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Abstract 

The promise of microbial biological control of soilborne fungal pathogens of crops has yet to 

be fully realised with only a few strains commercialised and available to growers. One 

bottleneck is the availability of suitable methods to screen microorganisms for disease control 

efficacy relevant to controlling disease in the field. A 3-phase in planta pathosystem 

containing field soil was developed to screen 2,310 microorganisms for control of 

Rhizoctonia root rot on wheat. Test strains were added to seeds as a suspension at planting 

and plant growth assessed at two weeks. Strains increasing plant height and number of roots 

(185) were tested in a replicated Rhizoctonia pot bioassay with five wheat seedlings grown 

for four weeks and assessed for plant growth and root disease. Forty three strains (1.9% of 

strains tested) performed better than our benchmark strains and were reassessed in pot 

bioassays at three inoculation levels. These tested strains represented a wide diversity of 

microbial genotypes including fungi, (Trichoderma, Aspergillus and Cylindrocarpon) and 

bacteria encompassing four phyla (Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes). 

These results show that microbes can be successfully and rapidly screened directly for 

disease control on plants. 

1. Introduction 

The soilborne fungus Rhizoctonia solani (Kühn) is an important pathogen on many 

crops worldwide (Anees et al. 2010). R. solani AG8 is the most economically important root 

disease in southern Australia’s dryland cropping systems, causing an annual loss of up to $77 

million in yield in wheat and barley (Murray & Brennan, 2009a, Murray & Brennan, 2009b) 

and is also important in the Pacific northwest of the USA (Paulitz et al., 2002, Weller et al., 

1986). In this work we use the term Rhizoctonia to refer to disease caused by R. solani AG8 

on wheat unless otherwise indicated. R. solani AG8 causes root rot and stunting of seedlings 

resulting in reduced ability to access water and nutrients (Paulitz et al., 2002). Rhizoctonia is 

difficult to control because it has a wide range of hosts used as rotation crops in cereal 

cropping systems (Cook et al., 2002) and no genetic resistance is currently available to cereal 

growers although synthetic wheat lines are being developed (Mahoney et al. 2016, Okubara 

et al. 2009). Registered chemical controls with fungicides on wheat are now currently 

available in Australia, however their affect is limited (Bogacki et al. 2014). Rhizoctonia is 

also increased in direct-drill or minimal tillage and stubble retention farming systems and is a 
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significant constraint to the uptake of these practices (Paulitz et al., 2002, Pumphrey et al., 

1987, Rovira, 1986). 

The development of Rhizoctonia root rot is influenced by other soil microorganisms, 

and examples of microbial disease suppression have been reported for cereals in Australia 

(Barnett et al., 2006, Roget, 1995), the USA (Mavrodi et al., 2012a, Schillinger & Paulitz, 

2006) and in sugar beet (Mendes et al., 2011). Microbes have also been isolated and shown to 

be able to reduce Rhizoctonia-induced disease caused by R. solani AG8 and other 

anastomosis groups since 1971 (Broadbent et al., 1971) with more recent work concentrating 

on developing strains as inoculants for wheat (Dua & Sindhu, 2012, Mavrodi et al., 2012b, 

Yin et al., 2013), lettuce and sugar beet (Faltin et al., 2004) and potato (Grosch et al., 2005). 

The potential for biocontrol agents to be commercially viable inoculants for controlling 

disease has been well documented (Berg, 2009, Dutta & Podile, 2010) and there are 

increasing social and economic drivers for the use of these agents (Bailey et al., 2010). There 

are however numerous obstacles in the development of biocontrol agents for commercial use 

(Fravel, 2005, Köhl et al., 2011, Schisler & Slininger, 1997). In order to be developed 

successfully into a commercial inoculant, a microorganism must have a number of 

characteristics, the paramount one being efficacy in the field. Other traits include survival 

during storage and when applied to seed, cost effective growth characteristics and ability to 

be formulated as a commercial product. Seed coating is currently the most likely application 

route in southern Australia until in-furrow liquid applications become more widely adopted 

by growers. Inoculants must also be compatible with the agrochemicals used and 

management practices applied (Fravel, 2005, Köhl et al., 2011, Schisler & Slininger, 1997).  

Schisler & Slininger (1997) succinctly state three common features of selection 

strategies for putative biocontrol agents that hamper the development of inoculant products: 

“(a) relatively few candidate microorganisms are tested; (b) microbes are selected based on 

the results of an assay that does not replicate field conditions; and (c) the amenability of 

microbes to commercial development is excluded as a selection criterion”. Köhl et al. (2011) 

proposed a detailed screening program that uses a stepwise approach to screening for strains 

that possess all the features required for an inoculant. It is based on using the lowest cost 

screens for the largest number of organisms, progressively narrowing down the number of 

strains as costs for each progressively complex screen increases. The importance of screening 

for efficacy in a system replicating field conditions has been well documented (Campbell, 

1994, Dunlap et al., 2013, Knudsen et al., 1997, Köhl et al., 2011, Schisler & Slininger, 

1997). However, because field-relevant bioassays can be costly and time consuming if 
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screening large numbers of organisms, many research groups still use in vitro inhibition 

assays as an initial step to screen for biocontrol agents (Dua & Sindhu, 2012, Mavrodi et al., 

2012b). 

Screening efficacy can also be enhanced by using a combination of features in the 

initial process of isolating microorganisms to obtain isolates of interest. For instance, the 

diversity of isolates to be selected from can be increased by using different plant genotypes 

(Garbeva et al., 2006, Kaewkla & Franco, 2013), isolating from multiple small sample sizes 

(Ranjard et al., 2003) or from diseased plants (Barnett et al., 1999). As well, chitinase 

producers can be selected for on baker’s yeast agar (Christensen & Cook, 1978), biofilm 

producers can be selected for by the method of Fall et al. (2004) and heat treatment can be 

applied to samples to select heat resistant isolates (Kim et al., 1997). 

Due to the costs of bioassays, Köhl et al. (2011) placed screening for efficacy at step 

five of nine. We feel that efficacy in disease control in planta is of primary importance and 

should be tested for at an earlier stage if high throughput plant-pathogen-soil bioassays could 

be designed to minimize the time and cost for screening unknown isolates.  

This paper reports the result arising from the use of a wheat-Rhizoctonia-field soil tube 

bioassay system designed for high throughput screening of newly isolated strains and strains 

from a culture collection for control of Rhizoctonia root rot on wheat. 

2. Materials and Methods 

2.1. Overview of screening procedure 

Microbial strains were screened for control of Rhizoctonia root rot on wheat in a 

stepwise procedure (Figure 1). Strains were first assessed for disease control in a primary 

tube soil-pathogen-two week seedling bioassay, (see Section 2.7). Selected isolates that 

increased shoot and root growth were then evaluated in a more rigorous secondary soil-

pathogen-four week seedling pot bioassay to confirm disease control efficacy (see Section 

2.8). Isolates that reduced mean root disease or increased root or shoot dry weight to a similar 

or greater degree than our current best strains were assessed in a tertiary pot bioassay at 

different inoculum levels to assess required amount of inoculum for efficacy (Section 2.9). 

Strains that were rated as having efficacy in the above screens were identified to genus and 

characterised for survival on wheat seeds and for in vitro pathogen inhibition.  
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2.2. Fungal pathogen  

The pathogen Rhizoctonia solani AG8 strain W19 used in all assays was isolated from 

diseased wheat roots from Waikerie GS soil (Table 1) on Ko and Hora (1971) medium and 

purified by subculturing to quarter strength potato dextrose agar (PDA/4, 6 g L-1 potato 

dextrose broth, Difco, 15 g L-1 agar, Becton Dickson). Strain W19 was identified as R. solani 

AG8 by SARDI Root Disease Testing Service (Ophel-Keller et al., 1999). Strain W19 infects 

and causes disease on all crop plants tested, including wheat (bread and durum), barley, oats, 

triticale, peas, vetch, sub-clover, medic, canola and cotton. Strain W19 was added to 

bioassays as colonized millet seeds, prepared by incubating 20 g sterilised (autoclaved twice 

for 30 min at 121oC) moist white millet seed with strain W19 in 500 ml polycarbonate tubs 

for two weeks at 25oC. Colonised millet seed was dried aseptically and stored at -20oC. R. 

solani W19 colonised millet seeds were added to pots within two hours of removal from -

20oC storage.  

2.3. Source of biocontrol strains 

Isolates screened for Rhizoctonia control came from two sources, (1) a culture 

collection of spore forming endophytic filamentous actinobacteria, referred to in this work as 

actinobacteria, from Flinders University (F strains F1, F2, etc), and (2) newly isolated strains 

from wheat roots and held in culture collections at the South Australian Research and 

Development Institute (SARDI, S strains S1, S2, etc). The endophytic actinobacteria are 

regarded as a good source of reliable biocontrol agents (Coombs & Franco, 2003, Franco et 

al., 2007, Kaewkla et al., 2013) and the collection was readily available. Isolation is 

discussed in detail below. Newly isolated strains were cultured on Baker’s yeast agar (BYA, 

Christensen & Cook, 1978) containing baker’s yeast, 4 g L-1 (Allied Mills, Rhodes, NSW, 

Australia) and Agar, 15 g L-1 (Amresco) for five days for non-filamentous bacteria or for 14 

days for filamentous actinobacteria and fungi. Culture collection actinobacteria were cultured 

for 14 days on mannitol soy agar, (MS, 20 g L-1 mannitol, 20 g L-1 soya flour, 20 g L-1 Agar, 

Oxoid). All cultures were grown at 25oC to 27oC in the dark. 

Our previous best performing biocontrol strains against Rhizoctonia root rot on wheat 

were used as positive ‘benchmark’ controls for tube and pot bioassays. Streptomyces strain 

EN16 (Coombs and Franco, 2003, Franco et al. 2007) was used when culture collection 

actinobacterial strains were assessed, or Trichoderma strain TB (Barnett, 2005) isolated from 
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wheat roots from Avon suppressive soil (Table 1, Roget 1995) when new bacterial and fungal 

strains were assessed.  

2.4. Isolation of new strains 

The strains designated as “new” were isolated from roots of cereal plants grown in one 

of five soils described in Table 1. Soils were collected from the top 10 cm following a wheat 

crop, sieved to less than two mm in a hand sieve and air dried and stored room temperature 

for one to two years prior to use. Soils were either untreated, heat treated at 80oC for one hour 

to select for heat resistant organisms, or with addition of chitosan 10 g kg-1 (Sigma) (except 

for Netherton and Mudamuckla soils), and 300 g (dry weight) potted up in 300 ml non-

draining pots at 60% water holding capacity. Three R. solani W19-infested millet seeds were 

placed in the center of each pot to encourage the proliferation of suppressive microbes on 

diseased roots (Barnett et al. 1999). Pots were planted with 10-15 seeds of bread wheat 

(Triticum aestivum) cultivar H45, durum wheat (T. durum) cultivar Yallaroi or Triticale (x. 

Triticosecale) cultivar Tahara. These cultivars were chosen as they had previously been 

shown to host a more suppressive microflora compared to five other wheat cultivars (Barnett, 

unpublished data). Seedlings were grown for three weeks at 15oC in a controlled environment 

room with 12 hour day/night cycle. Shoots were removed and the soil air dried for one week 

then repotted as before to bioamplify wheat root-associated microflora. R. solani W19 was 

added at each replanting. The 80oC treated soil was re-heated before every replanting. 

Chitosan was only added at the first planting.  

Roots were either processed after air drying for one week to allow spores to form when 

targeting heat resistant strains or from fresh nine day old roots when targeting fungi or non-

spore forming isolates. When isolating heat resistant strains, samples were heated to 80oC for 

30 min (Kim et al., 1997). 

Strains were isolated from well washed root pieces, from macerated roots and from 

rhizosheath soil (soil closely adhering to roots). Isolation from root pieces was modified from 

the method of Fall et al. (2004) for isolating organisms forming biofilms and tightly adhering 

to roots. Roots were removed from pots, washed five times under high pressure spray in a 

kitchen sieve, five seconds at a time with turning of roots between sprays then rinsing in 

sterile reverse osmosis (RO) water, blotted dry with sterile tissues and placed in a sterile two 

ml tube. Roots were then rinsed three times in one ml phosphate buffered saline (PBS) with 

vortexing for 15 sec and blotting dry between rinsing with sterile tissues and transferring to 
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new sterile two ml tube. Washed roots were then cut into five mm lengths and four sections 

placed onto one agar plate. 

When isolating from macerated roots, two to five mg of root was washed free of soil in 

sterile RO water, blotted dry with sterile tissues, macerated in a sterile mortar and pestle and 

10-fold dilutions made in PBS and 0.1 ml spread plated onto each agar plate.  

When isolating from rhizosheath soil, roots were shaken free of loose soil leaving only 

soil tightly adhering to roots and two cm root segments were placed in one ml PBS, vortexed, 

shaken for 30 min on orbital shaker (Ratex) at 200 rpm then 10-fold dilutions plated onto 

agar media as above. 

Most isolation was on BYA, based on the medium of Christensen & Cook (1978) to 

detect chitinase producers. For plating of root pieces, agar was added at 10 g L-1 (BYA1% to 

identify biofilm formers, Fall et al., 2004). Selective agents were used to select for particular 

groups. Cycloheximide (100 mg L-1) was added to all bacteria selective media to inhibit 

fungal growth. Streptomycin 25 mg L-1 with penicillin G 20 mg L-1 (BYAsp) or crystal violet 

5 mg L-1 (BYAcv, Elliot & Des Jardine 1999) were added to select for Gram negative 

bacteria. Colistin 10 mg L-1 (BYAc) or polymyxin B 32 mg L-1 and nalidixic acid 10 mg L-1 

(BYApn) were added to select for Gram positive bacteria. All selective agents were sourced 

from Sigma-Aldrich. 

Fungi were selected using a general fungal medium, BYA with streptomycin 50 mg L-1, 

chloramphenicol 250 mg L-1 and metalaxyl 80 mg L-1 (BYAscm) and a Trichoderma 

selective medium using BYA with the selective agents used by Yang et al. (2005) in their 

Trichoderma selective medium (BYA-TSM) based on the medium of Elad and Chet (1983). 

Triton X-100 (Sigma) was used in all fungal media at 0.1% to limit the radial growth of 

fungal colonies. 

All isolation plates were incubated at 25oC. Plates with non-filamentous bacteria were 

grown for six to seven days, filamentous actinobacteria and fungi were grown for 14 days to 

allow spores to form.  

Strains were selected for bioassay assessment based on evidence of rapid growth 

(greater than two mm after five days) or sporulation on isolation medium in order to 

eliminate slow growers and satisfying one or more of the following criteria: produced 

clearing zone on BYA indicating chitinase production, were mucoid indicating 

exopolysaccharide production (Amallal et al., 1998), were spreading indicating biofilm 

formation or were of a different morphology compared to other colonies on the plate. 
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2.5. Isolation of culture collection actinobacteria 

The culture collection of actinobacteria used in these experiments were isolated as 

endophytes of crop plants and trees using the protocols described by Coombs and Franco 

(2003) and Kaewkla and Franco (2013) and from soil on humic acid vitamin agar (Hayakawa 

& Nonomura 1987). In general, cultures that sporulated within 10 days were selected to 

accommodate the need for high spore yield in subsequent commercialisation processes. 

2.6. Enumeration of cell number 

Enumeration of microbes in suspensions was carried out using a one in 10 dilution 

series in PBS and plating onto agar media using the drop plate method (four dilutions of three 

20 μl spots, Chen et al., 2003). Media were 1/10 strength Tryptic soy Agar (TSA/10, 3 g L-1 

tryptic soy broth, Difco, 15 g L-1 agar, Amresco) for bacteria, ½ strength potato dextrose agar 

(HPDA, 19.5 g L-1 potato dextrose agar, Oxoid, 7.5 g L-1 agar, Oxoid) for Actinobacteria or 

¼ strength potato dextrose agar (PDA/4, 6 g L-1 potato dextrose broth, Difco, 15 g L-1 agar, 

Amresco) for fungi. Two replicate dilution series were carried out for each suspension. 

To enumerate microbes on seeds, five wheat seeds, were placed in a two ml tube, one 

ml PBS added, shaken on vortex mixer for 10 s at 3,000 rpm and shaken for 15 minutes at 

200 rpm on an orbital mixer (Ratex) to remove cells. A one in 10 dilution series was plated 

onto media as described above, with two replicate extractions and dilution series for each 

sample. All cultures were incubated at 25oC in the dark. Bacterial colonies were counted after 

four days, fungal colonies were counted after seven days. 

2.7. Primary high throughput Rhizoctonia tube bioassay 

The primary assay to assess for biocontrol of Rhizoctonia root rot was carried out in 

sterile transparent polypropylene 50 ml centrifuge tubes (Sarstedt) containing field soil, 

pathogen, wheat seedlings and test isolate. Netherton soil (Table 1) was used at 9% moisture 

content (60% water holding capacity) with 45g added to each tube. Two R. solani W19-

infested millet seed were added followed by 10 g soil and tamped down with a formed 

wooden tool to form a conical indentation (10 mm diam. at the soil surface, 8 mm deep) for 

later seeding. Each rack of 24 tubes was covered in aluminium foil and two racks placed in a 

sealable clear plastic tub (35 x 27 x 18 cm) to minimise evaporation. Tubes were incubated 

for two weeks at 15oC to allow R. solani W19 to colonize the soil (Roget, 1995, Barnett et 

al., 2006). Wheat cultivar Yitpi was used for all bioassays.  Seeds were germinated on a 
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sterile filter paper moistened with RO water for 24 hr and two seeds with an emerged radicle 

planted into the conical indentation in the soil. Seeds were not surface sterilised to replicate 

farmer practice. An inoculum suspension (150 μl) of the test organism or ½ strength PBS 

(PBS/2) was added to seeds, five gram soil added, tamped and soil covered with sterile 

alkathene beads (five mm diam. Poly Products, Australia) to reduce evaporation. Two ml of 

RO water was added to each tube after one wk. Plants were grown for two weeks at 15oC, 12 

h day/night and then assessed as described below.  

For newly isolated strains, microbial suspensions were prepared in 96 well plates, with 

row A reserved for controls (either PBS/2 for uninoculated no added pathogen and pathogen 

added controls, and Trichoderma strain TB or Streptomyces strain EN16 for positive 

controls) leaving a 7x12 array for 84 test strains. One 10 μl loop was taken from the edge of a 

bacteria colony or spores taken from the centre of filamentous actinobacteria and fungi and 

suspended in 235 μl of 15% glycerol. Using a multi-channel pipette a one in 10 dilution was 

made in PBS/2 in a new plate for inoculation into the tube assay. The original glycerol plate 

was stored at -80oC. For each tube, 150 μl of suspension was added to the two germinated 

seeds in the conical depression. There were two replicate tubes for each of the 84 strains plus 

eight tubes without added pathogen or microbial inoculum (no-pathogen control), eight tubes 

with R. solani only added (pathogen control) and eight tubes with either strain TB or EN16 

(positive controls). 

For inoculation of actinobacteria, spores from 14 d old cultures growing on MS agar 

were resuspended in PBS/2 at an absorbance at 550 nm (A550) of 0.8 and 150 μl of suspension 

was added to the two germinated seeds as described above. 

After two weeks growth, the height of each plant was measured from soil surface to tip 

of longest leaf and the number of roots visible at the bottom of the tube recorded before 

removal of the plants. Strains were selected for the next assay based on an increase in plant 

height and/or increased number of roots compared to disease control treatments in both 

replicate tubes.  

2.8. Secondary Rhizoctonia pot bioassay to confirm efficacy 

Candidate strains selected from the primary tube assay were tested in a pot assay to 

confirm disease control efficacy. Each secondary assay comprised 15 bio-control strains and 

three control treatments: no pathogen or microbial inoculum (no-pathogen control); R. solani 

only added (pathogen control); and positive bio-control strains TB or EN16. Waikerie GS soil 
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(Table 1) containing background levels of R. solani AG8 and conducive to disease expression 

was used for the assay. Soil was used at 8% moisture (60% water holding capacity). Soil was 

added to 300 ml non-draining plastic pots in two layers; 150 g soil, followed by the addition 

of two W19-infested millet seeds, followed by another 150 g soil. Each pot was covered with 

an opaque plastic lid and incubated at 15oC for 2 weeks. Seven wheat seeds were planted per 

pot, covered with 24 g soil and alkathene beads added to reduce evaporation. Seeds were 

thinned to five seedlings per pot after emergence. Plants were grown in a controlled 

environment room at 15oC, 12 h day/night cycle for four weeks. Pots were watered as needed 

to their original weight. There were four replicate pots per treatment arranged in a 

randomised complete block design.  

For inoculation, two 10 µl loopfulls of bacterial cells or spores were suspended in 1.6 

ml PBS, and diluted to an absorbance at 550 nm of 0.5 in 1/10 strength ‘sticker’ solution 

(0.05 g L-1 Na-alginate, Sigma; 0.3 g L-1 xanthan gum, Sigma) to a final volume of three ml. 

Twenty microlitre aliquots of suspension were taken to enumerate cells as described 

previously. Wheat seeds, 2.2 g of cultivar Yitpi were added to each tube of microbial 

suspension, gently mixed by inversion and soaked for one to two hours prior to use. Surplus 

microbial suspensions were drained from seeds and the seeds planted into the previously 

prepared pots.  

Seedlings were assessed for disease and plant growth after four weeks. Roots were 

washed free of soil in running tap water and rated for disease severity on a 0 to 5 scale of root 

symptoms (Roget, 1995), where 0 = no disease and 5 = severe disease with all roots truncated 

close to the crown. Total length of seminal and crown roots per plant were measured by ruler. 

Shoots and roots were dried for four days at 60oC and weighed. Strains showing similar or 

better disease control (mean root disease reduced, mean root or shoot dry weight increased) 

than positive control strain TB or EN16 were selected for further study. 

2.9. Tertiary Rhizoctonia pot bioassay to optimise effective cell number  

Candidate strains selected from the secondary bioassay were assessed at three different 

inoculation rates based on previous estimation of cfu ml-1 in the secondary bioassay to give a 

range between 104 and 106 cfu seed-1. Five strains plus the three controls were assessed in 

each assay. Pot bioassays, microbial inoculations and assessments were carried out the same 

as for the secondary assay. Microbial populations in suspensions and on seeds were 

enumerated as described previously. 
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2.10. Identification of strains 

Newly isolated bacteria were identified by partial sequencing of the 16S rRNA gene 

using primers 27F, AGAGTTTGATCMTGGCTCAG (Lane, 1991) and 907R, 

CCGTCAATTCCTTTRAGTTT (Muyzer et al., 1995). Fungi were tentatively identified by 

partial sequencing of the ITS region using primers ITS-1F, 

CCTGGTCATTTAGAGGAAGTAA (Gardes & Bruns, 1993) and ITS-4, 

TCCTCCGCTTATTGATATGC (White et al., 1990). For each strain, two replicate 

extractions and PCR reactions were carried out and products sequenced in both directions by 

Australian Genome Research Facility Ltd. Bacterial sequences were compared to type strains 

in Ribosomal Data Base 10 (RDP, http://rdp.cme.msu.edu/index.jsp). Fungal sequences were 

compared to National Centre for Biotechnology Information (NCBI) data base 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Trichoderma strains were identified to genus based 

on morphological features according to Rifai, 1969. 

For the culture collection of actinobacteria, the 16S rRNA gene was PCR amplified 

separately in two segments using the primer pairs 27f and 765r (R1 amplicon) and the pair 

704f and 1492r (R2 amplicon) (Coombs and Franco, 2003). The resultant sequences were 

compared to an online database using the BLAST algorithm at the NCBI website 

(www.ncbi.nlm.nih.gov). The standard blastn (nucleotide-nucleotide) algorithm was used 

with the default settings. 

2.11. Survival of strains on seeds 

Survival of candidate strains on wheat seeds was assessed following the inoculation of 

20 g batches of wheat cultivar Yitpi. For each strain, 0.6 ml microbial suspension was added 

to 1.26 ml of full strength sticker solution (0.5 g L-1 Na-alginate, Sigma; 3.0 g L-1 xanthan 

gum, Sigma) and 18 µl Pillar Box Red food dye (Queen Fine food Pty. Ltd. Alderly, Qld. 

Australia). After mixing, 0.626 µl was added to each of two replicate lots of 20 g seeds in zip 

lock bags and mixed until the seeds were evenly coated. Addition of the red food dye aided 

visualisation of seed coverage by the inoculum suspension. After one hour, five seeds were 

taken for enumeration of colony forming units (t=0). Seeds were again sampled after one, two 

and seven days storage at room temperature (~20oC). The concentration of cells on seeds was 

determined as described previously and percent survival of strains on seeds was calculated by 

the formula [(cfu seed-1 at t=1, 2 or 7 d)/(cfu seed-1 t=0)]x100.  
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2.12. In vitro inhibition 

Ten newly isolated strains selected based on good disease control in pot assays and 

greater than 20% survival on seeds after one week, and 18 culture collection actinobacteria 

were assessed for in vitro inhibition of three fungal pathogens, R. solani AG8 strain W19, 

Gaeumannomyces graminis var. tritici (Walker) strain C3 isolated from wheat roots and 

Fusarium pseudograminearum (Aoki & O’Donnell) strain B4a isolated from wheat crowns 

and one oomycete root pathogen, Pythium irregulare (Buisman) strain 89 isolated from 

lucerne roots. These pathogens were selected as they are the most important root pathogens in 

terms of yield loss in southern Australia (Murray & Brennan, 2009a) and have previously 

been shown to cause disease on wheat. Fungi and Pythium were grown on PDA/4 for 

between two and seven days prior to use depending on strain. In vitro assays were performed 

on a medium containing TSA/10 + PDA/4 to facilitate growth of both bacteria and fungi. 

The pathogens were added to the centre of nine cm agar plates as eight mm agar plugs 

taken from the edge of an actively growing fungal colony. Test strains were added as two 20 

μl spots (107 cfu ml-1) on opposite sides of the plate 30 mm from the centre. Test strains were 

added the same day as pathogens, except for P. irregulare which was added 24 h after the test 

strains applied due to its rapid growth. Control plates with pathogens only were included and 

cultures incubated at 25oC in the dark. Inhibition zones were recorded at two days for P. 

irregulare, four days for R. solani and seven days for G. graminis and F. 

pseudograminearum at which stage the pathogen colony had overgrown the inoculation site 

in the no test biocontrol strain controls or reached the edge of the plate. Inhibition zones were 

measured from the edge of bacterial or fungal colony to the edge of pathogen colony. There 

were three replicate plates for each pathogen-test strain combination in a randomised 

complete block design.  

2.13. Statistical analysis 

All statistical analysis was performed using GenStat version 14 (VSN International 

Ltd.) or later. Data from pot bioassays were analysed as ANOVA randomised complete block 

design (RCBD). Fisher’s protracted least significant difference (lsd) was used to compare 

treatment means. Controls for the secondary and tertiary assay experiments were analysed as 

a split plot design fitting experiment as whole-plot with the three controls as sub-plots. There 

was no interaction between experiments. The efficiency of the different isolation methods for 

newly isolated strains were compared using Chi-squared contingency tables to test for 
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independence using the number of strains which passed the secondary pot bioassay and the 

total number of strains tested in the primary assay less the number of strains passing the 

secondary pot bioassay. 

3. Results 

3.1. Number of strains assessed in each assay 

The total number of newly isolated and culture collection strains assessed in each assay 

system is shown in Table 2. Of the 2310 microbial strains assessed in the primary tube assay 

system, 185 progressed to the secondary assay based on similar or increased shoot height and 

root number compared to our best current biocontrol options (TB or EN16). An example of 

results after two weeks growth for the controls and two test strains are shown in Figure 2. For 

the no-pathogen control treatment, shoot height was 10 to 16 cm, with six to 10 roots 

reaching the bottom of the tube. For the pathogen only control, shoot height was reduced to 

between two and 10 cm, but usually (>90%) less than eight cm, with rarely (<10%) any roots 

reaching the bottom of the tube. For the positive control strains TB and EN16, seedlings were 

usually (>90%) between four and 10 cm with one to two roots occasionally (10%) reaching 

the bottom of the tube. Strains were selected for the second assay if one or more roots 

reached the bottom of the tube and plants were >10 cm in height in both replicate tubes.  

Of the 185 strains assessed in the secondary assay, 43 strains were selected for 

assessment in the tertiary assay as they showed better disease control (mean root disease 

reduced, mean root or shoot dry weight increased) than either TB or EN16. There was no 

significant difference between newly isolated or culture collection strains in the percentage of 

strains selected for the tertiary assay (P=0.180), with 1.9% of strains from the combined 

cohorts selected for further assessment (Table 2). 

The number of non-filamentous bacteria, actinobacteria and fungi assessed is given in 

Table 3. The percentage of each microbial type assessed in the tertiary assay was 1.3% for 

bacteria, 2.6% for actinobacteria and 4.4% for fungi. Chi-squared test for independence 

indicated that the percentage of strains proceeding to the tertiary assay was greater than 

expected for fungal strains compared to actinobacteria and bacteria (P=0.029, Table 3). 
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3.2. Efficacy of strains in secondary and tertiary assays 

A total of thirteen separate assays were conducted to assess the 185 strains in the 

secondary assay. The mean values for the three control treatments (no pathogen, pathogen 

only, TB or EN16) for shoot and root dry weights, total root length and diseased root rating 

are shown in Tables 4a and 4b. The Waikerie GS soil had background levels of R. solani 

producing low levels of disease, resulting in a mean root rating score between 0.4 and 0.8. 

Addition of R. solani infested millet seed increased root disease score to between 3.0 and 3.7, 

with shoot growth being reduced to between 75 and 51% of the no pathogen controls. Root 

dry weight was reduced to between 42 and 32% of no pathogen controls (Tables 4a and 4b).  

On average, strains TB and EN16 reduced root disease scores by 22 and 16%, 

respectively. Strain TB increased shoot and root dry weight and root length by 15, 27 and 

42%, respectively (Table 4a). Strain EN16 increased shoot and root dry weight and root 

length by 5, 16 and 21%, respectively (Table 4b). A total of 24 new strains and 19 culture 

collection strains were selected from the secondary assay to progress further based on greater 

disease control (mean increase in shoot of dry weight, root length or mean decrease in root 

disease rating) than either strain TB or EN16. The percentage change in measured parameters 

compared to the pathogen only controls for new strains and culture collection strains are 

shown in Tables 5a and 5b respectively. The 24 newly isolated strains reduced diseased root 

rating between 21 and 50% in the secondary assay. Four strains increased root weight or 

length by over 100%, e.g. strains S8, S10, S14 and S17 (Table 5a). Most of the selected 

culture collection strains had a similar reduction in root disease score as the newly isolated 

strains, however the increase in root length and weight was generally less than with the new 

strains (Table 5b). Five strains in one secondary assay, (F1, F2, F3, F13 and F17) decreased 

root length compared to disease control, however, they were selected as they performed 

better (increased dry weight and root length or decreased diseased root rating) than the 

positive control strain EN16. This inconsistency was due to reduced disease levels in the 

disease control treatment in this assay compared to the other assays. Four of these strains (F1, 

F2, F3 and F17) subsequently showed good control efficacy (34 to 52 % reduction of root 

disease) in the tertiary assay (Table 5b). 

The 43 strains selected from the secondary assay were assessed in the tertiary assay at 

three inoculation levels. Results from the most efficacious inoculum level (greatest mean 

shoot or root dry weight, longest mean root length, lowest mean root disease score) in the 
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tertiary assay are shown in Tables 5a and 5b for new and culture collection strains, 

respectively.  

For the newly isolated strains in the tertiary assay, most strains reduced disease and 

increased plant growth, confirming efficacy measured in the second assay, and 18 of 24 

strains were effective at reducing disease at less than 106 cfu seed-1. Three strains (S3, S8 and 

S13) gave inconsistent results between experiments, with little disease control in the tertiary 

assay. The two Microbacterium strains (S7 and S10) and the Gram negative strains (S14, 

S15, S18 and S19) required greater than 106 cfu seed-1 for maximum disease control. The 

three fungal strains (S20, S21, and S22) required less than 104 cfu seed-1 for maximum 

efficacy out of the three inoculation levels (Table 5a). 

For the culture collection strains in the tertiary assay, all strains provided greatest 

disease control at less than 106 cfu seed-1. Five strains (F7, F11, F13, F14, and F15) did not 

reduce disease severity in the tertiary assay in contrast to their disease control performance in 

the second assay (Table 5b). 

3.3. Identification of strains 

Candidate strains assessed in the tertiary assay were identified by 16S rRNA or ITS 

sequencing. The newly isolated bacterial strains covered a range of genera within five phyla 

(Table 6a). There were six Bacillus, two Paenibacillus, Microbacterium, Streptomyces and 

Pandoraea, and one each of Brevibacterium, Chryseobacterium, Phyllobacterium and 

Pseudomonas. Similarity to type strains in the RDP database was generally greater than 0.97. 

The three fungi were identified as Aspergillus, Cylindrocarpon or Trichoderma. The culture 

collection strains were all identified as Streptomyces spp. with a sequence similarity of 

greater than 0.97, except for strain F16 which had 0.94% similarity to Streptosporangium 

(Table 6b). Two of the newly isolated strains (S23 and S24) were not identified as these were 

rejected from further development at this point due to inconsistent growth on agar media 

when subcultured from -80oC storage, i.e. small and variable colony size compared to the 

initial isolation. 

3.4. Survival on seeds 

Strains assessed in the tertiary assay were evaluated for survival when applied to wheat 

seeds, with cfu measured at application and at one, two and seven days after application 

(Table 7). For the newly isolated strains, strains in the order Bacillales and the genus 

Streptomyces had 46% or more surviving cells after seven days. The Microbacterium, S7 and 
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S10 had 3.9 and 39% remaining, respectively, after seven days. All the Gram-strain negative 

strains had poor survival on seeds after seven days with less than 3% remaining, except for 

S15 (Pseudomonas) with 14% remaining at seven days (Table 7). For the culture collection 

actinobacteria, percentage survival ranged from 0.3% (F16) to 167% (F2, Table 7). Strains 

S3, S5, S11, S16, F2 and F18 had an increased numbers of cells at seven days compared to 

the initial populations (Table 7). 

3.5. In vitro antifungal activity 

The activity of the 10 newly isolates strains varied from strong inhibition of all four 

pathogens (S4, S17, F2 and F16) to no evidence of pathogen inhibition (S7, S8, S9, S10 and 

S16) (Table 8). All Streptomyces strains could inhibit R. solani and 14 out of 15 strains 

inhibited G. graminis but varied in their inhibition of Fusarium pseudograminearum and 

Pythium irregulare. Streptosporangium strain F16 inhibited all pathogens. Bacillus strains 

either had strong inhibition (>3mm inhibition zone) of all four pathogens (S17) or no 

inhibition of any of the four pathogens (S8, S9 and S16). The Trichoderma (S20) and 

Aspergillus (S21) fungi inhibited all four pathogens. The Microbacterium (S7, S10) did not 

inhibit any of the pathogens (Table 8). 

3.6. Source of strains assessed 

The source and isolation method for the newly isolated strains is given in Table 9a and 

the culture collection strains in Table 9b. The source and isolation methods used for the 

newly isolated strains were assessed for independence using Chi-squared statistics. There was 

no significant difference in the percentage of strains assessed in the tertiary assay for the 

source soil (P=0.473), plant cultivar used (P=0.154), location on the roots for isolation 

(P=0.423) or selection for chitinase activity on BYA (P=0.796). The only method where 

isolation of efficacious strains was increased was from preheating the incubation soils to 

80oC prior to planting (P=0.042), with 2.4% of strains from 80oC heated soil being assessed 

in the tertiary assay compared to 1.0 and 1.4% for chitosan treated soil and no treatment, 

respectively. The frequency of isolating strains with the ability to reduce Rhizoctonia root rot 

was around 1.6%, regardless of treatment or method used.  
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4. Discussion 

Rhizoctonia solani AG8 is the major fungal root pathogen causing economic loss in 

dryland cereal cropping systems in southern Australia, with current management and 

chemical control methods providing only partial control (Bogacki et al, 2014, Gupta et al., 

2015). Rhizoctonia root rot is known to be influenced by soil microorganisms (Roget, 1995, 

Schillinger & Paulitz, 2006) and isolated microbes can reduce disease under controlled 

conditions (Barnett et al., 2006, Dua & Sindhu, 2012, Mavrodi et al., 2012b, Yin et al., 

2013). However, the challenge is to select microbial strains which can produce consistent and 

economic reductions of disease in the field. One major obstacle in identifying potential 

strains is the ability to screen large numbers of strains for disease control in a system that is 

relevant to field application (Campbell, 1994, Dunlap et al., 2013, Knudsen et al., 1997, Köhl 

et al., 2011, Schisler & Slininger, 1997). In the current work we were able to screen 2310 

strains using a rapid, low cost, plant bioassay system as an initial screen to identify potential 

biocontrol strains for further testing and selection as commercial inoculants for control of 

Rhizoctonia root rot on wheat. The result of this work was the identification of 43 strains that 

when applied to wheat seeds planted into soils with R. solani AG8 resulted in a 19% increase 

in shoot dry weight, 36% increase in root dry weight, 44% increase in root length and 20% 

reduction in root rot disease. Individual strains increased shoot growth by 66%, increased 

root growth by 131%, increased root length by 146% and reduced root disease by 50% 

(Tables 5a&b). 

The primary bioassay consisted of four of the components required to identify strains 

with the potential to control disease in the field. These components were: a disease conducive 

soil sourced from wheat fields with a continuing Rhizoctonia root rot problem; an aggressive 

pathogen strain; susceptible host plant (wheat); and the microbes applied to the seed. The 

assay was relatively quick to set up, inoculate with the test strains and assess, compared to the 

pot bioassays, taking a total of 10 person hours to test 84 strains and would be comparable to 

the person hours taken to set up in vitro inhibition assays. The results could also be evaluated 

two weeks after planting, providing a quick turnaround time for each assay. This was 

matched with a methodology to rapidly take an unknown strain from isolation plates directly 

into the assay system using the 96 well plate format. The rational for this was to minimise the 

time taken from isolation plate to assessment when the majority of strains were likely to be 

ineffective in controlling disease. The combination of these approaches enabled 84 microbial 

strains to be isolated and inoculated into the assay system in six hours by one person. 

Assessment of the assay was also rapid, with paired replicates with increased growth 
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compared to diseased plants without microbial inoculation easily identified (see Figure 2). 

Selected strains then can be recovered from -80oC storage, purified and assessed in the 

secondary and tertiary bioassays and for characterisation. Although in the initial isolation 

strains were not purified and there was a cross contamination risk in using the 96 well plates, 

single colonies were selected and cross contamination was minimal as when strains were 

purified for the second assay it was rare for there to be multiple strains in the one culture. 

Using this system, 2310 strains were tested in the primary assay, 185 of these were selected 

and assessed in the secondary assay. Of these, 43 showed increased plant growth and reduced 

disease compared to our current best biocontrol strains, Trichoderma strain TB or 

Streptomyces strain EN16 and were assessed in the tertiary assay at 3 inoculation levels. 

Strains were required to perform better than strains TB and EN16 as these strains were not 

able to provide significant disease control in the field, even though they could consistently 

reduce disease in bioassays. 

Our approach to screen large numbers of strains, as suggested by Campbell (1994) and 

Schisler and Slininger, (1997), was justified by the results, with only 1.9% of the strains 

assessed in the primary assay shown to have better disease control than our current best 

performing strains (Table 2). There was no significant difference in the percentage of 

efficacious strains from the culture collection (2.4%) compared to newly isolated strains 

(1.6%, P=0.180), with both sources providing strains for further development. For the newly 

isolated strains we used five different field soils with three different cereal cultivars, each 

with three different pre-treatments, and isolated from well washed root pieces to select for 

biofilm producers that tightly adhere to roots (Fall et al., 2004), macerated root pieces, or 

from the rhizoplane. The purpose was to extend the diversity of strains isolated and not to 

restrict ourselves to a target group of interest.  

The aim of this research was to develop commercial biocontrol agents, not to rigorously 

assess isolation methods, so soils, cultivars and methods which were producing strains with a 

disease control response were revisited in subsequent isolations. Nonetheless, it is of interest 

to understand which isolation methods were most productive in producing candidate 

biocontrol strains so as to inform future work. There was no significant difference between 

source of strains or isolation method, except for heat treatment of the pre-incubation soils 

which increased the success rate to 2.4%, compared to no heat treatment (1.4%) or chitosan 

amendment (1.0%). These results indicates that heat treatment slightly favours the isolation 

of candidate biocontrol agents effective in reducing disease, but is not exclusive of other 

methods. Heat resistance is an important property for a potential inoculant to survive in 
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storage and seeding stress from modern air-seeders. Park et al., (2013) also used Chi-squared 

statistics to assess different sampling methods to isolate potential biocontrol agents for foliar 

pathogens and found little relationship between isolation source and method and the number 

of efficacious strains; except for plant species affecting the number of efficacious 

phyllosphere strains, with efficacious strains being isolated at a frequency of less than one 

percent. Of note is that there was no difference between source soils in our study, whether the 

well-studied disease suppressive Avon soil (Roget, 1995) or soils highly conducive to 

Rhizoctonia root rot (Netherton and Mudamuckla soils). These results support our approach 

to isolate from a diversity of environments to enable the testing of a greater range of strains 

as not one environment or method appeared to be significantly better than the other. From 

Tables 9a and 9b it can be seen that efficacious strains came from a variety of environments 

and methods. 

The diversity of isolated strains reducing Rhizoctonia root rot suggests a variety of taxa 

could be contributing to natural disease control in the field. Suppressive soils are already 

known to have a diversity of taxa considered to be contributing to suppression (Barnett et al., 

2006, Mendes et al., 2011, Weller et al., 2002,). Of the 22 new strains that were selected 

from the secondary assay and identified, there were nine bacterial genera from five Phyla, 

and three fungi genera from the phylum Ascomycota (Table 6a). Some of these genera are 

well known as biocontrol agents, e.g. Bacillus (S1, S3, S8, S9, S16 and S17), Paenibacillus 

(S4 and S5), Streptomyces (S12 and S13), Pseudomonas (S15) and Trichoderma (S20) 

(Druzhinina et al., 2011, Fravel, 2005, Mavrodi, et al., 2006, Raaijmakers, et al., 2010, 

Rybakova et al., 2016). Others, such as Microbacterium (S7 and S10) are less well known 

but have been reported by various authors as being able to reduce plant diseases (Barnett et 

al., 2006, Fukui et al., 1999, Pereira et al., 2007, Sturz et al., 2005,). Chryseobacterium (S6) 

which has been reported as being able to reduce Fusarium seedling blight on wheat (Khan et 

al., 2006), was recently identified from a pyrosequencing study as being involved in 

suppression of Rhizoctonia root rot on wheat (Yin et al., 2013) and identified by Park et al. 

(2013) as a potential biocontrol agent of foliar pathogens. Phyllobacterium (S14) strains 

appear to be common in roots (Swings et al., 2006) with previous reports indicating their 

potential as biocontrol agents against R. solani on potato and bean (Donmez et al., 2015), and 

Fusarium on cotton (Chen et al., 1995). Aspergillus (S21) strains have not previously been 

reported to control root diseases, although there are two products, AF36 (Arizona Cotton 

Research and Protection Council) and Afla-guard (Syngenta), based on atoxigenic strains of 

Aspergillus that are currently available in the US for control of aflatoxin-producing 
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Aspergillus on cotton and peanuts (Fravel 2005). Pandoraea apista (S18 and S19) and 

Cylindrocarpon destructans (S22) have not previously been reported as being able to reduce 

Rhizoctonia root rot on wheat. Pandorea apista is a known human pathogen associated with 

cystic fibrosis (LiPuma, 2010) and C. destructans is a well-known plant pathogen 

(Lamichhane & Venturi, 2015) and so we consider these strains unsuitable for further 

development as biocontrol agents due to downstream problems in satisfying government 

registration requirements. These results show that there is a diversity of taxa with the ability 

to reduce Rhizoctonia root rot, from both disease suppressive and conducive soils, and 

supports our strategy not to target a particular group of interest for testing.  

Efficacy in reducing disease is only one characteristic important for a commercial 

inoculant. Other characteristics include the ability to be integrated into current methodologies 

for applying microbial agents (Fravel, 2005, Köhl et al., 2011, Schisler & Slininger, 1997). In 

Australian cereal cropping systems the most likely route for introducing microbial inoculants 

is through seed coatings. Efficacious strains selected from the secondary assay were assessed 

for survival on wheat seeds up to seven days at room temperature using a simple xanthan 

gum-ascorbic acid sticker solution (Table 7). There were marked differences between strains, 

with all the newly isolated Gram negative strains having poor survival over this time. There 

were also seven strains, either Bacillus, Paenibacillus or Streptomyces, which appeared to 

increase in number in the seven days after inoculation, e.g. strain S3, S5, S11, S22, F2, F10 

and F18, possibly due to growth on the seeds. Choi et al 2013 also found that Paenibacillus 

polymyxa strain E681 could increase over time on cucumber seeds using a xanthan gum 

based sticker solution. There were also marked differences within the same genus, with five 

Streptomyces maintaining populations over seven days (e.g. strains F2, F5, F6, F10 and F18) 

and nine having a marked decline (e.g. strains F3, F4, F7, F8, F9, F11, F13, F15 and F17). 

Xanthan gum has been reported to increase survival of rhizobia in peat formulations (Lorda et 

al., 2007) and to increase disease control efficacy by Paenibacillus (Schoina et al., 2011) and 

of yeast (Lima et al 2005). For future field trials we will use the same seed coat formulation 

and only strains with greater than 20% survival over seven days will be considered for further 

development. We note that although development of more sophisticated formulations for 

each strain can improve survival of Gram negative bacteria (Bashan et al. 2014), it was not 

possible to undertake this for a large number of strains within this project. Optimisation of 

formulations will be undertaken after proof of field trial efficacy. 

In vitro inhibition of pathogens by microbes on agar plates is a common method used 

for preliminary screening of potential biocontrol agents, however, there often is a poor 
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correlation between in vitro inhibition and disease control (Castejón-Muñoz & Oyarzun, 

1995, Elsherif & Grossmann, 1994, Knudsen et al., 1997, Reddy et al., 1994,). Even so, in 

vitro inhibition studies are still used as initial selection criteria (Dua & Sindhu, 2012, 

Mavrodi et al., 2012b). In our work we used a plant based disease assay for the initial 

screening of unknown strains and assessed candidate strains for pathogen inhibition on agar 

after selection for disease control efficacy on plants for information of potential mechanisms 

of disease control. There are limited examples of screening directly into a plant pathosystem. 

Knudsen et al. (1997) review of the Nordic screening program for control of seed and 

soilborne diseases in cereals noted that in planta testing in a non-sterile field soil was more 

comparable to field results than using a sand substrate and that their seven best strains for 

control of disease by Fusarium and Bipolaris did not inhibit the pathogens in vitro, however, 

results probably depend on the pathosystem system. Pliego et al. (2011) compared three 

screening methods, in vitro inhibition, root colonization and in planta control of white root 

rot on avocado and identified different strains by each method, but all selected strains had in 

vitro inhibition of the pathogen on agar.  

Our results again highlight the use of these in vitro assays as a poor predictor of disease 

control on plants, with five out of the 10 new strains showing no inhibition of R. solani, 

Fusarium, Pythium or G. graminis on the medium we used, even though these strains were 

able to reduce Rhizoctonia root rot on wheat grown in a field soil in three bioassays. We 

recognise that the media used for inhibition assays can affect the production of antifungal 

metabolites, however, screening assays are usually undertaken on a single medium (Dua & 

Sindhu, 2012, Mavrodi et al., 2012b, Yin et al., 2013). In our case we used to combination of 

a general bacteria growth medium, TSA/10, and general fungal medium, PDA/4, to ensure 

media did not inhibit the growth of the test isolates or pathogens. 

Another easily applied in vitro test is for chitinase production using Baker’s yeast agar 

(Christensen & Cook, 1978). Although clearing zones on BYA were not predictive of disease 

control, this was still a useful medium to use as all bacterial and fungal strains we have plated 

onto this medium have grown and it is much cheaper (Aus$6 for 500g) compared to 

proprietary microbial media (e.g. >AUS$250 for 500g of tryptic soy broth or potato dextrose 

broth), resulting in substantial cost savings when large numbers of agar plates are required 

and having an opaque medium is not an issue.  

To be a successful commercial inoculant, microbial strains not only have to be 

efficacious in plant-soil systems and survive on seed but also need to be able to be grown to 

high cell densities, formulated and survive storage, be genetically and phenotypically stable 
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and compatible with other seed treatments (Fravel, 2005, Köhl et al., 2011, Schisler & 

Slininger, 1997). Further characterization of strains for these properties is ongoing such that 

strains selected for field trials will have properties that will not discount them being further 

developed as inoculants.  

5. Conclusions 

We have identified a number of candidate strains that appear to be suitable for further 

development as inoculants for the grains industry. In the process we have also generated 

useful information to progress future screening efforts, namely: there is a wide diversity of 

fungi and bacteria that have the potential to reduce Rhizoctonia disease; strains that can 

reduce Rhizoctonia disease are rare, around 1.6%, irrespective of the source of strains and 

isolation methodology; preheating soils prior to incubating plants to capture root microbes 

improves the success rate in selecting efficacious strains; and efficacious strains vary 

considerably in their ability to survive on seeds so this should be tested for earlier in the 

screening process. 

Selecting appropriate strains for control of fungal root diseases is difficult given that 

strains with the appropriate properties for an inoculant are rare (Campbell, 1994, Schisler & 

Slininger, 1997) and procedures to screen large numbers of strains in a relevant system that is 

also quick and cheap are limited. In this work we present a simple, cheap and rapid method 

for assessing unknown bacterial and fungal strains directly into a tube bioassay containing 

many of the components required to assess for the function of interest, i.e. control of 

Rhizoctonia root rot on wheat in a soil with an intractable Rhizoctonia problem with the 

microbes applied to the seed. Similar rapid high throughput systems could be developed for 

other pathosystems of interest and bypass the use of less informative in vitro screens. 
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Figure legends 

 

Figure 1. Stepwise approach for screening of microbial strains for control of 

Rhizoctonia root rot on wheat. 

 

Figure 2. Example of primary assay results after two weeks growth of wheat showing 

replicate tubes for no pathogen control (A, B), pathogen (R. solani AG8) only control (C, D), 

test strain 1 (E, F) and test strain 2 (G, H). Test strains are examples of bacterial strains of 

previously unknown efficacy in controlling Rhizoctonia root rot that were selected for further 

assessment. 
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Table 1. Soils used for pre-incubation of cereal root microflora and for Rhizoctonia root rot bioassays 

on wheat. All soils collected over summer (between crops) with the previous crop being wheat. 

Soil Character Comment 

Avon Brown sandy loam 

70% sand, 20% clay 

Previously reported to be suppressive to 
Rhizoctonia root rot (Roget 1995). Used for 
pre-incubation of root microflora. 

Waikerie AB Red calcareous sand  

90% sand, 7% clay 

From long term trial site with different 
cropping sequence. Soil taken from most 
suppressive treatment to Rhizoctonia root rot. 
Used for pre-incubation of root microflora. 

Netherton Grey siliceous sand.  

93% sand, 6%clay 

Disease conducive soil with continuing 
Rhizoctonia root rot problem. Used for 
primary tube bioassay and for pre-incubation 
of root microflora. 

Minnipa N12 Brown sandy loam 

79% sand, 16% clay 

Disease conducive soil that has become more 
suppressive with long term retention of 
residues. Used for pre-incubation of root 
microflora. 

Mudamuckla Brown sand,  

85% sand, 12% clay 

Disease conducive soil with continuing 
Rhizoctonia root rot problem, 13% CaCO3 
content. Used for pre-incubation of root 
microflora. 

Waikerie GS Red calcareous sand  

90% sand, 7% clay 

Disease conducive soil with continuing 
Rhizoctonia root rot problem. Used for 
secondary and tertiary bioassays. 
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Table 2. Source of strains. Number of newly isolated strains and strains from a culture collection of 

actinobacteria assessed in the primary (10), secondary (20) and tertiary (30) assays for biological 

control of Rhizoctonia root rot on wheat. The percentage of strains assessed in the 30 assay relative to 

the 10 assay is given as % in 30, P=0.180 from Chi-squared test for independence. 

Source of strains 1o 2o 3o % in 3o 

New isolates 1512 100 24 1.6 

Culture collection 798 85 19 2.4 

Total 2310 185 43 1.9 
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Table 3. Type of microorganism, bacteria, mycelial actinobacteria (Actino) or fungi, assessed in the 

primary (primary (10), secondary (20) and tertiary (30) assays for biological control of Rhizoctonia 

root rot on wheat. The percentage of strains assessed in the 30 assay relative to the 10 assay is given as 

% in 30, P=0.029 from Chi-squared test for independence.  

Type of 

microbe 

1o 2o 3o % in 3o 

Bacteria 1434 79 19 1.3 

Actino 808 93 21 2.6 

Fungi 68 13 3 4.4 

Total 2310 185 43 1.9 
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Table 4a. Mean results for control treatments in combined secondary (20, 7 assays) and tertiary (30, 5 

assays) Rhizoctonia root rot bioassays on wheat for newly isolated strains. Measured parameters are 

shoot and root dry weight (DW, mg pot-1) total root length (cm plant-1) and root disease rating (0-5 

scale, 0 = no disease, 5 = max disease severity). TB is positive control Trichoderma strain TB. 

Percentage change = [(strain TB/Pathogen only control)x100]-100. 

Assay 20 20 20 20 30 30 30 30 

 Shoot 

DW mg 

Root 

DW mg 

Root 

Length 

cm 

Root 

Rating 

(0-5) 

Shoot 

DW mg 

Root 

DW mg 

Root 

Length 

cm 

Root 

Rating 

(0-5) 

No Pathogen 

control 
376* 330* 55* 0.8* 297* 247* 52* 0.7* 

Pathogen only 

control 
236 147 23 3.6 152 80 12 4.1 

TB 270* 175 31* 2.9* 180* 96 17* 3.9 

% change with 

TB inoculation 
14 19 30 -20 18 20 39 -6 

*significantly different from Pathogen only control at P=0.05 by Fisher’s LSD. 
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Table 4b. Mean results for control treatments in combined secondary (20, 6 assays) and tertiary (30, 5 

assays) Rhizoctonia root rot bioassays on wheat for culture collection strains. Measured parameters 

are shoot and root dry weight (DW, mg pot-1) total root length (cm plant-1) and root disease rating (0-5 

scale, 0 = no disease, 5 = max disease severity). EN16 is positive control Streptomyces strain EN16. 

Percentage change = [(strain EN16/ Pathogen only control)x100]-100. 

Assay 20 20 20 20 30 30 30 30 

 Shoot 

DW mg 

Root 

DW mg 

Root 

Length 

cm 

Root 

Rating 

(0-5) 

Shoot 

DW mg 

Root 

DW mg 

Root 

Length 

cm 

Root 

Rating 

(0-5) 

No Pathogen 

control 
228* 178* 41* 0.4* 278* 175* 43* 0.4* 

Pathogen only 

control 
171 99 19 3.0 167 77 16 3.3 

EN16 179 115* 23* 2.5 188 92 18 2.8 

% change with 

EN16 inoculation 
5 16 21 -16 13 19 15 -16 

*significantly different from Pathogen only control at P=0.05 by Fisher’s LSD. 

 

  



  

Selection of microbes for Rhizoctonia control 

36 
 

Table 5a. Percentage change in measured parameters, shoot and root dry weight (DW), total length of 

roots and diseased root rating (0-5 scale), compared to pathogen only control for newly isolated 

strains selected from secondary (20) and tertiary (30) Rhizoctonia root rot bioassays on wheat. Results 

for tertiary assay from most efficacious inoculum level is given as Log10 (cfu seed-1). Percentage 

change = [(strain/ Pathogen only control)x100]-100. 

Assay 20 20 20 20 30 30 30 30 30 

Strain 
Shoot 

DW 

Root 

DW 

Root 

Length 

Root 

Rating 

Log10 (cfu 

seed-1) 

Shoot 

DW 

Root 

DW 

Root 

Length 

Root 

Rating 

S1 34** 56 68 -34** 5.7 1 4 17 -3 

S2 -7 36 22 -23* 5.7 20 47 75* -14 

S3 -4 37 22* -30** 4.9 -9 2 -15 10 

S4 -1 42** 22* -20* 4.5 55** 60** 105** -27** 

S5 3 22 14 -20 3.5 25 16 38 -5 

S6 48** 59 30 -26** NDa 35** 16 57* -8 

S7 35* 54 54 -32** 7.3 31* 8 30 -5 

S8 43** 107** 141** -37** 4.6 5 -1 38 -8 

S9 49** 41 71 -26** 4.9 28* 16 50* -8 

S10 46** 131** 146** -34** 6.9 11 33 123** -29** 

S11 23 41 50 -32** 5.0 10 15 48* -8 

S12 28 32 49 -30** 5.1 24** 16 54** -14* 

S13 42** 44 62* -33** 5.3 -6 -2 49* -13 

S14 44** 93 124** -50** 6.9 18 19 13 -9 

S15 28** 77 74 -26 6.1 14 24 28 -11 

S16 15 20 27 -25** 5.3 66** 104* 106* -29** 

S17 13 103** 92** -40** 5.0 19 25 62 -17 

S18 14 66 58 -25 7.6 18 40 55 -13 

S19 24 74* 45 -23 6.4 48** 62** 72** -16 

S20 22 14 27 -25** 3.7 55** 105* 113** -26** 

S21 9 39** 44** -31** 4.1 77** 138** 134** -29** 

S22 19 30 41** -31** 3.0 65** 100 87 -24** 

S23 43** 62 29 -21 3.4 23 19 59* -13 

S24 2 59** 23* -25** 4.2 9 10 10 -2 

TBb 15 27 42 -22 4.3 18 20 39 -6 

*significantly different from Pathogen only control at P=0.10 by Fisher’s LSD. 
**significantly different from Pathogen only control at P=0.05 by Fisher’s LSD. 
a Not Determined 
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b mean of 7 (20) or 5 (30) experiments 
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Table 5b. Percentage change in measured parameters, shoot and root dry weight (DW), total length of 

roots and diseased root rating (0-5 scale) compared to pathogen only control for culture collection 

strains selected from secondary (20) and tertiary (30) Rhizoctonia root rot bioassays on wheat. Results 

for tertiary assay from most efficacious inoculum level is given as Log10 (cfu seed-1). Percentage 

change = [(strain/ Pathogen only control)x100]-100. 

Assay 20 20 20 20 30 30 30 30 30 

Strain 
Shoot 

DW 

Root 

DW 

Root 

Length 

Root 

Rating 

Log10 (cfu 

seed-1) 

Shoot 

DW 

Root 

DW 

Root 

Length 

Root 

Rating 

F1 6 3 -15 -8 5.6 20 42 58 -52 

F2 5 1 -23 0 5.5 29 40 37 -41 

F3 -1 -15 -10 -8 4.9 9 31 39 -38 

F4 20 36* 23 -32 4.8 24 44 31 -44 

F5 -5 27* 25 -41** 4.8 14 38 63 -42 

F6 22 40 34 -17 3.5 23 7 56 -13 

F7 7 -6 9 -10 5.4 1 -4 16 0 

F8 4 11 27 -29 NDa 17 9 28 -12 

F9 21 7 38 -26 5.2 24 4 22 -7 

F10 23 55 64 -31 4.9 17 30 63* -28 

F11 20 11 14 -25 2.8 5 -16 -13 4 

F12 27 36 80** -47** 5.4 8 9 12 -6 

F13 1 2 -12 10 2.8 -3 -20 -12 28 

F14 -6 19 58 -31 5.8 10 -4 2 -6 

F15 3 6 18 -25 5.9 10 -7 8 6 

F16 3 39** 22 -7 5.6 7 75* 25 -27 

F17 11 3 -18 5 4.5 19 108** 74** -34** 

F18 1 33* 23 -19 5.3 14 88** 65 -29 

F19 -8 30** 26 -27 3.2 6 84* 45* -24 

EN16b 5 16 21 -16 6.3 13 19 15 -16 

*significantly different from Pathogen only control at P=0.10 by Fisher’s LSD. 
**significantly different from Pathogen only control at P=0.05 by Fisher’s LSD. 
a Not Determined 
b mean of 6 (20) or 4 (30) experiments 
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Table 6a. Identification of newly isolated bacterial strains by 16S rRNA sequencing and comparison 

with type strains in the Ribosomal Data Base Project. Fungi were identified by morphological 

characteristics (Trichoderma) or ITS sequencing and comparison to NCBI data base. Similarity scores 

are for the closest match in database. Mucoid strains indicating extra cellular polysaccharide 

production on BYA indicated by +. Chitinase production on BYA indicated by: -, none; + <1mm 

clearing zone, ++ 1-5 mm clearing zone; +++ > 5mm clearing zone. 

Strain Phylum Closest match in database and 

16S rRNA accession no. 

Similarity 

Score 

Mucoid Chitinase 

S1 Firmicutes Bacillus acidiceler DQ374637 0.995 - ++ 

S2 Firmicutes Brevibacillus formosus 

AB112712 

0.976 - ++ 

S3 Firmicutes Bacillus simplex AJ439078 0.998 - ++ 

S4 Firmicutes Paenibacillus peoriae 

AJ320494 

0.999 + + 

S5 Firmicutes Paenibacillus castaneae 

EU099594 

0.988 + + 

S6 Bacteroidetes Chryseobacterium formosense 

AY315443 

0.737 + - 

S7 Actinobacteria Microbacterium paraoxydans 

AJ491806 

0.944 - - 

S8 Firmicutes Bacillus simplex AJ439078 0.999 - ++ 

S9 Firmicutes Bacillus simplex AJ439078 0.973 - - 

S10 Actinobacteria Microbacterium thalassium 

AM181507 

0.917 - - 

S11 Firmicutes Paenibacillus peoriae 

AJ320494 

0.978 - - 

S12 Actinobacteria Streptomyces microflavus 

DQ445795 

0.988 - +++ 

S13 Actinobacteria Streptomyces canus 

AY999775 

1.000 - ++ 

S14 α Proteobacteria Phyllobacterium ifriqiyense 

AY785325 

0.999 + - 

S15 β Proteobacteria Pseudomonas koreensis 

AF468452 

0.997 + ++ 

S16 Firmicutes Bacillus megaterium D16273 0.97 + ++ 

S17 Firmicutes Bacillus vallismortis 

AB021198 

0.974 - ++ 

S18 β Proteobacteria Pandoraea apista AF139173 0.979 - +++ 
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S19 β Proteobacteria Pandoraea apista AF139173 0.974 - - 

S20 Fungi: 

Ascomycota 

Trichoderma  - ++ 

S21 Fungi: 

Ascomycota 

Aspergillus ustus FJ878630 0.990 - ++ 

S22 Fungi: 

Ascomycota 

Cylindrocarpon destructans 

var. destructans AM419062 

1.000 - ++ 
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Table 6b. Identification of culture collection strains by 16S rRNA sequencing and closest match in 

NCBI data base and accession number. Similarity scores are for the closest match in database. 

Strain Phylum Closest match in database and 

16S rRNA accession no. 

Similarity 

Score 

F1 Actinobacteria Streptomyces chartreusis 

AB184839 

0.98 

F2 Actinobacteria Streptomyces violaceusniger 

NC015957 

0.99 

F3 Actinobacteria Streptomyces avermitilis 

BA000030 

0.99 

F4 Actinobacteria Streptomyces avermitilis 

BA000030 

0.98 

F5 Actinobacteria Streptomyces prasinosporus 

AB184390 

0.98 

F6 Actinobacteria Streptomyces avermitilis 

BA000030 

0.97 

F7 Actinobacteria Streptomyces avermitilis 

BA000030 

0.98 

F8 Actinobacteria Streptomyces flavogriseus 

AJ494864 

0.99 

F9 Actinobacteria Streptomyces flavogriseus 

AJ494864 

0.99 

F10 Actinobacteria Streptomyces coelicolor 

AB184196 

0.99 

F11 Actinobacteria Streptomyces lysosuperficus 

SAMN02471827 

0.97 

F12 Actinobacteria Streptomyces flavogriseus 

AJ494864 

0.99 

F13 Actinobacteria Streptomyces flavogriseus 

AJ494864 

0.97 

F14 Actinobacteria Streptomyces flavogriseus 

AJ494864 

0.99 

F15 Actinobacteria Streptomyces flavogriseus 

AJ494864 

0.99 

F16 Actinobacteria Streptosporangium roseum 

CP001814 

0.94 

F17 Actinobacteria Streptomyces chartreusis 

AB184839 

0.98 

F18 Actinobacteria Streptomyces coelicolor 0.99 
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AB184196 

F19 Actinobacteria ND*  

*ND = not determined 
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Table 7. Percentage of cells surviving on wheat seeds after 1, 2 and 7 days at room temperature from 

an initial population at t=0 given as Log10(cfu seed-1). Mean of two replicates. 

Strain Genus Log10 (cfu 

seed
-1) t=0 

%survival 

t=1d 

%survival 

t=2d 

%survival 

t=7d 

S1 Bacillus 5.87 120 77 46 

S2 Brevibacillus 5.67 100 100 67 

S3 Bacillus 4.87 139 184 157 

S4 Paenibacillus 4.50 116 63 65 

S5 Paenibacillus 2.86 63 30 137 

S6 Chryseobacterium 5.81 20 14 2.9 

S7 Microbacterium 5.48 111 62 3.9 

S8 Bacillus 5.62 112 62 50 

S9 Bacillus 5.06 133 114 97 

S10 Microbacterium 6.77 118 104 39 

S11 Paenibacillus 3.89 153 68 134 

S12 Streptomyces 5.21 118 124 77 

S13 Streptomyces 4.73 141 88 61 

S14 Phyllobacterium 5.86 60 51 1.4 

S15 Pseudomonas 5.73 81 43 14 

S16 Bacillus 5.01 131 84 110 

S17 Bacillus 5.73 75 48 62 

S18 Pandoraea 6.23 17 4 0.1 

S19 Pandoraea 6.14 12 4 2.1 

S20 Trichoderma 2.44 104 95 41 

S21 Aspergillus 4.27 162 142 108 

S22 Cylindrocarpon 3.12 67 80 137 

F1 Streptomyces 5.85 95 50 71 

F2 Streptomyces 5.58 57 72 167 

F3 Streptomyces 1.92 40 18 28 

F4 Streptomyces 4.01 108 79 18 

F5 Streptomyces 3.54 124 75 148 

F6 Streptomyces 4.62 84 88 96 

F7 Streptomyces 2.43 50 21 13 

F8 Streptomyces 4.45 94 46 9 
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F9 Streptomyces 2.43 38 28 33 

F10 Streptomyces 2.88 104 102 113 

F11 Streptomyces 2.75 14 2 1 

F12 Streptomyces 6.31 93 79 81 

F13 Streptomyces 3.33 97 33 23 

F14 Streptomyces 6.40 85 60 78 

F15 Streptomyces 2.82 70 70 32 

F16 Streptosporangium 3.64 16 1 0.3 

F17 Streptomyces 5.20 46 71 36 

F18 Streptomyces 6.27 125 138 150 
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Table 8. In vitro inhibition profile of 10 newly isolated strains and 19 culture collection strains against 

wheat root pathogens Rhizoctonia solani AG8, Fusarium pseudograminearum, Pythium irregulare 

and Gaeumannomyces graminis tritici. Responses of fungal pathogen to test strains are given as: - no 

sign of inhibition; + hyphal avoidance but no clear zone of inhibition; ++ inhibition zone 1-2 mm; 

+++ inhibition zone >3mm. 

Strain Genus R. solani F.pseudogram. P.irregulare G. graminis 

S4 Paenibacillus  +++ +++ +++ ++ 

S7 Microbacterium  - - - - 

S8 Bacillus  - - - - 

S9 Bacillus  - - - - 

S10 Microbacterium  - - - - 

S12 Streptomyces  ++ ++ ++ +++ 

S16 Bacillus  - - - - 

S17 Bacillus  +++ +++ +++ +++ 

S20 Trichoderma ++ ++ + ++ 

S21 Aspergillus  ++ +++ +++ ++ 

F1 Streptomyces +++ - - ++ 

F2 Streptomyces +++ +++ +++ +++ 

F3 Streptomyces +++ - - +++ 

F4 Streptomyces +++ - - +++ 

F5 Streptomyces +++ +++ - +++ 

F6 Streptomyces +++ +++ - ++ 

F7 Streptomyces +++ - - +++ 

F8 Streptomyces +++ - - - 

F9 Streptomyces +++ - - +++ 

F10 Streptomyces +++ +++ - +++ 

F11 Streptomyces +++ +++ - +++ 

F12 Streptomyces +++ - - +++ 

F13 Streptomyces +++ - +++ +++ 

F14 Streptomyces +++ - +++ +++ 

F15 Streptomyces +++ - ++ +++ 

F16 Streptosporangium +++ +++ +++ +++ 

F17 Streptomyces +++ - +++ - 

F18 Streptomyces +++ - - +++ 

F19 Streptomyces +++ - +++ - 
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Table 9a. Source and isolation method for newly isolated strains selected for assessment in tertiary 

assays. Source of strains includes soil, soil pre-treatment and host plant, either wheat cultivars H45 or 

Yallaroi or triticale cultivar Tahara. Strains were isolated from either well washed root pieces plated 

onto media or from dilution series from the rhizosheath, subjected to none or 80oC heat treatment 

prior to plating and the agar medium strains were isolated from. 

Strain Soil 
Soil pre-

treatment 
Host 

Isolation 

location 

Pre-plating 

heat 

treatment 

Agar medium 

S1 Waikerie 80oC H45 Root pieces 80oC BYA1% 

S2 Waikerie 80oC H45 Root pieces 80oC BYA1% 

S3 Waikerie 80oC H45 Root pieces 80oC BYA1% 

S4 Waikerie 80oC H45 Root pieces 80oC BYA1% 

S5 Waikerie 80oC H45 Rhizosheath 80oC BYAc 

S6 Waikerie Chitosan H45 Root pieces None BYAc1%  

S7 Waikerie Chitosan H45 Root pieces None BYAc1% 

S8 Mudamuckla 80oC Triticale Rhizosheath 80oC BYAc 

S9 Mudamuckla 80oC Triticale Rhizosheath 80oC BYAc 

S10 Mudamuckla 80oC Triticale Root pieces 80oC BYA1% 

S11 Netherton 80oC H45 Rhizosheath 80oC BYAcl 

S12 Mudamuckla 80oC Triticale Rhizosheath 80oC BYAc 

S13 Mudamuckla 80oC H45 Rhizosheath 80oC BYAcl 

S14 Avon Chitosan H45 Root pieces None BYAsp1% 

S15 Minnipa 80oC H45 Root pieces 80oC BYA1% 

S16 Netherton 80oC H45 Root pieces 80oC BYA1% 

S17 Minnipa 80oC H45 Rhizosheath 80oC BYA 

S18 Netherton 80oC Yallaroi Root pieces 80oC BYA1% 

S19 Avon 80oC Triticale Root pieces 80oC BYA1% 

S20 Waikerie none H45 Rhizosheath None BYA-TSM 

S21 Mudamuckla none H45 Rhizosheath None BYA-TSM 

S22 Mudamuckla none H45 Rhizosheath None BYA-TSM 

S23 Minnipa 80oC H45 Root pieces 80oC BYA1% 

S24 Waikerie 80oC H45 Root pieces 80oC BYA1% 
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Table 9b. Source and isolation methods for culture collection strains. Strains isolated from root, tuber 

or leaf were isolated as endophytes. Media ingredients are given in Kaewkla and Franco, 2013: 

TWYE, tap water yeast extract agar; VL70 gellan gum medium with Pec, pectin; AA, amino acids: 

GGXA D-galacturonate, D-glucuronate, L-ascorbate and D-gluconate; GGXA, D-glucose, 

Dgalactose, D-xylose and L-arabinose; HV, Humic acid vitamin B medium; HVG, Humic acid 

vitamin B medium with gellan gum.  

Strain Source 

location 

Host or soil location Isolation 

location 

Agar medium 

F1 Pinnaroo Potato Tuber TWYE 

F2 Bedford Park Callitris preissii (native pine) Root VL70 Pec 

F3 Bedford Park Eucalyptus microcarpa (Grey Box) Root VL70 AA 

F4 Bedford Park Eucalyptus camaldulensis (red gum) Root  VL70 Pec 

F5 Peterborough Soil Bulk soil HV 

F6 Peterborough Soil Bulk soil HV 

F7 Bedford Park Eucalyptus microcarpa (Grey Box) Root VL70 GGAG 

F8 Peterborough Soil Bulk soil HV 

F9 Bedford Park Pittosporum phyliraeoides (native 

apricot) 

Root VL70 GGXA 

F10 Peterborough Soil Bulk soil HV 

F11 Bedford Park Callitris preissii (native pine tree) Root VL70 Pec 

F12 Bedford Park Callitris preissii (native pine tree) Root VL70 AA 

F13 Bedford Park Pittosporum phyliraeoides (native 

apricot) 

Root VL70 Xyl 

F14 Pinnaroo Potato Leaf TWYE 

F15 Peterborough Soil Bulk soil HV 

F16 Peterborough Soil Bulk soil HV  

F17 Peterborough Wheat Root HV 

F18 Peterborough Soil Bulk soil HV 

F19 Bedford Park Eucalyptus microcarpa (Grey Box) Root HVG 
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Selection of microbes for Rhizoctonia control  

Highlights 

• Screening for biocontrol of Rhizoctonia root rot on wheat in a 3-phase system 

• High throughput in planta screening method developed 

• 2310 strains assessed directly in a plant-pathogen-soil system 

• 185 strains assessed in replicated pot bioassay to confirm efficacy 

• 43 strains showed greater efficacy compared to our current best biocontrol 
strains 
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