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Abstract
While sequential programs represent a simple and natural form for expressing functionality, corres-
ponding distributed implementations get considerably more complex. We examine the possibility
of using the sequential computation model for programming distributed systems and requirements
for making that possible. The benefits of such an approach include easier specification and reas-
oning about behaviors in the system, as well as a possibility to directly reuse existing techniques
for checking correctness and optimization of sequential programs to produce efficient and reliable
distributed implementations.

1998 ACM Subject Classification D.1.3 [Concurrent Programming] Distributed Programming,
D.3.4 [Processors] Code Generation, Compilers, Optimization, F.1.1 Models of Computation

Keywords and phrases distributed systems, sequential computation, verification

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2017.7

1 Introduction

The sequential model of computation is often the most natural way to think about pro-
gramming. Sequential programs represent computations which are performed by evaluating
expressions in a predefined order. By contrast, programming distributed systems is much
more challenging because programmers have to worry about controlling concurrent compu-
tations and consistency of their results, as well as a number of additional aspects, such as
communication between nodes and managing data across the system.

Programming models for distributed systems need to provide means to deal with this
additional complexity [5, 2]. Many modern programming models and languages for developing
distributed systems allow expressing behaviors of individual nodes of the system in the
sequential model, while using specialized abstractions and language constructs for specification
of aspects such as communication [25, 13, 12, 7, 5]. For example, flexible and general models
that allow controlling communication, expose it and require implementing it directly at a
low level of abstraction, and force programmers to split behaviors into distinct program
units with separate message sends and handlers [15, 26, 22]. The underlying programming
models usually make trade-offs between the expressiveness and support for certain distributed
aspects [5, 3, 11]. Finding an optimal trade-off, however, is difficult because models that are
too low-level increase the complexity for the programmer, but models that are too high-level
take away control from the programmer and risk producing code that does not match the
programmer’s expectations.

The paper presents a new programming model that aims to simplify the development of
event-driven distributed programs. The key novelty of our programming model is that it
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7:2 Leveraging Sequential Computation for Programming Distributed Systems

decomposes the problem of developing such applications into three distinct steps. In the first
step, the programmer defines a data model and a collection of sequential routines that define
the behavior of the system and are effectively treated as transactions. The programmer can
reason about the semantics of each such transaction sequentially, without worrying about
concurrency or data distribution. In the second step, the programmer uses type annotations
to describe how the data is distributed across a collection of computational nodes. Based
on these type annotations, the system determines where to execute the defined transactions
and derives the necessary communication and synchronization in order to guarantee the
sequential semantics of their executions. Finally, in the third step, the programmer defines a
set of logical triggers, which dictate when the transactions should execute. The triggers can
launch a transaction based on the global state of the distributed system.

We argue that the separation of concerns afforded by our approach leads to a programming
model that is not just simple and expressive for developing distributed programs, but also
simplifies reasoning about their behaviors, and enables various optimizations to produce
efficient implementations. For example, the paper illustrates the potential for applying
existing techniques for verification and optimization of sequential programs in this model.
Moreover, the model effectively allows adding and changing both behaviors and distributed
aspects without the need to change the code for existing behaviors.

Although demonstrated through a few running examples, the paper focuses on the ideas
and a few key characterizations that are needed to define the new programming model.
This paper does not present a fully-developed language that is general and applicable for
producing efficient implementations for a wide range of distributed systems. Moreover, the
paper focuses on the characterization and semantics of the programming model in terms of
distribution of data and behaviors, and tying such behaviors to external stimuli. In turn,
multiple aspects of realistic distributed systems, which include security and failure-tolerance,
were omitted, making the model applicable only to certain scenarios of distributed systems
where nodes operate in reliable and trusted environments.

2 From Sequential to Distributed Programs

2.1 Overview of the Approach
We illustrate the ideas behind the approach by implementing the functionality of a simple
distributed application for managing storage and supplies of a central warehouse with
multiple independent stores. We focus on the functionality of ordering an item from the
warehouse (which possibly resides on a remote location) and updating the store’s inventory
accordingly. The developers start by specifying this behavior as a sequential program, from
the perspective of only one store and the warehouse, ignoring distributed aspects of the
system. In the subsequent step, the developers transforms the sequential program into a
distributed implementation by specifying how the sequential behavior is instantiated for
every store in the system, and distributed across all stores and the warehouse.

The developers start by defining the data used by the program. Given the chosen starting
point of a sequential program with a single store, the developers declare a map from items
(identified by String) to their quantities and a single variable that reflects the quota for
items, which belongs to a particular store, but will later be instantiated at each store in the
final distributed implementation1:
var quantities: Map[String, Nat]; var quota: Nat

1 We use Scala-like syntax, with variables declared with var.
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Afterwards, the developers implement the function for ordering some quantity of a particular
item:
def order(item: String, quant: Nat): Boolean =

if (quantities(item) >= quant && quota >= quant) { // check if order eligible
quantities(item) = quantities(item) - quant; // update (inventory) state
quota = quota - quant;
true // order successful

} else false

which, given the item and quantity to order, performs a simple check: if the given quantity is
available in the warehouse and the store has sufficient quota left, it updates the corresponding
variables and returns true, otherwise returns false. For simplicity, we assume each item
takes exactly one unit of the available quota.

An important insight behind the new approach is that, modulo distribution, this simple
function faithfully reflects the behaviour of item ordering. The functionality does not
depend on how the data and computation are distributed; adding distributed aspects
effectively provides a different view and instantiation of the functionality. Note that unlike
some distributed algorithms that inherently require programming low-level aspects like
communication (e.g. next actions depend on the received messages at particular nodes during
execution), functionality in our example can fully be captured by ignoring distributed aspects
[20]. Even though distributed implementations differ from “pure” behaviors expressed with
sequential computation, given the necessary information about distributed aspects, they
can be used as specifications of behaviors that can be automatically transformed into final
distributed implementations.

To that end, since the sequential computation model is not sufficient to characterize such
distributed applications, we identify components of specification that can, when coupled with
sequential programs, completely characterize distributed implementations:

allocation of data (used in the function) to different nodes in the system
specifying how is the behavior (defined by the function) invoked in the system
consistency of data and behaviors (in the presence of concurrency) in the system

Provided this additional information, developers can capture the desired behaviours in
the system and allow the compiler to produce the appropriate distributed implementation.
The compiler, which produces the final low-level implementation, can then decide to allocate
computation and communication in a way such that the given specification – of data
allocation, consistency and triggering of behaviors – is satisfied. Note that low-level details
of the resulting implementation, such as communication and computation allocation, can
still be decided and implemented in potentially multiple different ways by the compiler.
We consider possibilities for providing and satisfying these specifications in the subsequent
sections.

2.2 Location-dependent Types
We propose specifying data (and computation) allocation through types. To that end, we
allow declaring nodes that participate in the system and enrich the type system to specify
location of data or computation represented by the given expression. For any expression,
besides associating standard type to it (e.g. in simply typed lambda calculus), we associate
an additional label that designates the node the expression resides on or is computed at.

For our running example, the developers declare two sets of nodes, Server and Client,
where the Server is a singleton set (which represents the single, centralized, warehouse).
Node types are effectively instances of a higher-level type; they serve as labels that allow
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7:4 Leveraging Sequential Computation for Programming Distributed Systems

distinguishing between nodes. Developers can then annotate declarations and expressions to
specify the intended data allocation in the final implementation: having type T, with T♦node
the developer designates allocation of the expression of the given type to node, which belongs
to some node type. Then, developers assign quantities to the (single) Server, and quota,
the arguments, and the result of the function order to the Client nodes:
var quantities: Map[String,Nat]♦Server; ∀client : Client, var quota: Nat♦client
∀client : Client, def order(item: String♦client, quant: Nat♦client): Boolean♦client = ...

To designate that order might be invoked by any store, developers write ∀ to quantify over
the set of store (Client) nodes (similarly to classical type-dependent systems). Note that
the definition of order is omitted; it remains the same as before.

It is interesting to consider how the location information given in types affects the resulting
implementation. Specifically, the program states that both arguments, as well as the result
of the function, are allocated to the client node. However, quantities – variable used in the
function – is allocated to the server, thus communication between the nodes is inevitable. To
produce an implementation that type-checks (performs allocation as specified), the compiler
has to update quantities on the server and return the result back to the client. Thus, the
intended implementation where a client node (i.e. a store) sends arguments to the server (i.e.
the warehouse) and awaits a response would typecheck successfully and can be produced as
the resulting implementation.

Given the previous definition, since the state update has to happen on the server, the
following has to typecheck:
(quantities(item) = quantities(item) - quant): Unit♦Server

meaning the expression is evaluated at the Server. However, value of the assignment can be
computed also on the client store (if e.g. forced by a typing annotation):
(quantities(item) - quant): Nat♦client

which would produce a correct, but less efficient implementation, since it would incur
additional two-way communication between the client and the server (for quant and the
result). Effectively, location-dependent types allow developers to dictate allocation of data and
computation within the system. Moreover, they can be used to prevent certain communication
(e.g. for security reasons), where unwanted implementations, which could lead to potential
data leaks, would not typecheck.

2.3 Triggering Behavior with Logical Formulas
In order to capture how are behaviours in the system invoked, we propose defining triggers
as logical formulas, which can talk about events occurring across the system, as well as data,
i.e. state, located at different nodes in the system. Whenever the condition defined by the
trigger becomes true, the associated behavior is invoked. By combining events that can be
bound to arbitrary internal and external actions (or stimuli) in the system, with formulas,
we gain flexibility for specifying various, possibly reactive, distributed systems.

In our running example, we would like to trigger order as a consequence of an explicit user
action (e.g. user interaction). We assume to have event EvOrderClient(quant : Nat) that
can occur at any store in the system and is parametrized by a value for quantity (populated
at the time of the instantiation of the event). In our current prototype, events are declared
with a special construct in the language, while compiler generates function calls for each
declared event (with arguments that match parameters of the event), which, when called,
“fire” the associated event in the system.
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EvOrder(5)
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notify("p1")
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Figure 1 Distributed execution of two instances of order and one of notify behavior.

After declaring a variable for the selected item at every store, the developers can specify
that order gets triggered whenever EvOrder fires at any client node (i.e. store):
∀client : Client, var selected: String♦client // designates selected item
∃c : Client. EvOrderc(quant) → order(selected♦c, quant)

where order is called with selected variable located on the client and the quant parameter
from the event. (With e♦n we specify allocation of expression e to node n without specifying
the full type.) The event expression on the left of the arrow can be thought of as pattern
matching: variable quant captures the parameter value carried by the event.

Our programming model allows using logical formulas to specify triggering of behaviors
when a certain condition becomes true in the system. If we consider a new functionality
of notifying stores when the item they have selected gets out of stock, the following logical
formula can specify such trigger. (We omit the function definition, which only updates the
store-local state.)
def notify(item: String): String♦client
∃client : Client, item : String. selected♦client = item ∧ quantities(item) = 0 → notify(item)

The behavior returns a notification string (that is saved at the store client) and gets invoked
whenever a store has selected an item (by changing selected) with quantity 0. (Note that a
shorter condition with quantities(selected♦client) = 0 can be written as well.) The semantics
of triggering dictates that behaviors are invoked only once, whenever the condition changes
from false to true in the system. Note that the produced implementation needs to incur
communication between stores and the warehouse to check if the given condition became true,
due to the ∃ quantifier (at least when the selected item at some store changes or quantity
for some item becomes 0). To guarantee this, the compiler emits additional checks that
check the condition whenever it might become true; more specifically, after every change to
quantities on the server and selected on the clients.

2.4 Semantics and Consistency of Resulting Implementations

In order to characterize possible valid resulting distributed implementations, the model should
constrain their behavior to match the behavior defined with sequential program, as well as
the constraints of distributed aspects. Effectively, a valid implementation should project the
given sequential programs onto the distributed system, respecting specified allocation and
triggering conditions.

A possible execution of a distributed implementation of behaviors defined by order and
notify is illustrated in Figure 1. The system includes one Server and two Client nodes.
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7:6 Leveraging Sequential Computation for Programming Distributed Systems

We assume the initial value of selected is "p1" at both store clients and its quantity is 5
at the warehouse. The dots on the timelines designate the points in time of either firing
of a trigger or evaluation of the given expression at the given node. Note that EvOrder
events fire (after being invoked programatically) on the store client nodes, while the dashed
line designates that the execution of order triggers the notify behavior; all three invoke the
behavior defined by the appropriate function. Labels on the edges denote values that are
being communicated between nodes. Note that behaviors are split, by the compiler, into
multiple executions on potentially multiple nodes in the system.

An important aspect for enabling natural and convenient reasoning about (possibly
concurrent) executions of behaviors is guaranteeing consistent execution. We propose
allowing reasoning about end-effects of executions as if behaviors specified with sequential
programs executed atomically, in the same order observed anywhere in the system (alike
guaranteeing linearizable executions [14]). In Figure 1, the system executes the behaviors
in a consistent way, relative to the linear order of triggering of each of the behaviors; more
specifically, fist invoking order on Client1 which causes notify to be invoked afterwards,
followed by another order invoked on Client2.

Even though providing such strong guarantees in the distributed setting might be costly
(atomicity requirement might require effectively locking all nodes participating in the behavior
beforehand [4]), we demonstrate the possibility for avoiding such overheads by analyzing the
defined behaviors and their possible concurrent executions. We analyze three different cases
of the resulting implementation, going from the variant that uses the most pessimistic mech-
anisms to variants that leverage the specifics of the behaviors to relax the used mechanisms
arriving at a more efficient implementation that achieves the same results in terms of the
intended semantics and strong consistency guarantees.

Let us consider the running example, with a single server for the warehouse and multiple
store clients, with a small addition. In addition to the presented operations order and notify,
for the purpose of examining negative effects of reordering of behaviors observed at store
clients, we assume an additional operation notifyAvailable, which is similar to notify, but
notifies the store that the selected item became available (its quantity became positive):
∃client : Client, item : String. selected♦client = item ∧ quantities(item) > 0 →

notifyAvailable(item)

Note that, as shown in Figure 1, since the state is allocated according to specified location-
dependent types, behaviors consist of code execution on both types of nodes, together with
message sending and handling. Consequently, this allows inconsistent execution orders
in which executions of notify and notifyAvailable are observed in different order on the
server and clients. To guarantee strong consistency, the compiler needs to emit distributed
implementations that prevent such inconsistent executions. We discuss different mechanisms
the compiler might choose to use in this case, depending on the analysis of the semantics of
the involved behaviors:

Distributed Locking. A pessimistic method for ensuring strong consistency can be achieved
by using distributed locking. Commonly used in transactional processing, distributed
locking tries to arrange a particular set of nodes to agree on a particular transaction,
avoiding inference from other transactions, effectively locking those nodes for exclusive
rights of the transaction [4]. Although achieving strong consistency (through strong
serializability, where the order of transactions is defined by the acquisition of locks),
algorithms for achieving such locking are prohibitively expensive and often unusable in
practice.
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In our example, this method can straightforwardly be applied to all the nodes in the
system, such that behavior in the system can be invoked only after “acquiring” the global
lock. This approach clearly ensures strong consistency, albeit at a prohibitive cost of
allowing execution of only one behavior (either that of order or notifications) at any point
in time across the whole system.

Central Point of Serialization. A simple observation in our example, where behaviors over-
lap at the single warehouse server, reveals the possibility to achieve more efficient, but
also strongly consistent implementation. More specifically, it is sufficient to rely on the
warehouse server to enforce ordering between executions of behaviors that might interfere,
at the point they are executed on the server. A common mechanism for achieving this is
to simply assign an index to messages that correspond to behaviors at the central point of
serialization (in our case, the server), so that all nodes in the system can order messages,
and thus corresponding executions [2, 4].
In our example, since the functionality of ordering and notifications depend only on the
state that is located on the server, the server assigns an index to messages that carry the
resulting values (e.g. a Boolean value for order) so that clients deliver (and end) behaviors
in the same order as on the server. Guaranteeing the same order of observing behaviors
is sufficient to guarantee linearizability, where the effects are the same as if behaviors
were executed in a serial manner. Note that, e.g. when a notification is issued for an
out-of-stock item (notify), it is issued after the order that caused it, so that store clients
always receives confirmations of their orders and corresponding out-of-stock messages in
the right order (with the need to store messages that are received out-of-order to deliver
them later).

Removing Redundant Executions. A further observation is that even though ordering of
behaviors is sufficient, it is not necessary to execute all parts of behaviors in certain cases;
some parts of executions can simply be ignored, while preserving the semantics.
Behaviors for notifications gets invoked whenever quantity of an item becomes 0 or gets
increased from 0. If an item quantity becomes 0 and then gets increased, it is incorrect to
observe the two different associated notifications in a different order on any of the store
clients. (This clearly cannot happen if either of the two previously presented mechanisms
is used.) Interestingly, for any set of notification behaviors that is executed, since both
notify and notifyAvailable just mutate per-store state (perform destructive updates),
the store clients can simply execute (i.e. observe) only the latest one, ignoring all the
previous ones. Therefore, a simple optimization of the previous implementation is to
always execute the latest notification behavior on the store clients, regardless of their
order determined on the server and discard any out-of-order notifications. This does
not violate the semantics and guarantees linearizable executions, while achieving better
performance in cases of concurrent notification behaviors. Note that the compiler can
perform this optimization in any such case of destructive updates (without side-effects).

A key insight behind our proposal is that the compiler, after analyzing defined behaviors
and their concurrent executions, can discover that not only the most pessimistic implementa-
tion is possible, but also two further optimizations, arriving at a more efficient implementation
that satisfies the semantics and consistency requirements of the given program. In the worst
case, if the compiler cannot discover any optimizations, the emitted implementation can
use the most pessimistic mechanism. We leave further concerns of handling semantics and
consistency concerns, as well as possible optimizations the compiler can perform in the
general case open, while assuming such strong guarantees in the rest of the paper. We
did not fully explore the extent to which such a program analysis can detect and perform
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7:8 Leveraging Sequential Computation for Programming Distributed Systems

optimizations to arrive at efficient implementations for a wider range of distributed systems.
It would be interesting to examine the possibility of employing various existing lower-level
distributed algorithms and systems in the produced implementations.

2.5 Defining Dynamic Structure of Distributed Systems
Some distributed systems dynamically maintain structure which conceptually corresponds to
a (sequentially defined) datastructure. In such cases, changes in the structure of the system
reflect modifications of the corresponding datastructure. To demonstrate flexibility of the
model in such cases, we incorporate a notion of a mapping between a datastructure and the
structure of the desired distributed system.

Let’s assume we want the structure of our system to correspond to a search tree (which
is not uncommon, e.g. in large-scale computing [23]). Having declared nodes that store data
in the system with Node and client nodes with Client, the developers can designate the
mapping between the defined binary search tree abstract datatype to nodes with ↔σ

2:
Node ↔σ BST , trait BST
case object Leaf extends BST; case class Inner(l: BST, v: Int, r: BST) extends BST

which associates every Leaf and Inner instance to a node (of type Node) in the system.
Afterwards, the developers can refer to a node associated with an expression e: BST with
σ(e). The programming model creates one mapping for every designated datastructure; it’s
purpose is to provide implicit associations between instances of the datastructure and labels
that denote location. Therefore, location of tree instances tree = Inner(l, v, r) and l are,
σ(tree) and σ(l), respectively (where, by default, the model treats them as different physical
nodes as well).

Next, the developers implement insertion of a new element into the tree, where each key
is assigned to a separate (newly created) node, with the following function:
∃c : Client, n : Node. EvInsert(c,n)(key) →
def insert(tree: BST♦n, key: Int♦c): Inner = tree match {

case Leaf => Inner(Leaf, key, Leaf): Innerσ(tree)
case Inner(l, v, r) => if (v < key) Inner(l, v, insert(r, key))

else if (v > key) Inner(insert(l, key): Inner♦σ(l), v, r)
else Inner(l, v, r) }

where the event EvInsert represents an action on some client node c that targets a data
node n. (Where the most common case for n is the node that represents the root of the tree.)
Due to the declared mapping between nodes and trees, when a new tree node is created, a
new data node in the distributed system is bound to it. Effectively, this code implements a
distributed version of the tree, where each tree node is located on a separate physical node.

For illustration, the developers have annotated two expressions in the function, both
of which if typechecked, should execute on nodes defined with σ. For example, insertion
into the left sub-tree executes on, and creates, data node σ(l), where σ(l) is different from
σ(tree), thus insertion into sub-trees executes across different nodes in the system. Note that
a valid implementation, which matches the datatype, needs to (know how to) create new
tree nodes and assign appropriate values to them (i.e. initialize their state). (Interestingly,
for an implementation closer to realistic scenarios, data nodes can be mapped to elements
that can be easily created and migrated between different physical nodes, such as actors in
the actor model [1].)

2 Again, we use Scala syntax for defining abstract datatypes as class hierarchies.
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3 Verifying Distributed as Sequential Programs

One of the insights behind our approach is that by allowing developers to specify distributed
systems with sequential programs we can eliminate much of the complexity that stems from
handling distributed aspects, and as a consequence, decrease the amount of programming
errors, as well. Moreover, we will demonstrate that such an approach allows incorporating
existing techniques for analyzing and verifying correctness of sequential programs into
development of distributed applications.

3.1 Checking Correctness of Application Logic
In addition to simpler reasoning about the behavior of the system, alleviating the concurrency,
communication, and other low-level details enables direct application of techniques for
checking correctness of sequential programs. Here, we demonstrate that we can easily check
functionality of the system with a standard verification technique, solely by the virtue of
relying on sequential programs for specifying behavior.

Even though our running example is simple, we can imagine verifying the property that
no order can be made if the given item is out of stock, regardless of the quantity. To check
this property, we formalize it with the following logical formula:

∀quant, item. quantities(item) = 0 ∧ (res = order(item, quant)) → res = ⊥

which can easily be translated into a verification condition and checked with an off-the-shelf
SMT solver. After encoding this condition as an SMT instance, we verified it in less than
half of a second with the CVC4 SMT solver.

Verifying the condition as a low-level distributed implementation would need to take into
account the introduced distributed aspects and would become considerably more complex.
This example hints that by separating functionality from specifying distributed aspects, we
can leverage existing verification tools for sequential programs and effectively translate all
the obtained guarantees to the resulting distributed implementations.

3.2 Checking Correctness of Concurrent Behaviors
The fact that we can rely on behaviors faithfully translated into strongly consistent executions
of a distributed system affects the extent to which the system can be tested and checked.
As one of the possible techniques that offer potential for scalability, we will consider model-
checking concurrently executing behaviors and demonstrate an immediate gain in scalability,
relative to model-checking low-level distributed implementations.

Let’s add functionality of item transfer to our warehouse application: stores can transfer
specified items (for simplicity, we allow only a single transfer of a predefined quantity) to
other stores, while those items should be ordered at some point later from the warehouse (to
account the transfer). Transfers effectively transfer quotas between stores, so the store that
received a transfer can use it for orders, while the store that made the transfer needs to settle
it with the warehouse (i.e. to decrease its quota accordingly). We omit some definitions:
transfer is tracked with tStat, while the code for order now uses and updates a transfer, if
any transfer at the store exists. The developers implement this functionality with:
∀client : Client, var tStat: String♦client // track a transfer
∃c1, c2 : Client. EvTransfer(c1, c2)(item) ∧ c1 6= c2 → transfer(item, tStat♦c1, tStat♦c2)

where they ensure that transferring an item can occur between two stores (here, located at
client nodes c1 to c2), as long as the two nodes differ. The condition should prevent the
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item from being transferred back to the original store and avoid chain of transfers without
accounting the transfer with the warehouse (i.e. artificially inflating the quotas).

The developers can then formulate the correctness condition as an LTL formula, where
the transfer status is appropriately encoded with predicates pending (transfer sent from a
store), received, and settled (the pending transfer gets settled):

∀item. G(received(item) → X(pending(item) U settled(item))) .

The formula states that for all items item, it is always (globally) true that, if item is received,
starting from the next step, the transfer status of item will be pending until it is settled. Note
that such a formula is sufficient since we assume only one transfer is possible. Model-checking
this formula can reveal that the condition in the trigger is not sufficient: a store can get it’s
own item transferred back, simply by giving it and receiving it back, and use it without the
necessary accounting.

By checking behaviors as transactional executions of given sequential programs (which is
sound due to strong consistency guarantees), we can discover this bug in considerably less
iterations than when checking low-level implementations, due to the combinatorial explosion
of the search space caused by intertwined low-level steps, including message sends and
receives.

4 Program Transformations as Optimization

Having functionality expressed with sequential programs enables applying program analysis
not just for checking functional correctness, but also for optimizations; many semantic-
preserving transformations that apply to sequential programs can be reused in order to
generate more efficient distributed implementations.

4.1 Optimizing with Data Allocation
Data allocation greatly influences possible resulting implementations and their performance.
In many cases, by invoking behaviors only when needed the compiler can optimize away
much of the communication in the system, while preserving the specified functionality.

In our running example, when implementing order, instead of sending data to perform
the check on the warehouse server, the compiler can generate an implementation with:
(quota >= quant): Boolean♦client

which checks the given condition on the store client and thus avoids incurring unnecessary
communication in case the condition is false (i.e. the store does not have sufficient quota to
make the order and the order fails immediately).

Note that in this case as well, this optimization can be discovered and performed by
the compiler automatically, without any intervention from the developers. At this point,
the compiler only considers optimizations that decrease the amount of communication in
the system, while in many cases other optimization metrics could be used as well. (The
compiler can choose implementations that make different trade-offs; the implementation
might incur less communication, but transfer more data overall.) The programming model
offers possibilities for extending the compiler to consider different optimization metrics.

4.2 Removing Unnecessary Triggers
Conditions, which invoke behaviors, might trigger at any point and place in the system; in
the general case, the compiler needs to insert code that checks the condition at many places
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in the implementation, pessimistically. However, often, there are much fewer places where
conditions can actually trigger. In addition to only checking condition at places at which
the variables mentioned in the formula of the condition might change, if proved that the
condition cannot become true regardless of the value of variables, the condition checking at
that place can be eliminated altogether. This optimization becomes more significant in cases
where to check the condition, communication between nodes needs to be incurred.

In the running example, lets consider the distributed warehouse with previously defined be-
haviors, including notifications for an item becoming available for ordering (notifyAvailable,
as presented before). In addition, developers add functionality for adding a certain quantity
of an item to the warehouse (refilling the warehouse) as addItem (which is similar to order;
we will omit the definition for brevity and assume it can be invoked at store clients similarly):
∃c : Client. EvAddc(quant) → \mathit{addItem}(\mathit{selected}♦c, \mathit{quant})

Having all these sequential definitions, in the worst case, the resulting implementation would
need to check conditions for the two notifications (notify and notifyAvailable) both at the
place where the item quantity gets decreased (in order) and increased (in addItem), since at
those places item quantities change (and notifications might potentially need to be invoked).
However, only two checks are (provably) needed: for the case of out-of-stock notifications,
they surely cannot be triggered when item quantity is increased (in addItem). The compiler
can guarantee this by checking the satisfiability of the following implication:

∃item. ¬(quantities(item) = 0) ∧ (res = quantities(item) + 1) → res = 0

which states that there exists an item, for which if the quantity was not zero (due to
triggering only conditions that become true), after incrementing the item’s quantity, the
quantity can become 0. This logical formula is clearly not satisfiable. Therefore, an optimized
implementation can completely omit checking the condition and the notification functionality
in that case. In the produced implementation, this halves the total number of invocations of
the functionality for both notifications, on average.

4.3 Inferring and Generating Contexts
Some distributed applications behave in specific ways depending on the current context: most
notably, some behaviors might be enabled only under a specific context. In our programming
model, such contexts can be specified implicitly in triggering conditions. However, one
possible optimization that compiler can perform is to infer more general contexts from
the specified triggering conditions, and maintain and propagate them across the system to
optimize certain behavior executions, e.g. to avoid unnecessary communication.

As an illustration of the idea, in our running example, if developers change the definition of
order and add an additional expression to the triggering condition, such that the functionality
depends on the warehouse being non-empty (since otherwise the order will fail), as:
∃c : Client. EvOrderc(quant) ∧ (∃item. quantities(item) > 0) → order(selected♦c, quant)

and add other functions that depend on the same condition or the negation of it (i.e. that
the store is empty, ∀item. quantities(item) = 0), the program analysis can infer this as a
context. If so, the compiler can then produce an implementation that propagates the state of
the warehouse as the context, within messages for other behaviors, and prevent unnecessary
executions of further order requests.

Effectively, given the specifications are satisfied, program analysis can abstract the
resulting system as a state machine. In addition to being more efficient, due to prohibiting
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unnecessary executions depending on the context, the relation between behaviors and
identified contexts can make reasoning and verifying the system easier.

5 Related Work

Many approaches presented in prior work focus on using sequential computation to some
extent while introducing additional abstractions, such as remote procedure calls, reactive
values, and conflict-free replicated data type, for handling distributed aspects of the system
[7, 17, 25, 9, 24]. A related line of research includes programming platforms based on writing
sequential programs that aim at abstracting away infrastructure concerns to allow focusing on
the application logic [3, 18]. An overview of different programming models and the influence
of the sequential model on programming distributed systems is given in [5, 2]. In general,
even though these models abstract away some of the complexity, due to the close match
between the program and the final distributed implementation, expressing certain complex
behaviors requires low-level reasoning and careful structuring of the program [28, 26].

Our approach is aligned with the idea of using high-level specifications of distributed
aspects and offloading the search for low-level implementations to the compiler. Some
approaches lift the abstraction of specifying behaviors by using similar mechanisms to
the ones employed by our approach, including logical formulas (used for triggering in our
approach) in the form of event guards and await statements, and the concept of location,
which allows automatic data distribution according to specifying computations [20, 16, 10].
Prior work discusses the importance of preserving semantics of sequential computation and
its effects on possible optimizations, as well as the potential role for programming distributed
systems [21, 19]. In the similar spirit, this work tries to motivate lifting the level of abstraction
by demonstrating potential gains in simplicity and performance. Moreover, it provides a
different perspective on formalization of sequential computation and specifications to allow
additional means for ensuring correctness and efficiency of the resulting implementation.

While our approach focuses on implementing behaviors which can be conceptually ex-
pressed as sequential programs, it lacks expressiveness for programming distributed algorithms
that inherently require dealing with aspects like processes and messages, and require control
of low-level concerns [20, 26]. While re-implementing such algorithms is rarely needed, they
often cannot be used directly via an external library (e.g. if modifications to some of its
internals are needed); our approach aims at utilizing different existing algorithms as means
to an end whenever necessary, even in cases their code needs to be customized for specific
needs of the intended distributed application.

Our approach shares some of the high-level goals with the following lines of research on
programming distributed systems:

Tierless Programming Models. Similar in spirit of avoiding the complexity and breaking
the underlying programing model, tierless programming models focus on simplifying
specification of aspects that cut across different tiers and unify them into a single
model (and traditionally, focus on web development) [8, 27, 7]. Although these models
simplify some of the aspects considered in this work, including communication, storage
and interaction, their focus is to remove the complexity that arises due to handling
different tiers of the system, rather than on preserving the semantics and structure of
sequential computation within the same tier. Note that tierless models usually adopt
existing mechanisms and constructs, such as client-server architecture and RPC for
communication [7].
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Actor-Based Programming Models. Despite being flexible and providing clean abstractions
for programming distributed event-driven systems that can easily be mapped to actual
physical systems, actor models suffer from being close to the low-level implementations,
where the structure of the system and behaviors need to match closely with the declared
programs, making them complex and hard to reason about [1, 15, 13, 26]. Interestingly,
actor-based programming frameworks represent a good fit for a low-level model that can
be leveraged in the final emitted implementations [19, 26].

Partitioned Global Address Space Partitioned global address space (PGAS) models aim to
provide a simple programming model, and consequently allow better performance, for
parallel programs by unifying the support for data and task parallelism, and abstracting
the data model through a global address space [6, 10]. The concept of a “place” in these
models allows allocating computations and data across the global address space, at a level
that can be closer to the intended (sequential) behavior. Although places allow assigning
a cost model to data accesses (based on the topology), automatic data distribution is
usually restricted to partitioning of regular and dense data structures such as arrays;
some PGAS languages require explicit distribution of data objects to remain expressive
for irregular and sparse structures [10]. Nodes in our model are similar to places in PGAS
in that they contain running computations, which in turn might be spread across multiple
different nodes. However, our model does not rely on specific patterns of data distribution
and parallelism; it analyzes defined behaviors to emit event-driven implementations that
need to satisfy consistency guarantees, and appropriately allocate both computation and
data.

6 Concluding Remarks and Vision

The sequential model of computation provides a natural way for expressing computation.
However, the sequential model alone is not sufficient for programming distributed systems.
As such, it is either heavily ignored, or to large extent complicated, in modern programming
models and languages for distributed systems, due to the need to accommodate distributed
aspects such as data allocation and communication.

This paper explores fully reusing sequential computation model for expressing behavior,
while characterizing intended distributed systems with orthogonal specifications. With
separation of concerns of expressing behavior and specifying distributed aspects of the
system, by writing orthogonal constraints, we can achieve development of distributed systems
without breaking the simplicity of writing and reasoning about sequential programs. We
have shown an approach to specifying data and computation allocation through enhancing
the type system and defining behavior invocations with logical formulas. We motivated the
new approach by demonstrating potential benefits in the development process, not just in
terms of simplicity in writing programs, but also checking their correctness and applying
semantic-preserving optimizations for emitting efficient distributed implementations.

A number of challenges remains for completely characterizing the programming model
and transforming it into a programming language expressive for development of realistic
distributed systems. We only briefly discussed the strong semantics and consistency guar-
antees that the model should provide as an interface for developers, while demonstrating
an approach that can emit efficient implementations in certain scenarios. Achieving strong
guarantees, together with efficiency, in the general case, remains an open problem, for which
a solution would potentially require combining multiple techniques and results from the
domain of programming languages and distributed computing. As hinted in the paper,
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providing a high-level interface for specifying behaviors through sequential programs opens
up possibilities for many lower-level design choices in the final implementation; one interesting
venue to explore represents not just more flexible data allocation, but also data sharing and
replication, and the needed mechanisms the compiler would need to utilize.
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