(2):12:1–12:25, May 2015. doi:10.1145/2738051.

10 T. Kelter, H. Borghorst, and P. Marwedel. WCET-aware scheduling optimizations for multi-
core real-time systems. In 2014 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS XIV), pages 67–74, Samos, Greece, July
2014. doi:10.1109/SAMOS.2014.6893196.

11 Timon Kelter. WCET Analysis and Optimization for Multi-Core Real-Time Systems. PhD
thesis, TU Dortmund, Department of Computer Science, Dortmund, Germany, March 2015.

12 Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik Roychoud-
hury. Static analysis of multi-core TDMA resource arbitration delays. Real-Time Systems,
50(2):185–229, 2014. doi:10.1007/s11241-013-9189-x.

13 Y. Kim, D. Broman, J. Cai, and A. Shrivastaval. WCET-aware dynamic code management
on scratchpads for Software-Managed Multicores. In 2014 IEEE 19th Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), pages 179–188, Berlin, Germany,
April 2014. doi:10.1109/RTAS.2014.6926001.

14 Donald Ervin Knuth. Fundamental algorithms. The art of computer programming. Addison-
Wesley, Reading, MA, USA, 3. ed edition, 1997.

15 Yu Liu and Wei Zhang. Scratchpad Memory Architectures and Allocation Algorithms for
Hard Real-Time Multicore Processors. Journal of Computing Science and Engineering,
9(2):51–72, 2015. doi:10.5626/JCSE.2015.9.2.51.

16 Dominic Oehlert, Arno Luppold, and Heiko Falk. Practical Challenges of ILP-based SPM
Allocation Optimizations. In Proceedings of the 19th International Workshop on Software
and Compilers for Embedded Systems, SCOPES’16, pages 86–89, New York, NY, USA,
2016. ACM. doi:10.1145/2906363.2906371.

17 Vivy Suhendra and Tulika Mitra. Exploring Locking & Partitioning for Predictable Shared
Caches on Multi-cores. In Proceedings of the 45th Annual Design Automation Confer-
ence, DAC’08, pages 300–303, New York, NY, USA, 2008. ACM. doi:10.1145/1391469.
1391545.

18 Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. WCET Centric Data
Allocation to Scratchpad Memory. In Proceedings of the 26th IEEE International Real-
Time Systems Symposium, RTSS’05, pages 223–232, Washington, DC, USA, 2005. IEEE
Computer Society. URL: 10.1109/RTSS.2005.45.

http://dx.doi.org/10.4230/OASIcs.WCET.2010.136
http://dx.doi.org/10.1145/2738051
http://dx.doi.org/10.1109/SAMOS.2014.6893196
http://dx.doi.org/10.1007/s11241-013-9189-x
http://dx.doi.org/10.1109/RTAS.2014.6926001
http://dx.doi.org/10.5626/JCSE.2015.9.2.51
http://dx.doi.org/10.1145/2906363.2906371
http://dx.doi.org/10.1145/1391469.1391545
http://dx.doi.org/10.1145/1391469.1391545
10.1109/RTSS.2005.45

	Introduction
	Related Work
	Multicore Architecture
	Motivating Example
	ILP Model
	Notational Conventions
	Mathematical Preliminaries and ILP Formulations
	Base Model
	Bus-aware Extensions

	Evolutionary Algorithm
	Evaluation
	Conclusion and Future Work

