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Abstract
A powerful, but limited, way to view software is as source code alone. Treating a program as
a sequence of instructions enables it to be formalized and makes it amenable to mathematical
techniques such as abstract interpretation and model checking.

A program consists of much more than a sequence of instructions. Developers make use of
test cases, documentation, variable names, program structure, the version control repository, and
more. I argue that it is time to take the blinders off of software analysis tools: tools should use
all these artifacts to deduce more powerful and useful information about the program.

Researchers are beginning to make progress towards this vision. This paper gives, as examples,
four results that find bugs and generate code by applying natural language processing techniques
to software artifacts. The four techniques use as input error messages, variable names, procedure
documentation, and user questions. They use four different NLP techniques: document similarity,
word semantics, parse trees, and neural networks.

The initial results suggest that this is a promising avenue for future work.
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1 Introduction

What is software? A reasonable definition – and the one most often adopted by the
programming language community – is: a sequence of instructions that perform some
task. This definition accommodates the programmer’s view of source code and the machine
instructions that the CPU executes. Furthermore, this definition enables formalisms: the
execution model of the machine, and the meaning of every instruction, can be mathematically
defined, for example via denotational semantics or operational semantics. By combining the
meanings of each instruction, the meaning of a program can be induced.

This perspective leads to powerful static analyses, such as symbolic analysis, abstract
interpretation, dataflow analysis, type checking, and model checking. Equally important and
challenging theoretically – and probably more important in practice – are dynamic analyses
that run the program and observe its behavior. These are at the heart of techniques such as
testing, error detection and localization, debugging, profiling, tracing, and optimization.

Despite the successes of viewing a program as a sequence of instructions – essentially, of
treating a program as no more than an AST (abstract syntax tree) – this view is limited
and foreign to working programmers, who should be the focus of research in programming
languages. Developers make use of test cases, documentation, variable names, program
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4:2 Natural Language is a Programming Language

structure, the version control repository, the issue tracker, conversations, user studies, analyses
of the problem domain, executions of the program, and much more. The very successes of
formal analysis may have blinded the research community to the bigger picture. In order
to help programmers, and even to provide the program specifications that are essential to
formal analysis, software analysis tools need to analyze all the artifacts that developers create.
Tools that analyze the whole program will deduce more powerful and useful information
about the program than tools that view just one small slice of it. These non-AST aspects of
the program are also good targets for generation or synthesis approaches, especially since
developers usually encode information redundantly: the information can be recovered from
other (formal or informal) sources of information.

This paper focuses on one part of this vision: analysis of the natural language that is
embedded in the program. In order to provide inspiration for further research, the paper
discusses four initial results that find bugs and generate code by applying natural language
processing techniques to software artifacts. The four techniques use as input error messages,
variable names, procedure documentation, and user questions. They use four different NLP
techniques: document similarity, word semantics, parse trees, and neural networks. In many
cases, they produce a formal artifact from an informal natural language input. The initial
results show the promise of applying NLP to programs.

This paper is organized as follows. First, Section 2 puts the use of NLP in the context
of previous work that uses non-standard sources of specifications for formal analysis. In
other words, Section 2 shows how using NLP to produce specifications can be viewed as the
continuation of an existing line of research. The following four sections present four different
approaches to applying natural language processing to English text that is associated with a
program. Each one addresses a different problem, uses a different source of natural language,
and applies a different natural language technique to the English to solve the problem. The
following table overviews the four approaches.

Problem NL source NLP technique
§3 Analyze existing inadequate diagnostics error messages document similarity
§4 code to find bugs incorrect operations variable names word semantics
§5 Generate missing tests code comments parse trees
§6 new code unimplemented functionality user questions translation

These few examples cover only a small number of problems, sources of natural language, and
NLP techniques. Other researchers can take inspiration from these examples in order to
pursue further research in this area. Section 7 discusses how researchers are already doing
related work, via text analysis, machine learning, and other approaches.

2 Background: Mining specifications

Students sometimes ask whether a program is correct1, but such a question is ill-posed. A
program is never correct or incorrect; rather, the program either satisfies a specification or
fails to satisfy a specification. It is no more sensible to ask whether a program is correct,
without stating a specification, than to ask whether the answer is 42, without stating the
question to be answered.

1 There are many other important questions to be asked about a program beyond correctness. Does it
fulfill a need in the real world? Is it usable? Is it reliable? Is it maintainable?
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Many tasks, such as verification and bug detection, require a specification that expresses
what the program is supposed to do. As a result, many papers start out by assuming the
existence of a program and a specification; given these artifacts, the paper presents a program
analysis technique. Unfortunately, most programs do not come with a formal specification.
Furthermore, programmers are reluctant to write them, because they view the cost of doing
so as greater than the benefit. Researchers and tool makers need to make specifications easier
to write, and they need to create tools that provide value to workaday programmers. Until
that happens, there is still an urgent need for specifications, in order to apply the research
and tools that have been created.

One effective approach is to mine specifications – that is, to infer them from artifacts
that programmers do create. Programmers embed rich information in the artifacts that they
create. Program analysis tools should take advantage of all the information in programs, not
just the AST. Too often, this is not done. For example, before formally verifying a program,
the program is always tested, because testing is a more cost-effective way to find most errors.
However, the formal verification process generally ignores all the effort that was put into
testing, the test suites that were created, and the knowledge that was gained. This is a
missed opportunity, in part caused by a parochial blindness toward “non-formal” artifacts.

Another way to express this intuition is to contrast two different views of a software
artifact. Traditionally, programming language researchers have viewed it as an engineered
artifact with well-understood semantics that is amenable to formal analysis. An alternative
view is as a natural object with unknown properties that has to be probed and measured
in order to understand it. These two perspectives contrast an engineer’s blueprint with a
natural scientist’s explorations of the world. Considering a program as a natural object
enables many powerful analyses, such as machine learning over executions, version control
history analysis, prediction of upgrade safety, bug prediction, warning prioritization, and
program repair.

As one example, consider specification mining: machine learning of likely specifications
from executions. This technique transforms the implicit specifications that the programmer
has embedded into a test suite, into a formal specification. A tool that performs this task
is the Daikon invariant detector [16, 17, 18]; other tools also exist [2, 24, 40, 56, 9, 7, 8].
The software developer runs the program, and Daikon observes the values that the program
computes. Daikon generalizes over the values via machine learning, in particular using a
generate-and-check approach augmented by static and dynamic analyses and optimizations,
because prior learning approaches had limitations that prevented them from being applied
to this domain. The output is properties such as

x > abs(y)
x = 16*y + 4*z + 3
array a contains no duplicates
for each node n, n = n.child.parent
graph g is acyclic

Like any good machine learning algorithm, the technique is unsound, incomplete, and useful.
It is unsound because these are likely invariants: they were true over all executions and
passed statistical likelihood tests, but there is no guarantee that they will be true during all
possible future executions. It is incomplete because every machine learning algorithm has
a bias or a grammar that limits its inferences. Nonetheless, it is useful. Some uses do not
require soundness, such as optimization or bug-finding. Humans are known to make good use
of imperfect information. The likely invariants can be used as goals for a verifier, yielding a
sound system. Automatically-generated partial information is better than none at all. In
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4:4 Natural Language is a Programming Language

practice, the inference process is surprisingly effective: the invariants are overwhelmingly
correct, even when generalizing from little execution data.

Just as it is useful to process test suites to create formal artifacts, it is also useful
to process natural language to create formal artifacts. The following sections give some
examples.

3 Detection of inadequate diagnostic messages

Software configuration errors (also known as misconfigurations) are errors in which the
software code and the input are correct, but the software does not behave as desired
because an incorrect value is used for a configuration option [60, 57, 53, 55]. Diagnostic
messages are often the sole data source available to a developer or user. Unfortunately,
many configurable software systems have cryptic, hard to understand, or even misleading
diagnostic messages [57, 28], which may waste up to 25% of a software maintainer’s time [6].
We have built a tool, ConfDiagDetector [61], that tells a developer, before their application
is fielded, whether the diagnostic messages are adequate.

More concretely, if a user supplies a wrong configuration option such as –port_num=100.0,
the software may issue a hard-to-diagnose error message such as “unexpected system failure”
or “unable to establish connection”. Our goal is to detect such problems before shipping the
code, so that the developer can substitute a better message, such as “–port_num should be
an integer”.

ConfDiagDetector combines two main ideas: configuration mutation and NLP text
analysis. ConfDiagDetector works by injecting configuration errors into a configurable
system, observing the resulting failures, and using NLP text analysis to check whether the
software issues an informative diagnostic message relevant to the root-cause configuration
option (the one related to the injected configuration error). If not, ConfDiagDetector reports
the diagnostic message as inadequate.

ConfDiagDetector considers a diagnostic message as adequate if contains the mutated
option name or value [29, 57], or if its meaning is semantically similar to the manual
description of that configuration option. For example, if the –fnum option was mutated and
its manual description says “Sets number of folds for cross-validation”, then the diagnostic
message “Number of folds must be greater than 1” is adequate.

Classical document similarity work uses TF-IDF (term frequency – inverse document fre-
quency) to convert each document into a real-valued vector, then uses vector cosine similarity.
This approach does not work well on very short documents, such as diagnostic messages, so
ConfDiagDetector instead uses a different technique that counts similar words [35].

In a case study, ConfDiagDetector reported 25 missing and 18 inadequate messages in four
open-source projects: Weka, JMeter, Jetty, and Derby. A validation by three programmers
indicated that ConfDiagDetector has a 0% false negative rate and a 2% false positive rate on
this dataset. This is a significant improvement over the previous best tool, which had a 16%
false positive rate.

This approach differs from configuration error diagnosis techniques such as dynamic
tainting [4], static tainting [42, 43], and Chronus [53] that troubleshoot an exhibited error,
rather than proactively detecting inadequate diagnostic messages. It also differs from
software diagnosability improvement techniques such as PeerPressure [52], RangeFixer [54],
ConfErr [29], Spex-INJ [57], and EnCore [59] that require source code, a usage history, or
OS-level support.
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Figure 1 Ayudante architecture.

4 Identifying undesired variable interactions

A common programming mistake is for incompatible variables to interact, e.g., storing
euros in a variable that should hold dollars, or using an array index with the wrong
array. When a programmer commits an error, such as writing totalPrice = itemPrice
+ shippingDistance;, the compiler issues no warning because the two variables have the
same programming language type, such as int. However, a human can tell that the abstract
types are different, based on the variable names that the programmer chose.

We have developed an approach to detect such undesired interactions [51]. The approach
clusters related variables, twice, using two different mechanisms. Natural language processing
identifies variables with related names that may have related semantics. Abstract type
inference identifies variables that interact with each other, which the programmer has treated
as related. (For example, if the programmer wrote x < y, then the programmer must view x
and y as having the same abstract type.) Any discrepancies between these two clusterings –
that is, any inconsistency between variable names and program operations – may indicate a
programming error, such as a poorly-named variable or an incorrect program operation.

Ayudante clusters variable names by tokenizing each variable name into dictionary words,
computing word similarity based on WordNet or edit distance, and then arithmetically
combining word similarity into variable name similarity. These variable name similarities
can be treated as distances by a clustering algorithm. When a single ATI cluster can be split
into two distinct variable-name clusters, it is treated as suspicious and presented to a user.
Figure 1 shows the high-level architecture.

Abstract type inference can be computed statically [5, 36] or dynamically [22]; our tool,
Ayudante, uses the dynamic approach, which is more precise in practice.

In an experiment, Ayudante’s top-ranked report about the grep program indicated a
interaction in grep that was likely undesired, because it discards information.

Previous work showed that reusing reusing identifier names is error-prone [32, 14, 3]
and proposed identifier naming conventions [45, 30]. Languages like Ada and F# support
a notation for units of measure. Our tokenization of variable names outperforms previous
work [31, 21].

5 Generation of test oracles

Programmers are resistant to writing formal specifications or test oracles. Manually-written
test suites often neglect important behavior. Automatically-generated test suites, on the
other hand, lack test oracles that verify whether the observed behavior is correct. We
have implemented a technique that automatically creates test oracles from something that
programmers already write: code comments. In particular, it is standard practice for Java
programmers to write Javadoc comments; IDEs even automatically insert templates for them.

SNAPL 2017
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Figure 2 Parsing a sentence and unparsing into an assertion.

We have built a tool, Toradocu [19], that converts English comments into assertions. For
example, given

/** @throws IllegalArgumentException if the
* element is not in the list and is not
* convertible. */

void myMethod(Object element) { ... }

Toradocu might determine that myMethod should throw the exception iff
( !allFoundSoFar.contains(element) && !canConvert(element) ).

The intuition behind the technique is that when a sentence describes program behaviors, its
nouns correspond to objects or values, and its verbs correspond to operations. This enables
translation between English and code.

Toradocu works in the following steps.
1. Toradocu determines the nouns and verbs in a sentence from a Javadoc @param, @return,

or @throws clause. It does so using the Stanford Parser, which yields a parse tree,
grammatical relations, and cross-references. Toradocu uses pre- and post-processing to
handle challenges such as the fact that the natural language is often not a well-formed
sentence, it may use code snippets as nouns/verbs, and referents may be implicit.

2. Toradocu matches each noun/subject in the sentence to a code element from the pro-
gram. It uses both pattern matching and lexical similarity to identifiers, types, and
documentation.

3. Toradocu matches each verb/predicate to a Java element.
4. Toradocu reverses the parsing step: it recombines the identified Java elements, according

to the parse tree of the original English sentence. The result is an assert statement.
Figure 2 gives an example.

In an experiment on 941 programmer-written Javadoc specifications, Toradocu achieved
88% precision and 59% recall in translating them to executable assertions. Toradocu can be
tuned to favor either precision or recall.

Toraducu can automatically instrument test suites. Currently, automatic test generation
tools have to guess whether a generated test fails or passes. Toradocu improved the fault-
finding effectiveness of EvoSuite and Randoop test suites by 8% and 16% respectively, and
reduced EvoSuite’s false positive test failures by 33%.

Previously, test generation tools used heuristics to guess whether an exception was
expected or unexpected [12, 13, 37, 38]. Property-based techniques that are similar to or
can benefit from our approach include cross-checking oracles [10], metamorphic testing [11],
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Figure 3 A sequence-to-sequence neural network translation model, applied to English and bash
commands. The encoder reads the natural language description and passes its final hidden state to
the decoder. The decoder takes the encoder’s final hidden state and generates the output starting
form a special symbol <START>. Notice that each decoder input symbol is the output symbol from
the previous step. As is traditional, boxes are labeled by their outputs; for example, the lowest,
leftmost box takes as input xt (= “find”) and applies I, producing as output xt. The red dotted
lines mark the word alignments learned via the attention mechanism. While the neural network
computes an alignment score for each pair of encoder hidden state and decoder hidden state, we
illustrate only the alignments with high scores for readability.

and symmetric testing [20]. Previous work has used pattern-matching to extract simple
properties, like whether a variable is intended to be non-null or nullable, from natural
language documentation [50, 49, 48]; our approach is more general because it uses more
sophisticated natural language processing techniques.

6 Generating code from natural-language specifications

The job of a software developer includes determining the customer’s requirements and
implementing a program that satisfies them. Part of this job is translating from a (usually
informal) specification into source code.

One of the great successes of natural language processing is translation: for example,
converting the English sentence “My hovercraft is full of eels” into the Spanish sentence “Mi
aerodeslizador está lleno de anguilas.” Recently, recurrent neural networks (RNNs) have
come to dominate machine translation. The neural network is trained on a great deal of
known correct data (English–Spanish pairs), and the network’s input, hidden, and output
functions are inferred using probability maximization.

If this approach works well for natural language, why shouldn’t it work for programming
languages? In other words, why can’t we create a program – or, at least, get an initial draft –
from natural language?

We have applied this approach to convert English specifications of file system operations
into bash commands. Figure 3 shows a concrete example. We trained the RNN on 5,000
〈text, bash〉 pairs that were manually collected from webpages such as Stack Overflow and
bash tutorials. This domain includes 17 file system utilities, more than 200 flags, 9 types
of open-vocabulary constants, and nested command structures such as pipelines, command
substitution, and process substitution. Our system Tellina’s top-1 and top-3 accuracy, for
the structure of the command, was 69% and 80%.

No natural language technique will achieve perfect accuracy, due to the underlying
machine learning algorithms. Tellina produces correct results most of the time, but produces
incorrect results the rest of the time.2 It is an important and interesting empirical question

2 Classifying the usefulness of Tellina’s output is not clear-cut. Even Tellina’s correct results may not be
perfect, and even its incorrect results can be helpful to programmers.
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4:8 Natural Language is a Programming Language

whether such a system that is useful in practice to programmers. In a controlled human
experiment, programmers using Tellina spent statistically significantly less time (p < .01)
while completing more file system tasks (p < .1). Even when Tellina’s output was not perfect,
it often informed the programmer about a command-line flag that the programmer didn’t
know about.

The most closely related work is in neural machine translation, which proposed both
sequence-to-sequence learning with neural nets [47] and the attention mechanism [34]. Pre-
vious work on semantic parsing has translated natural language to a formal representa-
tion [58, 39], though one simpler than bash. Previous work on translating natural language
to DSLs has also focused on simpler languages: if-this-then-that recipes [41], regular expres-
sions [33], and text editing and flight queries [15].

7 Discussion

A minority of a software development team’s is spent writing and changing the program,
as opposed to participating in other activities, such as gathering requirements, design,
documentation, and communicating with peers and stakeholders. Even when interacting
with the program, a minority of a programmer’s time is spent editing the programming
language constructs in the source code, as opposed to testing, documenting, debugging, and
reading it to understand it.

Researchers in software engineering and programming languages can find the most
important challenges, do the most relevant work, and have the most impact by recognizing
the needs of software developers. The programming language itself is an important but small
part of this.

This paper advocates using natural language processing to analyze the textual parts
of a program, in addition to the machine operations or AST that form its mathematical
or operational core. Even the program including its natural language (the focus of this
paper) still represents a minority of the concerns of a software developer! This paper focused
on it because it is an important domain that permits use of a coherent set of research
techniques. These techniques can apply ideas from both natural language processing and
program analysis, and crucially, they can produce formal, executable specifications that feed
back into many techniques that require specifications to express program semantics.

Our point of view is related to many previous lines of work. Previous researchers have
applied pattern-matching or machine learning techniques (in some cases including NLP
techniques), to software development artifacts that include the (formal) program, natural
language in it, its tests, and its development history. We acknowledge their achievements,
which have enabled and/or inspired our own.

The idea of analyzing the text that accompanies a program is not new. Up to now, much
of this textual processing has been pattern-matching [48] rather than NLP. The same is true
of many other approaches to processing program text, as described earlier. We believe that
use of NLP will enable these techniques to become more general and achieve better results.

Statistical models can be used to model program text in similar ways to modeling natural
language. Hindle et al. [26] hypothesize that “what people write and say is largely regular
and predictable”. This regularity is captured by n-gram models that capture how often a
given sequence of n tokens occurs. This work ignores comments and applies these models
to the executable program statements and expressions. The authors proposed that N -gram
models can be used for code completion (such as stylized for loops). Subsequent work
applied n-gram models to predicting common variable names and whitespace conventions [1].
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Neither approach captures semantics other than incidentally by correlation, and neither was
evaluated in terms of whether it would help programmers.

Another line of work focuses on creating the building blocks that from which NLP
semantics could be obtained by future tools. Pollock and colleagues show how common
variable-name patterns can be analyzed to assign a part of speech to each word that makes
up the variable name [23], how rules and heuristics can match verbs to semantically-similar
words by examining both code and comments [27], and how to mine abbreviation expansions
such as “num” vs. “number” in variable names [25]. They also show how to generate
summary comments for code [46], which is the dual of our goal of transforming less-formal
into more-formal artifacts.

The JSNice system [44] represents a program AST in relational form for input to a learner.
Given libraries/APIs that have known types and commonly-associated names, names and
types can be inferred for new clients of those programs. This can regularize existing programs
or suggest names for identifiers in new programs. It can also suggest types, without doing a
standard type analysis. This work is notable for its uptake by industry. The variable names
do not affect program semantics, the types are optional, and the compiler warnings can be
suppressed; nonetheless, JSNice is useful in improving code style and gradually adding types
to JavaScript code.

As the above examples show, natural language processing (NLP) is just one form of
machine learning. NLP is applicable to the textual aspects of a program, such as messages,
variable names, code comments, and discussions. Other types of data mining and machine
learning can be applied to natural language in the text or to other artifacts, such as executions
(e.g., Section 2), bug reports, version control history, developer conversations, and much
more. The ideas presented in this paper could be extended to those other domains as well.

8 Analyzing the entire program

A program is more than source code, because a programming language – and more importantly,
the programming system that surrounds it – is more than just a mathematical abstraction.
In order to manage and understand the complexity of their programs, software developers
embed important, useful information in test suites, error messages, manuals, variable names,
code comments, and specifications. By paying attention to these rich sources of information,
we can produce better software analysis tools and make programmers more productive. In
addition to laying out this vision, this paper has overviewed a few concrete steps toward the
vision: projects in which this extra information has proved useful. Many more opportunities
exist, and I urge the community to grasp them.

Acknowledgements. This is joint work with Juan Caballero, Alberto Goffi, Alessandra
Gorla, Mauro Pezze, Irfan Ul Haq, Kevin Vu, and Sai Zhang. The reviewers provided helpful
comments that improved the paper.
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