
Uncanny Valleys in Declarative Language Design
Mark S. Miller1, Daniel von Dincklage2, Vuk Ercegovac3, and
Brian Chin4

1 Google Inc., Mountain View, CA, USA
erights@google.com

2 Google Inc., Mountain View, CA, USA
danielvd@google.com

3 Google Inc., Mountain View, CA, USA
vuke@google.com

4 Google Inc., Mountain View, CA, USA
brianchin@google.com

Abstract
When people write programs in conventional programming languages, they over-specify how to
solve the problem they have in mind. Over-specification prevents the language’s implementation
from making many optimization decisions, leaving programmers with this burden. In more de-
clarative languages, programmers over-specify less, enabling the implementation to make more
choices for them. As these decisions improve, programmers shift more attention from implement-
ation to their real problems. This process easily overshoots. When under-specified programs
almost always work well enough, programmers rarely need to think about implementation de-
tails. As their understanding of implementation choices atrophies, the controls provided so they
can override these decisions become obscure.

Our declarative language project, Yedalog, is in the midst of this dilemma. The improvements
in question make our users more productive, so we cannot simply retreat back towards over-
specification. To proceed forward instead, we must meet some of the expectations we prematurely
provoked, and our implementation’s behavior must help users learn expectations more aligned
with our intended semantics.

These are general issues. Discussing their concrete manifestation in Yedalog should help other
declarative systems that come to face these issues.

1998 ACM Subject Classification D.3.2 Constraint and Logic Languages

Keywords and phrases Declarative logic programming language

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2017.9

1 Background

Kowalski famously observed [4] that “Algorithm = Logic + Control”. Declarative languages
enable users to ask logical questions. The “logic” of a declarative program is a description
of what a correct answer looks like. The “control” explains how to compute answers that
satisfy that description. Often these two components are not separate parts of a declarative
program but distinct ways of reading a program. For example, the declarative reading of a
Haskell program considers Haskell functions to be the mathematical functions they seem.
The operational reading sees these functions as code explaining how to compute results
from input arguments. In a declarative language, the computed results must be within the
declarative reading’s description.

© Mark S. Miller, Daniel von Dincklage, Vuk Ercegovac, and Brian Chin;
licensed under Creative Commons License CC-BY

2nd Summit on Advances in Programming Languages (SNAPL 2017).
Editors: Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi; Article No. 9; pp. 9:1–9:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84868879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Uncanny Valleys in Declarative Language Design

Listing 1 A trivial Horn-clause rule.
aa(X,Z) :- bb(X,Y), cc(Y,Z).

In declarative language design, there is an inescapable tradeoff between expressiveness
and automation. General purpose declarative languages such as Haskell and Prolog are very
expressive but with limited automation – incrementally more complex questions can be asked
for incrementally more effort; but their users are responsible for controlling the direction of
execution. Special purpose languages like Datalog and SQL are highly automated but with
limited expressiveness – many questions cannot be asked, but of those that can, users can
leave operational concerns to the implementation.1

As general purpose languages improve their automation, and as special purpose languages
improve their expressiveness, the gap between them will narrow but not close. These
improvements create dilemmas. For which questions should users let the language figure out
how to compute answers? When should users still make operational choices, and how should
they express them? User uncertainty about their remaining operational responsibility is the
uncanny valley of concern to this paper.

Yedalog [2] is a general-purpose Datalog-like language for scalable exploratory data
analysis – for asking questions of large semi-structured data sets. Yedalog has been used
in production for several years by several teams. Nevertheless, the Yedalog implementation
makes many control decisions that general purpose languages normally leave to their users.
To reduce user uncertainty about their remaining operational responsibility, we designed
and documented an informal operational model. But people learn by experience more than
explanation. From their experience using Yedalog – seeing which of their programs work or
do not – our users learned a different model. The model they learned assumes some forms of
automation beyond any we had planned to support.

As we change Yedalog to meet these unanticipated expectations, we must better anticipate
what models users will learn from Yedalog’s new behavior. These models must provide users
with better clarity about how to use Yedalog well. New user expectations will in turn affect
what further changes we make to Yedalog. This feedback loop shapes our trajectory through
the design space. How should we steer it and where will it lead?

1.1 Logic Programming
To locate Yedalog in the declarative language design space, we rapidly zoom in from declarative
languages to logic programming languages, to Horn-clause logic programming languages, to
Datalog-like languages, and finally to Yedalog.

Among declarative languages, Kowalski’s distinction is especially crisp for logic program-
ming languages. Logic programs consist of facts, rules, and queries. Queries produce answers.
In the operational reading, facts are data, rules are procedures, queries are calls binding
input parameters, producing answers binding output parameters. In the declarative reading,

1 “Declarative” is sometimes used to mean what this paper calls “highly automated” – the ability of
users to avoid operational concerns. In this paper, “declarative” means only the ability of users to
be confident that what is computed corresponds to what they have logically described. In our terms,
Haskell and Prolog are declarative. Datalog and SQL are both declarative and highly automated. All
these languages, as well as Yedalog, include unsound escape hatches that compromise this confidence.
But so long as these escape hatches are explicit and visibly absent from most programs, we still consider
these to be declarative languages.

M.S. Miller, D. von Dincklage, V. Ercegovac, and B. Chin 9:3

Listing 2 Length of shortest path.
path(X,Z) min= edge(X,Z).
path(X,Z) min= path(X,Y) + edge(Y,Z).

facts are propositions assumed to be true, rules express how some propositions imply other
propositions, queries are parameterized hypotheses, and answers are their parameterizations,
to be proved from those facts and rules. Execution is the search for such proofs.

How search proceeds through this search space matters. The Horn-clause logic program-
ming languages – Prolog, Concurrent Prolog [8], Datalog – have essentially the same abstract
syntax (e.g. Listing 1) with the same logical meaning, but make wildly different operational
choices. To the programmer trying to get practical work done, these languages feel vastly
different from each other.

Programming in Prolog resembles conventional call-return programming augmented with
backtracking search, where the programmer must write the program according to the precise
order execution should proceed. When aa is called, call bb and then cc. Programming in
Concurrent Prolog resembles actors exchanging asynchronous messages. When aa’s inputs
are ready, run bb and cc in parallel, communicating on their shared variable Y.

Programming in Datalog resembles database query languages like SQL, where facts are
data-tables, rules create views, and queries are queries. Join bb and cc to produce aa.
Datalog implementations have all the freedom of query planning that databases enjoy:

bb might run first, generating Y values for cc to test
cc might run first, generating Y values for bb to test
bb and cc might both generate answers intersected on Y

This paper freely mixes logic and database terminology. A relational table is also a disjunction
of facts. bb(X,Y),cc(Y,Z) is a conjunction and also a join. The multiple rules of path
in Listing 2 are a disjunction and also a relational union. Yedalog, like many Datalog-like
languages, supports aggregation. path expresses shortest path as a min aggregation over the
disjunction of all path lengths. When lengths are known to be non-negative, some systems
will implement it using Dijkstra’s algorithm [3, 7].

1.2 Yedalog’s Goals
Yedalog’s focus is scalable data exploration. As our users spend less attention on how
things execute, they spend more attention on asking questions and interpreting answers. We
thus aim for the following goals2. These goals conflict, requiring us to make tradeoffs and
compromises based on our sense of the costs and benefits.

Query planning freedom. Programs should not accidentally over-specify the implementa-
tion. The programmers’ natural way of asking questions, crafted without attention to
operational details, should leave the Yedalog implementation with enough freedom to
make good choices.

Good optimization decisions. As Yedalog makes better implementation choices, users do
not need to.

2 In addition, to be more quickly understood by our audience, Yedalog has a more C-like surface syntax
than we show in this paper.

SNAPL 2017

9:4 Uncanny Valleys in Declarative Language Design

Listing 3 Inferring orders and modes.
front has modes (in ,in) and (out ,in)
reverse has modes (in ,out) and (out ,in)

back(E,L) :- front(E,R), reverse (R,L).

Query planning compatibility. In order to preserve query planning freedom, the program’s
observable behavior should be compatible enough under all decisions the implementation
is allowed to make.

Usable operational controls. Automatic planning will sometimes be inadequate. We must
provide users the tools they need to cope, such as operational knobs for overriding default
decisions.

Section 2 explains why “Query planning freedom” needs a different understanding of “Query
planning compatibility” than we expected, and how to provide it. Section 3 shows how to
handle errors without violating query planning compatibility. Section 4 discusses uncanny
valleys in design spaces. Section 5 concludes.

2 Inferring execution orders

In pure Datalog, predicates represent concrete data or computed views of data. These
data-oriented predicates can be materialized as finite relational tables. By contrast, most
computational predicates express an infinite relation among their parameters. Integer
addition embodies an infinite set of triples. Factorial embodies an infinite set of pairs. To
better support general-purpose use, Yedalog programs can freely mix data-oriented and
computational predicates.

Each Yedalog predicate has a set of modes. Each mode says, for each parameter, whether
the parameter is input or output. Finite data predicates support an all-out mode, where all
parameters are output parameters. Infinite predicates can only support modes containing at
least one input parameter. For an input parameter, the caller must provide concrete data.

An output parameter is strictly more general: It can output data for the caller to use, or
use data provided by the caller as input, by comparison or indexing. For example, the edge
predicate of Listing 2 would normally be an all-out finite table indexed (at least) on its first
column. Without input edge will enumerate all edges. With a first node as input, edge will
lookup and efficiently enumerate only those edges emerging from that node.

Yedalog combines mode inference with mode-based reordering. The back predicate of
Listing 3 says that E is at the back of L if it is at the front of L reversed. The front
and reverse predicates represent infinite relations since there are infinitely many possible
lists. They support the modes stated in Listing 3. Since front demands a binding for R
and reverse can provide one, the only feasible orders run reverse’s (out,in) mode first,
generating R bindings for either mode of front to use. From the feasible orders of back’s
bodies, we can infer the possible modes of back: (in,in) and (out,in).

We avoid explosive search by inferring only the minimal set of most general modes.
The modes supported by reverse are already its minimal set, since neither (in,out) nor
(out,in) is more general than the other. For back, we infer only (out,in) since it is strictly
more general than (in,in).

We provide our users knobs to make operational decisions. Some are subtle: Our +
and - operators are irreversible, leading users naturally to force the right choice between

M.S. Miller, D. von Dincklage, V. Ercegovac, and B. Chin 9:5

Listing 4 Factorials: The bad, bad, worse, and ugly.
factA (0) = 1.
factA(M+1) = (M+1) * factA(M).

factB (0) = 1.
factB(N) = N * factB(N -1).

factC (0) = 1.
factC(N) = N * factC(N -1) :- N >= 1.

factD (0) = 1.
factD(N) = (N >= 1 && N * factD(N -1)).

top-down and bottom-up when it makes a difference, as in the following example. Others
are explicit: Conjunction order is unspecified by default, but we provide an && operator
to force left-to-right order. When should it be used? Forcing order destroys choices an
implementation could have used well. Not forcing can occasionally leave programs incorrect.
How do users decide?

Listing 4 shows four versions of recursive factorial that are all declaratively correct. factA
executes bottom-up, starting at 0, and reliably fails to terminate as it enumerates larger
numbers3. factB executes top-down, starting with the requested argument, and reliably fails
to terminate as it enumerates ever smaller negative numbers.

By “bottom-up” we mean computing forward from known facts, like the factorial of zero,
to implied facts like the factorial of one, until reaching the query. By “top-down” we mean
computing backward from the initial query like the factorial of 7, to subgoals like the factorial
of 6, until reaching known facts like the factorial of zero4.

As an informal experiment, we asked our users to write the standard introductory
recursive factorial function. 80% submitted variations of factC. On the current Yedalog
implementation, factC always happens to execute correctly and pass any possible tests.
However, Yedalog is free to make either the recursive call first or the (N >= 1) test first.
Had factC recurred first, it would not have terminated. Instead, it would speculatively
enumerate ever smaller negative numbers before the (N >= 1) test that would disqualify
these speculations. By contrast, factD is the correct Yedalog program no one wrote, which
uses && to avoid this hazard. Although we have documented these issues well, none of our
survey responses even mentioned this ordering issue as a possible concern.

We documented an operational model in which factC might not terminate. Our users
understood a model in which factC always works, which is a more accurate model of what
our implementation does. Which is more right? As we change Yedalog, which of these models
do we start with? These questions led us to better understand query planning freedom and
query planning compatibility.

3 Although pure Datalog programs always terminate, Datalog programs with arithmetic may not.
4 Yodalog actually implements factB by magic sets [1]. Magic sets is often described as bottom-up

because it reuses the machinery of bottom-up execution. But since magic sets mostly work backward
from queries to facts, in this paper we do not distinguish between top-down and magic sets, using
“top-down” for both.

SNAPL 2017

9:6 Uncanny Valleys in Declarative Language Design

2.1 How much freedom to plan badly?
No matter what operational model language designers document, the operational model
implementors implement must support those user expectations that implementors dare not
break. At the same time, to enable implementors the freedom to choose among more good
plans, the operational model must also allow them to choose among more bad plans. Query
planning compatibility helps us navigate the conflict.

Under all allowed implementation choices, factA and factB never work and factD always
works, which upholds query planning compatibility. But saying that factC may or may not
terminate denies reality. The fact that many patterns like factC always execute well today
means that we dare not break them. Put this way, query planning compatibility is not so
much a goal to achieve as a way to understand what query planning freedom is already lost.

Of course, we are not concerned about breaking factC itself. No one wrote this particular
program until we asked. Our users wrote this specific program because of expectations they
learned from some larger category of programs. They form these categories by generalizing
over many concrete experiences. How they generalize depends on what they find intuitive.
From an HCI (human computer interaction) perspective none of this is surprising; but
programming languages raise the stakes. Expectations people learn from interactive use they
adjust and relearn under continued use. By contrast, widespread programmer expectations
get baked into large numbers of programs.

Of two observably different outcomes X and Y, we say Y is compatible enough with
X when the expectations users learn from X do not deter implementors from causing Y.
“Compatible enough” is thus always a judgement call, weighing the costs of breaking X
expectations vs. the benefits of Y. This applies to performance as well as correctness. As we
change Yedalog’s implementation to make better choices in general, we might make some
previously-efficient programs somewhat slower, but we dare not impose prohibitive costs on
patterns already in widespread use.

“Compatible enough” is directional: No non-malicious user minds if a previously non-
terminating program starts to work or a previously expensive program become cheaper. Due
to the same directionality, implementors should be aware that each improvement is also a
potential commitment, cutting off their freedom to make other choices. At every stage, we
should rationalize our commitments back into our language design, in order to shape what
freedom usefully remains [9].

The next section explain such an improvement and evaluates it by these criteria.

2.2 Unrolling multi-recursion
Since factC already works in the implementation, how can we change our model so that
factC must work in all implementations? For factC itself we can do so trivially. Yedalog’s
stratification analysis already distinguishes potentially recursive calls from statically non-
recursive calls. If we require recursive calls to be scheduled as late as feasible – which a good
planner would do anyway – then factC becomes correct.

Any intuitive category that includes factC also includes fibA from Listing 5. However,
fibA is multi-recursive. It makes more than one potentially recursive call. They cannot both
go last. As far as the implementation knows, either conjunct, if consistently run first, might
never terminate even if the other conjunct would have caused an early failure.

Computation within each conjunct of a conjunction is speculative – only relevant when
none of the other conjuncts fails. Speculative execution in hardware works because specula-
tion checks cannot be indefinitely postponed. We could get a similar effect by specifying

M.S. Miller, D. von Dincklage, V. Ercegovac, and B. Chin 9:7

Listing 5 Unrolling multi-recursion.
fibA (0) = 0.
fibA (1) = 1.
fibA(N) = fibA(N -1) + fibA(N -2) :- N >= 2.

fibB (0) = 0.
fibB (1) = 1.
fibB(N) = (N >= 2 && X == fibC(N -1) && Y == fibC(N -2) && X+Y).

fibC (0) = 0.
fibC (1) = 1.
fibC(N) = (N >= 2 && Y == fibB(N -2) && X == fibB(N -1) && X+Y).

fairness among conjuncts, so speculation checks cannot starve. We have found a cheap
approximation of fairness: Unroll a multi-recursive predicate like fibA into mutually multi-
recursive predicates like fibB and fibC, where we rotate among the possible orders of which
recursive call comes first.

The unrolled implementation does have a real performance cost: fibA has one memo
table, reducing the naively exponential costs to linear. The unrolled form has two memo
tables, doubling the number of misses we pay for. Only multi-recursive predicates pay this
cost, which is linear only in the width of the multi-recursion. Wide multi-recursion is rare,
so these costs are minor.

This unrolling will not cause previously-working programs to become non-terminating.
It will cause some previously non-terminating programs to become correct, which sounds
good. However, such “improvements” can do more harm than good. If an intuitive general
category of code reliably does not terminate today, like the categories containing factA or
factB, then we would muddy the waters with an “improvement” that allows some programs
in such a category to work under some implementations, unless it requires all programs in
that category to work on all implementations. As far as we can tell, this unrolling technique
does not muddy the waters. Every general category that previously had reliably failed will
continue to reliably fail.

This unrolling technique implements only a static approximation of fairness. This raises
some interesting issues.

How do we specify the approximation of fairness that this unrolling implements? We
do not want to specify the unrolling technique itself because we want to preserve the
freedom to achieve the same benefit by other means.

For what programs is this approximation inadequate? We expect the accidental occurrence
of such programs to be exceedingly rare, which would make these occurrences that much
more uncanny when they do occur. No matter what we specify, we should expect users
to learn expectations that only true fairness could implement.

Can we close this remaining gap – implement true fairness for those rare cases – without
significant cost to other programs?

Despite these open issues, for our purposes this unrolling technique is good enough. Other
projects with different tradeoffs may judge these same issues differently.

SNAPL 2017

9:8 Uncanny Valleys in Declarative Language Design

Listing 6 Making failure noisy.
fibE(N) = fibA(N);
fibE(N) = raise(‘Must not be negative : $N‘) :- N < 0.

qq(M,N) = fibA(M) + fibE(N);

3 Errors as noisy failures

In real programs, deployed in production and interacting with a wide variety of systems,
many things can go wrong. Say a filename is misspelled. The parts of the program that
would process the contents of the file are, declaratively, queries about the contents of a file
with that name. Since there is no file with that name, these queries have no answers, i.e, they
fail. Failure is normally silent, but a surprising failure that violates programmer expectations
needs to alert the programmer, so that the likely problem can be fixed.

The fibA predicate of Listing 5 fails silently on negative input. The fibE predicate
in Listing 6 acts just like fibA except that, on negative input, its raise expression fails
and reports an error. To account for this, we extend our operational model to say that
a query has some number of answers and reports some number of errors. A query that
has no answers, fails. A query that reports no errors is silent. On negative input fibE
produces a noisy failure. Errors have no declarative significance, so fibA and fibE have
the same logical meaning. But fibE also produces diagnostic information. To route this
diagnostic information appropriately, we must determine how errors propagate through
Yedalog’s constructs. Our error design has the following goals:

Suppress error storms. In a sharded computation, such as a large map-reduce job spread
out over many machines, one underlying problem might trigger a massive number of
errors, although most contain no new information.

Preserve at least one diagnostic. To suppress error storms, we discard tremendous numbers
of errors. But we must not discard all of them. Few things are more frustrating than a
program that silently behaves badly.

Do not make non-erroneous execution significantly slower. Errors are for exceptional
cases we hope happen rarely. If support for occasional errors slows down the common
case, we have made a bad tradeoff.

Do not make erroneous execution explosively slower. Although we allow error handling
to be expensive, this is not a blank check.

Our error design should also respect the following general efficiency goals:

Stop conjunctions early on failure. The body of qq in Listing 6 calls both fibA and fibE
in a conjunction. Whichever goal runs first might fail, rendering the other irrelevant.
Efficient execution should be able to skip such irrelevant code.

Allow disjunctions to stop early on saturation. A disjunction saturates when no further
disjuncts could change the outcome. The efficiency of Dijkstra’s algorithm requires path
to stop examining alternative paths that cannot further reduce the minimum. It is not
realistic to require such optimizations in general, but we must allow them.

To suppress error storms while preserving at least one diagnostic, we allow errors to be
consolidated. When a query reports at least one error, all errors but one may be discarded,
preserving the property that it reports at least one error. Different plans may result in
different errors being discarded. Does this violate query planning compatibility?

M.S. Miller, D. von Dincklage, V. Ercegovac, and B. Chin 9:9

Listing 7 Holding speculative errors.
(try {

dd(X)
} catch (E) {

(ee(X),ff(X),gg(X)) && raise(E)
}) && (ee(X),ff(X),gg(X))

Listing 8 Folding the holding of speculative errors.
(try {

dd(X)
} catch (E) {

eTail(X) && raise(E)
}) && eTail(X)

eTail(X) = (try {
ee(X)

} catch (E) {
fTail(X) && raise(E)

}) && fTail(X)).
etc ...

By convention, Yedalog errors contain only diagnostic information meant for human
interpretation. Users may learn to expect specific errors, but usually they fix the indicated
problem rather than write programs that depend on errors to occur. We have not encountered
Yedalog programs that depend on the content of the errors that were reported. We thus
consider reporting at least one error under one plan to be compatible enough with reporting
at least one error, any error, under another plan.

3.1 Errors in conjuncts
The goal “Stop conjunctions early on failure”, taken literally, conflicts with query planning
compatibility. To resolve the conflict, we must split silent failures from noisy failures. Say
Yedalog’s static analysis conservatively assumes that either fibA or fibE may fail and that
either may report an error. Yedalog certainly has the freedom to run this conjunction in
either order. If fibA runs first and fails, stopping the conjunction early, the error that fibE
might have reported is not noticed. The conjunction as a whole would produce a silent
failure. On the other hand, if fibE runs first and produces a noisy failure, stopping the
conjunction early, then the silent failure fibA might have produced would not be noticed. If
fibE’s error propagates anyway, then the conjunction as a whole produces a noisy failure.

This violates query planning compatibility. For a conjunction, the difference between
silent and noisy failure is too surprising. This violation is not just a problem in theory. We
became aware of the issue when correct programs started reporting errors that “could not
happen”, confusing everyone. This reinforces our sense that conjuncts are seen as speculative,
and conjunctive failure as a failed speculation. What happens in a failed speculation stays in
a failed speculation.

The efficiency motivation for “Stop conjunctions early on failure” applies only to silent
failure. Since our efficiency goals require silent failures to stop early, query planning compat-
ibility demands that noisy failures cannot. After fibE reports an error, Yedalog must treat
this error as speculative, with fibA as the speculation check. We must execute fibA just

SNAPL 2017

9:10 Uncanny Valleys in Declarative Language Design

enough to determine if it would have any answers, if it had run first. We do not care what the
answers are or if it would have produced any more answers. If fibA produces any answers,
then the conjunction as a whole can fail reporting fibE’s errors. If fibA fails silently, the
conjunction must as well. This “unnecessary” execution of fibA may be expensive, but not
explosively so. It only happens when the implementation was allowed to run fibA first and
pay those costs.

What about conjunctions with data dependencies, such as dd(X),ee(X),ff(X),gg(X),
where the named predicates are out-moded? Each may be used to generate X values or to
test them. Under normal conditions, whichever executes first would generate and the rest
would test. But any may also report errors.

To ensure that speculative errors only propagate once the speculation commits, the
compiler could generate code approximately like that in Listing 7, where each of the remaining
three-way conjunctions must be similarly expanded. To avoid an exponential expansion, we
first fold each remaining conjunction into a separate predicate as shown in Listing 8. This
has no explosive costs. But it is too expensive for the completely non-erroneous case – the
outermost && chain. Instead, we will leave this one chain fully unfolded.

3.2 Errors in disjuncts
A disjunction saturates when no further disjuncts would change the outcome. Any disjunction
under a negation immediately saturates on the first answer. This answer establishes that the
disjunction succeeds, allowing the negation to immediately fail, not caring what the answer
is or if there are any more. We can realize some of these optimization opportunities more
easily than others, so we allow disjunctions to stop early on saturation without requiring
them to do so. We wish to preserve the query planning freedom to realize more of these
opportunities over time.

Allowing disjuncts to stop early on saturation, by duality, should have the same conflict
between efficiency, query planning compatibility, and preserving diagnostics. The dual
solution would be to hold the contributions from a noisy disjunct – both its answers and at
least one error – to see if the remaining disjunction would saturate silently. If it does, the
noisy disjunct could have been skipped under other possible plans.

Returning to the shortest path example of Listing 2, say that the edge predicate, when
asked for the length of a certain edge, answers and reports an error. If this edge lies on the
shortest path, and if no path without this edge is tied for shortest, then the search could
not have saturated without asking about this edge. Otherwise, depending on the algorithm
used and the non-deterministic order in which edges were examined, a possible plan might
not ask about this edge, not notice the error it would report, saturate, and silently answer
with the minimal path. For the same graph and the same program, another possible plan
would ask about this edge, notice the error, take its length into account, and proceed until
saturating to the same answer. If it propagates this error, then a program that was silently
succeeding might start reporting errors even when run on the same data.

Were we to apply the same standard of query planning compatibility that we applied
to conjunctions above, and to apply the dual solution, we would postpone consideration of
this edge until everything else settles down, giving us a candidate non-erroneous shortest
path length. We would then contribute back in the postponed edge length and wait for the
algorithm to settle again. If it settles on a shorter length, then we propagate both this error
and the shorter path length. Otherwise we would silently report the unchanged candidate
path length.

Should we bother with this extra bookkeeping, to avoid this observable difference of
outcomes? The duality hides an important psychological difference: Disjuncts are not

M.S. Miller, D. von Dincklage, V. Ercegovac, and B. Chin 9:11

speculative. The success of one disjunct does not trigger an expectation that the other
disjuncts “could not happen” but merely that they “might not happen”. We have not found
errors from unnecessary disjuncts to cause confusion in practice. Thus, we hold disjuncts to
a lower standard of compatibility than we require of conjuncts.

4 Discussion

The original uncanny valley [5], in the context of robotics and computer graphics, predicted
how a pattern of confused expectations leads to a feeling of creepiness. Their valley is a
transient dip in affinity along a trajectory of progress towards lifelike human portrayals.
Before the valley lies the pleasantness of a cute toy. After the valley are portrayals so lifelike
they continue to amaze. To progress to that achievement, one must journey through the
valley, where portrayals are good enough to provoke perceptual expectations that they then
disappoint. We use this as a loose metaphor; our concern is not creepiness.

In declarative language design, we start at two pleasantly stable points in the design
space. The first is occupied by expressive general purpose languages, in which users can
ask any question but have full responsibility for figuring out how to compute an answer.
These users discharge their responsibility without confusion by programming in terms of
clear operational models. These programs over-specify, foreclosing on many optimization
opportunities, wasting both human attention and computational resources. The second
stable point is occupied by highly automated special purpose languages whose users do
not need any operational model, leaving implementations free to use a wide range of fancy
optimizations that need not be explained, in order to answer a limited range of questions.

From these two stable points, we see in the distance the promise of a third: A general
purpose language in which users can ask many questions without operational concern,
understand when they do need to make operational decisions, and understand how to express
them. To find this third point we entered the valley, where operational controls are needed so
rarely that they are expected even less. Despite this mismatch, our users are already much
more productive, so we proceed.

Other languages are on similar journeys. Dyna [3] in particular entered this valley ahead
of us and helped us find our footing. Software engineering has many uncanny valleys. A
vivid example outside of language design is refactoring IDEs.

Refactoring IDEs were first invented and used for Smalltalk, a dynamically typed language.
Without static types, automated refactorings have many false hits, so refactoring interactions
always involve the programmer reviewing each decision. Programmers learn by doing. From
the experience using these tools, programmers rapidly learn that they need to carefully decide
whether to approve or reject each individual change.

Refactoring IDEs for Java use its static types to make many decisions reliably. For
example, when changing the order of a function’s parameters, the IDE can correctly identify
exactly the call sites of this function, with no false hits and (in the absence of reflection)
no false misses. Nevertheless, when it reorders argument expressions at these call sites it
still might break the program – these argument expressions might now perform their side
effects in the wrong order. However, this happens so rarely that most programmers never
experience it. Programmers learn by doing. From these experiences, programmers learn to
assume these refactorings are correct and not to bother reviewing each individual call site [6].

Should we make these refactorings less reliable, so programmers stop learning that they
are more reliable than they are? Hardly. Rather, this example illustrates that we would
have knowingly proceeded into this valley anyway because the benefits are worth it, and that
retreat is not an attractive option. The only way out is through.

SNAPL 2017

9:12 Uncanny Valleys in Declarative Language Design

5 Conclusions

General purpose declarative languages, at first, leave many operational decisions to their pro-
grammers; but may absorb more operational responsibility over time. Declarative languages
that absorb all this responsibility start special purpose; but may become more general over
time. These paths lead to a dilemma, where these systems have gotten good enough that
users perceive them, and use them, as more than they are. Expectations outrun reality. This
problem is also an opportunity, to use the feedback between implementation behavior and
user expectations to help shape both to be more aligned and, together, more effective.

Acknowledgements. For feedback and suggestions, we thank Yedalog’s users, Peter Lude-
mann, Terry Stanley, Kevin Reid, and anonymous SNAPL referees.

References
1 Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic sets and

other strange ways to implement logic programs. In Proceedings of the 5th ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, pages 1–15. ACM, 1985.

2 Brian Chin, Daniel von Dincklage, Vuk Ercegovac, Peter Hawkins, Mark S. Miller, Franz
Och, Christopher Olston, and Fernando Pereira. Yedalog: Exploring knowledge at scale. In
Proc. of the 1st Summit on Advances in Programming Languages (SNAPL 2015), volume 32
of LIPIcs – Leibniz International Proceedings in Informatics, pages 63–78. Schloss Dagstuhl
– Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.SNAPL.2015.63.

3 Jason Eisner and Nathaniel W. Filardo. Dyna: Extending Datalog for Modern AI
(full version), 2011. URL: https://www.cs.jhu.edu/~jason/papers/eisner+filardo.
datalog11-long.pdf.

4 Robert Kowalski. Algorithm = logic + control. Communications of the ACM, 22(7):424–
436, 1979.

5 Masahiro Mori, Karl F. MacDorman, and Norri Kageki. The uncanny valley [from the
field]. IEEE Robotics & Automation Magazine, 19(2):98–100, 2012 original 1970 Energy.

6 Christoph Reichenbach, Devin Coughlin, and Amer Diwan. Program metamorphosis. In
European Conference on Object-Oriented Programming, pages 394–418. Springer, 2009.

7 Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. Distributed socialite: a
datalog-based language for large-scale graph analysis. Proceedings of the VLDB Endow-
ment, 6(14):1906–1917, 2013.

8 Ehud Y. Shapiro. Concurrent Prolog: Collected Papers. MIT press, 1987.
9 Allen Wirfs-Brock. Programming language standardization: Patterns for participation. In

5th Asian Conference on Pattern Languages of Programs.

http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.63
https://www.cs.jhu.edu/~jason/papers/eisner+filardo.datalog11-long.pdf
https://www.cs.jhu.edu/~jason/papers/eisner+filardo.datalog11-long.pdf

	Background
	Logic Programming
	Yedalog's Goals

	Inferring execution orders
	How much freedom to plan badly?
	Unrolling multi-recursion

	Errors as noisy failures
	Errors in conjuncts
	Errors in disjuncts

	Discussion
	Conclusions

