
Archived at the Flinders Academic Commons: 
http://dspace.flinders.edu.au/dspace/ 

‘This is the peer reviewed version of the following article: 
FULL CITATION, 

which has been published in final form at 
http://dx.doi.org/

PUBLISHER SET STAEMENT/MADE AVAIL WITH xxx 
PERMISSION (IF APPLIC.) This article may be used for non-
commercial purposes in accordance With Wiley Terms and 
Conditions for self-archiving'.    ////      “This is an Accepted 
Manuscript of an article published by Taylor & Francis in 
[JOURNAL TITLE] on [date of publication], available online: 
http://www.tandfonline.com/[Article DOI].” //// © <year> 
Elsevier. This manuscript version is made available under 
the CC-BY-NC-ND 4.0 license http://creativecommons.org/
licenses/by-nc-nd/4.0/ 

COPYRIGHT YEAR/HOLDER Copyright (201?) John Wiley & 
Sons, Inc. All rights reserved.

http://dspace.flinders.edu.au/dspace/
http://dx.doi.org/


Accepted Manuscript

Spatial and Temporal Variability of Groundwater Recharge in Geba Basin, 
Northern Ethiopia

Alemu Yenehun, Kristine Walraevens, Okke Batelaan

PII: S1464-343X(17)30262-5

DOI: 10.1016/j.jafrearsci.2017.06.006

Reference: AES 2929

To appear in: Journal of African Earth Sciences

Received Date: 06 December 2016

Revised Date: 17 June 2017

Accepted Date: 19 June 2017

Please cite this article as: Alemu Yenehun, Kristine Walraevens, Okke Batelaan, Spatial and 
Temporal Variability of Groundwater Recharge in Geba Basin, Northern Ethiopia, Journal of African 

 (2017), doi: 10.1016/j.jafrearsci.2017.06.006Earth Sciences

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to 
our customers we are providing this early version of the manuscript. The manuscript will undergo 
copyediting, typesetting, and review of the resulting proof before it is published in its final form. 
Please note that during the production process errors may be discovered which could affect the 
content, and all legal disclaimers that apply to the journal pertain.



ACCEPTED MANUSCRIPT

1

1

Spatial and Temporal Variability of Groundwater Recharge in 

Geba Basin, Northern Ethiopia
Alemu Yenehuna,b, Kristine Walraevensc, Okke Batelaand

aDepartment of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, 
Belgium
bDepartment of Earth Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
cLaboratory for Applied Geology and Hydrogeology, Department of Geology, Ghent University, Krijgslaan 281-S8, 

9000 Gent, Belgium
dSchool of the Environment, Flinders University ,GPO Box 2100, Adelaide SA 5001, Australia

Abstract
WetSpa, a physically based, spatially distributed watershed model, has been used to study the 

spatial and temporal variation of recharge in the Geba basin, Northern Ethiopia. The model 

covers an area of about 4, 249 km2 and integrates elevation, soil and land-use data, 

hydrometeorological and river discharge data. The Geba basin has a highly variable topography 

ranging from 1000 to 3,280 m with an average slope of 12.9%. The area is characterized by a 

distinct wet and long dry season with a mean annual precipitation of 681 mm and temperatures 

ranging between 6.5°C and 32°C. The model was simulated on daily basis for nearly four years 

(January 1, 2000 to December 18, 2003). It resulted in a good agreement between measured and 

simulated streamflow hydrographs with Nash-Sutcliffe efficiency of almost 70% and 85% for, 

respectively, the calibration and validation. The water balance terms show very strong spatial 

and temporal variability, about 3.8% of the total precipitation is intercepted by the plant canopy; 

87.5% infiltrates into the soil (of which 13% percolates, 2.7% flows laterally off and 84.2% 

evapotranspired from the root zone), and 7.2% is surface runoff. The mean annual recharge 
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varies from about 45 mm (2003) to 208 mm (2001), with average of 98.6 mm/yr. On monthly 

basis, August has the maximum (73 mm) and December the lowest (0.1 mm) recharge. The mean 

annual groundwater recharge spatially varies from 0 to 371 mm; mainly controlled by the 

distribution of rainfall amount, followed by soil and land-use, and to a certain extent, slope. 

About 21% of Geba has a recharge larger than 120 mm and 1% less than 5 mm.

Key Words: WetSpa; Geba catchment; Groundwater recharge; Water balance; Northern 

Ethiopia

1 1. Introduction
2 Rainfall in Africa is highly variable. About 95% of the annual rainfall varies between 

3 plus or minus 20% to 40% from the average value (Carter and Parker, 2009). Highest differences 

4 occur during the wettest months when the contribution of net precipitation (i.e. the share of 

5 precipitation that produces runoff and groundwater recharge) to the land surface is highest 

6 (Taylor et al., 2009). Rainfall is the main available water for both agricultural and domestic uses 

7 in Ethiopia. In the Geba catchment, which is characteristic for the Northern part of the country, 

8 the rainfall is low, and evapotranspiration is high. Moreover, rainfall is highly variable and 

9 uneven in time and space (Eyasu, 2005; Hadgu et al., 2013). The wet season is limited to less 

10 than three months of the summer season during which the vegetation cover dwindles, surface 

11 runoff is short-lived and rivers are ephemeral or carry little water. Similarly, recharge to the 

12 groundwater is limited and sustainable groundwater abstraction is nearly impossible. Although 

13 existing regional studies (Seleshi and Zanke, 2004) and meteorological records in the Geba basin 

14 show that the long term total rainfall trend has remained more or less constant since the 1950s, 

15 the high spatial and temporal variation together with recurrent drought causes farmers in the 

16 basin to be continuously impoverished. In general, Geba River catchment is a major upstream 
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17 catchment of the Blue Nile Basin, which is particularly affected by low and high viability of 

18 erratic rainfall. It is representative for a semi-arid mountainous catchment where people’s 

19 livelihood is strongly affected by the climatic conditions. Hence, it is becoming clear that food 

20 self-sufficiency can only be attained by adopting a strategy which encourages conjunctive 

21 groundwater and surface water use and management. Understanding the availability, distribution 

22 and sustainability of groundwater resources for supplementary irrigation can help to alleviate the 

23 water stress, thereby improving crop production.

24 Groundwater is type of renewable water resources exploited and used to address the 

25 rapidly increasing domestic and agricultural water requirements. To quantify the current ground 

26 water storage and to predict the potential groundwater availability and sustainability, quantifying 

27 recharge is a primary task. Groundwater recharge is defined as the entry of water into the 

28 saturated zone made available at the water table surface (Freeze, 1969). It is thus a prerequisite 

29 for efficient and sustainable groundwater resource management and development (De Vries and 

30 Simmers, 2002). 

31 Distinct wet and dry seasons are the climatic characteristics of the Tigray (Northern 

32 Ethiopia) highlands. Thus groundwater recharge is absent during the dry season except for 

33 shallow aquifers downstream of many micro-dams, as observed by Nedaw and Walraevens 

34 (2009) for Tsenkanet and Rubafeleg micro-dams, where  recharging prolongs far into the dry 

35 season, and for confined aquifers with remote recharge zone. During the dry season, groundwater 

36 level lowers dramatically and the mountain slope phreatic aquifer drains away nearly completely 

37 in the upstream section, by the strong gravity-force, for sustaining discharge downstream, 

38 whereby the rate decreases  through time  (Walraevens et al., 2009). 
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39 Different methods have been applied to estimate groundwater recharge (Healy and Cook, 

40 2002). Important factors taken in to considerations in choosing a technique include spatio-

41 temporal scales, range, and reliability of estimates (Scanlon et al., 2002). The need for recharge 

42 estimates is growing in the research community. Thus, the community is forced to develop 

43 approaches for building a more thorough understanding of recharge, more comprehensive 

44 methods for delineating recharge zones and quantifying recharge rates with lower uncertainties 

45 which increase confidence in recharge estimates (Scanlon et al., 2002).

46 The distribution of recharge with time and space in this century is expected to be greatly 

47 altered due to changes in land-use and climate (Bouraoui et al., 1999). These changes may have 

48 consequences as recharge is the one on which groundwater depends for its sustainability. If the 

49 sustainability of this natural resource is disturbed, shortage of drinking water and disturbance of 

50 stream ecosystems especially during the dry season will occur and will greatly affect human life. 

51 Even though the importance of recharge is well known in both the research and professional 

52 community, its spatial and temporal distribution is not generally well understood. Many 

53 hydrological modeling studies ignore time and space variations in recharge rates, either due to 

54 few measurements of critical parameters are available, or existing modeling methods are not 

55 adequate to accurately evaluate these variations with required scale.

56 In this study, the spatial and temporal variation and amount of recharge and other water 

57 balance components are simulated using Westpa. Westpa is a physically based, distributed 

58 hydrological model developed for predicting the Water and Energy Transfer between Soil, Plants 

59 and Atmosphere on regional or basin scale at daily time-step. It was originally developed at the 

60 Vie Universities Brussels, Belgium by Wang et al. (1996) and adapted by Liu and De Smedt 

61 (2004). The model has been extensively used in surface water studies (e.g., Chormański and 
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62 Batelaan, 2011; Gebremeskel et al., 2005; Imani et al., 2016; Karamage et al., 2017; Liu et al., 

63 2002; Rwetabula et al., 2007; Safari et al., 2012; Safari and De Smedt, 2014, 2008). It has also 

64 been applied for recharge estimation (e.g., Adem and Batelaan, 2006; Dams et al., 2012; 

65 Woldeamlak et al., 2007).

66 1.1. Previous groundwater recharge studies in Geba basin and the 

67 need for a new study

68 Gebreyohannes et al. (2013) assessed groundwater recharge and other water balance 

69 components for the Geba basin, using a spatially distributed water balance model called 

70 WetSpass. The WetSpass model requires two types of input data, i.e. GIS grid maps and 

71 parameter tables (Batelaan and De Smedt, 2001). The grid maps consist of slope angle, land-use, 

72 soil texture, groundwater depth, and seasonal meteorological maps of precipitation, potential 

73 evapotranspiration, temperature and wind speed. The WetSpa model, applied in this study, 

74 requires also grid maps of slope, land-use, and soil texture but additionally time series of rainfall, 

75 potential evapotranspiration, and river discharge. However, different from WetSpass, WetSpa 

76 simulates hydrological processes on a daily (hourly) basis while WetSpass calculates seasonal 

77 water balance and focuses only on simulation of spatial patterns. Hence, in this study daily 

78 rainfall, PET and river discharge (at the main river outlet) are used to run, calibrate and validate 

79 the model for four years (2000 to 2003). Applying WetSpa, in this study, will present the 

80 advantage of outputs of both the spatial and temporal variations of the hydrological states and 

81 fluxes in the basin. Furthermore, since the study of Gebreyohannes et al. (2013), the land-use has 

82 changed, noticeable areas (in the north and central part) are rehabilitated and vegetation coverage 

83 increased while some are further degraded. Gebreyohannes et al. (2013) used Landsat ETM+ 

84 images taken in January, 2000 in their land-use preparation while Landsat ETM+ images of 2007 
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85 were applied in this paper. The intensive community based land and water conservation 

86 campaigns applied in the late 1990s and early 2000s, coordinated and funded by the Regional 

87 Government, flourished and brought results in changing the bare soil land cover percentage in to 

88 vegetation containing land-use types like open and closed shrub land. However, part of the forest 

89 land-use type in the previous study is regarded as closed shrub land in our classification (the 

90 important changes are shown in table 1). As a result the new land-use map would bring changes 

91 of groundwater recharge and other water balance components. High rate of land-use change from 

92 degraded (bare land) to vegetated was also obtained by other researchers. Fenta et al. (2017) 

93 assessed land-use/land cover change in the periods: 1990-2000, and 2000-2012 on Agulae 

94 catchment, tributary of Geba basin, having areal coverage 442 km2 and located in the central part 

95 of the basin (Fig.1). According to them, significant changes were observed for shrub land and 

96 forest cover which increase by about 18 and10 km2 in the period 1990–2000; and then further 

97 increased by about 4 and 6 km2, respectively, during 2000–2012. By contrast, bare land was 

98 subjected to considerable reductions by about 23 and 13 km2 in the periods 1990–2000 and 

99 2000–2012, respectively. Similar results of vegetation coverage increment were also noted by 

100 Alemayehu et al. (2009) and Kassie et al. (2015) for the same Agulae catchment and for the 

101 whole of eastern Tigray, to which our study basin belongs. In addition, the new study used daily 

102 recorded meteorological variables (rainfall, minimum and maximum temperature) from seven 

103 meteorological stations whereas Gebreyohannes et al. (2013) used the long term average 

104 seasonal values of the variables from only four stations. Thus the output of the WetSpass 

105 recharge and other balance components were long term seasonal averages and hence, daily 

106 comparisons and trend assessment were impossible. However, in this study, it is aimed to 
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107 investigate the hydrological response of the basin, due to changes of physical aspects such as 

108 land-use and meteorological variables (rainfall and PET), over long and short time periods.  

109 Table 1 Land-use change comparisons between the study and the previous by Gebreyohannes et al. (2013)

Land use types Areal coverage in % in this 
study

Areal coverage in % during 
Gebreyohannes et al.(2013) study 

Agricultural Land 
(grazing or grass and 
Cropland together)

51 50

Shrub Land (both open 
and closed)

34 20

Bare land 10 20
All the rest (urban, 
forest, and water)

5 10

110         Tesfagiorgis et al. (2011) applied the MODFLOW groundwater flow model to see 

111 the movement and distribution of groundwater in the whole Geba basin. They applied the model 

112 with limited data availability and simplified the hydrogeology to a single layered semi-confined 

113 groundwater aquifer system and optimized the transmissivity of the different geological units. 

114 They concluded that 30,000 m3/d of groundwater can be abstracted in the basin in a sustainable 

115 way. Walraevens et al. (2009) quantified the groundwater recharge on a daily basis using a 

116 combination of a runoff estimation model, based on the US Soil Conservation Service method, 

117 and a soil moisture balance model, on a very small (2 km2) part of the Zenako-Argaka 

118 catchment, sub-catchment of Geba, located east of the town of Hagere-Selam. The study is 

119 performed on a local scale but can be assumed to represent the sloped upper phreatic aquifer of 

120 the Trap basaltic formation which topographically represents most part of the basin. According 

121 to their study, the annual groundwater recharge varies from 110 mm to 334 mm for the years 

122 1995 to 2006. 

123 In addition, Walraevens et al. (2015) determined the water balance of Mendae plain 

124 located in Abraha Atsbeha area, in a small part of the Suluh River catchment, which is one of the 

125 major tributaries of the Geba basin (Fig. 1). In this study, the sustainability of pumping (from 
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126 shallow hand dug wells mainly for irrigation) and the effectiveness of the constructed water 

127 harvesting structures (ponds) were evaluated through identification and quantification of the 

128 groundwater balance components. As part of the balance components, the recharge is quantified 

129 in a diffuse manner using the soil moisture balance (on monthly basis) and chloride mass balance 

130 methods. Accordingly, the grass land and the irrigated land have monthly average recharge 

131 ranging from 0 to 300 mm and the bare soil has an annual average recharge of 20 mm. 

132 Gebreyohannes et al. (2017) ran the 3D numerical groundwater flow model program 

133 MODFLOW-2000 using simulated recharge obtained by Gebreyohannes et al. (2013) According 

134 to their work they concluded that the precipitation is the only source of recharge to the basin 

135 which is about 5.14 × 105 m3/d in total. About the same amount of groundwater drains out of the 

136 system through springs and base flow to streams and rivers. A very small part, i.e. about 2.2 × 

137 103 m3/d is extracted through pumping wells.

138 1.2. Objectives of the Study

139            The overall aim of this study is to provide information on the rates of groundwater 

140 recharge and other water balance components, and how they are spatially distributed and change 

141 with time. It tries to identify the key recharge-controlling basin characteristics and 

142 meteorological variables with their degree of influence. It also aims on analyze and justifiy the 

143 interrelationship of groundwater recharge with other hydrological processes throughout the year. 

144 Furthermore, understanding the relationship and sensitivity of recharge and other hydrological 

145 components with landcover/land-use, and hence predicting the human impact on groundwater 

146 resources is also addressed in the study. 

147 1.3. General Overview of the Study Area
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148 1.3.1. Location, Topography and Drainage System

149 The Geba catchment is situated in Tigray Regional State, Northern Ethiopia. It is 

150 bounded between latitudes of 13˚16' and 14˚16' North and longitudes 38˚38' and 39˚49' East. 

151 The Geba basin covers an area characterized by rugged terrain, with topography ranging 

152 from about 1000 to 3,280 m (Fig.1). The total areal coverage of the Geba river basin is about 

153 5,150 km2. Because of lack of river discharge data (one of basic data in the WetSpa model) at the 

154 main basin outlet, the catchment’s lower part, with some small tributaries to the main Geba river 

155 basin is excluded. As a result, our study area has coverage of 4,249 km2.

156 Geomorphologically, the Geba river basin is characterized by steep volcanic mountains 

157 with sharp cliffs and plateaus of sandstones in the north, deep gorges and cliffs of limestone in 

158 the center, and ragged metamorphic terrain in the southwest. The fault-controlled Mekelle, 

159 Wukro and Senkata areas, and the Atsbi horst, are the major plains of the Geba basin.

160

161 Fig. 1.Location map of the main Geba basin from Gebreyohannes et al. (2013) and the study area(part of 

162 Geba basin) with meteorological and gauging stations
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163 The Geba basin is a major tributary of the Tekeze River which is one of the main 

164 tributaries of the Blue Nile. The Tekeze River joins the Nile River in Atbara, Sudan. Suluh, 

165 Genfel and Agulae Rivers are the major tributaries of Geba River basin. The drainage system of 

166 the Geba basin can generally be described as dendritic with some significant influence of major 

167 structures like folds and faults. The Geba River and its tributaries exhibit deep gorges especially 

168 in soft formations, like shale rock formation in the Mekelle sedimentary basin of Geba. The 

169 Geba River flows southwards in the northern part of the basin, and turns to the west in the 

170 southwest. The major tributaries of the river are perennial, with very low discharges, though the 

171 region is characterized by short-lived flash floods taking place during or shortly after rainfall 

172 event.

173 1.3.2. Climate and Vegetation

174 The Geba basin has a mean annual rainfall of about 681 mm and a mean annual minimum 

175 of 544 mm and maximum of 912 mm (from the data taken of the seven meteorological stations 

176 used in this study). The rainfall is found highly variable and inconsistent in time and space, in 

177 agreement with Hadgu et al. (2013) and Fenta et al. (2017), for northern Ethiopian, and Agulae 

178 catchment, respectively. Much of the annual rainfall occurs in the short wet season (from 

179 beginning of June to September). The rest of the years are generally dry, except for spring when 

180 small amounts of rainfall occur in some parts of the basin. Temperature varies from a mean 

181 minimum of 6.5°C in the highlands, to a mean maximum of 32 °C in the lowlands. The forest 

182 cover of the basin is very minimal. Unpublished report works showed much of the area in the 

183 past was forested, and subsequently later deforested. Except for the more protected areas around 

184 churches and some closed areas, there is hardly any trace of large indigenous trees. Recently, 

185 some initiatives to create closure areas to rehabilitate parts of the environment have shown 
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186 encouraging results (Alemayehu et al., 2009; Fenta et al., 2017; Kassie et al., 2015). These 

187 closure areas are populated by bushes and shrubs like acacia rarely mixed with eucalyptus and 

188 other plantations. More importantly, the closed areas are covered with grass, which protects the 

189 soil from erosion and enhances infiltration.

190 1.3.3. Geology 

191     According to Gebreyohannes et al. (2010), the geology of Geba basin (the major part 

192 of which is included in this study) comprises lithological units such as Quaternary alluvial 

193 sediments; Paleogene period volcanic rocks; Mesozoic and Paleozoic sedimentary rock types; 

194 Precambrian metamorphic and intrusive rocks; and post-Mesozoic dolerite dikes and sills. The 

195 Mesozoic sedimentary rocks consist of upper (regionally called Ambaradom) sandstone, Agulae 

196 shale formation (consisting of dominantly shale, limestone, some gypsum), Antalo limestone 

197 formation (dominated by limestone but with shale and marl intercalations), lower (Adigrat) 

198 sandstone formation, while the white Enticho sandstone and Edaga Arbi tillite corresponds to the 

199 Paleozoic era. Granite dominated intrusives, meta sediments (slate, phyllite, meta-limestone, 

200 meta-dolomite, meta-greywacke, and meta-conglomerate), and meta-volcanics (meta-

201 volcanoclasts) aged back to Precambrian are the rock varieties in the metamorphic terrain of the 

202 study area.  The Wukro, the Chelekot and Mekelle main faults, and the Negash geosyclinal fold 

203 are the major and regional geological structures though the local scale joints and faults are many 

204 in number and variable in character such as displacement, sense of movement, spacing, aperture 

205 continuity, fillings, etc.
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206

207 Fig. 2. Geological map of the whole Geba basin after Gebreyohannes et al. (2010) of which our study area 

208 (Fig.1) makes the major part

209 1.3.4. Land-use and Soil type

210 The land-use map (Fig. 3) is prepared in this study by using cloud free Landsat ETM+ 

211 satellite images (taken on January 27 and February 5, 2007), ground truth data, and Google Earth 

212 images with image classification functions of ILWIS GIS software. Initially eleven land-use 

213 classes were identified which later were reclassified to eight classes (mixed forest, closed shrubs, 

214 open shrubs, grassland, cropland, urban, bareland and water). Grassland is the dominant type of 

215 land-use which covers about 27.5% of the total study area while water bodies only account for 

216 1.1%. The closed shrub covers 21.0%, open shrub 12.6%, cropland 23.5%, 9.7% bare land, 3.2% 

217 urban and 1.4% of the study area is covered by mixed forest.
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218

219 Fig. 3. Land-use map of the study area

220 The soil map of the study area is adapted from Gebreyohannes et al. (2013) where detail 

221 preparation procedure is mentioned in the article. The map (Fig.) shows that clay loam and clay 

222 together make up 72.8% of the surface area of the study basin with the rest being sandy clay 

223 loam (16.7%), sandy loam (4%), sand (4.2%), and loam (2.4%).
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224

225 Fig. 4. Soil map of the study basin after Gebreyohannes et al. (2013)

226 2. Methodology

227 Fig. 5 shows a flow chart of the modeling procedure. The spatial data (land-use, 

228 topography, and soil) and hydro(meteoro)logical time series data (precipitation, PET and river 

229 discharge) are the basic data in the applied model. The hydro(meteoro)logical data are equally 

230 split into data for calibration and validation. In the ArcView GIS the DEM is preprocessed 

231 (filling the sinks) before parameters are derived from the surface topography. The rainfall and 

232 the PET daily time series data are prepared for each meteorological station for the whole 

233 simulation period. Following data preparation, the WetSpa model was run using the default 

234 values of its global parameters (Table 2). Using manual and automatic calibration (with PEST), 

235 the model was rerun several times by adjusting the values of the eleven parameters while each 
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236 time checking the statistical efficiency model performance indicators (Table 3). After calibration 

237 was achieved, the model efficiency was also tested with the independent validation 

238 hydro(meteoro)logical data series. The following sections explain detailed methods followed in 

239 this paper. 

240

241 Fig.5. Flow chart showing the general methodology

242 2.3. Grid Data Preparation and Parameter Derivation

243 Grid maps from the 90 m by 90 m DEM, the land-use map and the soil hydraulic 

244 properties from the soil map of the basin have been prepared.

245 For flow direction and then accumulated flow are depicted accurately if the data set is 

246 free of sinks (Liu and De Smedt, 2004). Thus the DEM was made depression-less using the fill 

247 sinks function so that drainage would occur throughout the basin. The spatial model parameters 
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248 necessary for WetSpa were then created using the functions in ArcView. Flow direction and 

249 accumulation grid maps are prepared from the filled topographic map, based on the flow path of 

250 steepest descent. The vector stream network is extracted from the result of flow accumulation 

251 using a threshold cells value of 100. This means that cells receiving a flow from more than 100 

252 cells are considered stream cells.

253 Shreve’s method (Tarboton et al., 1991) was used to derive the stream order grid which is 

254 used for assigning the channel’s Manning coefficient n by taking the Flow Direction and Stream 

255 Network grid themes. The general slope in percentage was derived from the DEM. The slope 

256 along a stream or river needs extra stream network information for their preparation. As a result, 

257 Extracted stream network and the general slope were used to calculate the channel slopes. This 

258 was to avoid the disturbance of channel slopes. By overlying the general slope grid, with the 

259 channel slope grid, the final slope grid is obtained. 

260 Sub-catchments are derived from the filled DEM using 1000 as a cell threshold value. 

261 272 sub-catchments are identified with an average sub-catchment area of 1.56 km2; with 0.0081 

262 km2 and 11.68 km2 as minimum and maximum areas respectively. These derived sub-catchments 

263 are used to simulate the groundwater balance in the distributed model.

264 The land-use based parameters (root depth, interception capacity, and the Manning‘s 

265 coefficient), and the WetSpa model parameters of potential runoff coefficient and depression 

266 storage capacity have been derived from previously created maps of slope, land-use and soil 

267 types. The soil hydraulic properties such as hydraulic conductivity, porosity, field capacity, 

268 residual moisture content, pore distribution index and wilting point were derived from the soil 

269 map. 

270 2.4. Flow Routing Parameters



ACCEPTED MANUSCRIPT

17

17

271 The flow routing variables of flow velocity and average travel time from cells to the basin outlet 

272 are calculated in the view ‘Routing Parameter’. Manning‘s coefficient, hydraulic radius and slope grids 

273 are used to create a flow velocity grid using the velocity function of the model. The default flow velocity 

274 limits of 3.0m/s for upper and 0.005 m/s for lower were applied. Though the slope of the area is high, the 

275 average flow velocities are fairly slow, which is due to the very low hydraulic radius (most part is 

276 between 0.005 to 0.0311 m), and the relatively high Manning‘s roughness coefficient of the catchment. 

277 The weighted ‘FLOWLENGTH’ routine of the model is applied to create flow travel time in hours from 

278 each cell to the basin outlet. 

279 2.5. Time Series Data Preparation

280 The WetSpa reads input data from four input files: precipitation, potential 

281 evapotranspiration, average temperature and river discharge. In case of snowfall, average 

282 temperature data are required by WetSpa, because the melting snow affects the hydrological 

283 system of an area. However, there is no any snowfall record in this study catchment; as a result 

284 the preparation of average temperature point data of the meteorological stations was 

285 unnecessary, in this study, though the daily minimum and maximum temperature data are used in 

286 PET calculation. In general, there are thirteen meteorological stations in the Geba catchment. 

287 Among these, only seven (Mekelle-Quiha, Wukro, Sinkata, Adigrat, Hager-Selam, AbiAdi, and 

288 Hawzen) had complete rainfall, minimum and maximum temperature. Among them, it was only 

289 three stations (Mekelle-Quiha, Sinkata, and Adigrat) that had daily sunshine hours, wind speed 

290 and relative humidity data while the other four had only records of rainfall, minimum and 

291 maximum temperature. 

292 2.5.1. Rainfall Data Preparation
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293 The daily rainfall data for the four years starting from January 1, 2000 to December 18, 

294 2003 are taken from the National Meteorological Service Agency of Ethiopia (Mekelle branch). 

295 The data for the period were complete except very few gaps, where daily average values of same 

296 days from the months of preceding and following years had been taken. Rainfall data for the 

297 seven meteorological stations were prepared. 

298 2.5.2. Potential Evapotranspiration

299 The daily potential evapotranspiration for the simulation period (January, 2000 to 

300 December, 2003) was prepared using data of minimum and maximum temperature, relative 

301 humidity, radiation, sunshine hours, and wind speed by applying the Daily ETo Penman 

302 Monteith method (Allen et al., 1998) using the CROPWAT 8 software (Smith 1992, 1994, 

303 1996). The daily recordings of the minimum and maximum temperature for the whole simulation 

304 period in the seven meteorological stations were complete except some gaps for which average 

305 values of preceding and following years of corresponding days had been taken. However, values 

306 for humidity, wind speed and sunshine hours are only available for Mekelle-Quiha, Sinkata and 

307 Adigrat stations, with daily gaps and no recorded values for the whole year of 2000. For such 

308 cases the software calculates a value using the maximum and minimum temperature and location 

309 information alone. The daily PET values for the seven stations (three with more or less recorded 

310 values of relative humidity, sunshine hours and wind speed and the remaining four from 

311 maximum and minimum temperature alone) are prepared in this manner. The sensitivity of the 

312 PET for the relative humidity, sunshine hours and wind speed was checked for the stations with 

313 these data during data preparation. It was found that the calculated PET values using minimum 

314 and maximum temperatures alone and those calculated with complete data sets are similar, 
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315 showing the less sensitive character of the PET for these meteorological variables in this 

316 particular study area. 

317 2.5.3. River Discharge Data

318 There are daily river discharge data available at the Geba catchment (part included in this 

319 study) outlet for the whole model simulation period (2000-2003). River discharge recordings 

320 starting already from March 26, 1998 were available at the measuring point. However, daily PET 

321 data until December 30, 1999 are not available due to the absence of recorded minimum and 

322 maximum temperature and other meteorological variables. On the other hand, from December 

323 18, 2003 to December 31, 2006, the daily rainfall and the PET data are calculated but there are 

324 no recorded river discharge data at the measuring point. The WetSpa model runs only if the time 

325 series data have the same corresponding time period. As a result, the daily time series data from 

326 March 26, 1998 to December 30, 1999 and from December 18, 2003 to December 31, 2006 are 

327 not used because of the absence of PET and discharge data respectively. 

328 2.6. Thiessen Polygon

329 The rainfall and PET data are tabular data gathered from these seven meteorological 

330 stations among which three are inside the catchment (Mekelle-Quiha, Wukro, Sinkata), two at 

331 the boundary (Hagere-Selam and Hawzen) and two nearby surrounding the catchment (Abi Adi 

332 and Adigrat). The Thiessen polygon grids for both precipitation and PET were created using the 

333 Thiessen polygon extension. Precipitation and PET are point measurements; therefore Thiessen 

334 polygon method was applied to interpolate the distribution of precipitation and PET over the 

335 area. There is no snowfall record in the study basin; as a result the preparation of temperature 

336 Thiessen polygon was omitted in this study.
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337

338 Fig. 6. Thiessen polygon for both rainfall and PET estimation.

339 2.7. Model Calibration and Validation

340 The data series with discharge recordings was divided into two parts (for model 

341 calibration and validation). Model calibration was performed for the period between 1/1/2000 to 

342 26/12/2001 and validation for the period 27/12/2001 to 18/12/2003. The model was first 

343 calibrated manually to set up the parameters for the automated calibration by using the model 

344 independent parameter estimator, PEST software (Parameter Estimation module), in which the 

345 development and latter integration to the WetSpa model was done by Doherty (2010) and Liu et 
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346 al. (2005) respectively. The calibration is mainly taken place for the global model parameters, 

347 whereas the spatial parameters are maintained (Doherty, 2010). After running PEST, the model 

348 was then run for the complete time series (January, 2000 to December, 2003), and consequently 

349 the final spatial and temporal water balance components are produced as an output. 

350 3. Results and Discussion 

351 3.1. Grid and flow routing parameter maps

352 The study area is generally regarded as steeply sloped. It has a slope of 12.9% on average 

353 with a minimum of 0.01% and a maximum of 207% which illustrates the highly variable 

354 topographic scene of the area. As shown in Fig. 7, thirty one percent of the area has a slope of 

355 between 0.01% and 5%. Besides, 23%, 15%, 10%, 11%, 8%, and 2% of the area are covered by 

356 5-10%, 10-15%, 15-20%, 20-30%, 30-50%, and 50-207% slope ranges, respectively.

357
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358

359 Fig. 7. Slope, runoff coefficient, depression storage and flow time maps of Geba basin

360 The slope (Fig. 7), land-use (Fig. 3), and soil (Fig.4), play an important role in 

361 determining the potential runoff coefficient. A steeply sloped urban or bare land with clay or clay 

362 loam soil type has the highest potential runoff coefficient, whereas sandy loam or sandy soil of 

363 forest land-use has relatively small value (Fig.7). Especially relatively flat, sandy or sandy loam 

364 forest land reaches as low as 0.051 and sandy clay loam up to 0.156. However, steep, clayey, 

365 bare or water land-use land reaches up to a value of 0.9.In the other hand, as the catchment area 

366 gets larger, the runoff decreases (Brown et al., 1999). In a similar way, Singh and Woolhiser 

367 (2002) found out increasing of runoff coefficient with decreasing grid size. In this study, grid 

368 size is 90 m by 90 m which is large. The calculated average potential runoff coefficient for the 

369 entire catchment is about 0.7 which is relatively high though the catchment is large. This fact can 

370 be attributed to the relative steepness and the dominant clay soil type. However, contrary to the 

371 potential, the actual runoff coefficient is much lower for reasons mentioned in the result and 

372 discussion section. 



ACCEPTED MANUSCRIPT

23

23

373 Depression storage capacity in the Geba catchment (Fig. 7), mainly depends on land-use 

374 and slope. Sloping urban, water or bare land has very small depression storage capacity of about 

375 0 to 2.415 and a forested flat area has up to 21.7. The average value for the whole catchment is 

376 about 1.4 which is quite small.

377 The calculated flow travel time (hours) from each cell to the catchment outlet is shown in 

378 Fig. 7. The concentration time, defined as the time it takes for water from the furthest point to 

379 reach the outlet of the catchment is around 356 hours or 14.8 days. The mean travel time for the 

380 entire catchment and the maximum flow length are 6.6 days and 166.6 km respectively.

381 3.2. Model Performance Indicators and Hydrographs

382 3.2.1. Global Parameters Adjustment

383 The calibrated global parameters are shown in Table 2. As there is no snow in the study 

384 catchment, the parameters T0, K_snow and K_rain are set to negative values, e.g. –1.0, and the 

385 temperature input dataset totally is omitted (Liu and De Smedt, 2004).

386 Table 2 Calibrated global parameters.

387

Symbol Unit Values

Ki - 1.266

Kg - 0.00036

K_ss - 1.0423

K_ep d-1 1.6292

G0 mm 13.2

G_max mm 334.7

T0 - -1.00

K_snow mmd-1 -1.000

K_rain °C -1.0000

K_run mm°C-1d-1 8.5128

P_max mm°C-1d-1 152.7

Ki: interflow scaling factor for computation
Kg: Groundwater recession coefficient.
K_ss: relative moisture content for setting up the initial soil 
moisture constant
K_ep: plant coefficient for estimating the actual potential 
evapotranspiration.
Go: initial groundwater storage in water depth (mm)
G_max: maximum groundwater storage in water depth (mm)
T0: base temperature for calculating snowmelt (°C)
K_snow: degree-day coefficient for calculating snowmelt 
(mm/°C/day).
K_rain: rainfall degree-day coefficient for estimating snowmelt 
(mm/mm/°C/day)
K_run: surface runoff exponent for a near zero rainfall intensity.
P_max: threshold rainfall intensity in mm/day or mm/hr.
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388 3.2.2. Model Performance Indicators

389 Model performance can be verified by visual interpretation of the flow hydrographs as 

390 well as by statistical criteria (Gebremeskel et al., 2004). These statistical criteria are shown in 

391 Table 3.

392 Table 3 shows values of the model performance indicators for manual calibration, for 

393 calibration using PEST and for validation. In general, better Nash-Sutcliffe (NS) and Model Bias 

394 results have been obtained by using PEST than for the manual calibration as shown in the table 

395 below. However, NS for evaluating the ability of reproducing low flows was lowered for PEST 

396 than for manual calibration. This shows the relatively low efficiency of the model for low flows 

397 compared to high flows, though the overall model performance is rated good. It can be justified 

398 by the fact that lack of interest for low flows usually causes incorrect discharge data to be 

399 collected and/or calculated in Ethiopia, based on our experience of discharge data from the 

400 Ministry of Water Resources. This would contribute for low flows to be less efficiently 

401 calibrated and simulated relative to high flows where better quality data are usually collected.  

402 Table 3 Statistical model performance indicators.

Model Performance Indicators Manual Calibration PEST 
Calibration

Validation

C1: Model bias for evaluating the ability of 
reproducing Water Balance

0.63 (4.66%) -0.34 (-2.54%) 0.54 
(12.15%)

C3: Model efficiency (Nash-Sutcliffe coefficient) for 
evaluating the ability of reproducing Stream Flows 
(NS)

0.69 0.70 0.85

C4: Model efficiency (Nash-Sutcliffe coefficient) for 
evaluating the ability of reproducing Low Flows (NSL)

0.88 0.75 0.83

C5: Model efficiency (Nash-Sutcliffe coefficient) for 
evaluating the ability of reproducing High Flows 
(NSH)

0.83 0.83 0.93

403 Fig.8 shows the graphical comparison between the observed and the calculated daily 

404 stream flow hydrographs during the calibration period (01 January, 2000 to 26 December, 2001). 

405 As it is shown from the graph, the simulated daily stream flow is generally in good agreement 

406 with the observed daily flows (daily stream discharges expressed in m3/s where 1 m3/s = 86,400 
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407 m3/day) except for some deviations of measured outliers. This is further proven by model 

408 performance indicators as shown in Table 3 with model efficiency for evaluating the ability of 

409 reproducing total stream flows (NS) value of 69.8%, model efficiency for evaluating the ability 

410 of reproducing low flows (NSL) =74.8% and model efficiency for evaluating the ability of 

411 reproducing high flows (NSH) =83.3%. The model is able to reproduce the observed water 

412 balance with 2.54% under estimation (Bias=-2.54%).The model performance indicators (NSL 

413 and NSH) illustrate that the model performs better for high flows than for low flows by about 

414 8.5% model efficiency difference.

415 As observed in the hydrographs below, the high flows occur during summer season 

416 (usually become high at the middle of August and erratically decrease to very small values at the 

417 end of September. This goes in line with the rainfall but with a time lag. However, this lag in 

418 time is small compared with the big areal extent of the basin. This can be due to the fact that 

419 most of the discharge at the basin outlet is from surface runoff (from water balance calculation) 

420 and as shown in Fig.7, it takes comparatively short time (only about 6.6 days on average) to 

421 reach the outlet. The lag time, shown in Fig.8 for calibration and Fig. 9 for validation, is the 

422 reflection of this fact.



ACCEPTED MANUSCRIPT

26

26

423

424 Fig. 8. Graph of simulated stream flow versus measured discharge with rainfall at the Geba basin outlet 

425 for the calibration time period (January 01, 2000 to December 26, 2001)

426 The model validation was done for the time period from December 27, 2001 to December 

427 18, 2003. Fig. 9 shows graphically the simulated and measured discharges at the basin outlet and 

428 their correspondence with rainfall amount. The simulated hydrographs of both the low and high 

429 flows have a good match with the observations. However, some overestimation (like from July 

430 26, 2003 to August 11, 2003) and under estimations like in the month of January, 2002 and 

431 starting from October 02, 2003 to December 18, 2003 are observed. Generally, the WetSpa 

432 model has still good simulation performance as shown in Table 2 for the validation, whereby NS 

433 for evaluating the ability of reproducing whole stream flows is 85.1%. 92.5% and 82.9% are NS 

434 values for high and low flows respectively. The model bias value is 12.15% which is 

435 comparatively high.

Qm= measured discharge; Qs=simulated 
discharge
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437 Fig.9. Graph of simulated stream flow versus measured discharge and rainfall at the Geba basin outlet 

438 for the validation time period (December 27, 2001 to December 18, 2003).

439 3.3. Water Balance

440 Table 4 shows the water balance for the Geba basin over the whole simulation period. 

441 Due to the relatively low forest (tree) coverage, as depicted from the land-use map of the basin, 

442 only about 3.8% of the total precipitation was intercepted by the plant canopy. 87.5% infiltrated 

443 into the soil, and 7.2% was lost as surface runoff.  94% lost as evapotranspiration to the 

444 atmosphere, 11.4% percolated and recharged the groundwater reservoir, and 10% became runoff 

445 (total river discharge at the outlet or sum of surface runoff, interflow and groundwater flow). The 

446 percentage sum of these three components was more than 100% or the actual evapotranspiration 

447 (94 %) was more than the infiltrated water (87.5%) to the subsurface in the simulation period. 

448 This shows that some amount of the water lost through evapotranspiration was from the 

449 accumulated deep groundwater source of the previous years though the major part was from the 

450 precipitation of the simulation period. 72.6% of the total runoff (river discharge) is contributed 

451 by surface runoff (overland flow), 24.1% and 3.3% was from interflow (unsaturated zone or 
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452 lateral flow) and groundwater flow respectively. This shows the relatively small contribution of 

453 groundwater to the river discharge compared to the groundwater recharge. However, when we 

454 look at the groundwater balance, there is groundwater level reduction by 9.1 mm (0.34% storage 

455 lost) during the simulation period although the groundwater discharge to the river is 

456 insignificant. This supports the idea that measurable evapotranspiration is taking place from the 

457 groundwater of the basin, although most evapotranspiration is from the unsaturated soil zone 

458 before percolation and recharging of the groundwater. 

459 Table 4 Water balance estimation at Geba basin for the whole simulation period (from January 1, 2000 to December 

460 18, 2003).

Water Balance 
Component

Total 
Measured 
value(mm)

Total 
Calculated 
value(mm)

Percentage 
(%)

Mean value
(mm/day)

Maximum
value(mm/day)

Precipitation 2,689.6 2,688.5 1.858 41.48
Interception 101.1 3.76 0.070 0.65  

Infiltration 2,352.6 87.51 1.626 29.51
Soil Moisture difference -92.4 -3.44 164.869 269.64
Evapotranspiration 6,474.1

(potential)
2,528.1
(actual)

94.03 1.747 7.06  

Percolation (groundwater 
recharge)

307.7 11.44 0.213 8.53

Surface Runoff 194.1 7.22 0.134 18.60
Interflow 64.4 2.40 0.045 4.70   
Groundwater Flow 8.9 0.33 0.006 0.04
Runoff 265.4 267.4 9.95 0.185 20.77
Groundwater Storage 
difference

-9.1 -0.34 16.629 113.25

461 Out of the 2,353 mm infiltrated water from 01 January, 2000 to 18 December, 2003, 13% 

462 percolates down the root zone and recharges groundwater, 2.7% becomes lateral flow and the 

463 largest part (about 84.2%) went from the root zone to the atmosphere as evapotranspiration. This 

464 is directly related to the dominant land-use types of the area. As it can be shown from the land-

465 use percentage graph (Fig.3), about 87% of the total catchment area, was covered by land-use 

466 classes with shallow rooted vegetation (mixed forest, closed and open shrub, grassland and crop) 

467 type. Only about 3.3% of the vegetation was forest, where trees could probably reach the 

468 groundwater and transpire water from depth. The transpiration from groundwater storage can be 
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469 calculated from the percolation amount from which the difference in groundwater storage is 

470 subtracted. It is 317 mm in total, comprising only 12.5% of the total evapotranspiration while 

471 about 83.5% (2110 mm) of the total evapotranspirated water was from the root zone, and the rest 

472 which was about 4% (101 mm) of the total evapotranspiration was from direct evaporation of the 

473 intercepted water. The groundwater depth in Geba catchment is generally deep; there are places 

474 with depth of about 200 m though there are some places with shallow groundwater depth such as 

475 hand dug wells or shallow drilled wells (Tesfagiorgis et al., 2011). This is the reason for the low 

476 amount of evapotranspiration from the saturated zone.

477 The model shows that a high percentage of infiltrated water was lost by 

478 evapotranspiration, which could be mainly attributed to the climatic conditions and partly to the 

479 land-use of the area as described above. The high temperature and wind speed, the long sunshine 

480 hours and the low relative humidity intensify this phenomenon. As can be observed from Table 

481 4, there is a high difference between actual and potential total evapotranspiration values. This 

482 can be justified through the fact that the region in which the basin is located is arid and hence the 

483 annual potential evapotranspiration significantly exceeds annual precipitation and thus actual 

484 evapotranspiration. This is reflected in the simulated balance shown in Table 4. 

485 3.4. Groundwater Recharge
486 Recharge to the groundwater aquifer system in the study area is mainly through the 

487 infiltration of rainfall and some through seepage from surface water bodies such as micro to 

488 medium scale dams and streams. Precipitation induced recharge generally occurs throughout the 

489 study area with the exception of groundwater discharge zones (near major streams and ponds) 

490 and area covered by impervious surfaces like urban and bedrock, which is rather small in areal 

491 coverage (Fig. 3). 
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492 3.4.1. Temporal variation of groundwater recharge

493 As shown in the Fig. 10 and 11, monthly and average monthly groundwater recharges 

494 follow the trend of both rainfall and infiltration. Recharge is high during the rainy summer 

495 season and zero during the dry winter. The figures also show the relatively high (compared with 

496 the small rainfall amount) infiltration rate during spring (months having small amount of rainfall 

497 such as February, March, April and May) in contrast with the summer months (June, July and 

498 August). This can be justified by the low antecedent moisture content of the soil as it is preceded 

499 by a long dry period. Most of the water goes in moistening the soil rather than leaving as surface 

500 runoff. In addition, the desiccation cracks in the dry period on the clay and clay loam soil types 

501 (measured up to half a cm depth), observed during field visits, also play major role in enhancing 

502 the initial infiltration which later (in the course of rainy season) would be closed with the full 

503 moistening and hydration of the clay minerals. This definitely contributes in reducing actual 

504 runoff. Similar results were obtained by Zenebe et al. (2013) during their surface runoff 

505 calculation, based on automatic daily discharge data collected (for four years) on the major sub-

506 catchments of the basin. The percolation or recharge during spring season is nearly zero. Because 

507 free water for recharge from the soil zone is possible after the field capacity of the soil is 

508 completely filled. Both groundwater recharge and interflow are following the same trend and 

509 become maximal during the rainiest month of August and decline immediately after rainfall 

510 ceases around the end of September. The mean annual recharge value varies from about 45 mm 

511 in the year 2003 to 208 mm in 2001.This is due to the rainfall amount difference of these years 

512 which is 516 mm and 1454 mm, respectively.

513 The average annual recharge for the whole study area is about 99 mm per year which is 

514 11.4% of the total annual rainfall. Gebreyohannes et al. (2013) using the WetSpass model 
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515 estimated recharge as 6% of the rainfall, which is about half of the new result. This could be due 

516 to the following reasons. The first reason is the time scale used in the two studies: daily and long 

517 term seasonal time-scales respectively. Shorter time-scales are known to result in larger values of 

518 groundwater recharge (Walraevens et al., 2009). The second reason is that in this study, the 

519 lower part of the basin is excluded (which was found to be very low recharge area in recharge 

520 classification of Gebreyohannes et al. (2013), while the high recharging central and Northern 

521 part are included in this study. The third and most important reason is the conservation practices 

522 applied in the area, after the study by Gebreyohannes et al. (2013), which changed the land-use 

523 type to more recharge favorable types i.e. from the bare soil land, with high runoff coefficient 

524 and low infiltration capacity, to shrub land (table 1) having relatively high infiltration potential, 

525 as shown in model default values in Liu and De Smedt (2004). This is also supported by the 

526 higher runoff (18%) and lower evapotranspiration (76%) found in Gebreyohannes et al. (2013), 

527 while they are 7.2% and 94% (higher than infiltration) respectively in our work. These all 

528 together increased the average result shown in this study. 

529 The water balance calculation (modeling) being based on finer time scales (daily in this 

530 case) which is close to each rainfall event, the primary source of water in the balance variables, 

531 is more realistic and reasonable than the estimations made on long term averages by 

532 Gebreyohannes et al. (2013). Layer by layer water balance calculation, taking the daily records 

533 of the meteorological variables (used in rainfall and PET) and river discharge measurements, 

534 close to the event (reality), enabled to estimate surface runoff, actual ET, inter flow, interception, 

535 soil moisture, and depression storage in a better way than using seasonal average data. As a 

536 result, the simulated recharge is more realistic. The runoff model developed for Agulae 

537 catchment by Fenta et al. (2017) and ran for the period 2000-2012 revealed streamflows 
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538 decrement during wet season and increment during dry season by 49% and 57%, respectively, 

539 with no significant annual and temporal rainfall variations. It shows the increasing trend on 

540 infiltration, and then groundwater recharge, attributed to the land-use change of the study area, 

541 which is in line with our study.  

542 The rainfall in the study area didn’t show any trend for the simulation period but recorded 

543 highest for 2001, preceded and followed by relatively low rainfall years, which is in agreement 

544 with Hadgu et al. (2013) who noted that rainfall is highly variable with no meaning full trend for 

545 seasonal and annual totals. As a result, the percolating water doesn’t follow either increasing or 

546 decreasing trend with time. The mean monthly recharge value is high for August with value of 

547 73 mm, July is the next having 19 mm; and September and June follow with 2.3 mm and 1.3 

548 mm, respectively. The lowest recharge month is December (0.08 mm).

549
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550 Fig. 10. Monthly recharge, infiltration and rainfall over the whole simulation period
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552 Fig. 1.  Mean monthly recharge, infiltration and rainfall over the whole simulation period

553 3.4.2. Spatial Distribution of Recharge

554 WetSpa allows spatial variation of its parameters over a particular catchment by 

555 combining information from the three basic maps of land-use, soil and topography, which results 

556 in a more accurate representation of natural hydrological processes (Liu and De Smedt, 2004). 

557 Moreover, variation in the hydro(meteoro)logical variables (PET and precipitation) gives a 

558 highly spatially varied recharge of Geba basin.

559 The average annual percolation or simulated groundwater recharge spatially ranges from 

560 zero to 371 mm. It is reclassified into six recharge classes as shown in Fig. 12. Areas which are 

561 labeled as water body land-use class have a value of around 0 mm or 1.0 mm, regardless of other 

562 recharge conducive conditions (such as flat topography, porous and permeable soil type, high 

563 rainfall, etc.). This is because they are considered as zones of discharge or impervious percentage 

564 is 100% (Liu and De Smedt, 2004). As expected, areas with a soil having a good hydraulic 

565 conductivity such as sand, sandy clay and sandy loam have high recharge value if the rainfall is 

566 either not significantly low or/and the land-use is no water body or urban. The sandy soil in the 

567 Northern parts of the catchment is anticipated to have a very high recharge amount, except those 
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568 parts covered by water body. However, the relatively lower rainfall amount recorded, to high 

569 extent, and the steep topography (Fig. 7), to some extent cause part of the area to have medium 

570 and low recharge classes. In some cases, the recharge classes follow the soil types, where 

571 hydrologically very different soil groups are close to each other (Fig. 4).

572 There is a sharp contact between recharge classes (with straight lines class boundaries) 

573 which is deviated from the reality to a certain extent (especially around class contacts). This 

574 cannot be attributed to any of the other groundwater recharge influencing factors, but is due to 

575 the rainfall interpolation effect of the Thiessen polygon method. If we compare with the Thiessen 

576 polygon map (Fig.6), we can recognize these lines. Indeed, this is due to interpolation of rainfall 

577 from few meteorological stations for such big area, and strong rainfall variability (Hadgu et al., 

578 2013; Nyssen et al., 2005). According to Nyssen et al. (2005), topographical factors, especially 

579 general orientation of the valley and slope gradient over longer distances, determine the spatial 

580 distribution of rainfall. The model quality of WetSpa, largely depends on quality of the 

581 meteorological data (Porretta-Brandyk et al., 2010). Abrupt changes from one Thiessen polygon 

582 to the other are observed in the spatial maps. This can be improved if many gauging stations are 

583 installed and included in the interpolation. This is the main limitation in the study. The influence 

584 of other climatic variables such as minimum and maximum temperature, wind speed, sunshine 

585 hours, and relative humidity would play some role through their effect on the PET, the spatial 

586 variation of which remains limited. 

587 Groundwater recharge and other hydrologic components were found to be highly 

588 controlled by geology. The expected high potential surface runoff and low infiltration rate, 

589 estimated from the characteristics of soil types, slope, and land-use are not attained in this model. 
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590 The rainfall character, lithology type and geological structures (Fig. 2) are rather mainly the 

591 dictating factors for the share of the balance components.

592 Geology is one of the controlling factors for soil, topography, and land-use. The three 

593 regional normal dip-slip faults in Fig. 2 (Mekelle, Chelekot, and Wukro), for example, are the 

594 reasons for the existence of the elevated and sloping topography, and exposure of deeper 

595 stratigraphical sequences (Precambrian and deeper Mesozoic sedimentary), where the fault 

596 planes are sloping and the blocks (walls) are relatively flat. In addition, the presence of the 

597 plunging, Negash Synclinal fold (Fig. 2), is the primary factor for the rugged topography in the 

598 metamorphic terrain of the basin. Besides, the local faults and folds have also paramount 

599 importance in the evolution of the geomorphology and the topography (slope), and thereby the 

600 surface runoff and the infiltration of each rainfall event. 

601  Generally, soil is the weathering product of rock, further subjected to post processes, the 

602 magnitude of which depends on the soil type and its physical, biological, and chemical 

603 characteristics. For geological, geomorphological and hydrological reasons, most of the soil 

604 coverage in the basin is residual soil type rather than transported, with laterally uniform soil (in 

605 porosity, permeability, water holding capacity, e.t.c), as the soil originated from one lithology or 

606 genetically similar lithology types. As a result, unlike transported soil, common in the different 

607 river basins of Ethiopian highlands, the relative uniformity of the properties important for the 

608 hydrology within one soil class, better fits to the model assumption of homogeneity and isotropy 

609 (Liu and De Smedt, 2004). The texture of soil depends on the parent rock type, weathering 

610 magnitude and rate, weathering type (either mechanical or chemical or combination), biological 

611 mixtures, and other physico-chemical factors. When we consider soil types and underlying 

612 lithological formations, there is no unique relation i.e. a given soil type is multi-parental and 
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613 overlies different rock units (Fig. 2 and 4). This shows the high controlling power of other soil 

614 formation factors rather than lithology. However, good correspondence is observed between 

615 shale, marl, and limestone varieties, that are usually found in association both in the Antalo 

616 Limestone and Agulae Shale Formations, with clay loam and clay soil types which are known to 

617 be weathering products of these litho-units.

618 Furthermore, Enticho sand stone and volcanic rock varieties, in the northern most part of 

619 the basin, are both covered by sandy soil where the field study showed different mineralogical 

620 composition of the soil on the two rock types: olivine-pyroxene-plagioclase rich on the volcanic 

621 rock and quartz rich on the sandstone. Likewise, the other soil types (Fig. 4) are formed from 

622 different parent rocks having different minerals with different properties though grouped in one 

623 class on the basis of texture. This variation causes hydrological processes to spatially vary in the 

624 root zone (e.g. soil moisture content variation in different clay mineral varieties). However, this 

625 difference only affects the initial moisture content of a given rainy season which has insignificant 

626 importance in long term hydrological simulations like in this study (Liu and De Smedt, 2004). 

627 Furthermore, the depth of the soil-rock interface which is an important factor for percolation, 

628 depends on the geology; this was accordingly set up in the model. However, the model is not 

629 flexible enough to illustrate the spatial variation within a soil class. 

630 In general, geology affects the spatial distribution of the soil which is one of three 

631 important spatial factors considered in the study. Similarly, the geology and geomorphology are 

632 among the important factors upon which the land-use/landcover depends. More vegetated land is 

633 found on volcanic and carbonate rocks than on shale (Figs. 2 and 3). This is due to the suitability 

634 of the soil composition which is mostly reflecting the underlying rock.
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635 In conclusion, the spatial distribution indirectly depends on geology of the basin. Direct 

636 consideration of both lithological and geological structure as an independent input is not made in 

637 this work though it is unwise to underestimate their effect in influencing groundwater recharge. 

638 However, their summative effect in affecting the overall basin-wise hydrologic budgets for each 

639 component (recharge, runoff, AET, soil moisture), is well accounted during model calibration 

640 and validation based on observations.

641

642
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643

644 Fig. 12. Spatial distribution map of mean annual recharge (a) and areal coverage of recharge classes in 

645 percentage in the Geba catchment (b)

646 Arefaine et al. (2012) applied the WetSpass model to simulate the hydrological 

647 components of Illala catchment, located in the lower south central part of the Geba basin (Fig. 1), 

648 by using the land-use prepared from satellite images in parallel with this study. According to 

649 their calculation, the mean annual groundwater recharge, surface runoff, and actual 

650 evapotranspiration (ET) are 12%, 7%, and 81% of the precipitation, respectively, which is closer 

651 to our result. 

652 Field et al. (2017) modeled the groundwater flow system in the well field of Aynalem 

653 river (tributary of Geba) catchment, covering an areal extent of 102 km2, located near to Mekelle 

654 city (Fig.1) using MODFLOW. In their model, they used 9% (of mean precipitation) recharge 

655 input, determined by water balance and base flow separation techniques. Most of this area laid in 

656 class 3 (20-50 mm/year) recharge class (Fig.12) of our groundwater recharge classification. The 

657 recharge to precipitation percentage, taking the average annual class to its corresponding mean 
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658 annual precipitation at the Mekelle-Quiha meteorological station, accounted to be 11% in this 

659 study, which is close to 9% found by (Field et al., 2017).

660 Tilahun and Merkel (2009) used WetSpass to see the spatial variation and the controlling 

661 physical and hydro-meteorological factors of groundwater recharge, surface runoff and ET, in a 

662 similar semi-arid environment called Dire Dawa basin, in eastern Ethiopia, having areal coverage 

663 of about 920 km2. According to this work, 5%, 20% and 75% of rainfall were the average annual 

664 values for recharge, surface runoff and ET, respectively. Their lower value for recharge and 

665 higher for surface runoff, though the area is similar in climatic conditions, topography, and soil 

666 type with Geba basin, is mainly due to the higher impervious percentage of the land use i.e. the 

667 bare land in Geba is about 10% while it is 26% for Dire Dawa during the corresponding study 

668 times. 

669 3.5. Spatial and temporal distribution of surface runoff, Soil moisture 

670 and Evapotranspiration

671 Generally, the variations both in time and space of surface runoff, soil moisture and ET, 

672 are directly related to rainfall amount and intensity, land-use, soil, and slope, geology (lithology 

673 and geological structures) and other climatic conditions like wind speed, moisture carrying 

674 capacity, atmospheric moisture content, temperature and length of sunshine hours.

675 Surface runoff depends on the rainfall characteristics (amount and intensity), soil type, 

676 slope, land cover, antecedent soil moisture, and depression characters of an area. The potential 

677 runoff, in this study is based solely on physiographic features of the area such as soil type, land-

678 use, and slope maps using the default values, based on literature, for different possible 

679 combinations (Liu and De Smedt, 2004). The mean annual actual runoff simulated (7.2% of 
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680 precipitation) is very low, compared to the corresponding predicted potential runoff (shown in 

681 the potential runoff coefficient map in Fig. 6). This illustrates that the mean and total amount of 

682 actual runoff is highly controlled and responsive to other factors than the basins physiographic 

683 features, though the spatial distribution is partially correlated with these factors. 

684 According to Liu and De Smedt (2004), the proportion of runoff increases along with the 

685 increase of rainfall intensity up to a stage at which potential runoff coefficient is achieved. In 

686 WetSpa an empirical exponent, the surface runoff exponent for a near zero rainfall intensity 

687 (K_run), is assumed to be a variable starting from a higher value for a near zero rainfall intensity, 

688 and changing linearly  to 1 along with the rainfall intensity. In this model, K_run is about 8.5 

689 (table 2), which is relatively high and shows the low rainfall intensity of the area. Mainly low 

690 daily rainfall amount is being recorded in the area, thereby producing low runoff, contrary to the 

691 prediction in the potential runoff coefficient. A good correlation between simulation and 

692 measurements is found for the high streamflows (much better than for the low flows) (C5 in table 

693 3; Fig. 14). This shows the effectiveness of the developed model in simulating the runoff. 

694 Similarly, Zenebe et al. (2013) observed that several smaller rainfall events recorded by  rain 

695 gauges, could not be detected in the runoff response and vice versa. This could be ascribed to the 

696 local character of many rainstorms. In addition, their estimated runoff coefficient negatively 

697 correlated with the areal fraction of limestone outcrops in the catchments, indicating runoff 

698 transmission losses from their specific sub-catchment to sub-catchment runoff analysis. Besides 

699 to the rainfall characteristics, the common karsts and sinkholes in the marl-limestone, shale-marl-

700 limestone, limestone-marl, meta-limestone rock units, and in limestone-dolomite-gypsum beds of 

701 Agulae shale formation, covers the central part of the study area (Fig. 2), playing significant role 
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702 in controlling the hydrologic cycle and the share of the water balance components. They enhance 

703 infiltration, and significantly lessen runoff.

704 Moreover, the geological structures (major and minor faults, joints, sedimentary inter-

705 beddings, and foliations), reduce surface runoff as the relatively high porosity, and hence 

706 permeability through the openings cause infiltration to the subsurface, rather than producing 

707 overland flow, even in high rain events. These geological features i.e. karsts on chemical 

708 sedimentary and meta-sedimentary rocks, and geological structures in all rock types, which both 

709 result in effect lowering surface runoff and increasing infiltration, are the major reasons for the 

710 low observed runoff contrary to the expectation. The very low correspondence between actual 

711 and potential runoff, was the primary causative factor for the unsuccessfulness of the different 

712 small and medium scale dams in the area (Berhane et al., 2017; Gebreyohannes et al., 2013; Taye 

713 et al., 2013; Zenebe et al., 2013), wherein the actually stored reservoir water quantities much 

714 lower than the designed. Their hydrological design was based, solely on surface physiographical 

715 catchment characteristics regardless of rainfall character, geology or stream discharge 

716 measurements.

717 The spatial distribution of potential surface runoff is shown in Fig. 13. It follows the 

718 distribution and interplay of rainfall amount, soil type, slope, and land-use. Generally sand, 

719 sandy clay and sandy clay loam soil classes have lower runoff, up to annual runoff amount of 50 

720 mm, expected from the runoff coefficient map (Fig. 7), due to their high hydraulic conductivity 

721 value. A high value observed in the sandy class is due to the totally impervious land-use “water 

722 body”. The loam and sandy clay loam in the upper part of the catchment have got sharply 

723 separated runoff classes (Fig. 13). This is because of the rainfall interpolation effect (Thiessen 

724 polygon). In the lower (southeastern), the middle and uppermost (northern) part of the 
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725 catchment, bare land and urban classes are found to have relatively higher runoff. Generally, the 

726 primary factors for the spatial distribution of actual surface runoff are rainfall amount and partly 

727 soil and land-use in the study area. The highest runoff class in the middle of the study basin (Fig. 

728 13) is attributed to the Thiessen polygon of relatively highest rainfall registered at Wukro 

729 meteorological station (Fig. 6) despite soil types are impervious: clay and clay loam (Fig. 4) .

730 Fig. 14 shows the spatial distribution of annual actual evapotranspiration in the Geba 

731 catchment. It shows that the evapotranspiration class distribution is highly dependent on rainfall. 

732 Since our study area belongs to an arid region, the most important determining factor for 

733 evapotranspiration is water availability followed by the land-use and soil characteristics. The 

734 spatial variation of the climatic conditions (temperature, humidity, sunshine hours, and wind 

735 speed), on which evapotranspiration depends, are not significant in the study basin. This can be 

736 inferred by relating the actual evapotranspiration map (Fig. 14) with the elevation map (Fig. 1), 

737 which is an important factor for local climatic variation of an area. The influence of soil 

738 conditions is observed visibly in the upper part between sand and clay loam. Land-use plays 

739 similar role as soil, with high values for vegetation coverage.

740 The temporal variations of evapotranspiration, soil moisture and surface runoff with 

741 rainfall are shown in Fig. 15. They strictly follow the trend of rainfall, which is the primary 

742 source of water for all these hydrological processes. However, around the beginning of January, 

743 2000, the soil moisture content is high, which also made the evapotranspiration relatively 

744 significant. This might be due to rainfall that occurred during autumn season (before January) in 

745 1999 where sometimes happens in the region. The effect of groundwater is minimal as the water 

746 table depth is high. Evapotranspiration, and to some extent soil moisture respond with some lag 

747 in time, as it takes time to infiltrate into the soil especially for those soils with high field capacity 
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748 like clay. The residual soil moisture content is high, due to the dominant soil coverage of the area 

749 by clay, clay loam and loam soil types.

750 Though the peak rainfall amount varies in the four rainy seasons of the simulation period, 

751 the actual evapotranspiration does not show variation (is almost equal). This leads to a 

752 conclusion that during the rainiest month of August, the actual evapotranspiration is almost equal 

753 to the PET value and the influencing factors are weather variables (other than rainfall), 

754 vegetation and soil conditions rather than the water availability. Moreover, a high surface runoff 

755 occurred on August 2, 2001, amounting to 18.6 mm. When it is compared with other peak runoff 

756 periods, it is significantly increased with relatively small increment in rainfall. For example, a 

757 maximum of 38.3 mm rainfall was recorded on August 13, 2000, from which only 8.2 mm left as 

758 surface runoff, while 18.6 mm surface runoff had happened with 41.5 mm rain amount (on 

759 August 2, 2001). This high increment in surface runoff while the precipitation didn’t rise 

760 significantly can be ascribed to the intensity of the rain and the high moisture condition of the 

761 soil (which restricts the infiltration). The spatial distribution of the soil moisture is mostly 

762 depending on soil type rather than land-use and rainfall.
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763

764 Fig. 2. Annual actual surface runoff map of Geba basin

765

766 Fig. 3. The mean annual evapotranspiration of Geba basin
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768 Fig. 4. Daily evapotranspiration, surface runoff and soil moisture with rainfall over the whole simulation 

769 period

770 4. Conclusion 
771 A GIS based, physically distributed watershed model called WetSpa was applied to Geba 

772 catchment, covering an area of 4,249 km2 in Northern Ethiopia. The model was effectively 

773 applied to determine the spatial and temporal variation of groundwater recharge, in the period of 

774 January 01, 2000 to December 18, 2003. This spatially distributed hydrologic model was 

775 simulated using daily time scale in this particular study. The spatial properties of input 

776 meteorological parameters (rainfall and PET), were interpolated using Thiessen polygons, where 

777 the altitude variation effect of the gauging stations corrected by linear topographic correction 

778 method. The model uses a 90 m by 90 m resolution DEM, land-use and soil type map for taking 

779 spatial information into account and derives all required hydrologic model parameters in 

780 spatially distributed manner within a GIS framework.

781 The model was both calibrated and validated by about two years of meteorological and 

782 discharge data. The model performance indicated by values obtained by calibration both 
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783 manually and by PEST, is generally fair. It has a bias of -2.54%, NS=69.83%, NSL=74.78% and 

784 NSH of 83.26%. The simulated and measured daily stream hydrographs are generally in good 

785 agreement as well when visually observed.

786 There is high variation of recharge both spatially and temporally. The spatial rainfall 

787 variation and characteristics, followed by the soil type and land-use, and to certain extent the 

788 slope control the spatial distribution. The geology also plays an important role. For the temporal 

789 variation of recharge, rainfall is the determinant factor, and to some extent also the soil type, 

790 through the antecedent soil moisture variation, during the summer and spring or start   of rains 

791 for a year. The other climate variables have played role in determination of the total or mean 

792 values, but are insignificant for the time variation of recharge.

793 Acknowledgement 

794 The Belgian Development Cooperation (VLIR-UOS) sponsored this work. Thus the 

795 authors acknowledge VLIR-UOS for the funding of the research project. We are grateful to the 

796 National Meteorological Service Agency of Ethiopia (Mekelle Branch) for making 

797 meteorological data available. We would like to pass our great appreciation to Dr. Hadush 

798 Goitom for his technical support during the model development of the study area. The first 

799 author would also acknowledge Ghent University and Free University of Brussels for their 

800 support during his study stay at the time of this research work.

801 References
802 Adem, G., Batelaan, O., 2006. Modeling groundwater-surface water interaction by coupling MODFLOW 
803 with WetSpa, in: Geophysical Research Abstracts. p. 3181.

804 Alemayehu, F., Taha, N., Nyssen, J., Girma, A., Zenebe, A., Behailu, M., Deckers, S., Poesen, J., 2009. The 
805 impacts of watershed management on land use and land cover dynamics in Eastern Tigray 



ACCEPTED MANUSCRIPT

47

47

806 (Ethiopia). Resour. Conserv. Recycl. 53, 192–198. doi:10.1016/j.resconrec.2008.11.007

807 Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing 
808 crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300, D05109.

809 Arefaine, T., Nedaw, D., Gebreyohannes, T., 2012. Groundwater Recharge , Evapotranspiration and 
810 Surface Runoff Estimation Using WetSpass Modeling Method in Illala Catchment , Northern 
811 Ethiopia 4, 96–110.

812 Batelaan, O., De Smedt, F., 2001. WetSpass: a flexible, GIS based, distributed recharge methodology for 
813 regional groundwater modelling. IAHS Publ. 11–18.

814 Berhane, G., Amare, M., Gebreyohannes, T., Walraevens, K., 2017. Geological and geophysical 
815 investigation of water leakage from two micro-dam reservoirs: Implications for future site 
816 selection, northern Ethiopia. J. African Earth Sci. 129, 82–93.

817 Bouraoui, F., Vachaud, G., Li, L.Z.X., Le Treut, H., Chen, T., 1999. Evaluation of the impact of climate 
818 changes on water storage and groundwater recharge at the watershed scale. Clim. Dyn. 15, 153–
819 161.

820 Brown, V.A., McDonnell, J.J., Burns, D.A., Kendall, C., 1999. The role of event water, a rapid shallow flow 
821 component, and catchment size in summer stormflow. J. Hydrol. 217, 171–190.

822 Carter, R.C., Parker, A., 2009. Climate change, population trends and groundwater in Africa. Hydrol. Sci. 
823 J. 54, 676–689.

824 Chormański, J., Batelaan, O., 2011. Application of the WetSpa distributed hydrological model for 
825 catchment with signi fi cant contribution of organic soil . Upper Biebrza case study. Ann. Warsaw 
826 Univ. Life Sci. - SGGW 43, 25–35. doi:10.2478/v10060-008-0090-6

827 Dams, J., Salvadore, E., Van Daele, T., Ntegeka, V., Willems, P., Batelaan, O., 2012. Spatio-temporal 
828 impact of climate change on the groundwater system. Hydrol. Earth Syst. Sci. 16, 1517.

829 De Vries, J.J., Simmers, I., 2002. Groundwater recharge: an overview of processes and challenges. 
830 Hydrogeol. J. 10, 5–17.

831 Doherty, J., 2010. PEST: Model independent parameter estimation, Watermark Numer. Comput. 
832 Brisbane, Queensland, Aust.

833 Eyasu, Y.H., 2005. Development and management of irrigated lands in Tigray, Ethiopia. Balkema.

834 Fenta, A., Yasuda, H., Shimizu, K., Haregeweyn, N., 2017. Response of streamflow to climate variability 
835 and changes in human activities in the semiarid highlands of northern Ethiopia. Reg. Environ. 
836 Chang. doi:10.1007/s10113-017-1103-y

837 Field, A.W., Kerebih, M.S., Keshari, A.K., Ph, D., Asce, M., 2017. GIS-Coupled Numerical Modeling for 
838 Sustainable Groundwater Development : Case Study of 22, 1–13. doi:10.1061/(ASCE)HE.1943-
839 5584.0001444.



ACCEPTED MANUSCRIPT

48

48

840 Freeze, R.A., 1969. The Mechanism of Natural Ground-Water Recharge and Discharge: 1. 
841 One-dimensional, Vertical, Unsteady, Unsaturated Flow above a Recharging or Discharging 
842 Ground-Water Flow System. Water Resour. Res. 5, 153–171.

843 Gebremeskel, S., Liu, Y.B., De Smedt, F., Hoffmann, L., Pfister, L., 2005. Assessing the hydrological effects 
844 of Landuse changes using distributed hydrological modelling and GIS. Int. J. river basin Manag. 3, 
845 261–271.

846 Gebremeskel, S., Liu, Y.B., De Smedt, F., Hoffmann, L., Pfister, L., 2004. Analysing the effect of climate 
847 changes on streamflow using statistically downscaled GCM scenarios. Int. J. River Basin Manag. 2, 
848 271–280.

849 Gebreyohannes, T., De Smedt, F., Walraevens, K., Gebresilassie, S., Hussien, A., Hagos, M., Amare, K., 
850 Deckers, J., Gebrehiwot, K., 2013. Application of a spatially distributed water balance model for 
851 assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia. J. Hydrol. 
852 499, 110–123.

853 Gebreyohannes, T., Smedt, F. De, Hagos, M., 2010. Tigray Livelihood Paper No . 9 Large-Scale Geological 
854 mapping of the Geba basin , northern Ethiopia.

855 Gebreyohannes, T., Smedt, F. De, Walraevens, K., Gebresilassie, S., Hussien, A., Hagos, M., Amare, K., 
856 2017. Regional groundwater flow modeling of the Geba basin , northern Ethiopia. 
857 doi:10.1007/s10040-016-1522-8

858 Hadgu, G., Tesfaye, K., Mamo, G., Kassa, B., 2013. Trend and variability of rainfall in Tigray , Northern 
859 Ethiopia : Analysis of meteorological data and farmers ’ perception. Acad. J. Agric. Res. 1, 88–100. 
860 doi:10.15413/ajar.2013.0117

861 Healy, R.W., Cook, P.G., 2002. Using groundwater levels to estimate recharge. Hydrogeol. J. 10, 91–109.

862 Imani, R., Ghasemieh, H., Ouri, A.E., 2016. Application and Calibration of WetSpa Hydrological Model for 
863 Daily Runoff Simulation for 2007-2008 to 2011-2012 Water years : A Case Study: Balokhluchay 
864 Watershed, Ardabil, Northwestern Iran. Int. Bull. Water Resour. Dev. 3, 140–152.

865 Karamage, F., Zhang, C., Fang, X., Liu, T., Ndayisaba, F., Nahayo, L., Kayiranga, A., Nsengiyumva, J., 2017. 
866 Modeling Rainfall-Runoff Response to Land Use and Land Cover Change in Rwanda (1990–2016). 
867 Water 9, 147. doi:10.3390/w9020147

868 Kassie, B.T., Asseng, S., Rotter, R.P., Hengsdijk, H., Ruane, A.C., Van Ittersum, M.K., 2015. Exploring 
869 climate change impacts and adaptation options for maize production in the Central Rift Valley of 
870 Ethiopia using different climate change scenarios and crop models. Clim. Change 129, 145–158.

871 Liu, Y.B., Batelaan, O., Smedt, F. De, Huong, N.T., Tam, V.T., 2005. Test of a distributed modelling 
872 approach to predict flood flows in the karst Suoimuoi catchment in Vietnam. Environ. Geol. 48, 
873 931–940.

874 Liu, Y.B., De Smedt, F., 2004. WetSpa extension, a GIS-based hydrologic model for flood prediction and 
875 watershed management. Vrije Univ. Brussel, Belgium 1, e108.



ACCEPTED MANUSCRIPT

49

49

876 Liu, Y.B., De Smedt, F., Pfister, L., Wu, B.S., 2002. Flood prediction with the WetSpa model on catchment 
877 scale. Flood Def. ‘2002 499–507.

878 Nedaw, D., Walraevens, K., 2009. The positive effect of micro-dams for groundwater enhancement: a 
879 case study around Tsinkanet and Rubafeleg area, Tigray, northern Ethiopia. Momona Ethiop. J. Sci. 
880 1.

881 Nyssen, J., Vandenreyken, H., Poesen, J., Moeyersons, J., Deckers, J., Haile, M., Salles, C., Govers, G., 
882 2005. Rainfall erosivity and variability in the Northern Ethiopian Highlands. J. Hydrol. 311, 172–187.

883 Porretta-Brandyk, L., Chormański, J., Ignar, S., Okruszko, T., Brandyk, A., Szymczak, T., Krȩzałek, K., 2010. 
884 Evaluation and verification of the WetSpa model based on selected rural catchments in Poland. J. 
885 Water L. Dev. 14, 115–133. doi:10.2478/v10025-011-0010-8

886 Rwetabula, J., De Smedt, F., Rebhun, M., 2007. Prediction of runoff and discharge in the Simiyu River 
887 (tributary of Lake Victoria, Tanzania) using the WetSpa model. Hydrol. Earth Syst. Sci. Discuss. 4, 
888 881–908.

889 Safari, A., De Smedt, F., 2014. Improving WetSpa model to predict streamflows for gaged and ungaged 
890 catchments. J. Hydroinformatics 16, 758–771.

891 Safari, A., De Smedt, F., 2008. Streamflow simulation using radar-based precipitation applied to the 
892 Illinois River basin in Oklahoma, USA, in: Third International Scientific Conference BALWOIS.

893 Safari, A., De Smedt, F., Moreda, F., 2012. WetSpa model application in the Distributed Model 
894 Intercomparison Project (DMIP2). J. Hydrol. 418–419, 78–89. doi:10.1016/j.jhydrol.2009.04.001

895 Scanlon, B.R., Healy, R.W., Cook, P.G., 2002. Choosing appropriate techniques for quantifying 
896 groundwater recharge. Hydrogeol. J. 10, 18–39.

897 Seleshi, Y., Zanke, U., 2004. Recent changes in rainfall and rainy days in Ethiopia. Int. J. Climatol. 24, 973–
898 983.

899 Singh, V.P., Woolhiser, D.A., 2002. Mathematical modeling of watershed hydrology. J. Hydrol. Eng. 7, 
900 270–292.

901 Smith, M., 1992. CROPWAT: A computer program for irrigation planning and management. Food & 
902 Agriculture Org.

903 Tarboton, D.G., Bras, R.L., Rodriguez-Iturbe, I., 1991. On the extraction of channel networks from digital 
904 elevation data. Hydrol. Process. 5, 81–100.

905 Taye, G., Poesen, J., Wesemael, B. Van, Vanmaercke, M., Teka, D., Deckers, J., Goosse, T., Maetens, W., 
906 Nyssen, J., Hallet, V., Haregeweyn, N., 2013. Effects of land use, slope gradient, and soil and water 
907 conservation structures on runoff and soil loss in semi-arid Northern Ethiopia. Phys. Geogr. 34, 
908 236–259. doi:10.1080/02723646.2013.832098

909 Taylor, R.G., Koussis, A.D., Tindimugaya, C., 2009. Groundwater and climate in Africa—a review. Hydrol. 
910 Sci. J. 54, 655–664.



ACCEPTED MANUSCRIPT

50

50

911 Tesfagiorgis, K., Gebreyohannes, T., De Smedt, F., Moeyersons, J., Hagos, M., Nyssen, J., Deckers, J., 
912 2011. Evaluation of groundwater resources in the Geba basin, Ethiopia. Bull. Eng. Geol. Environ. 70, 
913 461–466.

914 Tilahun, K., Merkel, B.J., 2009. Estimation of groundwater recharge using a GIS-based distributed water 
915 balance model in Dire Dawa , Ethiopia 1443–1457. doi:10.1007/s10040-009-0455-x

916 Walraevens, K., Gebreyohannes Tewolde, T., Amare, K., Hussein, A., Berhane, G., Baert, R., Ronsse, S., 
917 Kebede, S., Van Hulle, L., Deckers, J., 2015. Water Balance Components for Sustainability 
918 Assessment of Groundwater-Dependent Agriculture: Example of the Mendae Plain (Tigray, 
919 Ethiopia). L. Degrad. Dev. 26, 725–736.

920 Walraevens, K., Vandecasteele, I., Martens, K., Nyssen, J., Moeyersons, J., Gebreyohannes, T., De Smedt, 
921 F., Poesen, J., Deckers, J., Van Camp, M., 2009. Groundwater recharge and flow in a small mountain 
922 catchment in northern Ethiopia. Hydrol. Sci. J. 54, 739–753. doi:10.1623/hysj.54.4.739

923 Wang, Z.-M., Batelaan, O., De Smedt, F., 1996. A distributed model for water and energy transfer 
924 between soil, plants and atmosphere (WetSpa). Phys. Chem. Earth 21, 189–193.

925 Woldeamlak, S.T., Batelaan, O., De Smedt, F., 2007. Effects of climate change on the groundwater 
926 system in the Grote-Nete catchment, Belgium. Hydrogeol. J. 15, 891–901.

927 Zenebe, A., Vanmaercke, M., Poesen, J., Verstraeten, G., Haregeweyn, N., Haile, M., Amare, K., Deckers, 
928 J., 2013. Spatial and temporal variability of river flows in the degraded semi-arid tropical mountains 
929 of northern Ethiopia 57, 143–169. doi:10.1127/0372-8854/2012/0080

930



ACCEPTED MANUSCRIPT

 Efficient WetSpa model is developed for the mountainous and semi-arid Geba basin.

 Annual recharge varies from 45 to 208 mm temporally and 0 to 371 mm spatially.

 Recharge strongly related to rainfall; and partly to soil and land-use than other basin physical 

characteristics. 

 ET and soil moisture are annually constant than GW recharge and surface runoff. 

 11.4%, 10%, 94% are recharge, runoff and ET respectively of the precipitation.




