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Abstract

This thesis concerns the atmospheric monitoring instrumentation for the H.E.S.S.

(High Energy Stereoscopic System) γ-ray telescope site and the adaptation of such

instruments for commercial use. The effect of the atmosphere on the H.E.S.S. tele-

scopes’ response has been demonstrated and the technicalities associated with the

atmospheric monitoring instruments have been studied in depth. The responses of

a LIDAR (Light Detection And Ranging) and a transmissometer have been checked

by customised MODTRAN (MODerate resolution atmospheric TRANsmission) rou-

tines. This process revealed a malfunction of the LIDAR, whose raw data was

independently treated to yield meaningful results. More importantly, the ‘Durham-

designed’ transmissometer, manufactured to operate during the night in parallel with

the H.E.S.S. telescopes, was successfully adapted for day-light operation. As a result

Durham prototype gained strong interest from Aeronautical & General Instruments

Limited (AGI) in Dorset, who are particularly interested in the airport applications,

and see the Durham instrument as a potential replacement for the transmissometer

which they manufacture currently and is coming to the end of its useful design life.

Durham University and AGI drew up a license agreement to pursue further devel-

opment of the instrument. The resulting Durham aviation transmissometer meets

the accuracy requirements for the Runway Visual Range (RVR) assessment imposed

by both the World Meteorological Organisation (WMO) and the International Civil

Aviation Organisation (ICAO). Moreover, the Durham instrument is easy to align,

uses very little power, and is lightweight and portable, enabling its use not only in

civil airports, at altitudes exceeding all prior-art aviation transmissometers, but also

in tactical military applications, such as remote landing strips.
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Chapter 1

Thesis Overview and Personal

Contribution of the Author

1.1 Introduction

This thesis is concerned with the atmospheric monitoring of the H igh Energy

S tereoscopic System (H.E.S.S.) experiment in Namibia and explores the adaptation

of the ‘purpose built’ transmissometer for industrial uses. A short overview of each

chapter followed by an analytical description of the author’s personal contribution

will be drawn in the following Section.

1.2 Author’s Personal Contribution

• The second chapter consists of a general introduction to the field of the ground

based γ-ray astronomy. The different production mechanisms of energetic γ-

rays are briefly sketched. The principles of the imaging atmospheric Cherenkov

technique are discussed followed by the presentation of the H.E.S.S. experi-

ment. The chapter concludes with simulations of a stand-alone H.E.S.S. tele-

scope under different atmospheric assumptions. The author’s original contri-

bution is drawn below:

1. generating γ-ray induced showers using a modified version of MOCCA

(Monte C arlo Cascade) program,

1
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2. adapting the CameraHess simulation package in order to accept more

efficiently the simulated γ-rays, and

3. writing a Root program to automatically calculate the stand-alone H.E.S.S.

telescope effective area from the results obtained after feeding the MOCCA

generated γ-ray showers into the camera simulation program.

• The third chapter provides the motivation for atmospheric monitoring of the

H.E.S.S. site, which constitutes the main responsibility of the Durham Uni-

versity VHE Gamma Ray Group. A detailed description is given for each

instrument commissioned. Special emphasis is placed on the Durham N ight-

time T ransmissometer (DNT), considering its later adaptation for industrial

use. Finally, the results obtained from the transmissometer are utilised by the

MODTRAN (i.e. MODerate spectral resolution atmospheric TRANsmittance

algorithm and computer program) for the generation of nightly site-specific at-

mospheric models allowing the quantification of the atmospheric effect on the

telescopes efficiency (i.e. trigger rate, effective area). The author’s personal

contribution was to:

1. analyse the transmissometer data,

2. adapt the MODTRAN code in order to generate atmospheric transmis-

sion tables based on the transmissometer readings, and

3. explore the limitations in incorporating the transmissometer within the

H.E.S.S. active atmospheric calibration scheme.

• The fourth chapter is dedicated to the two commercial LIDARs (Light Detection

And Ranging) operating in the Namibian site. The work has focused on the

new ALS 450 XT LIDAR with the hope of extracting optical depths that can

be directly fed into the H.E.S.S. simulations. The author’s contribution in this

chapter was to:

1. identify that the LIDAR was operating below specifications in terms of

its power output,
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2. prove that the LIDAR manufacturer used an erroneous assumption for

the LIDAR ratio yielding meaningless atmospheric extinction profiles,

3. derive a realistic LIDAR-ratio based on site-specific analytical back tra-

jectories and satellite measurements of the aerosol index,

4. compare the corrected LIDAR signal against both MODTRAN simula-

tions and the telescopes’ cosmic-ray trigger-rate with positive results, and

5. derive an alternative use of MODTRAN code that utilises the transmis-

sion directly as an atmospheric model selector as opposed to the wind

speed.

• The fifth chapter marks a turn from H.E.S.S. oriented research to the adap-

tation of the DNT for industrial use. Initial investigations suggested that the

innovative design of this instrument could have applications in the airport in-

dustry if we could make an instrument that would operate during daylight

hours whilst simultaneously reducing the manufacturing costs. This task was

undertaken by the author that was appointed to work half-time on the PPARC

project. Co-investigator Dr. Roland Le Gallou provided his knowledge from

the construction of the transmissometer in Namibia until he left Durham for

a post in his native France in April 2006. Mr. David Allan and Mr. Chris

Moore provided expertise in camera control and printed circuit board design

respectively. Mechanical parts (mount, protective hoods etc.) were manufac-

tured by the workshop in the Department of Physics at Durham. The author’s

personal contribution to the project was to:

1. select reliable components for the quick development of the daylight-

operating prototype,

2. incorporate the DNT’s operational algorithm within the selected camera’s

driving program,

3. optimise the system’s hardware and software for daylight use (i.e. elimi-

nating background noise, averaging-time and spot-size optimisation),

4. calibrate the instrument and check its performance,



1.2. Author’s Personal Contribution 4

5. estimate the transmissometer’s uncertainty budget, thereby identifying

ways of error minimisation, and

6. liaise with possible licensees for promoting Durham’s transmissometer

into a commercial instrument.

• Finally the sixth and seventh chapters provide the status of the current work

that aims to transfer Durham’s daylight-prototype into an reliable aviation

transmissometer. The author was appointed to work full time on the project

with the following responsibilities:

1. identify the specifications needed for a commercial instrument by working

with the licensee and distributor;

2. select instrument components and optimise the optical design taking the

above specifications into account;

3. write and optimise the measurement algorithms (i.e. implementation of

centroid algorithm, use of innovative modulation on both CCD expo-

sure time and LED driving current to optimise the instrument’s dynamic

range, derivation of the large aperture background threshold-based mea-

suring algorithm, etc);

4. calibrate the instrument check its linearity and ensure that the device is

performing to specification;

5. derive an innovative design and method allowing for the online monitoring

of the instrument’s window contamination without being in conflict with

already patented designs, and finally

6. explore the possibilities for an automatic calibration of the instrument

without the need of user intervention.

David Allan is responsible for the translation of the control software into Visual

Basic, the design of the ‘front end’ for users, the design of the temperature-

controlled LED and the mechanical construction of the instrument.



Chapter 2

Very High Energy Gamma Ray

Astronomy

2.1 Brief History of γ-ray Astronomy

The initiation of γ-ray astronomy is usually identified with Morrison’s paper, which

was the first to focus on the feasibility and merits for γ-ray detection of astrophys-

ical origins (Morrison, 1958). The cosmic γ-ray flux, however, had been measured

prior to that by both balloon and rocket experiments (Bergstrahl and Schroeder,

1952; Johnson et al., 1954). These first measurements, coupled with more ex-

tensive research triggered by Morrison’s paper, led to the detection of hard solar

events and provided crude upper limits to the cosmic γ-ray fluxes of the order of

1 photon cm−2 s−1 (Peterson and Winckler, 1958; Peterson, 1997). It soon became

apparent that the predicted fluxes were optimistic. In addition, background effects

caused by the charged cosmic ray particles triggered extensive design development

that led to production of the active anti-coincidence shield originally suggested by

Frost and Rothe (Frost and Rothe, 1962). A device based on this design aboard

the spacecraft OSO-III was used for the first firm detection of γ-rays with energies

of ∼ 100 MeV from the centre of the galaxy (Kraushaar et al., 1972). In the fol-

lowing years, the launch of NASA’s SAS-2 (Fichtel et al., 1975), followed by the

European COS-B satellite, resulted the first mapping of the galactic plane and the

discovery of discrete sources such as the Vela pulsar. The field of high energy (50

5
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MeV− 100 GeV) γ-ray astronomy was brought to maturity with the launch of the

C ompton Gamma Ray Observatory (CGRO) in 1991. The EGRET instrument

on-board CGRO was successful in detecting 271 γ-ray sources at energies above

100 GeV (3rd ERGET catalog shown in Fig. 2.1, (Hartman et al., 1999)). At the

time of concluding this thesis (May 2009) there exist two satellite based high energy

γ-ray experiments namely AGILE (Tavani et al., 2008) and the recently launched

GLAST, renamed Fermi (Lichti and von Kienlin, 2008).

Above energies of ∼ 100 GeV the γ-ray fluxes become too small to be measured

by satellites due to effective area limitations imposed by their physical restrictions.

Thus, in the energy regime > 100 GeV γ-ray astronomy is conducted from the

ground. This thesis will revolve around the most promising technique of ground

based γ-ray astronomy, namely the Imaging Atmospheric Cherenkov T echnique

(IACT). The IACT will be discussed in detail in Section 2.5.5 after the brief pre-

sentation of the production of V ery H igh Energy (VHE) γ−rays that follows .

Figure 2.1: The 3rd EGRET catalogue shown in galactic coordinates. The size of

each symbol represents the relative intensity of the source as registered by EGRET.

Extracted from Hartman et al. (1999).
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2.2 Production of TeV γ-rays

The detected population of credible TeV γ-ray sources of various classes implies

that the main sources of γ-ray and cosmic-ray (CR) emission are the same. The

production of the CR’s could be categorised in a very general manner as follows:

• Bottom up: charged low energy particles are accelerated to high energies.

The most popular model for charged particle acceleration is the second order

Fermi mechanism,

• Top-down: highly energetic particles are produced from the decay or an-

nihilation of a massive particle Mx (1014-1016 GeV). These particles may be

produced continuously as decay products of some topological defects (such as

magnetic monopoles and super-contacting strings) or may have been directly

produced in the early universe and, due to some unknown asymmetry, have a

lifetime that exceeds the age of the universe (Sigl, 2001).

Even though top-down scenarios could provide a “by definition” explanation

for the particles observed with HiRes (Abbasi et al., 2008) (not although those

observed with AGASA (Teshima, 2001), with energies apparently exceeding the

Greisen-Zatsepin-Kuzmin cutoff (Greisen, 1966; Zatsepin and Kuzmin, 1966)), they

appear to be ruled out by the high GeV γ-ray intensity produced from cascades

initiated by X-particle decay (Protheroe and Stanev, 1996). Moreover, topological

defects predict that the highest energy CR’s are predominantly photons, a fact which

seems to disagree with the experimental evidence (Unger, 2007; Arisaka et al., 2007).

At the time of concluding this thesis (May 2009), HiRes and Auger observations

strongly support the existence of the GZK cutoff (Sokolsky, 2008).

No matter what the scenario of the production of highly energetic CR’s, the

generic mechanism of the high-energy γ-ray process is the interaction of a relativistic

electron or nucleon with matter or in a magnetic field. The physical processes

responsible for γ-ray production of energies relevant to ground based astronomy

(100 GeV - 100 TeV) are briefly outlined below.
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2.2.1 Hadronic γ-ray Production

γ-rays can be produced from the decay of π◦, which in turn could be the product

of nucleon-antinucleon annihilation or the inelastic collision of CR’s (predominantly

protons) with the interstellar matter. This process is illustated in Fig. 2.2.

Figure 2.2: Hadronic production of γ-rays

The produced gamma ray spectrum is a convolution of the incident proton spec-

trum with the inter-stellar matter density. Each resulting γ has an energy which

equals half the πo rest mass (i.e. m =135 MeV/c2) in the π◦ rest frame.

There is a strong debate whether sources that emit the highest energy γ-rays like

Active Galactic Nuclei (AGN) are accelerating protons, heavier elements (i.e. iron)

or electrons or perhaps a mixed composition. One of the most recent works on the

composition of UHECR comes from the analysis of the Pierre Auger Observatory

spectrum (Arisaka et al., 2007). The observed spectrum can be fitted by models

assuming different injected spectra including pure protons and Fe nuclei beams.

The most probable scenario is that the sources responsible for the highest energy

particle production accelerate a mixed composition of protons and heavier elements

(i.e iron, oxygen) (Arisaka et al., 2007). It is not yet clear, however, whether proton

or iron dominates the spectrum and composition at the highest energies.
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2.2.2 γ-ray Production by Dark Matter Annihilation

Although there is compelling evidence that the Universe is a strong component of

non-baryonic Dark M atter (DM), as indicated by the rotational curves of spiral

galaxies, DM remains elusive. The candidates are numerous but the most studied

ones are the W eakly I nteracting M assive Particles (WIMPs). The annihilation

of WIMPS might yield detectable γ-ray fluxes above the H.E.S.S. threshold by

the hadronisation of gauge bosons and heavy quarks. Direct production of γ-rays

through loop processes is also possible but less probable, yielding to the emission

of γ-ray lines that is a ‘smoking gun’ for the existence of the dark matter (Bertone

et al., 2005).

For ground-based γ-ray detectors like the H igh Energy S tereoscopic System

(H.E.S.S.) the possibility of detection would be optimum from regions of high DM

densities. Indeed, the flux expected from a DM annihilation depends on the annihi-

lation rate, which is proportional to the square of the dark matter density (Bertone

et al., 2005). Thus, our Galactic centre is the prime candidate. H.E.S.S. obser-

vations have recently revealed a source of VHE γ-ray with a significance of 37.9

σ, namely HESS J1745-290 that lies within 0.1◦ from the Galactic Centre (Aharo-

nian et al., 2004b). However, the power law energy spectrum with a spectral index

of 2.5 ± 0.04(stat)±0.10(syst) does not agree with the DM annihilation hypothesis

(Aharonian et al., 2006b). The spectrum from a DM annihilation is expected to

rise for E << MDM , be stabilised for values in between 0.01 < E/MDM < 0.1,

and quickly drop approaching MDM . Thus, the very high energy cut-off in excess of

10 TeV suggests an unrealistic mass for the DM particle (Bertone et al., 2005).

The search for dark matter is stronger than ever and the recently launched Fermi

could hold the key for its detection.

2.2.3 γ-ray Production by Accelerated Charged Particles

In this category there are three different physical processes via which γ’s can be

produced, namely Bremsstrahlung, synchrotron and curvature radiation. A very

brief introduction for each mechanism is given below.
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Bremsstrahlung Radiation

The ‘breaking radiation’ is emitted in the form of energetic γ-rays when an acceler-

ated electron is deflected in the presence of the electromagnetic field of an atomic

nucleus or electron. The energy of the emitted γ-rays depends upon the size of the

deflection and can be comparable to that of the electron under extreme circum-

stances. Light particles suffer severe energy loss via Bremsstrahlung, since the rate

of energy loss is inversely proportional to the square of the mass of the particle.

This mechanism is crucial for high matter densities, which is often the case in the

vicinity of the production site. A diagram for this process is shown in Fig.2.3

Figure 2.3: Schematic illustration for ‘breaking radiation’ or Bremsstrahlung.

Synchrotron Radiation

Synchrotron radiation is emitted when a relativistic charged particle is travelling in a

magnetic field, due to transverse acceleration (Fig.2.4). Relativistic electrons trace a

helical path within the magnetic field lines, resulting in an oscillating electromagnetic

field which is emitted as photons. If one observes the emitted photons along the field

lines the radiation is circularly polarised and strongly beamed towards the direction

of the net particle motion.

The typical energy, in GeV, of the γ-rays produced via synchrotron emission is

given by:

Eγ
∼= 20BE2

e (2.1)

where the electron energy Ee is measured in EeV and the magnetic field B in µG.

Thus, the energy of the emitted γ-rays is several orders of magnitude lower than that
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B

1/γ

α

v

Figure 2.4: The synchrotron emission mechanism.

of the electron and, therefore, synchrotron γ-rays are unlikely to trigger atmospheric

Cherenkov telescopes. However, their detection by other means provides a clear

signature of relativistic electrons which could produce very energetic gamma rays

via other mechanisms.

Curvature radiation

Coherent curvature radiation was proposed as an explanation of the very high bright-

ness temperature of pulsars’ radio emission which implies the presence of a coherent

emission mechanism (Sturrock, 1971). Curvature radiation can be described in

terms of emission by a relativistic electron constrained to follow the strong curved

magnetic field lines (B∼1012G) in the vicinity of a pulsar. Even the most energetic

electrons will be forced to follow the magnetic lines very closely since any deviation

will result in damping by synchrotron emission. In order for γ’s to be produced via

curvature radiation, magnetic fields greater than 1012G are needed.

Inverse Compton Scattering

The inverse Compton scattering effect (see Figures 2.5 and 2.6) is a process by

which a relativistic electron scatters low energy ambient photons to higher energies.
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Figure 2.5: s-channel Feynman diagram for

γe− → γe−.

Figure 2.6: u-channel Feynman diagram for

γe− → γe−.

Indeed, in the frame of the relativistic electron (Ee=γmec
2) the photon energy trans-

forms as E ′ = γ(E + cpl), where pl is the longitudinal component of the photon’s

momentum. Thus, in the case of a head on collision and assuming that all the elec-

tron’s momentum is transferred in the interaction, the photon will be promoted to

an energy E ′′ = 2γ2E. Targets of low energy photons can be the ambient I nfra-Red

(IR) starlight or the C osmic M icrowave Background (CMB).

2.3 Attenuation of VHE γ-rays

2.3.1 Absorption by photons

Energetic photons could be absorbed on background light by pair production of

electrons above an energy threshold:

γ + γbg −→ e− + e+ above Eǫ =
2(mc2)2

1 − cos θ
(2.2)

where E and ǫ are the energy of the high-energy and background photon respec-

tively (in the centre of mass frame) and θ is the angle between the two photons.

The above equation implies that TeV photons will be absorbed by the IR-light, PeV

photons on the CMB and EeV photons on radio waves over astrophysical distances

(see Fig. 2.7). Therefore, a crucial parameter for VHE γ-ray astronomy is the in-
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teraction length of the γ-γ pair production process. An accurate calculation was

not possible until recently due to our poor knowledge of the spectral distributions

of the IR and γ-ray photons. The recent observations of extragalactic blazars (e.g.

H 2356-309 at z= 0.165 and 1ES 1101-232 at z=0.186) have been used to constrain

the Extragalactic Background Light (EBL) flux (Aharonian et al., 2006a).

Figure 2.7: Energy dependence of γ-ray attenuation length. The dotted line indi-

cates possible effects due to the IR background. Extracted from Halzen and Hooper

(2002).

2.3.2 Attenuation by strong magnetic fields

γ-rays could also be attenuated within their astrophysical sources of production

via the single photon pair mechanism. According to this process a single photon

could split into two lower energy photons by the scattering of a virtual photon.

This process can only occur in the presence of magnetic fields close to the quantum

critical field (Bc = 4.13 × 1013G). Magnetic fields of this magnitude can only occur

on the vicinity of neutron stars, thus putting a constraint on the γ-ray flux produced

from these sites.
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2.4 Observation Techniques and the γ-ray Spec-

trum

The starting point of the γ-ray region in the electromagnetic spectrum is usually

defined by the lowest energy γ-rays that can be produced by matter-antimatter

annihilation (511 keV). Since the end of the known γ-ray spectrum is limited only

by detector sensitivity, the γ-ray spectrum covers currently nine decades in energy

and different techniques have been developed to map it. The distinction of the

γ-rays according to their detection technique is illustrated in Table 2.1.

In the low to high energy region (0.5 MeV - 30 GeV) γ-rays are measured with

pair production detectors. The e− and e+ produced by the interaction of γ-rays

with matter carry information about the direction, energy and polarisation of the

primary γ-ray. At these energies, the earth’s atmosphere is opaque to γ’s leaving

no choice other than the use of space vessels (balloons, satellites). A typical space

instrument is shown in Fig. 2.8 (left-hand side). It is comprised of (Weekes, 2001):

• a spark chamber (or, in more recent instruments, a silicon strip detector)

within which the γ-ray interacts and the resulting e− and e+ tracks are regis-

tered,

• a sodium iodide crystal which is used as a calorimeter that registers the total

energy of the absorbed electrons,

• an anti-coincidence shield that covers the spark chamber and rejects the dom-

inant CR flux.

These space detectors have large fields of view (1 sr) but their sensitivity is

inevitably constrained by their sizes (effective area ≤1 m2). Indeed, the flux of the

incident photons decreases with energy and in the region of 1 TeV the background

flux of particles is about 10−3 cm−2 sr−1. Thus, in this energy region larger telescopes

are needed for sensitive measurements within typical satellite lifetimes.

At the highest energies (>50 TeV), the products of Extensive Air Showers

(EAS), produced by the interaction of a γ-ray with the earth’s atmosphere, can
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reach the ground level and, therefore, be detected by an array of scintillators or

a large water tank. A few such detectors are currently operational (e.g. TIBET

(Amenomori et al., 2008), MILAGRO (Walker, 2007)) making the detection of the

highest energy photons possible.

The Imaging Atmospheric Cherenkov T echnique (IACT) comes in to fill this

gap in the energy spectrum. Within this region, the flux is not adequate for satellite

observation and nor can the EAS particles reach ground level. The detection tech-

nique is based on mapping the faint Cherenkov radiation produced by the EAS. The

means of detection is therefore a big mirror with an array of photomultiplier tubes

at its focus (see Fig. 2.8 [right hand-side]). In this way the atmosphere becomes a

vital part of the detector. The key to success for the IACT is the suppression of the

dominant background of shower from nuclear CR’s by analysis of the shower images.

The small but significant differences in the cascades resulting from the impact of a

proton or a photon in the upper atmosphere lead to a separation efficiency of 99.7%

(Aharonian and Akerlof, 1997).

Compared to the satellite detectors, Cherenkov telescopes have a small field of

view (∼ few degrees) and a low duty cycle (∼10%) due to the ‘clear and moonless

night sky’ restriction. The beauty of the Cherenkov technique, however, is that

the effective area of the telescope is much greater than its instrumental area thus

reaching ∼ few 104 m2. Moreover, the energy resolution achieved is ∼15% and the

angular resolution is 0.1◦ per event, which is better than that of satellite telescopes

by an order of magnitude (Volk, 2005). A discussion about ground based γ-ray

astronomy entailing a detailed description of the IACT follows.

2.5 Ground-Based γ-ray Astronomy

2.5.1 Brief History

The production of Cherenkov radiation by cosmic-ray induced EAS was first pre-

dicted by the Nobel Laureate P.M.S. Blackett who suggested that it might account

for 10−4 of the mean light of the night-sky (Blackett, 1948). The experimental physi-

cists Galbraith and Jelley (1953) realised that the Cherenkov light induced by the
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Figure 2.8: (Left) The EGRET instrument of the Compton Gamma Ray Obser-

vatory (CGRO). (Right) The 10m Whipple telescope of VERITAS collaboration.

Extracted from (Volk, 2005).
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Table 2.1: The separation of the γ-rays in terms of their detection technique. From

(Weekes, 1996).

Energy Range Classification Technique

0.5-5 MeV Low Energy Scintillation Detector

(LE) (Satellite)

5-30 MeV Medium Energy Compton Telescope

(ME) (Satellite)

0.03-30 GeV High Energy Spark Chamber / Silicon Strip

(HE) (Satellite)

0.03-50 TeV Very High Energy Atmospheric Cherenkov Detector

(VHE) (Ground Based)

0.05-105 PeV Ultra High Energy Scintillation Detector Array

(UHE) (Ground Based)

cosmic shower would have a characteristically small duration (i.e. ∼ 10 ns) allow-

ing for its detection above the night-sky background. Their device consisted of a

single photomultiplier (PMT) at the focus of a 25 cm parabolic mirror. It was was

placed at the centre of a square of 180 m, each side of which included 5 equidis-

tant 200 cm2 Geiger-Muller (G-M) tubes. By demanding coincidence between the

photomultiplier and at least one of the G-M tubes they observed ∼ 1 large pulse

per minute under clear skies. The experiment was performed under heavy clouds in

which case the frequency of the signal was reduced by a factor of two, demonstrating

for the first time the limitations of the newly-born technique (Marshall, 1954). A

few years later, and soon after the publication of Morrison’s paper (see Section 2.1),

Cocconi predicted the detectability of TeV emission from the Crab Nebula by reg-

istering the γ-ray induced showers with particle array experiments (Cocconi, 1959).

Even though the flux was overestimated by a factor of 1000, this paper provided

the stimulus for much experimental work and marked the start of the era of VHE

γ-ray astronomy. Experiments utilising particle detectors were deployed with neg-

ative results. It was soon realised that to win in this game one has to lower the
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energy threshold by optically detecting the γ-ray induced showers. Astronomy was

performed, in the TeV energy regime, by searching for anisotropies in the arrival

directions of the air showers over the isotropic cosmic-ray background without dis-

criminating between γ-ray and hadronic-induced showers (Weekes, 1996). An array

of twelve light detectors was operated in Crimea by the Lebedev Institute based on

Cocconi’s predictions (see Fig. 2.9). Four years of operation (i.e. 1960-64) yielded

upper limits capable of restricting the overoptimistic theoretical predictions (Chu-

dakov et al., 1967). Twenty years later Hillas (1985) provided the necessary tool for

the discrimination between γ-ray and proton-induced showers based on the analysis

of the second moments of the Cherenkov images they produce on the telescope’s

camera. Soon after, a new window in high-energy astronomy was opened by the

firm detection of TeV γ-ray emission from the Crab nebula, registered by Whipple

telescope (Kwok et al., 1989). Since then, over seventy TeV γ-ray sources have been

identified (i.e. May 2009 see Fig. 2.10). Prospects of future discoveries are imminent

as the catalogue of the detected sources increases on a weekly basis.

Figure 2.9: Past: The first VHE γ-ray telescope operated in Catsiveli, Crimea

between 1960-64. Although no source detection was made, it paved the way for

future more sensitive instruments. Extracted from Lidvansky (2006).
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Figure 2.10: Present: Sky map of γ-ray sources with energies in excess of 100 GeV.

H.E.S.S. is the culprit for detecting more than 70 sources in the last few years.

Courtesy of Robert Marcus Wagner.

2.5.2 Cherenkov Radiation

The first manifestation of Cherenkov radiation observed occurred in the early ra-

dioactivity researches as the faint blue glow emitted by strong radioactive sources;

an effect that became more apparent when the sources were diluted in a transparent

medium (Jelley, 1955). Mallet was the first to investigate this radiation with re-

sults published in three papers; however, a theoretical account for the phenomenon

was not provided (Mallet, 1926, 1928, 1929). Cherenkov, in the mid-30s, performed

thorough experiments and discovered the unique polarisation and directional prop-

erties of the radiation which was named after him. A proper theoretical treatment of

Cherenkov radiation, based solely on classical electromagnetic theory, was provided

by Frank and Tamm (1937). A brief description of Cherenkov theory is provided

below.

Cherenkov radiation is emitted when a charged particle traverses a dielectric

medium at a speed that exceeds the phase velocity of the light in that medium. The

angle of emission depends on the refractive index of the dielectric medium. Fig.

2.11 shows the effect of an electron’s passage at a speed v through a solid medium

with refractive index n. The electromagnetic field produced by the moving electron

causes the displacement of the bound electrons along its track, forming dipoles. The
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dipoles return immediately to the former neutral state as soon as the particle passes.

If the electron’s velocity within the medium is relatively slow (i.e. v < c/n, Fig.

2.11) then the polarisation is symmetric along and around the electron’s trajectory

and, therefore, the net electric field cancels out (i.e. destructive interference).

Figure 2.11: The polarisation produced in a medium when an electron passes

through it at different velocities as indicated in the diagram.

On the other hand, if the electron possesses higher velocity than the phase veloc-

ity of light in this medium (i.e. v > c/n), the polarisation symmetry is not preserved

along the electron’s axis of motion, yielding a net electric field. Indeed, dipoles can

only be created behind the relativistic particle. Thus each finite element of the track

emits Cherenkov radiation that will interfere constructively in the forward direction.

This process is demonstrated by the Huygens construction and results in Cherenkov

emission at an angle θ defined as (see Fig. 2.12) :

cos θ =
AC

AB
=

1

βn
(2.3)

where the relativistic velocity of the particle is v = βc, n the refractive index and c

the speed of light in vacuo. The limiting case (β = 1/n and θ = 0) can be associ-
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Figure 2.12: Cherenkov light generation: The charged particle traverses along AB

with relativistic velocity (v > c/n) through a medium of refractive index n emits

Cherenkov photons at points P. The elemental wavefronts at each point yield a net

emission of Cherenkov light over the surface of a cone with semi-vertical angle θ

(Jelley, 1955; Shaw, 1999).

ated with an energy threshold of the relativistic particle below which no Cherenkov

radiation occurs:

βmin =
1

n(λ)
⇐⇒ Emin =

m0c
2

√

1 − β2
min

(2.4)

where m0 is the rest mass of the particle and the dependence of the refractive in-

dex on the wavelength has been restored. Cherenkov radiation can only be emitted

at wavelengths for which n(λ) > 1. The refractive index of a typical medium is

positive for wavelengths between the U.V. and microwave regions of the electromag-

netic spectrum and negative at higher frequencies (i.e. X-ray and γ-ray ). Thus,

Cherenkov radiation may only be emitted for wavelengths between about 100 nm

and 2 cm.
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The angle of emission θ can also be restricted by the maximum relativistic ve-

locity of the moving particle β → 1:

θmax = arccos(1/n) (2.5)

The number of Cherenkov photons (N) emitted by a relativistic particle per

unit path length between the wavelengths λ1 and λ2 can be calculated as follows

(Bernlöhr, 2000):

dN

dx
= 2παz2

λ2
∫

λ1

(

1 − 1

(βn(λ)2

)

1

λ2
(2.6)

where α is the fine structure constant, z is the charge number and β = v/c. From

equation 2.6 it is evident that the energy emitted per wavelength interval scales as

λ−3, which explains the bluish-white colour of Cherenkov radiation.

Equations 2.3, 2.5 and 2.6 allow the computations of the minimum energy, max-

imum angle and photon yield for the relativistic particles generated via energetic

γ-ray and cosmic-ray interactions with the atmosphere (see Section 2.5.4).

2.5.3 Extensive Air Showers

γ-ray initiated showers

A γ-ray cascade is initiated when a VHE γ-ray interacts with the atmospheric nuclei

to produce a shower which is purely electromagnetic in origin. The longitudinal

development of this shower can be viewed as the repetition of the following processes:

1. pair production process while the incident γ-ray is within the Coulomb field of

an atmospheric atom. The photon must possess energy in excess of 2mec
2 (i.e.

∼ 1 MeV) and the presence of an atom is necessary for energy and momentum

conservation (Longair, 1999) (i.e. γ +X −→ X + e− + e+),

2. electrons with energies above 84 MeV will undergo Bremsstrahlung when de-

flected by the field of a nucleus (i.e. e+X −→ X + e+ γ).



2.5. Ground-Based γ-ray Astronomy 23

This process will continue until particle energies are too low for further interac-

tions to occur. The presence of muons within the shower is possible but very rare

since the cross-section of photo-nuclear interactions is three orders of magnitude less

than the the one for pair production. The shower will reach its maximum number

of particles when the electron energy drops below the threshold of a photon to be

pair produced (i.e. Ec = 84.2 MeV in air). After that, the shower energy is quickly

dissipated by ionisation of the atmosphere. Moreover, the cross-section for pair

production reduces until Compton scattering and photo-electric absorption become

dominant, resulting in limiting the cascade’s growth.

The energy loss per unit length of relativistic electrons undergoing Bremsstrahlung

is proportional to its energy. Thus, radiation length can be defined as the length L◦

over which the electron loses a fraction of (1 − 1/e) of its initial energy. The radia-

tion length could be expressed in terms of the total air mass per unit cross-section

travelled by the electron (Longair, 1999):

−dE

dx
= −dE

dt

1

ρL◦
=

E

X◦
(2.7)

where ρ is the air density and X◦ = ρL◦. For a relativistic electron (i.e. ∼ 300 GeV)

radiating Bremsstrahlung photons in air, the radiation length is X0 = 37 gcm−2.

If we consider particles with energies well above the critical energy (Ec), Compton

scattering and collision losses can be neglected when calculating the development

of the shower. In addition, for high energy electrons we can assume a “complete

screening” limit for both Bremsstrahlung and pair production processes. Indeed,

since both processes require the presence of the field of an atomic nucleus, they will

be screened by the atomic electrons for impact parameters exceeding the radius of the

atom (Gaisser, 1990). Thus, in the high energy limit, atomic screening sets an upper

cutoff to the impact parameter for all relevant wavelengths in these processes, the

so-called complete screening limit. Finally, by making the assumption of complete

screening and neglecting Compton scattering and collision losses, one can derive

simple models for the longitudinal development of the shower, in which the radiation

length of Bremsstrahlung equals the interaction length for pair production (Allan,

1971) (see Fig. 2.13).
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Figure 2.13: A toy model for a γ-ray EAS. Extracted from Allan (1971).

In this simple but efficient model the probability of an electron undergoing either

process at a depth X is:

e−X/X◦ −→ X = X◦ ln 2 (2.8)

Under the assumption that the total energy of the shower is conserved one can

see that the remaining mean particle energy will be half that of the parent after each

radiation (interaction) length and will be divided equally between the secondaries

(e−, e+ and γ’s). If the energy of the parent γ-ray is E◦ after n cascade lengths,

the collective number of particles would be 2n and their average energy < E◦ > /2n

if the continuous losses of the shower are neglected. The shower maximum will be

reached when the average energy of the cascade particles becomes Ec:

E◦ 2n
max ≃ Ec =⇒ Xmax ≃ X◦ ln

(

E◦

Ec

)

(2.9)

Scaling to the relevant units (i.e. VHE γ-rays of a few hundred GeV have X◦ =

300 gcm−2) and by considering an exponential atmosphere model with a height

scale= 7 km (see also Section 2.5.4) an altitude of ∼ 8 km can be calculated. This

is lower than the actual altitude since the electrons within the shower suffer energy

loss by ionisation.
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The lateral spread of particles within a γ-ray shower is determined by the mech-

anism that produces the largest opening angle between the secondary particles; that

is the multiple Coulomb scattering of the electrons and positrons in the atmosphere.

The average angle at which an electron will be scattered is given by:

〈

δθ2
〉 ∼=

(

21MeV

E

)2

δχ (2.10)

where δχ is the radiation length tranversed by the electron in gcm−2. Since the

distribution of the scattered angles is Gaussian one can calculate the angular spread

of the shower, for a given energy and shower length, as
√
< δθ >2.

Cosmic-ray initiated showers

The isotropic flux of cosmic ray nuclei is a much richer source of EAS in comparison

with the γ-ray induced ones (γ−ray : cosmic-ray EAS = 1:1000). It consists mainly

of protons (∼ 90%) and some heavier elements, the most abundant component of

which is helium nuclei. The development of a shower resulting from the interaction

of an energetic proton (E ∼ 100 GeV) with an atmospheric nucleus is shown in Fig.

2.14. The path length of this hadronic interaction is on average 86 gcm−2 after which

the proton (or heavier nucleus) will interact to produce a triplet of pions together

with the fragments of the parent particles. In this first interaction the primary

particle will retain almost half of its original energy, leaving approximately 50 GeV

for pion production. Wolfendale suggested that the number of pions generated by

this mechanism can be approximated by: Np = 2.7E0.25
p where Ep is the available

energy (i.e. ≈ 50 GeV in our case). (Wdowczyk and Wolfendale, 1972). Thus,

about 7 pions will be produced in the initial stage of the cascade with no preferential

direction in π+, π− or π◦ creation. The neutral pions, due to their short life time of

1.78×10−16 s in their rest frame of reference, decay immediately to two γ-rays, which

in turn initiate an electromagnetic shower as described in Section 2.5.3. The charged

pions, however, possess a greater life time (i.e. 2.551 × 10−8 s) allowing them to

interact before decaying. Thus pions will be multiplied by their hadronic interaction

with the atmospheric nuclei, a process that can be theoretically continued until the

energy per particle becomes lower than about 1 GeV which is required for multiple
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pion production (Longair, 1999). In practice, the probability of the charged pion

to decay becomes greater after each interaction. Thus, many of the charged pions

would decay as follows:

π+ → µ+ + νµ (2.11)

π− → µ− + ν̄µ (2.12)

The produced muons are more stable than pions and lose energy chiefly by

ionisation. Some of the muons will be produced in the first stages of the cascade (i.e.

at high altitudes) and, therefore, could possess a kinetic energy of a few MeV. Such

muons could have Lorentz factors in excess of 20 which boosts their mean lifetime

of 2.2 × 10−6 s, in their rest frame of reference, allowing them to reach the ground.

At the other extreme, low energy muons could decay, producing electromagnetic

showers:

µ+ → e+ + νe + ν̄µ (2.13)

µ− → e− + ν̄e + νµ (2.14)

Finally, the protons comprising the nucleonic part of the cascade will suffer

ionisation losses, and the less energetic ones (i.e. E < 1 GeV) are eventually brought

to rest. Thus, a hadronic shower consists of a muonic component fed by the charged

pion decays, multiple electromagnetic sub-showers generated via the decays of pions

and muons, and a nucleonic core (see Fig. 2.14). The description of the hadron

initiated showers has been simplified in that it neglects secondaries such as kaons

that might also been produced via the hadronic interaction. However, it provides

the main characteristics of the shower upon which a discrimination from the γ-ray

initiated shower can be made. The main differences between γ-ray and cosmic-ray

initiated air showers will be the subject of the next Section.

γ/Hadronic Shower Differences

The differences between hadronic and γ-ray initiated EAS arise mainly from the na-

ture of the strong and electromagnetic interactions responsible for their production.
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Figure 2.14: The typical development of a cosmic-ray initiated extensive air shower

within the Earth’s atmosphere. From Longair (1999).

The most profound differences are listed below:

• the pions, that are chiefly produced via inelastic p-p collisions, convey larger

transverse momenta in comparison with particles produced via electromag-

netic processes. Thus, this component of the hadronic cascade could be well

separated from the axis of the parent particle, and the same holds for the π◦-

induced electromagnetic showers. In conclusion, the lateral extent of a cosmic-

ray initiated shower is much greater than that of a γ-ray induced shower;

• as the interaction length of protons travelling in the atmosphere superpasses

by far the γ-ray one (i.e. 80 gcm−2 as opposed to 38 gcm−2), proton showers

will develop further in the atmosphere in comparison with γ-ray of the same

energy;

• the electromagnetic part of the hadronic cascade is a combination of the in-

dividual electromagnetic showers, produced by the decay of π◦ and µ±, in

contrast to the simpler structure of the γ-ray cascade. Thus, the creation of
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secondary particles varies greatly within an hadronic cascade (and, indeed, be-

tween different hadronic showers) in comparison with the γ-ray EAS. That is

reflected in the lateral distribution of a cosmic-ray EAS at the ground, which

consists of different peaks relating to decay products of different sub-showers.

Figure 2.15: Monte Carlo simulation of the development of a 300 GeV γ-ray shower

(left) and a 900 Gev hadron shower (right) in the atmosphere. Taken from Fegan

(1997).

All in all, γ-ray showers tend to be much more compact and more stable in terms

of both particle production and heights of maxima than the hadron showers.

The signal of an IACT consists of Cherenkov photons emitted by the relativistic

products of γ-ray and cosmic-ray initiated showers. Thus, a successful discrimina-

tion between the two should translate the differences described above in terms of

variations in the Cherenkov light emitted via the γ-ray or cosmic-ray cascade route.
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In the next section the production and development of Cherenkov radiation in the

atmosphere will be presented.

2.5.4 Production of the Atmospheric Cherenkov Radiation

In the case of VHE γ-ray astronomy, one is interested in the Cherenkov light pro-

duced in the atmosphere from the products of γ-ray and hadron- induced air showers.

It has already been seen (see Section 2.5.2) that the refractive index of the medium

determines the threshold for Cherenkov emission, the angle of emission and the

Cherenkov photon yield. The refractive index of standard air is (e.g. Edlen, 1966):

(n− 1)s × 108 = 8342.13 + 2406030(130− σ2)−1 + 15997(38.9− σ2)−1 (2.15)

where σ is the vacuum wave number in µm−1. In γ-ray astronomy the relevant

window of wavelengths is 300−600 nm, within which (n(λ)−1)s changes only by 5%

(Bernlöhr, 2000). Thus, the index of refraction can be fixed at a value of 1.000293 at

sea level. The refractive index of air depends on atmospheric pressure, temperature

and water vapour and can be calculated via empirical equations very accurately

(Edlen, 1966). If one makes a further assumption of an isothermal atmospheric

model, the refractive index would be proportional to the air’s mass density, which

scales exponentially with altitude (Jelley, 1955):

η(h) = η◦ exp

(−h
H◦

)

(2.16)

where η = n − 1, η◦ is the value at sea level and H◦ is the scale height of the

atmosphere (H◦ = κT
mg

≃ 7.1 km) (McCartney, 1976).

Equations 2.4 and 2.5, in conjunction with the knowledge of the refractive index

altitude profile, allow the computations of the minimum energy and maximum angle

for the relativistic particles:

Emin =
mc2

√

1 − β2
min

=
mc2

√

1 − (1 + η(h))−2
≃ mc2

√

2 η(h)
(2.17)

Thus, the threshold energy for the charged particles of γ-ray and cosmic ray showers

at sea level (η◦ = 2.93×10−4) are 38 GeV, 21 MeV, 5.6 Gev, 3.4 GeV and 151.5 GeV
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for protons, electrons, pions, muons and α’s respectively. Thus, positrons and elec-

trons are responsible for most of the Cherenkov light generation as they are more

numerous and possess lower energy thresholds for photon emission than the rest of

the secondary particles.

The maximum angle of Cherenkov emission at the limit β → 1 is:

cos θmax =
1

n
=

1

1 + η(h)
≃ 1 − η(h) =⇒ (2.18)

θmax ≃
√

2η(h) (2.19)

This gives a value of ∼ 1.3◦ at sea level. This is a very important characteristic

that makes astronomy with Cherenkov photons possible, as the original direction of

the primary photon is retained. The spread of the Cherenkov photons’ light pool

on the ground can be determined easily given the altitude and the maximum angle

of emission. For instance, for a vertical shower possessing a maximum at 9 km

above sea level and a maximum emission angle of ∼ 1◦, the light pool would have a

maximum radius of ∼ 160 m. In practice, the light of Cherenkov photons collected

within a radius of ∼ 125 m is proportional to the energy of the parent γ-ray. That

provides a collection area of > 5 × 108 cm2 that can be harvested even by small

optical detectors (Weekes, 1996).

The photon yield (i.e. number of photons created per unit path length) can

be calculated under the justified assumption of a wavelength independent η in the

PMT’s sensitive wavelength window. In this case, Equation 2.6 becomes:

dN

dx
= 2πα

(

1

λ1
− 1

λ2

) (

1

1 − (βn)−2

)

β → 1 ⇔ sin2 θmax ≃ θ2 ≃ 2η(h) =⇒
dN

dx
≃ 0.45 exp(−h/H◦) photons cm−1 (2.20)

Thus, the altitude profile of the refractive index affects the photon yield that is

considered proportional to the number of particles in the cascade, which in turn is

used to infer the energy of the primary γ-ray. In addition, the emitted Cherenkov

photons will be attenuated by the atmospheric molecules and aerosols before reach-

ing the detector. The impact of different atmospheric profiles, which affect directly
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both Cherenkov production and transmission, on the light density registered by a

ground telescope, will be quantified in Section 4.4.2.

2.5.5 The Basics of Imaging Atmospheric Cherenkov Tech-

nique

Today’s imaging atmospheric Cherenkov telescopes have opened a new window on

the 100 GeV-100 TeV γ-ray sky with more than 70 detected sources, the number of

which expands on a weekly basis. Their basic design is just a magnification of the

first detectors, which consisted of a single PMT in a focal plane of a 25 cm diameter

parabolic mirror (see Section 2.5.1). For example, each H.E.S.S. telescope consists of

a camera made of 960 PMTs placed at the focal point of a 12 m diameter mirror (see

Fig. 2.19). In both cases, there is a minimum amount of recorded PMT counts above

which an event can be treated as a signal and not a random fluctuation of the Night

Sky Background (NSB). The flux of the NSB exceeds the Cherenkov flux by a factor

of 104. However, Cherenkov photons from a single cascade arrive at the detector

within a time gate of a few nanoseconds. In addition, the Cherenkov emission peaks

at short wavelengths (see Section 2.5.2) compared to the NSB. Thus, by selecting a

PMT sensitive to the Cherenkov light emission and setting its integration window

to a slightly longer interval than the Cherenkov pulse width (i.e. t ∼ 10 ns) the

chances of detection improve drastically.

The noise registered by a PMT, within the integration window t, due to the NSB

is (Weekes, 2005):

Sb ≃ ΦnsbAtΩη → N =
√

Sb =
√

ΦnsbAtΩη (2.21)

where Φnsb is the flux of NSB photons (photons/m2s sr2), η is the collection efficiency

of the PMT, which is the convolution of its quantum efficiency, mirror reflectivity

and any other known parameters (i.e. transmission of the light-collection funnels in

front of the PMTs for H.E.S.S. cameras (see Fig. 2.24)) determining the fraction of

the light collected by the PMT, A is the area of the mirror (m2) and Ω is the solid

angle subtended on the sky by the PMT (sr). The fluctuation of the background
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signal follows a Poisson distribution and thus the noise can be expressed as
√
Sb.

The PMT signal S due to the Cherenkov photons during the same interval t is:

S ≃ ψAtη (2.22)

where ψ = ρE−1 is the Cherenkov photon yield, ρ is the density of Cherenkov light

(photons m−2) with E being the energy of the primary γ-ray.

The signal-to-noise ratio can be easily calculated from 2.22 and 2.21:

S

N
≃ Eψ

√

ηA

ΦnsbΩt
(2.23)

Since the minimum detectable signal is inversely proportional to the signal-to-

noise ratio, the minimum energy of a primary γ-ray capable of producing such a

signal is (Weekes, 2005):

ET ∝
√

ΦnsbΩt

ηA
ψ−1 (2.24)

Thus, the mirror area would dictate the threshold energy of a Cherenkov Tele-

scope. The area of each H.E.S.S. telescope mirror (i.e. 107 m2) was optimised

for a threshold around 100 GeV under the assumption of a typical photon yield

ψ = 100 m−2 TeV−1 at an altitude of 2 km a.s.l. and taking into account mirror

reflectivities of 80 − 90 %, a similar transmission for the light-collecting funnels in

front of the PMTs and a quantum efficiency of 15% for the PMTs.

In practice, the energy threshold can be defined as the energy that maximises

the convolution of the telescope’s Effective Sensitive Area (ESA) with the intrinsic

differential energy spectrum of the observed γ-ray source. (i.e. Eα×ESA(E)). The

effective sensitive area of a Cherenkov detector relates to the detector efficiency (η)

and its sensitive area, determined from the Cherenkov deposition on the ground and

usually greater than ∼ 5 × 104 m2. The ESA also depends on the zenith angle of

observation as Cherenkov photons registered at different zenith angles correspond to

different optical depths. The derivation of the ESA and, therefore, energy threshold

(ET ) is achieved by detailed simulations, an example of which will be presented in

Section 2.9.1.
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2.5.6 Imaging Principle

In the previous Section it was shown how the battle between Cherenkov light and

NSB can be easily won. The discrimination between Cherenkov light produced by

γ-ray and cosmic-ray showers proved to be more tedious and led to the development

of the imaging atmospheric technique. A Cherenkov telescope uses a big reflector

to focus the light from an EAS onto an array of PMTs that can be considered as

a vast digital camera with an extremely short exposure time (∼ ns). The camera

registers a picture of an EAS if a given number of pixels (i.e. PMTs) exceed the

background noise. The Cherenkov telescope’s camera might contain ‘dead’, ‘hot’ and

‘grey’ pixels, so a flat fielding is implemented to account for each pixel’s response (see

Section 2.7.1). Finally, the dark-counts from the PMTs are subtracted by measuring

their value in the absence of Cherenkov light, similar to the use of dark frames.

After image cleaning (see Section 2.7.2), the shape and orientation of the sur-

viving image may be used to discriminate between γ-ray and cosmic-ray induced

showers. The effectiveness of the IACT approaches 100% in eliminating the cosmic-

ray induced background while retaining 50-80% of γ-ray induced events (Fegan,

1997), and this success is based chiefly on (Weekes, 1996):

• Physics:

The most prominent difference between the development γ-ray and cosmic-

ray showers is the smaller transverse momentum associated with the electro-

magnetic compared with the hadronic interactions. Thus a γ-ray shower is

more closely packed along the projected path of the primary than a hadronic

shower (see Fig. 2.15). The angle of Cherenkov emission is chiefly dictated

by the particle’s energy and within the window of VHE γ-ray astronomy

(100 GeV − 100 TeV) would be about 1◦ and thus differences in the lat-

eral distribution between γ-ray and hadronic showers will be reflected in the

mapping of the Cherenkov light. A γ-ray image should be much more compact

than a cosmic-ray one. Moreover, due their larger interaction length (see Sec-

tion 2.5.3) the hadronic cascades will bring the Cherenkov producing particles

much closer to the detector. In addition, many of the charged muons, products
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of the charged pions’ decay, will reach the detector, producing intense local

peaks at the points of impact (Fegan, 1997). A muon image will appear as

a ring on a single Cherenkov telescope (i.e. when operating in stereo-mode

muons will be eliminated). A γ-ray, cosmic-ray and muon event are shown in

Fig. 2.16.

• Geometry:

In γ-ray astronomy, observations are achieved by aligning the telescope’s op-

tical axis with the coordinates of a known or expected source. Thus, showers

arriving from the direction of the source will form an elliptical image that

points to centre of the camera. On the other hand, cosmic-ray events are

isotropically distributed and so their images should not possess any preferred

orientation. A very nice illustration of the technique is presented in Fig. 2.17

(Noutsos, 2006). For practical reasons, the development of the γ-ray shower

can be divided into three parts regarding the Cherenkov emission (see Fig.

2.17 (1)). The high part is located between the point of the first interaction

and is ∼ 2 km above the shower maximum (i.e. upper end of box). The light

from the upper part consists of 25% of the total light. The emission angle will

increase with decreasing altitude which in turn means that light from different

altitudes will arrive at the camera at approximately the same time. However,

the light from region (a) will arrive closer to the centre of the camera than

the lower part (b). The second region (b) contains the shower maximum and

almost 50% of the total light is emitted from this region. The light coming

from region (b) is the most representative and reflects the energy of the pri-

mary γ-ray (Weekes, 2005). Finally, the last 25% comes from the lower part

(c) and is furthest away, mapped from the centre of the camera. It is prone

to large fluctuations due to the exponential shower decay below the shower

maximum. This part also suffers atmospheric attenuation due to aerosols that

when present occupy the first 2 − 3 km above the telescope’s site.

Figure 2.17 (2) reveals both the lateral and longitudinal spread of the shower.

The long axis of the ellipse (i.e. a-c) points backwards to the source of the

primary γ-ray and relates to the longitudinal development of the shower. The
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width (i.e. b-b) relates to the lateral spread of the shower. Finally, the regis-

tered image will be parametrised by the use of Hillas parameters that are the

subject of the next section.

Figure 2.16: Cherenkov images from the H.E.S.S. telescopes corresponding to: (a)

a γ-ray event, (b) a cosmic-ray event and (c) a muon. The colour scale corresponds

to the light intensity. Courtesy of the H.E.S.S. collaboration.

2.5.7 Hillas Parameters

The differences between the lateral and longitudinal development of γ-ray and

hadron initiated showers affect the shape of the Cherenkov image formed by the

triggered PMT’s on the focus of the telescope mirrors. In order to quantify these

differences Hillas (1985) introduced a parameterisation of the elliptical images pro-

duced by induced protons or γ-rays; the so-called Hillas parameters. In Fig. 2.18

a graphical representation of the Hillas parameters is given, followed by a brief

explanation, which is provided in Table 2.2.
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Figure 2.17: Schematic diagram illustrating the IACT at work: (1) Development

of the γ-ray shower and Cherenkov radiation produced in three different altitudes,

(2) The shower’s image containing both the lateral and longitudinal profile of the

shower and (3) Hillas parameters. See text for more details. Note that the vertical

axis shows the important altitudes for the Cherenkov light emitting regions and that

the horizontal scale has been magnified for a better demonstration of the technique.

From Noutsos (2006).
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Figure 2.18: Schematic illustration of Hillas parameters.
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Hillas Parameter Definition

Size The collective number of ADC counts summed

over all the triggered tubes

Width The RMS spread of of light along the minor axis of the image

A measure of the lateral development of the cascade

Length The RMS spread of of light the major axis of the image

A measure of the vertical development of the cascade

Azwidth The RMS spread of light perpendicular to the line connecting

the image centroid with the centre of the field of view

A measure of both width and pointing

Distance Distance from the centroid of the image to the centre

of the field of view

Miss Perpendicular distance between the major axis of the

image and the centre of the field of view

A measure of the shower orientation

Alpha Angle between the major axis of the ellipse and a line

joining the centroid of the ellipse to the centre of

the field of view

Asymmetry Measure of how asymmetric the image is. γ-ray images

should have tails which preferentially point away of

the source position.

Table 2.2: Hillas parameters explained (Fegan, 1997).
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2.6 The High Energy Stereoscopic System (H.E.S.S.)

2.6.1 Introduction

H.E.S.S. is currently the the workhorse of VHE γ-ray astronomy, providing the most

detections of any ground-based telescope. It is located in the Khomas Highlands of

Namibia at an altitude of 1.8 km a.s.l. H.E.S.S. currently consists of four identical

telescopes located at the corners of a square with 120 m side (see Fig. 2.20). The

telescopes’ distances match the lateral spread of a typical Cherenkov light pool

(see Section 2.5.4) and allow for maximum sensitivity at a low energy threshold of

∼ 100 GeV. In what follows a brief description of different aspects of the system

will be presented.

Figure 2.19: A drawing of a H.E.S.S. telescope. Courtesy of the H.E.S.S. Collabo-

ration.
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Figure 2.20: A panoramic view of the H.E.S.S. array. Courtesy of the H.E.S.S.

Collaboration.

2.6.2 Mirrors

We have already discussed that the reflector of a Cherenkov telescope is an important

tool for lowering the energy threshold and its specification determines, together with

the PMTs performance, the efficiency of the the whole instrument (see Section 2.5.5).

The reflector of each telescope consists of 380 mirror facets with a radius of 30 cm,

corresponding to an area of 107 m2 (see Figures 2.21, and 2.22). The choice of a

Davies-Cotton design over a parabolic dish was a trade off between good off-axis

imaging and small time dispersion. The Davies-Cotton design was selected as the

better off-axis performance optimises the mapping of extensive sources (Bernlöhr,

2003).

The alignment of the 380 mirror facets is paramount in order to exploit the

mirrors’ optical qualities and optimise the telescopes’ detection resolution. Each

mirror is attached to a steerable base that is controlled by two stepping motors.

The fully automated alignment uses the lid of the telescope camera as a screen for

the projected image of a chosen star. A CCD camera installed at the centre of the

telescope’s mount takes a picture of the lid with all facets being mid-way of their

allowed movement. Then each facet moves in both directions, the result is registered

on the CCD camera and a ideal position is selected. This process is repeated for each

facet and the net result of the alignment is shown in Fig. 2.23. The blind Cherenkov

telescope is guided with the help of a second CCD camera that is mounted off-axis

for a clear sky view. The details of the fully automated alignment are provided in

depth in Cornils et al. (2003).
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Figure 2.21: A diagram of H.E.S.S, mirrors

revealing the motors responsible for its align-

ment. Courtesy of the H.E.S.S. Collabora-

tion.

Figure 2.22: A close view of a H.E.S.S. tele-

scope’s reflector. The CCD camera at the

centre of the dish that is used for the auto

alignment in also visible. Courtesy of the

H.E.S.S. Collaboration.

2.6.3 The Cameras

The cameras of the H.E.S.S. telescopes were designed with two considerations in

mind:

• a field of view large enough to cover the full apparent size of the possible

sources, and

• a pixel size small enough for the detailed mapping of γ-ray sources.

Both criteria were met by constructing a gigantic camera with 5◦ field of view by

the combination of 960 PMTs, each having an minimum aperture of 0.16◦ (see Fig.

2.24). The Photonis XP2960 PMTs are grouped in 60 modules (i.e. drawers) each

one consisting of 16 PMTs (see Fig. 2.25). The PMTs are the natural detectors of

choice as their rise time is quicker than the Cherenkov light pulse width (i.e ∼ ns)

and their spectral response can be chosen to match the Cherenkov light emission.

The Achilles heel of the PMTs is the low quantum efficiency that usually ranges

between 15−20%. Some improvement was made by the provision of Winston cones

for each PMT to optimise the amount of Cherenkov light collected by reflecting the

light that falls in-between the PMTs, while preventing a fraction of the background

light from reaching their window by constraining their field of view to the angular



2.6. The High Energy Stereoscopic System (H.E.S.S.) 42

Figure 2.23: The intensity distribution of a a star projected to the lid after alignment.

The hexagonal base is relates to the size of a single PMT. The Point Spread Function

can be contained by a single PMT. The C.O.G is an abbreviation for the centre of

gravity. From Cornils et al. (2003).

size of the mirror (Vincent et al., 2003). The drawers can be easily replaced from

the front of the camera body. In addition to the 16 PMTs, each drawer contains two

read-out cards and the control/trigger card. The digitised PMT signal is sent to the

acquisition and control systems, which are located in the rear of the camera. The

signal from each PMT is divided between a high gain (HG) and a low gain (LG)

channel with different amplification factors, while an extra channel is used for the

trigger. The HG channel is used for signals containing 100 photo-electrons (p.e.)

while the LG offers a dynamic range of 16 − 1500 p.e.

The PMT signals are sampled at a rate of 1 GHz by the Analogue Ring Sampler

(ARS) developed by the ANTARES collaboration (Feinstein, 2003). The analogue

signal from the PMT is stored in ARS’s 128 cells while awaiting for the trigger signal.
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Figure 2.24: The H.E.S.S. camera. The

shown part of the lid supports the LEDs and

associated diffusers that are used for the de-

termination of individual PMT gain when

the telescope is not observing (see Section

2.7.1).

Figure 2.25: A drawer containing 16 PMTs

and the associated electronics. Courtesy of

the H.E.S.S. Collaboration.

Upon receipt of a trigger, the sampling stops, the ARS memory is read within a

programmable window (i.e. usually set at 16ns around the triggered signal) and the

signal is digitised and stored.

For deriving a trigger for a single H.E.S.S. telescope, each camera is divided in

38 overlapping sectors each consisting of 64 PMTs. In the present configuration

of the camera, a trigger occurs if three PMTs within the same sector exceed the

equivalent of four photo-electrons within a window of 1.5 ns (i.e. sector threshold 3,

pixel threshold 4). The trigger rate of a single telescope is dominated by cosmic-ray

events, while for energies close to the telescope’s threshold of ∼ 100 GeV the flux

of penetrating single muons increases (Funk et al., 2004). By requiring coincidence

between two telescopes one can reduce the cosmic-ray background, with the lateral

distribution of γ-ray showers being more homogeneous than that of the cosmic-rays,

and diminish single muon events. The coincidence window is currently defined at

80 ms.
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The camera response, based on the signal of the triggered pixels, will reveal

(after appropriate analysis) a γ-ray source. Its calibration, therefore, is of crucial

importance and consists the first step of the H.E.S.S standard analysis that will be

the subject of the next section.

2.7 H.E.S.S. Standard Analysis

2.7.1 Calibration

The raw signal of each PMT consists of Analog/D igital C onverter (ADC) counts.

Since each PMT might possess a slightly different efficiency, its response must be

normalised to the mean efficiency over the whole camera. The term calibration refers

to the factors necessary to convert the raw ADC signal into corrected photoelectrons

(Aharonian et al., 2004a).

We have already seen (Section 2.6.3) that the measured signal (ADC counts or

ADU) is obtained from both high and low gain channels (ADUHG, ADULG). The

derivation of the corrected amplitude in photoelectrons is provided below:

AHG =
ADUHG − PHG

γADU
e

× FF (2.25)

ALG =
ADULG − PLG

γADU
e

× (HG/LG)FF (2.26)

where PHG and PLG are the ADU pedestal position, γADU
e is the gain of the HG

channel in (p.e./ADU), HG/LG is the amplification ratio between the two channels

and FF is the flat-fielding coefficient.

In practice, one of the following values is selected for image analysis:

ADU < 150p.e. : AHG (2.27)

ADU > 200p.e. : ALG (2.28)

150 < ADU < 200p.e. : A = (1 − ǫ) × ADUHG + ǫ× ADCLG (2.29)

where ǫ ≈ (ADUHG − 150)/(200 − 150)
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For the calculation of the FF coefficients a Durham-made flat-fielding unit is

used. By providing a uniform illumination across the camera, the different responses

of the PMTs due to variations on their optical properties or efficiencies can be mea-

sured and corrected (Aye et al., 2003). The flat-fielding coefficients are independent

of electronics, therefore, one FF value is assigned to each pixel.

The the PMT gains are usually measured every two days. Dedicated Light

Emitting D iodes (LEDs), coupled with diffusers, are used to create an signal of 1

p.e./pixel, with the aid of which each pixel’s gain is calculated (see Fig. 2.24)

The pedestal position is defined as the mean ADU value registered in the absence

of Cherenkov light. It consists, therefore, of the electronic noise and the noise due

to the NSB light. The electronic noise (dark pedestal) is produced chiefly by the

PMT dark counts that originate from thermal emission of photoelectrons. The dark

pedestal can be measured with the camera lid closed and, as expected, depends on

temperature. A typical H.E.S.S. run takes 28 minutes within which a variation of

1◦C in temperature might occur (Aharonian et al., 2004a). That translates to a shift

that can reach a value of −50 ADU/degree and thus pedestal positions are usually

calculated every minute. In practise, the pedestal is calculated from the triggered

events as a usual shower image is constrained usually in 20 pixels. Part of the noise

is due to NSB light, but it has been proven that that its pedestal position remains

constant over the 16 ns integration time (Aharonian et al., 2004a).

2.7.2 Image Analysis

The corrected amplitudes of the triggered PMTs have to pass through a filter before

being selected for image analysis. This is known as ‘image cleaning’, and for H.E.S.S.

analysis requires each PMT to have an amplitude greater than 10 (5) p.e. and a

neighbouring pixel to have an amplitude greater than 5 (10) p.e. respectively.

After the image cleaning, the surviving signal is used for the the moment cal-

culations that are parametrised in a Hillas-analysis fashion (Hillas, 1985). A short

description of the Hillas parameters has been given in Section 2.5.7 and their analyt-

ical expression in terms of statistical moments is provided in the Appendix. These

parameters fall in two main categories, namely those that correspond to the shape



2.7. H.E.S.S. Standard Analysis 46

of the image (size, width and length) and those that correspond to the position and

orientation of the image (alpha, distance, miss). Standard H.E.S.S. analysis requires

that all signals must be above a minimum total signal (size cut). In addition, the

image centre of gravity is required to be less than 0.2◦ from the centre of the camera

(Benbow, 2005). This distance cut guarantees that the whole image is mapped onto

the camera while the size cut secures a good reconstruction of the image.

Images that pass both criteria should trigger at least two telescopes simultane-

ously in order to be used for event reconstruction.

2.7.3 Geometrical Reconstruction

The determination of the shower direction, which points back to the γ-ray source,

and the position of the shower core is achieved through algorithms capable of geo-

metrically reconstructing each event. The technique utilises the major axis of each

elliptical image. The images are grouped in pairs and the direction of the shower

is calculated as the weighted average of the intersections of all pairs of major axes

projected in telescope’s the field of view (Benbow, 2005).

In a similar manner, the intersections of the shower axis relative to each tele-

scope’s position are projected in a plane orthogonal to the telescope’s pointing, and

can be used to define a mean location for the shower core.

For the background rejection one expects that width and length will be powerful

discriminants as they are related to the physical extent of the shower. It was realised

that a set cut on width or length is energy dependent. Indeed, for primaries of

higher energies, the shower maximum is expected to be closer to the detector, and

thus, both parameters would have greater values. Standard H.E.S.S. analysis uses

two purpose-built parameters, namely M ean Reduced Scale W idth (MRSW, and

MRSL for length) that can be defined as (Benbow, 2005):

MRSW =
1

Ntel

Ntel
∑

i=0

widthi− < widthi >

σi
(2.30)

where, Ntel is the number of triggered telescopes, widthi is the width measured by the

relevant telescope, < widthi > and σi are the width and its standard deviation for
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the expected γ-rays estimated via Monte Carlo simulations based on image intensity,

reconstructed impact parameter and zenith angle. The MRSL is defined similarly.

Finally, a cut that relates to the image’s pointing, θ2, is used for point γ-ray

sources. This is defined as the square angular difference between the reconstructed

shower position and the source position. The H.E.S.S. standard analysis uses three

sets of cuts (standard, hard, loose) optimised for a maximum detection probability.

They depend on the source spectral index that most of the time constitutes one of

the unknowns. A more detailed description on the subject can be found in (Benbow,

2005) from which this short account was drawn.

2.8 EAS Simulations

The discussion of the standard H.E.S.S. analysis shows the importance of simulations

in ground based astronomy. It would have been more convenient to calibrate our

telescopes by pointing them to a standard γ-ray source, but in its absence one

should rely on detailed simulations of γ-ray sources. In the following Sections, work

performed in the early stages of H.E.S.S.’s operation, aiming to simulate the effect

of different atmospheric assumptions on the effective sensitive area of a stand-alone

telescope, will be presented.

Simulations of γ-ray Showers

In practice one has to use elaborate Monte Carlo codes in order to model the produc-

tion of the particles within the showers. Simulations of the electromagnetic cascades

consider both pair production and Compton scattering for photons, while for elec-

trons, Bremsstrahlung, Coulomb scattering and ionisation losses are taken into ac-

count. As briefly discussed (see Section 2.5.3) multiple Coulomb scattering dictates

the shower’s “opening angle”; it also dictates the smallest interaction length among

the shower’s processes. At the energies considered here the amount of computing

time required to follow all interactions completely would be prohibitive. In our case

the simulation program MOCCA (Monte Carlo Cascade) (Hillas, 1997) is used, in

which the electrons are assumed to follow straight paths of length ∼ 0.1 − 3 gcm−2
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(Nolan, 2002). Then the correction for the total deflection is applied in the middle

of each segment. The individual segments are assigned with a characteristic angle

ψ so that only a fraction (∼ 40%) of events are expected to be scattered at an angle

greater than ψ. For the events with scattered angles up to ψ, the RMS of ψ is cal-

culated and a sample is extracted from a normal distribution with the same width.

Events with deflections greater than ψ are simulated individually (Nolan, 2002).

A main feature of the MOCCA code is the adaption of a “thin sampling” method.

According to this technique, only a reduced proportion of the low-energy particles

is followed. In order to compensate for that, a weight greater than 1 is assigned to

the particles followed below the critical energy. The critical energy up to which all

particles are followed (Ethin) is usually 20MeV, but this may be altered by the user.

Below Ethin a proportion of ∼ E
Ethin

of particles with energy E are followed. Even

though “thinning” is not necessary today, it allowed for the first time the creation of

a significant number of EAS whose analysis with the relevant program (simulating

the Whipple camera response), led to the confirmation of the Hillas Parameters.

2.9 Simulations of a stand-alone H.E.S.S. telescope

response

57409 γ-ray induced showers were generated using a modified version of MOCCA

for an inclination of 50◦ within the energy range 0.1-30 TeV. For each shower the

light deposited in a H.E.S.S. telescope is allowed to move 4 times randomly within

a radius between 700-1000m depending on the shower’s energy (i.e. 700m for 0.1 <

E/TeV < 1, 800 m for 1 < E/TeV < 10 and 1 km for 10 < E/TeV < 30).

In order for the photons arriving at the telescope mirrors to be translated into

photoelectrons assigned to the camera’s PMTs, the simulation package CameraHESS

is applied (Konopelko, 2001). Thus, the simulation program must take into account

all the efficiencies of the Cherenkov light’s journey through the atmosphere and from

the reflector to the single camera pixel, namely:

• The PMT’s quantum efficiency. The typical quantum efficiency for the PMT
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is < 20% over the wavelength range 300 − 500 nm and has a peak of 26%

at ∼400 nm. The variation of the collection efficiency as a function of the

wavelength is also taken into account.

• The mirror’s reflectivity, which is better than 80% over the wavelength range

from 300-800 nm with the maximum value 85% occurring at ∼400 nm.

• Winston cone transmission and collection efficiency of 73% for all wavelengths.

• Attenuation of the showers (produced by MOCCA) due to the atmosphere is

calculated within the telescope response program. According to this procedure,

a wavelength is randomly assigned to each photon read from the MOCCA file

in accordance with the Cherenkov power law spectrum (∝ λ−2). Then the

attenuation is calculated, from a table characteristic of the specific atmosphere

chosen, taking into account the altitude of emission of the photon (see Fig.

2.26).

Figure 2.26: Variation of the normalised atmospheric thickness for the tropical at-

mosphere. Extracted from CameraHESS program (Konopelko, 2001).

A collective attenuating factor is then calculated from the convolution of all

aforementioned factors with :

• a correction accounting for the Davies-Cotton design of the H.E.S.S. mirrors,
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• a reduction of 10− 12% of the incident or reflected light which is obscured by

the camera support structure.

Figure 2.27: Collective pixel efficiency taking into account the PMT’s efficiency,the

mirror’s reflectivity and the Corning blue filter value.

Rather than tracing each photon through the mirror system, a time delay is

randomly added to the arrival time of each photon to account for the distribution

of delays introduced by the design of the mirrors. Then the photons are translated

into photoelectrons in a Monte Carlo fashion. Thus, the net attenuating factor

for each photon written in the MOCCA file is compared with a random number

ranging 0-1. According to the result, either the photon is killed or it is promoted to

a photo-electron. Finally, the assignment of a PMT number to the photo-electron

is accomplished using geometrical arguments.

In order to determine the response of the camera, each photo-electron collected

from the PMT’s cathode within a shower is written to a file. The response of each

PMT will then be compared with the single photo-electron pulse shape. Thus, the

accurate determination of the photo-electron pulse profile is of crucial importance

for determining the performance of IACT’s. The trigger pulse shape used for these

simulations has a rise time of 1.5ns and a width of 2.1 ns and was provided by Guy

(2001). The pixel threshold for one photo-electron is 25.7 mV. Finally, the camera

response is decided upon the triggering criteria that currently demand a coincidence
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of 4 pixels (each having 5 photoelectrons or more) in one of 38 overlapping groups

of 64 pixels each.

The problem with the old version of CameraHESS was that the program was

executed once for each shower, producing a vast number of separate output files and

requiring MOCCA to be run in the same mode. The author made the necessary

alterations for the the automatic incorporation of MOCCA within the CameraHess

program. Moreover, a Root program for calculating the effective area of the results

(obtained after the feeding of the MOCCA files into the camera simulation program)

was devised by the author. This program enables the production of a histogram that

gives the number of the triggers and total number of showers within 24 energy and

10 distance intervals.

2.9.1 Effective Area and Energy Threshold calculations for

various Atmospheric Models

As mentioned before, the beauty of the imaging atmospheric Cherenkov technique

is that the Effective Sensitive Area (ESA) of a telescope exceeds by far its mirror

area. The exact value of the ESA for a specific telescope will depend upon all

the attenuation Cherenkov light processes which are modelled by CameraHESS. A

very important feature of the ESA is its dependence on the zenith angle chosen

for observation (θ). In our case θ = 50◦, which is relatively high compared to

other simulations among H.E.S.S. collaboration, a fact that implies that a slightly

higher effective area must be expected. This can be explained by the fact that as

the distance between the shower maximum and the telescope increases, the light is

spread over larger distances. This has some disadvantage though, since in this way

the threshold energy (ET ) of the telescope is also increased (see Fig. 2.29)

In practice, after the data of the CameraHESS files have been extracted, one is

able to plot:

(

trig ±√
trig

total γs

)

× π × r2
max (2.31)

against energy, where rmax is the maximum selected distance of collection (i.e. 700
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− 1000 m depending on shower’s energy), and trig refers to the number of showers

that passed the triggering criteria from the total number of simulated γ-rays. The

triggering criterion for the case of a stand-alone H.E.S.S. telescope required 4 PMTs

in one sector to have a signal greater than 4 photoelectrons. The error is just the

1σ Poissonian noise of the number of triggered events within each bin.

A practical way to define ET is to plot the convolution of ESA with the intrinsic

differential energy spectrum of the source observed (the Crab nebula with an integral

index of -1.59 in our case) as a function of energy. The energy at which this function

peaks will reveal ET . The ESA and ET for a stand-alone H.E.S.S. telescope for the

simulated γ-rays has been produced for two atmospheric models that best represent

H.E.S.S. site (Fig. 2.28, 2.29 respectively).
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Figure 2.28: The effective area of a single H.E.S.S. ACT for triggering by γ-rays

incident at 50o angle for two characteristic aerosol profiles. Presented in Aye et al.

(2003).

The atmospheric structure close the H.E.S.S. site has been studied by radiosonde

measurements. Comparison with the available MODTRAN (see also Section 4.4)

models showed that the atmosphere above the H.E.S.S. is best represented by the

‘tropical’ atmospheric profile (see Section 4.4.2). The most crucial mechanism for the
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Figure 2.29: The effective area convolved with an energy spectrum of −1.59 integral

index for triggering γ’s at 50o angle for two characteristic aerosol profiles. Atm.8

has the ground level at sea level and Atm.11 has the ground level 1.8 km above the

sea level.

atmospheric attenuation of Cherenkov light is Mie scattering. This process depends

upon the structure and composition of aerosol molecules that varies noticeably with

time within the ‘boundary layer’ (i.e. first ∼ 2 km above the site). In this work the

aerosol attenuation model that has been adapted consists of:

• a maritime haze model for boundary layer (0−2 km). This model is a combina-

tion of ocean and continental aerosol types and tends to give lower attenuation

than the rural haze model,

• a spring-summer model for the troposphere (2-10 km). This model compen-

sates for the slightly increased aerosol concentration during spring-summer

period,

• a stratospheric aerosol model (10-30 km). At this region the aerosol concen-

tration is uniform so a layer of background stratospheric dust is added.
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The two models used, referred as Atm.8 and Atm.11 in Figures 2.28 and 2.29 have

exactly the same structure, the only difference being the selection of the ground level.

The H.E.S.S. site is at an altitude of 1800 m, so setting the ground level at sea level

(Atm.8) leaves only 200 m of atmosphere for the Cherenkov light to be attenuated

by the maritime haze. At the other extreme, the ground level has been set at the

telescope altitude (Atm.11). In Fig. 2.28 the reduction of the ESA of the simulated

γ-rays when placing the ground at the telescope altitude is evident. The effect is

greater at lower energies since the photon yield depends on the shower’s energy.

Thus the attenuation effect will be more prominent for less energetic showers. A

comparison of the energy threshold is difficult to make, however, due to the plateau

around the peak (see Fig. 2.29). Clearly, the generation of more showers and better

fitting of the ESA is necessary for any differences to be revealed. From Fig. 2.29 one

can see that the threshold energy is ∼0.5 TeV for both atmospheric models used.

This is higher than the estimated threshold energy of a single stand alone H.E.S.S.

telescope (i.e. 40-100 GeV); it is also expected because we use simulated γ-rays at

a zenith angle of 50◦ while the lowest energy threshold for the telescope is achieved

for low observation zenith angles.

2.10 Alternative Astronomies using protons and/or

neutrinos

2.10.1 Protons

As charged particles, protons will be deflected in the magnetised interstellar medium,

which washes out their directional information. At the highest energies, however,

proton astronomy may be possible. For energies E of ∼50 PeV and above, protons

point back to their sources with an accuracy determined by their gyro-radius Egyro

in the intergalactic magnetic field (B) (Halzen and Hooper, 2002):

θ ∼= d

Rgyro
=
d× B

E
(2.32)

where d is the distance to the source. Thus, for a 100 Mpc distant source
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producing UHE particles (e.g. 3×1020eV), the resolution may lie anywhere from

sub-degree to nonexistent, depending on the chosen value for the strength of the

inter-galactic magnetic field (10−7 < B
Gauss

< 10−12) in the local cluster (Halzen and

Hooper, 2002).

At these energies, protons will interact with the background light, mainly by

photo-production of a ∆ resonance, as follows:

p+ γCMB −→ ∆ −→ π + p for 2Epǫ > (m2
∆ −m2

p) (2.33)

where Ep, ǫ are the energies of the proton and the background photon respec-

tively. The length scale of this process is:

λπ
∼= 1

σπnCMB
thus for :

nCMB
∼=422cm−3

−−−−−−−−−→
σπ∼=10−25cm2

∼= 20 Mpc (2.34)

where nCMB is the number density of CMB photons and σπ the π production

cross section ; both numbers are known with reasonable accuracy (Sigl, 2001). This

is the so-called Greisen-Zatsepin-Kuzmin (GZK) cutoff (Greisen, 1966; Zatsepin

and Kuzmin, 1966)) that establishes a universal upper limit on the energy of CR’s,

assuming their astrophysical production. However, events above the GZK cutoff

have been observed, leaving open the window of exotic physics (e.g. top-down

scenarios discussed in the section 2.2).

In conclusion, proton astronomy may be possible at the highest energies depend-

ing on the strength of the inter-galactic magnetic field but with a CR flux of 1

particle per km2 per century one has to instrument very large areas and be very

patient. Recent results from the Auger experiment suggest there may be a correla-

tion between arrival direction of the highest energy cosmic rays and active galactic

nuclei (Abraham et al., 2007).

2.10.2 Neutrinos

The neutrino seems to be the ideal candidate to probe the most cataclysmic phe-

nomena of our Universe. Indeed, the low cross-section of the weak interaction allows

neutrinos to both escape their production sites and travel cosmological distances
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without attenuation. For exactly the same reason, however, ν’s are very difficult to

catch. The preferred technique for observing ν’s at energies usually above 100 TeV

is to detect the faint Cherenkov radiation emitted by relativistic µ’s which in turn

are the products of the charged-current ν interaction with nuclei in the vicinity of

the detector. The cheap way to do this is to use natural means (sea water/ice) both

as your target and active Cherenkov medium. Then one has to go deep (∼ 4km) in

order to reduce the huge CR background (signal to noise ∼10−11 on the sea level)

and instrument large areas of water/ice with large photomultiplier tubes (Resva-

nis, 1999). The effective area needed to compensate for the low ν cross-section is

about 1 km2. These instrumental challenges have prevented high-energy neutrino

astronomy from flourishing yet. For example, the Antarctic Muon And Neutrino

Array (AMANDA), after operating for seven years, has set limits on the diffuse

neutrino flux but a source detection is still elusive (Xu, 2008). The birth of the

field is expected in the near future by the completion of the first 1km3 neutrino

detector (e.g. Walter, 2007; Migneco, 2008). The achievable angular resolution in

reconstructing muons tracks of such a detector will be dictated by the kinematics

of neutrino production and the multiple scattering. The angular resolution will be

optimum for a sea water telescope in comparison with one emerged on ice due to the

reduced light scattering in clear sea water. The expected angular resolution for the

Mediterranean KM3NeT (km3 Neutrino Telescope) will approach 0.1◦ at ∼ 30 TeV,

which is the limit imposed by the kinematics of the neutrino interaction (Distefano,

2009). Moreover, the detection point sources will be possible for known bursts, but

unlikely if there is no prior knowledge of the location and time of the burst. How-

ever, neutrino detection from a point source would be strong evidence for hadronic

acceleration in the vicinity of the source.

2.11 Summary

This chapter meant to serve as a brief introduction to the field of the ground based

γ-ray ray astronomy. A short historical review was provided for γ-ray astronomy

via satellites, but mainly concentrated on ground-based detectors, the maturity of
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which came later. The processes responsible for the production and attenuation of

γ-rays were briefly sketched. More emphasis was given in describing the details of

the Imaging Atmospheric Cherenkov Technique. The physics behind the γ-ray and

cosmic-ray cascades responsible for producing the Cherenkov signature of signal and

background respectively onto the telescope’s camera was underlined and methods of

separation identified. The components of the most successful operating instrument,

H.E.S.S., were discussed and the need for detailed simulation became clear. Finally,

the author’s original work in his first steps in the field, concerning simulation of a

stand-alone H.E.S.S. telescope response under different assumption for the prevailing

atmospheric conditions, has been presented.



Chapter 3

Atmospheric Monitoring for the

H.E.S.S. Site

In this chapter the atmospheric monitoring instruments currently operating at the

H.E.S.S. site in Namibia, with the exception of the LIDAR (see Chapter 4), will

be discussed in detail. The overall status of the weather is monitored by a fully

automated weather station while the Heitronics KT19 infrared radiometers provide

vital information on the clouds crossing the H.E.S.S. telescopes’ field of view. In

addition, two LIDARs and a transmissometer, the latter of which has been con-

ceived and constructed in Durham University, are being used to estimate the local

atmospheric transmittance changes, chiefly due to aerosol variations.

3.1 Motivation

In ground-based gamma ray astronomy the atmosphere becomes an integral part of

the detector. It is the target medium with which γ and cosmic rays interact, the

active detector medium responsible for the emission of Cherenkov photons and the

transport medium for those photons. Thus, even though Cherenkov telescopes are

being constantly monitored and routinely calibrated to provide accurate information

on their performance, one must remember that they consist of only a minor part of

the whole detector. The telescopes’ calibration is relevant from the time that the

Cherenkov photons reach the telescopes’ mirrors until they have been registered by

58
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the PMTs. One has to take into account, therefore, the mechanisms of both pro-

duction and extinction of Cherenkov light before it even reaches the IACT mirrors,

caused by the most important part of the detector: the atmosphere itself.

The vertical atmospheric density profile determines both the particle shower de-

velopment and the Cherenkov emission. Moreover, the amount of Cherenkov light

that cosmic and γ-rays produce per unit path length, and its angle of emission,

depend solely on the atmosphere’s local refractive index. The probability of these

Cherenkov photons reaching the IACT is determined by the atmospheric trans-

parency which is a function of both altitude and wavelength. MODTRAN (Berk

et al., 1999) was used to calculate the direct vertical transmission of light from

100 km above sea level down to the H.E.S.S. altitude of 1.8 km (see Figure 3.1).

This plot shows that for the sensitive wavelength region of H.E.S.S.’s mirrors and

PMTs (i.e. 250 - 700nm) the total light extinction depends on ozone molecular ab-

sorption and more significantly on Rayleigh scattering off all atmospheric molecules

and Mie scattering (and to a much lesser extent absorption) by aerosols. In the

case of clear atmospheric conditions, Rayleigh scattering is dominant at lower wave-

lengths caused by its λ−4 dependence whereas aerosol (Mie) scattering becomes

dominant above 400nm (Bernlöhr, 2000). Both aerosol and ozone densities are

highly time-variable so their monitoring is essential for the interpretation of the

Cherenkov signal.

The presence of clouds passing across the field of view of the telescope causes a

noticeable drop in its count rate as seen in Figure 3.4. The Durham group has a

long tradition of using infrared radiometers, aligned par-axially with an IACT, in

order to measure variations of the sky brightness temperature due to the presence of

clouds and water vapour. A very clear inverse correlation between the radiometers’

readings and telescope counting rate will be illustrated in the relevant section.

The detailed knowledge of the atmospheric conditions above H.E.S.S. site is

essential when studying variable sources such as AGNs. One has to be certain that

any short variation in the telescopes’ count rate is due to the source itself and not to

a sharp change of the atmospheric conditions. In addition, atmospheric corrections

are necessary when calculating the flux of an object. Indeed, the most crucial factor
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Figure 3.1: MODTRAN’s estimation of the direct vertical transmission of light from

100 km above sea level to H.E.S.S. altitude of 1.8 km.

in determining telescopes’ effective sensitive area is the atmospheric model used to

represent the site’s atmospheric conditions. The uncertainty introduced by the use

of an inappropriate atmospheric model may lead to a systematic error of 20% in the

absolute flux calibration of the standard candle for γ-ray astronomy (i.e. the Crab

nebula) (Bernlöhr, 2000).

There is a plethora of ways for monitoring sky clarity. The response of the IACT

to the Cherenkov light produced by the C osmic Ray Background (CRB) is often

used to quantify changes in atmospheric transparency (LeBohec and Holder, 2002).

This method is based on the assumption that the cosmic ray spectrum is almost

constant for the Cherenkov telescope’s operational range of energies (Gaisser, 1990).

Thus, any fluctuation in the signal registered between different cosmic ray induced

showers (observed by the same telescope and at the same zenith angle) reflects the

difference in the atmospheric conditions between observations. The Achilles heel

of this method, however, is that it depends on the performance of the Cherenkov
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telescope itself, which might be difficult to quantify. Even though detailed Monte

Carlo simulation should be used for the better understanding of the fluctuations of

a Cherenkov telescope’s sensitivity, the use of a cosmic ray background for relative

calibration is a useful tool that allows quick corrections especially when observing

variable γ-ray sources. An independent method, borrowed from optical telescopes,

is the monitoring of the brightness of a star within the field of view of the Cherenkov

telescope (Armstrong et al., 1999). This technique has numerous disadvantages: one

cannot use relatively bright stars (i.e.: mv ∼ 3 or more) as they induce background

noise in the telescope’s PMT’s, leaving a smaller window for the signal. On the

other hand, the monitoring of a faint star with cheap CCD sensors tends to be

noisy, giving a poor estimate of the atmospheric clarity (Daniel, 2002).

In order to address these problems, the H.E.S.S. experiment opted for atmo-

spheric monitoring with the combined use of a weather-station, infrared radiometer

and a “Durham made” transmissometer. A detailed description of each instrument

will be given in the following sections. The LIDAR will be discussed separately in

Chapter 4 due to its special contribution to atmospheric modelling.

3.2 Weather Station

A fully automatic weather station that meets the UK Meteorological Office specifi-

cations has been installed at the H.E.S.S. site since 2003. It comprises a barometric

pressure sensor, temperature and relative humidity probe, a rain gauge and a com-

bined anemometer and wind-vane for the measurement of wind speed and direction

respectively. The standard outputs of these instruments accompanied by the rele-

vant accuracies are presented in Table 3.1. The weather station is shown in Fig.

3.2.

The weather station is fully integrated within the H.E.S.S. central data acquisition

system (DAQ) and is monitored continuously. The weather data can be used as an

extra safety net: a relative humidity threshold is used to cut off the high voltage on

the camera electronics in order to prevent humidity-induced shorts.

Weather station data, however, are used chiefly for the generation of model atmo-



3.2. Weather Station 62

Measured Quantity Range Accuracy

Ambient Temperature −10◦C to +60◦C ±0.35◦C at −10◦C

(◦C) ±0.6◦C at +60◦C

Relative Humidity 10% to 100% ±2% at 10%, ±3% at 90%

(%) ±6% at 90 − 100%

Atmospheric Pressure 600mbar to 1100mbar ±0.5mbar, −10◦C to +50◦C

(mbar) −40◦C to +60◦C ±1.5mbar, −20◦C to +60◦C

±2.0mbar, −40◦C to +60◦C

Wind Speed 0.2 m s−1 to > 75 m s−1 ±0.1 m s−1, 0.3 − 10 m s−1

(m s−1) ±1% m s−1, 10 − 55 m s−1

±2% m s−1, > 55 m s−1

Wind Direction 360◦ mechanical angle ±2◦

(◦) continuous rotation allowed obtainable in winds > 5 m s−1

Rainfall 0 mm h−1 to > 133 mm h−1 4% at 25 mm h−1

(mm h−1) 8% at 133 mm h−1

Table 3.1: Atmospheric information available from H.E.S.S. automatic weather-

station and its limitations.

spheres via MODTRAN. We have seen (Fig. 3.1) that Mie scattering by aerosols is

expected to be the most time-variable component of atmospheric attenuation. The

wind speed can be directly inserted in MODTRAN’s desert aerosol model. Under

calm conditions, the desert aerosol is composed of particles with radii between 0.02

and 0.5 µm that represent the global aerosol background rather than the underly-

ing soil. Under windy conditions, however, aerosols can be injected and transported

over long distances. If wind speed exceeds a threshold (the value of which varies as a

function of soil) new aerosols can be generated via sand-blasting processes (Kneizys

et al., 1996). In that case, the size distribution of the additional aerosols would be

similar to that of the underlying soil (Gillete et al., 1972). The wind speed, there-

fore, affects both the density and the size distribution of the local aerosols. The

knowledge of the current wind speed is necessary for a realistic calculation of the

light attenuation due to aerosols. A more quantitative description of the wind speed
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Figure 3.2: Photograph of the H.E.S.S. weather station, transmissometer’s receiver,

scanning radiometer and Vaisala ceilometer.

effect will be provided in Section 4.4.2.

Aerosol properties can also be affected by relative humidity. As relative humidity

increases, water vapour condenses onto the aerosol particles leading to their hygro-

scopic growth. In addition to this size increase, the aerosols’ chemical composition

and refractive index will be altered too. However, it has been shown that Saharan

desert dust consists mainly of non-hygroscopic mineral components and a water sol-

uble component (see Section 4.3.3). Thus, the physical and chemical properties of

desert aerosols posses a very small dependence upon relative humidity, solely due to

the water soluble component, that can be safely ignored (Ackermann, 1998). The

relative humidity is related to the molecular extinction and can be used directly in

MODTRAN atmospheric package, in conjunction with transmissometer and LIDAR

measurements, for the production of site-specific atmospheres.
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3.3 Radiometer

3.3.1 Background Theory

The detection of clouds and water vapour is crucial in determining the cause of a

variation in the telescopes’ count rate. Infrared thermometry is a well established

method for detecting clouds and monitoring their progress in the relevant field of

view. Sloan, Show and Williams (Sloan et al., 1955) showed that measuring the

infrared radiation of the sky, in the wavelength region between 8 − 14µm, provides

a good cloud detection tool.

Figure 3.3: Zenith sky spectra obtained under different atmospheric conditions. The

values of water-vapour concentration (gm−3), measured 6 feet above the ground, are:

(a) 15.2, (b) 9.3, (c) 5.9 and (d) 20.3. Taken from Bird et al. (1997) (after Sloan

et al. (1955)).

Figure 3.3 shows that the spectrum of an overcast sky (Figure 3.3(a)) resem-

bles emission of a blackbody having about ground-level temperature and is clearly
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distinguishable from clear sky emission. Although an increase in the value of rela-

tive humidity leads to higher water-vapour infrared emission (Figure 3.3(d)), cloud

emission stands well above this background as Figure 3.3(a) testifies. Indeed, even

for increased values of relative humidity (Figure 3.3(d)) the presence of a cloud is

easily detectable (Bird et al., 1997).

Within the selected wavelength range of 8−14µm the atmosphere is almost trans-

parent as it only contains O3 emission lines at 9.6µm. This region is surrounded by

the emission lines of H2O at lower wavelengths (i.e. 7µm) and by the emission lines

of CO2 at 15µm. Carbon dioxide contributes no more than 0.035% of the total at-

mospheric gas content and is uniformly mixed up to 80 km. CO2 varies slightly with

season (Chandrasekhar, 1960) but can be considered invariant for infra red emission.

Ozone concentration is minimal for altitudes ranging from the surface level up to

the stratosphere. At ground level, O3 concentration may be high due to industrial

activities (factories, airports), but can be safely considered minimal in the case of

γ-ray telescope sites. On the other hand, water vapour concentration varies both

seasonally and daily and is also a function of altitude and latitude (Farmer, 2001a).

It possesses continuum emission due to the association of water vapour molecules

in pairs which are more pronounced when the partial pressure is high (Houghton,

2002). Thus, the most important atmospheric absorber for the wavelength region

between 8 and 14µm is water vapour which also comprises the major source of

Cherenkov light attenuation due to cloud formation. It, therefore, makes sense to

monitor the atmosphere in the infra-red window by the use of radiometers.

Infra-red detectors are usually based on the pyroelectric effect. Pyroelectric ma-

terials possess a permanent electric dipole moment along a uniquely defined direction

(Ludlow et al., 1967). Infra-red radiation can cause small changes in the material’s

temperature that correspond to a slight displacement of the material’s lattice spac-

ing. That in turn leads to a change in the internal dipole moment which can be

measured by the application of an external field capable of reversing the direction of

the moment. The reversal of the moment is needed as the electrical charge along the

direction of ferromagnetic materials becomes neutralised by stray charges (trapped

in the material’s surface) that cannot relocate themselves quickly in the presence of
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a large external field. Thus, the change in the dipole moment can in this way be

measured (Ludlow et al., 1967).

3.3.2 KT19.82 II Radiometers

Durham was the first γ-ray group to mount mid infra-red (MIR) radiometers onto a

γ-ray telescope (namely Durham’s Mark 6 telescope located in Narrabri Australia)

(Chadwick et al., 1999) for monitoring the sky clarity. The usefulness of this tech-

nique was quickly proven, as the anti-correlation between telescope’s count rate and

radiometer’s measured temperature, shown in Figure 3.4, testifies.

Figure 3.4: The clear anti-correlation between the Mark 6 γ-ray telescope’s back-

ground counting rate (solid line) and radiative temperature of the sky (broken line).

The inner diagram reveals the fluctuation of the count rate as a function of sky

radiative temperature. Taken from Buckley et al. (1999).

The Heimann model KT19.82 II mid infra-red radiometer was selected for the

H.E.S.S. site which is an upgrade of the KT17 model used at the Mark 6 telescope.

The KT19 operates in the 8−14µm wavelength range which is sensitive to the water

vapour concentration due to H2O’s continuum emission. The transmission window

for a horizontal path of 500 m at H.E.S.S.’s altitude of 1.8km and a desert aerosol

distribution has been estimated using the MODTRAN4 program (Berk et al., 1999)

and is presented in Figure 3.5.
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Figure 3.5: Transmittance window for a horizontal 500m path at the H.E.S.S site

as calculated by MODTRAN4 program (altitude of 1.8 km and desert aerosol dis-

tribution for a wind speed of 10 m/s).

There are currently five KT19 radiometers operating at the H.E.S.S site. Each

of the four H.E.S.S. telescopes is equipped with a radiometer paraxially aligned to

it (see Figure 3.6) and one is mounted on an autonomous steerable base (see Figure

3.2), allowing for a full sky scan. The telescopes’ radiometers are constantly mon-

itoring the temperature of the part of sky that is being observed by the telescope

allowing for correlation studies between sky brightness temperature and telescope’s

count rate. In addition, the scanning radiometer provides a full sky overview in-

cluding cloud coverage and approaching weather fronts.

The radiometers are fully embedded within the H.E.S.S. data acquisition (DAQ)

software. Figure 3.7 shows a graphical representation of the scanning radiometer’s

output as displayed to the shift crew. Each triangular sector of the polar diagrams

corresponds to a zenith angle bin. The colour coding ranges from red to blue cor-

responding to a span of high to low sky temperatures. The left display shows the

raw radiometer data mostly in the blue which corresponds to cold (hence clear)

skies. The temperature registered by the radiometer increases with the zenith angle
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Figure 3.6: KT 19 radiometer paraxially mounted in one of the four H.E.S.S. tele-

scopes.

due to the thicker part of the atmosphere being observed (Buckley et al., 1999).

Therefore, a correction in order to take out the zenith angle dependence needs to

be implemented. Such a correction has been applied to the raw data and is shown

in the right display of Figure 3.7. In this case, the correction consists of taking the

difference between the current scan from the averaged previous one as it is shown

in the right part of Figure 3.7. The four green rings appearing on the upper part

of both displays are caused by the radiometer’s steerable base dead zone. The red

pixels in the periphery of the polar plots correspond to objects entering the field of

view of the scanning radiometer at low elevations (Aye, 2004).

In conclusion, H.E.S.S. paraxial radiometers provide a tool for the immediate

detections of clouds in the field of view of the telescope’s camera while the scan-
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Figure 3.7: Display of the scanning radiometer available for H.E.S.S. shift crew.

ning radiometer alerts the observers for approaching weather fronts. The paraxial

radiometers’ data are mainly used for selecting cloud free runs for analysis. Ra-

diometer measurements can in theory provide an estimate of the atmosphere’s water

vapour content which in turn can be used for atmospheric modelling.

3.4 Durham Night-time Transmissometer (DNT)

In order to have a direct measure of transmittance, the Durham group manufactured

an novel transmissometer that operates in parallel with the γ-ray telescope array

in Namibia. The DNT is composed of two separate units (i.e. receiver and trans-

mitter) with a horizontal separation of 29.8 km and a vertical separation of 550 m.

Specifically, the light source is located at the top of the Gamsberg, being the highest

hill in the vicinity and offering an unblocked view to the H.E.S.S. site, whereas the

receiver is located near the other atmospheric instrumentation on the H.E.S.S. site

(see Fig. 3.2). While the difference in height between transmitter and receiver, as

dictated by the Gamsberg’s altitude, limits the transmittance measurement to the

first 550 m above the H.E.S.S. site, the horizontal distance of 29.8 km is suitable for

maximising the instrument’s sensitivity (see Section 3.5). The transmitter-receiver

communication is achieved via a radio link and the generic scheme of the DNT

system can be found in Figure 3.8.
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Figure 3.8: Schematic set-up of Durham’s Night-time Transmissometer. Taken from

(Le Gallou, 2005).

The novelty of the DNT is two-fold:

• the transmitter consists of four super-bright LEDs, operating at wavelengths

of: 390 nm, 455 nm, 505 nm and 910 nm respectively,

• the receiver employs a Charge Coupled Device (CCD) camera that sits behind

a 200 mm Newtonian telescope.

Prior art transmissometers generally consist of gas discharge bulb light sources

and photodiode receivers. In comparison with the super bright LEDs, the gas dis-

charge bulbs are expensive, high in power consumption and have shorter mean time

between failures (MTBF). As a result the usage of bulbs, as opposed to LEDs, in-

creases the cost of both manufacture and operation of the transmissometer. More-

over, the use of the photodiode drastically limits the field of view of the light receiver,

making the correct alignment of its components very difficult. In order to overcome

alignment issues, one has to build concrete bases to mount both transmitter and re-

ceiver units, which increase the manufacture cost of the transmissometer and limits

its uses.
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The combination of the above factors makes the instrument easy to align and

enable it to operate for long periods with minimal maintenance. In addition, the

system is able to operate autonomously via a solar-powered supply. However, the

DNT operates only during the night since it was built to assist γ-ray observations.

In the following sections a full description of the instrument’s hardware, control

and results obtained during the 2 years of operation will be given. The DNT software

will be briefly presented due to its similarity with the software for a later model

presented in more detail in Chapter 5.

3.4.1 Hardware

The Transmitter Unit

The transmitter unit is mounted on a communication mast located on the top of

Gamsberg hill 30 km away from the H.E.S.S. site (see Figure 3.9). The robust

design of the light source is clearly presented in this picture. In addition, the wa-

ter tank can be used for automatic cleaning of the transmitter’s transparent lid,

thereby maximising the time between maintenance. Figure 3.10 gives the internal

construction of the receiver. It consists of four LEDs two of which (i.e. 320 nm and

910 nm) are sitting behind two identical camera lenses with focal length of 50 mm

whereas the 455 nm and 505 nm LEDs are mounted behind polycarbonate lenses.

The specification of the LEDs can be found in Table 3.2.

The four LEDs are driven by a PCB (see Appendix B.2), produced in Durham,

capable of providing a stable current independent of temperature fluctuations. Two

photodiodes are employed to constantly monitor the LEDs’ output, allowing for

post-data calibration. In addition, the PCB allows the monitoring of the LEDs’

driving current and temperature, used for quality assurance of the data.

The communication between the transmitter and receiver units is achieved by a

licence-free radio connection with the aid of a 500 mA radio modem and a dipole

antenna. As the light source needs to be operated in a remote location, it is powered

by solar panel and a car battery.
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Figure 3.9: The transmitter mounted at

Gamsberg’s telecommunication mast. One

can see the antenna, light emitter and the

water tank (left to right). From Le Gallou

(2005).

Figure 3.10: Inside the transmitter. The two

identical lenses are sitting in front of 390 nm

and 910 nm LEDs while the two polycar-

bonate lenses are responsible for focusing the

455 nm and 505 nm LEDs. The two photo-

diodes responsible for monitoring the LEDs

output are also visible (i.e. looking towards

each camera lens). Extracted from Le Gallou

(2005).

The Receiver Unit

A schematic representation of the light receiver is shown in Figure 3.12. It is built

around the ST4-CCD camera that is mounted behind a 200 mm Newtonian tele-

scope. The camera offers a wide field of view, making the alignment between receiver

and transmitter easy. The dynamic range of its sensor, coupled with an 8-bit digi-

tiser, provides reasonable resolution for transmittance monitoring above the H.E.S.S.

site. As shown in Figure 3.12, the receiver consists of two separate units:

• An all weather enclosure protecting the receiver’s optics (CCD camera and

telescope). The enclosure’s window is equipped with a heater-demister. The
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Figure 3.11: Schematic diagram of the light emitter of DNT. Taken from (Le Gallou,

2005).

detector unit is mounted on a steerable base with provision of mechanical

alignment. A lid protects the CCD camera from direct sun exposure and is

always closed during the day. The detector unit can be seen in Figure 3.13.

• An electronics cabinet containing: server, CCD controller, power supply and

reception switch. The components of the electronics cabinet can be clearly

identified in Figure 3.14.

This construction allows for reasonable temperature stability within the detector

unit, taking into account that the transmissometer needs to operate only during the

night. The relatively low temperatures of Namibian nights, combined with the

CCD camera’s low resolution (i.e. 256 levels of grey), lead to a hardly measurable

temperature induced noise.

The CCD controller operates the camera via a modem and RS232 cabling. The

distant light source is also driven by RS232 with the aid of a radio modem located

in the detector’s enclosure (see Figure 3.12).
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Table 3.2: LED specifications

LEDs Specifications 1 2 3 4

Make SMD Luxeon c© Star ELD

Reference Toyoda Gosei (2004) Lumileds (2006) EPIGAP (2004)

Centre Wavelength (nm) 390 455 505 910

Driving Current (mA) 20 350 350 100

Luminous Flux (lm) 45

Radiometric Power (mW) 4.1 220 30

FWHM of beam (o) 2.3 10 4 15

3.4.2 Software

Algorithm

The program that drives the transmissometer is responsible for the operation of

both LEDs and the CCD camera. The measuring algorithm is very similar to the

day-light prototype one (presented in more detail in Section 5.4.1) and consists of

the following tasks (Le Gallou, 2005):

• Day/Night discrimination. The photodiode voltage is read with the LED

switched off every 15 min until night has been detected. This initiates the

beginning of a full measurement cycle:

• the 455 nm LED is turned on,

• the CCD camera takes an exposure, using a default exposure time that pro-

duces a signal optimised for the camera’s dynamic range under a typical night,

• the frame taken is scanned and the brightest 3× 3 cluster of pixels is located.

The LED produces a circular spot of ∼ 10 pixels Full Width Half Maximum

(FWHM),
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Figure 3.12: Schematic diagram of the light receiver of DNT. Taken from Le Gallou

(2005).

• a loop over exposure time is initiated requiring the brightest 3 × 3 cluster

intensity to be between 170 and 255 ADUs,

• when the optimised exposure time has been reached, the intensity (Ron+Roff )

of a 25 × 25 cluster centred around the brightest spot is calculated. The

background intensity is then calculated by computing the average value of

the intensity Roff1 of the cluster located between 13 and 19 pixels from the

centre of the light spot. The LED’s received intensity (R1) is finally calculated

by subtracting the overall intensity from the normalised average background

intensity,

• the LED is switched OFF,

• a dark frame is taken with the the same exposure time as before,
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Figure 3.13: Light receiver with the lid open.

Taken from Le Gallou (2005).

Figure 3.14: Inside the electronic cabinet.

Starting from the upper right side and pro-

ceeding clockwise one can clearly identify:

server, CCD controller, power supply unit

and connection box. Extracted from Le Gal-

lou (2005).

• a second value of the LED’s received intensity (R2) is computed by subtracting

the summative values of pixels consisting of a 39×39 square of the dark frame

from the summative value of the same area taken from the ON frame,

• the calculated values (R1, R2) are divided by the exposure time used in order

to express the intensities as count rate (i.e. ADUs/s), and

• the same process is repeated for the 505 nm, 910 nm and 390 nm LEDs until

daylight has been detected.
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3.4.3 Practical Estimation of Transmissivity

Transmissometers generally consist of a light source and one or more receivers. The

transmitter sends a narrow beam of light of known intensity towards the receiver

that records the intensity of the surviving beam hitting its sensor. Transmissometers,

therefore, measure the transmittance directly from the attenuation of the emitted

light due to scattering and/or refraction, using:

tb = exp(−σb) (3.1)

where:

b denotes the length of the optical path, and

σ is the extinction coefficient.

Thus, transmissometers give us the intensity of the initial beam after it has

travelled a path length x through the atmosphere (I). If the initial intensity is

known (i.e. the intensity at x = 0, calibration factor) one can directly calculate the

transmittance, which is related to the extinction coefficient via equation 3.1. The

transmittance is calculated from the following formula:

T =
I

I0
= e−σx (3.2)

The overall extinction coefficient is the sum of absorption and scattering of both

aerosols and gases. Since within the optical band the only light-absorbing molecule

is ozone, σ can be expressed as:

σ(h, λ) = σR(h, λ) + σO3(h, λ) + σAER(h, λ). (3.3)

where:

σR(h, λ) is the extinction due to molecular scattering

σO3(h, λ) is the extinction due to ozone

σAER(h, λ) is the extinction due to aerosol scattering and absorption

and h denotes the the elevation above sea level.

It should be noted that the above equation can be solved for σAER(h, λ) because

σO3(h, λ) = 0 (for the wavelength region of interest and for altitudes lower than
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10km) and σR can be independently derived from measurements of atmospheric

pressure and temperature. That is important when transmissometer results are to

be compared with ceilometer’s backscatter readings as in Figure 5.1. It should be

stressed that even though σO3(h, λ) = 0 is a safe assumption for the H.E.S.S. site

in Namibia, it is not valid at airports where our daylight-prototype (see Chapters

5 and 6) is most likely to operate. In this case the absorption due to the ozone

produced by aviation fuel must be accounted for.

3.4.4 Transmissivity for Receiver and Transmitter at differ-

ent altitudes

Equation 3.2 applies for the calculation of horizontal transmittance. As one of

the major advantages of Durham’s transmissometers is that the transmitter can be

mounted much higher that normal transmissometers (see Fig. 3.9), one needs to

calculate the vertical transmittance:

T (d) = e−
d
x (3.4)

where:

d is the vertical distance between receiver and transmitter.

For a known baseline (D) between transmitter and receiver the optical length

x can be expressed in terms of the transmissometer’s measurement and calibration

coefficient as follows:

x =
D

ln( I0
I
)

(3.5)

The combination of Equations 3.4 and 3.5 gives:

T (d) =

(

I0
I

)
d
D

(3.6)

For the case of the DNT d = 550 m and D = 29.8 km and the above equation

can be written:

T (d) ∼
(

I0
I

)−0.0185

(3.7)
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In practice, for the calculation of transmittance over both horizontal and slant paths,

I is measured as the received minus the background intensity. The latter is cal-

culated by two independent methods (i.e. R1, R2 see Section 3.4.2). Using the

calibration coefficient (i.e. the intensity expected to reach the camera if the atmo-

sphere was 100% transparent) the transmittance can be calculated using Equation

3.7. Both measured and estimated intensities are normalised over their exposure

time (ADUs/ms).

3.4.5 Results and Simulations

The DNT has been operational since March 2005. During this three years of op-

eration it has proven reliable. Indeed, the DNT’s log book testifies that it was

not operational for only two long term periods namely, 9/7/05 − 21/08/05 and

6/11/06 − 18/12/07. On both occasions, a power cut due to the dying battery

caused the problem. However, after the replacement of the receiver unit (February

07), short term technical problems have increased.

As the H.E.S.S. site was selected partly based upon its excellent optical proper-

ties, the typical transmissometer reading fluctuates slightly around an average value

of 0.98 transmittance. However, the DNT has proven its usefulness under dusty

episodes that can decrease telescope’s trigger rate by as much as 50%. In cases

of relatively low atmospheric transmissivity, the transmissometer’s readings can be

divided in two broad categories:

• stable nightly measurements that imply that the measured transmittance over

550 m and along ∼ 30 km separating transmitter-receiver units, is relevant to

the local H.E.S.S. atmospheric conditions and

• relatively unstable measurements. In this case, the transmittance value must

be checked against LIDAR and trigger rate readings in order for the relevance

of the local atmospheric conditions to γ-ray measurements to be established.

In Figure 3.15 the transmittance measured during the night of 16th of Septem-

ber 2006 using the 505 nm LED is shown. The variation around the average value

of 0.96 is small (i.e. ∼ 0.4%) and becomes apparent in the histogram presented in
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Figure 3.16. In addition, the good agreement between the two different methods

for calculating the signal’s intensity is evident in Figure 3.17. An example of a

relatively unstable transmittance values taken on the night of 18th of June are pre-

sented in Figures 3.18, 3.19 and 3.20 respectively. In this case, the RMS fluctuation

has increased by a factor of 2 in comparison with the more stable transmissivity

measurements on the 16/09/2006. Moreover, the agreement between the I1 and I2

background calculation is broken indicating that the measurements are affected by

spatial and temporal variations respectively.

The overall plot showing transmissivity values measured at three different wave-

lengths, from April 2005 to December 2006, as a function of run number can be

found in Figure 3.21. The measurements at 455 and 505 nm follow each other closely,

while the 910 nm transmittance is significantly lower. That is easily explained by

the gaseous absorption spectral bands in the atmosphere above the H.E.S.S. site.

In the usually aerosol-free Namibian skies the absorption of light depends chiefly

on the spectral absorption of water vapour and oxygen and to a much lesser extent

the ozone absorption bands. Figure 3.25 shows the percentage transmission over a

550 m vertical path, for a desert extinction model with a 4.5 m/s wind speed, for

a wavelength range covering the operating range of the LEDs used. In the visual

range window, the transmittance is very high as ozone is the only absorbing gas with

just detectable absorption spectra. The decrease in transmittance occurring in the

near-infrared band is caused by molecular water vapour absorption. In addition, the

uncertainty involved with transmittance estimation within the 910 nm LED range

(i.e. 910 ±40 nm) is large, explaining the exclusion of this LED’s data from the

comparative Figure 3.26. This is due to the lower power of the infra-red LED as

opposed to the visible ones at 455 nm and 505 nm.
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Figure 3.15: Transmissivity of the first 550 m above the H.E.S.S. site as a function of

time for the stable night of 16th of September 2006. Black and white dots correspond

to R1 and R2 intensity measurements respectively (see 3.4.2).
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Figure 3.16: Distribution of transmittance

measurements during 16/09/06.
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Figure 3.18: Transmissivity of the first 550 m above the H.E.S.S. site as a function

of time for the stable night of 18th of June 2006. Black and white dots correspond

to R1 and R2 intensity measurements respectively (see Section 3.4.2).
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Figure 3.19: Distribution of transmittance

measurements during 18/06/06.
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tensity values calculated via the two different

methods (as described in Section 3.4.2) reg-
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In February 07 the telescope located at the DNT’s receiving end was changed.

Even though an ‘in-situ’ re-calibration was not performed, due to time restrictions,

an off-line calibration factor is applied to data taken after 4th February 2007. Figure

3.22 presents data taken via the 455 nm LED within the period 3rd March 2005 -

31st April 2007, excluding some erratic nights due to technical problems or unstable

atmospheric conditions. Due to technical problems there was no data-taking during

February, while there was only one night’s worth of data in January and six in March

2007. Thus, one cannot make conclusive remarks about the yearly periodicity of at-

mospheric transmissivity based on the DNT data available. The periodicity of this

atmospheric effect is better demonstrated by TOMS (Total Ozone Mapping Spec-

trometer) satellite instruments measurements of aerosol index (AI) taken between

1996 and 2005 over the H.E.S.S. overpass site (i.e. 23.2 S, 16.7 E) see Fig. 3.23.

TOMS AI is a measure of the total backscatter radiation as registered by the in-

strument at 360 nm in comparison to the backscatter produced in a ideal molecular

atmosphere (i.e. AI = 100 log
Iobs
360

Itheor
360

) and relates to the optical depth (TOMS, 2008).

The seasonal variation of the optical depth has also been independently measured

by ground based measurements of AERONET (Aerosol Robotic Network on the

Etosha Pan site (19.30 S, 15.51 E) as seen in Fig. 3.24) (Privette et al., 2005).

Figure 3.21: Distribution of transmittance

measurements at 455, 505 and 910 nm from

April to December 2005.

Figure 3.22: Collective transmissometer

readings at 455 nm from 3/3/05 to 31/4/06.

Thus, low level dust-storms are expected on the H.E.S.S. site during the period
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between June and September (see Fig. 3.23) , a fact that is verified by the trans-

missometer’s minima occuring during June and September (see Fig. 3.22). At the

Etosha Pan site the relevant period of increased dust storms is between August -

October, while there is no available data for July. One should note the wide spread

of optical depths during dusty months (i.e. September, as demonstrated by the

relevant error bars in Fig. 3.24) that is also seen by the transmissometer during

the Namibian winter, with dusty event episodes occurring between very clear at-

mospheres (see Fig. 3.22). This can provide a handy calibration tool when seeking

correlations between the telescopes’ count-rate and the DNT’s readings.

3.5 Conclusions

In this chapter the instruments used for the atmospheric monitoring of the H.E.S.S.

site in Namibia have been presented. Special emphasis was given on the role of
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Figure 3.25: MODTRAN calculated transmissivity for desert aerosol extinction at

a wind speed of 4.5 m/s.

each instrument on the production of site-specific atmospheric models. Specifically,

the weather station measurements (i.e. surface temperature and wind speed) can

be imported into the MODTRAN software package for a realistic calculation of the

atmospheric transmissivity in conjunction with the transmissometer and LIDAR

measurements. The radiometers cannot be used to extract the atmosphere’s water

vapour content but they are utilised for cloud and approaching weather fronts de-

tection. Specifically, a cut on the radiometer root mean square (RMS) readings is

utilised for the selection of telescope data under clear atmospheric conditions. The

use of LIDAR in atmospheric modelling will be discussed in Chapter 4. In what

follows the use of DNT as atmospheric model selector and its limitations will be

discussed in detail.

The major motivation for the DNT was the prediction of nightly site-specific

atmospheric transmission tables giving the optical depth as a function of both

wavelength and altitude. One can use these transmission tables to filter simulated

Cherenkov showers in order to access the atmospheric effect on the telescopes’ trig-

ger rate and effective area (see Section 2.9.1). The MODTRAN4 (Berk et al., 1999)

program is used to generate transmission tables. A comparison of MODTRAN

transmissivities calculated with the desert extinction model and transmissometer



3.5. Conclusions 86

data taken during typical clear and dusty nights is shown in Figure 3.26. The trans-

missometer’s data can be matched by adapting the desert extinction model (which

represents best the H.E.S.S. site aerosol characteristics) and altering the wind speed

to evoke the aerosol concentration which, in turn, controls the atmospheric trans-

missivity. It should be stressed that the wind speed fine tuning is merely a technical

trick and does not correspond to the actual wind speed at ground level on the time

of the measurement. Indeed, by examining the monthly distribution of wind speeds

(see Figures 3.27, 3.28) one can extract the maximum values 1.5 and 1 m/s for the

nights of 18/06/06 and 14/05/06 respectively, a difference too small to account for

the transmittance variation. A method of setting the atmospheric visibility directly

from the transmissometer’s reading while using the actual wind speed as registered

from the meteorological station was later discovered by the author and will be pre-

sented in Section 4.4.2.

The transmissometer has not proven extremely useful in the active atmospheric

calibration due to its inherent altitude constraint at 550 m. Thus, it can be only

used for selecting the aerosol model for the boundary layer (i.e. 0-2 km) under the

assumption of homogeneous atmosphere over the boundary layer. In the case of un-

stable atmospheric transmissivity measurements (e.g. see Fig. 3.20) the relevance

between the DNT extracted local atmospheric transmissivity to the γ-ray measure-

ments should be checked against the CT25K data. Since the CT25K LIDAR’s

backscatter signal cannot be inverted to provide meaningful extinction profiles (see

Section 4.1.2), one could only search for correlation between backscatter and trans-

missivity values during the examined period. In addition, the DNT’s atmospheric

transmissivity measurement in the infrared has proven to be unreliable due to the

low power output of the relevant LED. Thus, the best one can do is to seek for cor-

relation between the CT25K and DNT responses operating at different wavelengths.

These reasons prevented the transmissometer from being a part of H.E.S.S. active

calibration scheme (see Section 4.4.2).

However, it was quickly realised that the DNT’s innovative design could have

industrial applications (i.e. environmental monitoring, airport visibility monitoring)

if the instrument was adapted for daylight operation. In addition to the changes
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needed for the daylight operation, the DNT accuracy should be drastically improved

in order to be competitive in the transmissometer market. Indeed, the DNT inven-

tor Dr. Roland le Gallou had estimated a combined uncertainty of ±20% for the

transmittance measurements (based on R1 and R2 intensity readings, see Section

3.4.2) at 455 nm and 505 nm (Le Gallou, 2005). The relevant uncertainty on the

atmospheric transmissivity over the first 550 m above the H.E.S.S. site can be cal-

culated via Equation 3.7 (i.e. σT (d) = σT
d/D = σT

0.01846). Thus, an ±20% error in

transmittance corresponds to an uncertainty of just ±0.4% in the transmissivity over

550 m. In contrast, aviation transmissometers measure the horizontal transmittance

over short baselines, thus requiring a much improved accuracy.

The author, working closely with the DNT inventor Dr. Roland Le Gallou, was

aware of the following limitations that compromised the instrument’s accuracy:

• the transmissometer data were not corrected for the LED output and temper-

ature fluctuations,

• an active calibration was not implemented reducing the frequency of instru-

ments calibration to the major maintenance intervals,

• the light sources (LEDs) are current but not temperature stabilised, and

• the light output of the 320 nm and 910 nm LEDs was low compromising their

signal-to-noise ratio.

The concept of the DNT, despite the limitations inherent to the original design,

has proven to be a gold mine for Durham’s University γ-ray group leading to two

successive grants dedicated to the production of a daylight and an industrial aviation

transmissometer prototype respectively. The author was chiefly responsible for both

projects, the results of which will be the subject of Chapters 5 and 6, 7 respectively.
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Figure 3.26: MODTRAN calculated transmissivities for desert aerosol extinction at

varying wind speeds and two extreme values from DNT as a function of wavelength.

A MODTRAN calculation of atmospheric transmission without aerosol extinction

is also presented and matches perfectly the highest transmittance values seen by the

transmissometer.
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Figure 3.27: Distribution of wind speed mea-

surements during June 2006.

Day
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

W
in

d
sp

ee
d

 (
m

/s
)

1

1.5

2

2.5

3

3.5

4

Windspeed_2006-05
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surements during May 2006.



Chapter 4

Towards the construction of a

realistic ‘in-situ’ atmosphere for

the H.E.S.S site

In this chapter the construction of realistic transmittance tables, providing the at-

mospheric transmittance above the H.E.S.S. site as a function of altitude and wave-

length, will be discussed. The Durham group is responsible for the operation of two

LIDARs (namely, a Vaisala CT25K and a Leosphere ALS450XT). The main focus

of this chapter will be to retrieve the prevailing atmospheric transmittance from

the LIDARs’ response generated by elastic scattering at an angle = 180◦ (elastic

backscattering). Both LIDAR systems will be described and the LIDAR theory will

be discussed extensively. The initial unsuccessful attempts to retrieve physically

meaningful information from the CT25K backscatter signal, leading to the acqui-

sition of the ALS450XT, will be considered. In addition, the backscatter signal of

the ALS450XT LIDAR, during the observation of LS 5039 under dusty conditions,

will be inverted with a LIDAR-independent algorithm in order to retrieve realistic

profiles for both scattering and extinction coefficients. The implied atmospheric

transmissivity will be applied to simulated cosmic ray events to allow comparison

with the telescope’s observed trigger rate. Finally, the MODTRAN code used ex-

tensively in this thesis for the modelling both the atmosphere and the atmospheric

monitoring instruments’ response will be discussed in detail. In addition, a method
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of producing variable aerosol models, chiefly responsible for the atmospheric trans-

missivity, using the prevailing visibility as opposed to the surface wind speed will

be presented.

4.1 Ceilometer

4.1.1 Theory of Operation

The general operational principle of a LIDAR (Light Detection And Ranging) con-

sists of shooting a short laser pulse into the atmosphere and measuring the intensity

of the backscattered photons reflected by the atmospheric particles (i.e. aerosols

and gas molecules) intercepting the beam path. A fraction of these scattered pho-

tons will be collected by the LIDAR’s receiver, usually consisting of a PMT, and

the signal strength will be registered. The time delay between the transmitted light

pulse and received backscattered photons corresponds to the height of the responsi-

ble scatterer. The accuracy of this estimated height is restricted by the pulse width

(i.e. 100 ns ⇒ 30 m). The amplitude of the signal of the backscattered light can

be used for retrieving the properties of the scattering site. The laser beam is likely

to be scattered either by atmospheric gas molecules (O3, H2O) or by aerosols. At-

mospheric molecules are smaller than the beam’s wavelength so they will Rayleigh

scatter the beam’s photons. Aerosols, on the other hand, scatter photons according

to Mie theory, being larger than the wavelength of the scattered light beam. Both

scattering processes are elastic, so the measured backscattered photons will have the

same wavelength as the emitted photons. It should be noted, however, that atmo-

spheric gas molecules could also Raman scatter the laser. In this case the wavelength

of the scattered photon changes, depending on the responsible scatterer. Thus, one

can take advantage of this property by using a multi-frequency laser transmitter LI-

DAR with wavelength targeted for extracting the distribution of specific molecular

scatterers (e.g. Whiteman et al., 1992). Finally, by measuring the Doppler shift of

the backscattered light one can estimate the wind speed from the bulk motion of

the scattering medium (e.g. Chanin et al., 1989).
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4.1.2 Vaisala CT25K Ceilometer

The first LIDAR bought by the Durham Group was the commercial Vaisala CT25K

ceilometer, a picture of which is shown in Figure 4.1.

Figure 4.1: CT25K Vaisala LIDAR installed at the H.E.S.S. site in Namibia.

The CT25K LIDAR uses a rapidly pulsed diode laser with an output wavelength

centred at 905 ± 5 nm. The LIDAR’s energy output lies in the µJ range that,

combined with the transmitter’s optics, meets the requirements of the EN60825-1

standard for safety. Eye-safety is ensured by constant regulation and monitoring of

both the laser’s driving voltage and temperature (Vaisala, 1999). This compliance

with the eye-safety regulations translates into an instantaneous backscatter signal

smaller than the ambient background. The high repetition rate of 5.57 kHz, however,

allows the accumulation of many low energy signals leading to a reasonable signal

to noise ratio.

The novelty of the CT25K LIDAR system arises from the usage of single lens

optics for both transmitter and receiver units (see Fig. 4.2). In this way, the

received signal is strong throughout the measuring range allowing the usage of signals
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corresponding to very low altitudes.

Figure 4.2: The single lens optics geometry of CT25K ceilometer. From Vaisala

(1999).

Problems with the CT25K LIDAR

The raw data of the backscatter signal collected by the CT25K LIDAR are pro-

cessed by an inaccessible algorithm that ultimately provides information about cloud

heights and vertical visibilities. The user does not have access to the raw backscat-

ter signal, a fact that prevents testing the noise cancellation processes on the full

backscatter profile provided.

The confusion produced by the copyright protected algorithm was evident under

both very clear and dusty atmospheric conditions. An example of a backscatter

profile generated under a very clear atmosphere can be seen in Fig. 4.4. The clarity

of the atmosphere was independently demonstrated by the transmission data simul-

taneously registered by Durham’s transmissometer. In Figure 4.4 the backscatter

signal fluctuates around zero between 600 − 1000 m heights, a region at which one

expects good noise to signal ratio. The fact that the LIDAR cannot detect any

backscatter signal from this region indicates that its power output is too low to
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detect the minimal aerosol concentration usually related with the clear skies above

the H.E.S.S. site. Above 1 km this fluctuation flattens out corresponding to the

small electronic noise variation.

In the case that a strong backscatter signal is detected (see Figure 4.6), the soft-

ware seems to perform a height correction up to the level of the detected backscatter

signal (i.e. about 2.4km) but not up to the full range of the measurement as the

flattening of the backscatter signal collected at heights exceeding 2.4 km indicates

(see Fig. 4.7). Thus, it is impossible to extract the atmospheric transmissivity from

the backscatter signal retrieved from heights greater than the aerosol event. During

this measurement the only available data from the transmissometer were produced

by the 910 nm LED that approximately matches the wavelength of the ceilometer

(see Fig. 4.8). A first indication of the response of Durham’s transmissometer can

be obtained by comparing the 910 nm transmission over the first 550 m above the

H.E.S.S. site as shown in Figures 4.5 and 4.8.

In conclusion, the unavailability of CT25K raw data combined with the unclear

function of the ‘black-box’ algorithm and laser’s output of 905±5 nm (being outside

the region between 250 to 700nm where H.E.S.S.’s photomultipliers and mirrors are

sensitive) resulted in the failure to extract meaningful optical depth values for the

H.E.S.S site (as shown in (Aye, 2004)). However, CT25K’s backscatter data up to

1.5-2.0 km above the H.E.S.S. site can still provide a handy tool for assessing the

sky clarity and to validate the ‘Durham-made’ transmissometer - which measures

directly the transmittance of the first 550 m above the H.E.S.S. site - as shown in

Section 3.4 and Fig. 5.1.
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Figure 4.3: Two-dimensional profile of attenuated backscatter on 11th of April 2005

showing a very clear night.

Figure 4.4: Attenuated backscatter profile

on 11th of April 2005. Note the signal

fluctuation around zero for heights between

600 − 1000 m; a region expected to posses

good signal-to-noise ratio.

Figure 4.5: Transmittance over the first 550

m above the H.E.S.S. site. Measurements are

collected at 505, 455 and 910 nm indicating

an aerosol-free atmosphere on 11 April 2005.
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Figure 4.6: Two-dimensional profile of attenuated backscatter on 18th of April 2005

showing a population of aerosols for the first 2 km above the H.E.S.S. site.

Figure 4.7: Attenuated backscatter profile on

18th of April 2005. The flattening of the

signal at heights greater than approximately

2 km makes the retrieval of any physical in-

formation impossible.

Figure 4.8: Transmittance over the first 550

m above the H.E.S.S. site measured at λ =

910 nm on 18/04/05. The black and white

dots correspond to the different methods of

calculating the background noise (i.e. black:

background calculated from the On frame

[R1]; white: background calculated via On-

Off frames [R2], see also Section 3.4.2).



4.1. Ceilometer 96

4.1.3 Leosphere’s ALS 450 XT LIDAR

Following the impossibility of extracting optical depth profiles with the CT25K LI-

DAR, the Durham group set out to the LIDAR market with the following additional

requirements in mind:

• availability of raw extinction ratio data,

• laser wavelength within 320 to 550 nm,

• measurements up to 15 km, and

• minimum spatial resolution of 15 m.

Leosphere’s ALS 450 XT Easy LIDAR operating at 355 nm was selected and has

been installed at the H.E.S.S site as of March 2007 (see Fig. 4.9). A comparison

of some technical details and the performance of the two LIDARs can be found in

Table 4.1.

Figure 4.9: ALS 450 XT Leosphere Ceilometer installed at H.E.S.S. site in Namibia
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Table 4.1: Comparison between ALS450XT and CT25K performance

Performance Leosphere ALS450XT Vaisala CT25K

Laser Source Nd:Yag diode laser InGaAs diode laser

Center Wavelength 355 nm 905 ± 5 nm at 25oC

Repetition Rate 20 Hz 5.57 kHz

Pulse Energy 16 mJ 1.6 µJ

Range 75 m up to 15 km 0 up to 7.5 km

Spatial Resolution 1.5 m 30 m

The new LIDAR consists of two separate units connected together (Leosphere,

2005):

• the optical head that contains the emitter (Nd:Yag pulsed laser) and receiver

(photomultiplier tube),

• the control housing containing all the necessary electronics.

The architecture of the optical head is monostatic biaxial. Thus, as opposed to

the CT25K configuration where the laser beam and receiver’s field of view coincide

(monostatic coaxial), the transmitter and receiver of the ALS 450 XT LIDAR are

closely packed together. The overlap between the laser beam and receiver’s FOV

begins at 75 m above the LIDAR’s level so backscatter signals below this altitude

can not be registered.

The algorithm analyses the backscatter raw data to produce vertical profiles of

total and particulate extinction. In the following sections the LIDAR theory will be

presented. Then, the assumptions behind the ‘black-box’ algorithm will be revealed

by extracting the extinction to backscatter ratio (S) and compare it with statistical

and analytical studies found in the literature. In addition the LIDAR reconstructed

optical depth will be compared with that produced by well-established algorithms.
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4.2 LIDAR Theory

As previously noted, the Durham group is responsible for two single-wavelength

pulsed LIDARs operating at 905 nm and 355 nm respectively. The received power

of each LIDAR can be expressed, under the simplifying single-scattering assumption,

by the LIDAR equation (Klett, 1981):

P (λ,R) =
c τ

2
P0κ(λ)O(R)

A

R2
β(λ,R) exp−2

R R
0 σ(λ,r)d(r) . (4.1)

where:

P0, P (R) are the instantaneous transmitted and received power respectively;

R is the distance between the scatterer and the receiver expressed in km. For the

special case of an upward looking LIDAR, R corresponds to the altitude of the scat-

tering medium;

τ is the pulse duration and c the velocity of light, expressed in s and km/s respec-

tively;

O(R) is the overlap function, defining the part of the backscattered laser beam that

falls within the receiver’s field of view;

κ(λ) is the wavelength-dependent overall efficiency of the LIDAR (i.e. extinction

from the optical components of transmitter and receiver together with the receiver’s

detection efficiency);

A is the area of the receiver’s optics (i.e. telescope or lens);

β(r) is the backscatter coefficient, usually expressed in m sr−1;

and σ(r) is the extinction coefficient of the atmosphere expressed in m−1.

For the sake of clarity, one can isolate the terms depending solely on the LIDAR’s

characteristics and geometry (Wandinger, 2005).

C =
c τ

2
P0κ(λ)A (4.2)

G(R) =
O(R)

R2
(4.3)

Let’s assume that a laser pulse of power P0 leaves the receiver at t0 = 0. The

energy of the outgoing beam is E0 = P0τ . After time t a backscatter signal is
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recorded due to a scatterer at a distance R = ct/2. The original pulse length was

τ , so the receiving gate must remain open for the same time, corresponding to

a measured backscatter laser-beam produced within a spatial resolution of ∆R =

cτ/2. These quantities, along with the effective aperture of the receiver (A) and

the efficiency of the overall system (κ(λ)) either remain constant (i.e. c, A) or their

values are constantly monitored (i.e. κ, P0) during the LIDAR’s operation so that

each variation is compensated. Therefore C can be determined by the experimental

set-up of the LIDAR.

The term G(R) represents the dependence of the measured backscatter signal

due to the system’s geometry. Indeed, different LIDAR configurations correspond

to a difference in the overlap function between receiver and laser beam, as Fig. 4.2

clearly demonstrates. The inverse quadratic relation of the measured signal with

range is explained if one thinks of an imaginary sphere (r = R) connecting the

receiver with the centre of the isotropically scattering medium.

It is worth noticing that the term exp−2
R R
0

σ(r)d(r) is the Optical Depth (OD) or

transmission of the LIDAR light up to the distance of interest (i.e R). As light from

the LIDAR’s light source covers the distance R, twice the OD of the Cherenkov

light, over this distance R would be half the OD of the LIDAR light (which explains

the factor of 2 in front of the integral).

The instantaneous response of a vertical monostatic single wavelength LIDAR

depends, therefore, on (Masonis et al., 2002):

1. the power of the ejected laser beam,

2. the instrument’s calibration constants,

3. the concentration of scattering material (i.e. aerosols and molecules) at the

altitude corresponding to the travelling time of the receiving signal,

4. the tendency of the scattering material at this altitude to scatter light in a

direction of 180◦ in comparison with the other directions, and

5. the number of photons lost during the beam travelling over the in and outgoing

paths.
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Instrumental calibration coefficients and their corresponding uncertainties (i.e. 1,2)

are provided in each instrument’s manual (Vaisala, 1999; Leosphere, 2005) and are

altitude independent. While scatterer concentration (3) is the quality of interest one

cannot know separately the answers to (4) and (5) by solely relying in the monos-

tatic LIDAR response. Thus, the LIDAR equation 4.1 contains two unknowns: the

backscatter and extinction coefficient, both altitude dependent.

This difficulty necessitates the assumption of a relationship between backscatter

and extinction profiles typically prescribed in the backscatter to extinction ratio

(i.e. S). They are mainly two algorithms that facilitate the analysis of LIDAR re-

sponse, namely Klett’s (Klett, 1981) and Fernald’s (Fernald, 1984). The advantage

of Fernald’s method is that it discriminates between aerosol and molecular scatter-

ers, calculating via Rayleigh theory an altitude-independent value for the molecular

backscatter to extinction ratio. Klett also modified his solution to account for the

effects of Rayleigh scattering (Klett, 1985). In this case, the aerosol ratio S depends

on the wavelength of the received light, aerosol size distribution, aerosol refractive

index (i.e. composition) and shape. These optical characteristics depend on the lo-

cation of the LIDAR’s site and change with time (Barnaba et al., 2004). Air masses’

back trajectories and satellite measurements will be used to extract the size distri-

butions and the refractive index of the aerosol population above the H.E.S.S. site.

In the next sections the Klett and Fernald methods will be discussed in an effort to

validate the H.E.S.S. LIDARs and to invert their signal, extracting a site specific

optical depth that in turn can be used in the H.E.S.S. simulation algorithms.

4.2.1 Solving the LIDAR equation

The LIDAR equation 4.1 can be simplified by setting the calibration constants O(R)

and κ(λ) to unity and by omitting the wavelength and size dependence:

P = P0
cτ

2

A

R2
(β) exp−2

R R
0 (σ)dr (4.4)

The LIDAR response is usually (e.g. Klett, 1981) reported as the the range-
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corrected power defined as follows:

S(r) = ln[R2P (r)] (4.5)

One could use the difference between the range-corrected signal of a stable ref-

erence altitude (r0) and r in order to eliminate the LIDAR constant (Klett, 1985):

S − S0 = ln
β

β0
− 2

∫ R

r0

σ(r)d(r) (4.6)

The differentiation of Eq. 4.6 with respect to LIDAR’s range yields:

dS

dr
=

1

β

dβ

dr
− 2σ (4.7)

In the following sections the main inversion techniques will be briefly discussed.

Slope Method

Equation 4.7 can be easily solved if one assumes a homogeneous atmosphere over

the range of the LIDAR. This assumption removes the range dependence from both

extinction and backscatter coefficients as both optical parameters are considered to

be constant over the whole measurement range:

σ = −1

2

dS

dr
(4.8)

Thus, in the case of a homogeneous atmosphere, the extinction coefficient can be

found directly by plotting the corrected signal as a function of range. This method

has the merit of being simple and less intensive computationally than any other

inversion method. It can be applied in highly turbulent atmospheres where the frac-

tional gradient of backscatter corresponds to small signal variations (Rocadenbosch

et al., 1998):

1

β(r)

∣

∣

∣

∣

dβ(r)

dr

∣

∣

∣

∣

≪ 2σ (4.9)

This approximation does not hold, however, for atmospheres possessing smaller

optical depths where inhomogeneities may lead to a fractional gradient of backscatter

that is comparable with −2σ(r). Indeed, if the slope method is applied within an
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inhomogeneous medium (e.g. dense clouds or smoke) it often yields a positive slope

for S(r) that in turn defines a non physical, negative extinction coefficient (Evans,

1984).

Backward Inversion

In the most realistic case where dS/r 6= 0, the LIDAR equation 4.1 can be solved

analytically if one makes an a priori assumption for the relation between aerosol ex-

tinction and backscatter coefficients. Traditionally, a power law relation is assumed:

βa = Bσk
a (4.10)

where k depends on the wavelength of the LIDAR and the aerosols’ optical properties

and B is, in the simplest case, a proportionality constant. This relation holds well for

water fogs (with k = 1, C = 0.05 sr−1) and research for different aerosols indicates

that k lies between 0.67 and 1 (Klett, 1985).

By differentiating Eq. 4.6 with respect to range and taking into account Equa-

tions 4.4 and 4.10 one gets:

dS

dr
=
k

σ

dσ

dr
− 2σ (4.11)

Equation 4.11 is special type of nonlinear differential equation (i.e. Bernoulli)

and has the following solution (Klett, 1981):

σ(r) =
exp [(S − SM)/k]

σ−1
M + 2

k

∫ rM

r
exp [(S − SM)/k]dr′

(4.12)

where SM and σM are the corrected signal and extinction coefficient respectively

corresponding to the maximum inversion range rM . The novelty of Klett’s inversion

was to select the calibration coefficient at the furthest point of the LIDAR’s signal

path (rM), as opposed to the closest (r0), which had been used until then (forward

inversion), yielding a stable solution. At the far end, the extinction is dictated by

Rayleigh scattering and thus is easier to predict and the signal-to-noise ratio is small.

The error on the chosen σM becomes less important for descending values of r as the

integral term in Eq. 4.12 increases. Furthermore, when r decreases the extinction
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coefficient is defined as the ratio of increasingly greater numbers, thereby converg-

ing towards a representative value. One should not forget, however, that both k

and σM cannot be determined accurately as they depend on the aerosols’ optical

characteristics and composition, which are unknown. However, if these parameters

were known, the LIDAR would not have been needed. In addition, by assuming

a constant value of k (and B in the case of backscatter inversion), we accept that

both aerosol size distribution and chemical composition remain constant within the

LIDAR’s range.

Modern LIDARs, such as Leosphere’s ALS450XT, use inversion algorithms that

discriminate between Rayleigh and aerosol scattering and assume a backscatter to

extinction ratio that is itself a function of r:

βa+m(r) = B(r)σk
a+m (4.13)

where, as already defined, a and m correspond to the aerosol and molecular parts

of the the optical coefficients and k is set to unity.

The total extinction coefficient can be written as the sum of the aerosol and

molecular attenuation:

σ = σa + σm (4.14)

The backscatter signal registered by the LIDAR is a result of an elastic process and

therefore the backscatter coefficient can be expressed as:

β = Pa(180◦)σa + Pm(180◦)σm (4.15)

where P denotes the phase function which is defined as the ratio of the energy scat-

tered per unit solid angle at 180◦ to the average energy scattered per unit solid angle

in all directions (β/4π) (van de Hulst, 1957; McCartney, 1976). Thus, by definition

the phase function equates with the backscatter to extinction ratio for molecular

or aerosol scattering. Rayleigh theory predicts a constant backscatter to extinction

ratio:

Bm =
βm

σm

=
3

8π
(4.16)
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In contrast, the relevant ratio in the case of aerosol scatterers for the LIDAR’s

wavelength is variable and can be expressed as a function of the aerosol size distri-

bution and chemical composition as defined by the complex index of refraction. A

short derivation of the backscatter to extinction ratio is provided below due to its

importance in validating and correcting the LIDAR’s signal.

The Mie backscatter cross section coefficient can be expressed in terms of backscatter

efficiency as (Gobbi and Barnaba, 2002):

σb(r, λ,m) = πr2Qb(x,m) (4.17)

where r, m, x are the aerosol’s radius, complex refractive index and size parameter

respectively. The same relationship holds for the extinction cross section, which

according to Mie theory can be expressed (e.g. Cachorr and Salcedo, 2001):

Qext =
2

x2

∞
∑

n=1

(2n+ 1)[Re(an + bn)] (4.18)

where the Mie scattering coefficients an and bn are expressed as Ricatti-Bessel func-

tions of x and m · x. For aerosols of a given density distribution, the backscatter

and extinction coefficient can be calculated as follows (Gobbi and Barnaba, 2002,

e.g.):

βa =

∫ ∞

0

σbN(r)(d)r =

∫ ∞

0

QbNπr
2(r)(d)r (4.19)

A plethora of analytical functions has been devised for the simulation of aerosol

size distributions (i.e. power law, modified gamma, generalised and lognormal dis-

tribution). The lognormal distribution is ideal for covering the full range of aerosol

sizes. In addition, two or three lognormal distributions can be used to identify

aerosol components of different origin as each component is allocated with an indi-

vidual median radius, standard deviation and number density (Ackermann, 1998):

ni(r) =
Ntotµi√
2π ln σir

exp

(− ln2 (r/rm,i)

2 ln2 σi

)

(4.20)

where Ni is the number density of the component

σi and rm.i are the standard deviation and median radius of the distribution

and µi is the normalised particle concentration defined as the ratio of Ni over the

total number of particles per unit volume Ntotal =
∑n

i=1Ni.
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Thus, the important backscatter to extinction ratio can be computed if the

size distributions and the complex refractive index for each aerosol component are

known, in terms of the relevant efficiencies (e.g. Ackermann, 1998):

Ba =

∫ ∞
0

∑n
i=1 βidr

∫ ∞
0

∑n
i=1 σidr

=

∫ ∞
0

∑n
i=1Qbsc(r,mi, λ)πr2ni(r)dr

∫ ∞
0

∑n
i=1Qext(r,mi, λ)πr2ni(r)dr

(4.21)

In practice, one can identify the variability of the prevailing aerosols in terms of

both size distribution and chemical composition and apply Mie theory to derive the

extinction and backscatter properties over a large sample of different size distribu-

tions and refractive indeces within the predetermined range. By fitting the obtained

results with an analytical curve a functional relationship between backscatter and

extinction can be estimated (Gobbi and Barnaba, 2002):

Ba ≈ f [σa(r)] (4.22)

The LIDAR differential equation 4.7 can be written to account for the difference

between the atmospheric backscatter and extinction due to Rayleigh (molecular)

and aerosol (Mie) scattering with the aid of equations 4.14 and 4.15:

dS

dr
=

1

βa+m

dβa+m

dr
− 2(B−1

a −B−1
m )βm (4.23)

The trick is again to find the right transformation function that would bring Eq.

4.23 to a Bernoulli form. Klett defined the new signal variant as:

S ′ − S ′
c = S − Sc +

2

Bm

∫ r=rc

r

βmd − 2

∫ r=rc

r

βm

Ba
dr (4.24)

that leads to a generic expression of the LIDAR equation after setting the backscat-

ter coefficient at the far end of the LIDAR’s path (r = rc)(Klett, 1985; Gobbi and

Barnaba, 2002):

βa(r) + βm(r) =
exp(S ′ − S ′

c)
[

β−1
c + 2

∫ r=rc

r
exp(S′−S′

c)dr
Ba

] (4.25)

This expression would permit the use of an analytical function that correlates

the backscatter coefficient with the extinction magnitude, chosen from best available
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local atmospheric data, to improve the generic assumptions made by the LIDAR’s

manufacturer in order to extract more representative optical depth tables that are

used in simulating the H.E.S.S. telescopes’ response.

4.3 Validation of the ALS 450 XT LIDAR

4.3.1 ALS 450 XT First Results

The new LIDAR was installed at the H.E.S.S. site at the end of April 2007. The main

concern of the operation of any instrument comprising of a powerful light source at

the H.E.S.S. site is its interference with the sensitive photomultiplier tubes (PMTs).

Preliminary tests upon installation indicated that if the LIDAR is co-pointed with

the telescopes there is not a detectable increase in the telescopes’ trigger rate. As

before the LIDAR was incorporated within the H.E.S.S. data acquisition (DAQ),

measurements were taken with the LIDAR pointing at the zenith. Inevitably after a

few days, the LIDAR beam crossed the field of view of the telescope with alarming

results. Indeed, on May the 13th an almost two-fold increase on the telescopes’

trigger rate was observed due to the coincident operation of the LIDAR. The sharp

increase in the registered trigger rate as soon as the LIDAR is turned ON is clearly

shown in Figure 4.10. The laser beam is actually mapped into the sensitive H.E.S.S.

cameras as Figure 4.11 demonstrates. Although this is a very accurate way to

calibrate the new LIDAR, it posses an immediate threat for the sensitive PMTs in

addition to interfering with the detected signal. It was decided, therefore, that until

the LIDAR is fully incorporated within H.E.S.S’s DAQ, it was to be used only in

dusty conditions at the end of a night’s observation.

At this stage (May 2007) we had only a few days of LIDAR data indicating

very clear atmospheric conditions. In order to test the new LIDAR’s response,

various simulations were performed with the aid of MODTRAN (see Section 4.4).

The vertical atmospheric transmittance was estimated for the LIDAR’s wavelength

355 nm by the use of the standard tropical density profile coupled with desert

and tropospheric aerosol models (see Fig. 4.12). For the tropospheric model the

default value of visibility has been selected (i.e. VIS=50 km), while in the more
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Figure 4.10: Trigger rate as measured by

telescope CT4 during LIDAR testing. The

rate drop between 200−500 s corresponds to

the LIDAR’s being switched off.

Figure 4.11: A snap-shot of the CT-3 camera

response while the LIDAR was operational.

The LIDAR’s beam is evident in the camera.

representative desert aerosol model the visibility was set by the prevailing surface

wind speed. Figure 4.13 presents the monthly summary of the surface wind speeds

for May 2007. The wind speed daily average on the 13th of March was ∼ 3.3 ms−1.

A special program was written by the author to calculate atmospheric transmit-

tance for altitude bins of 30 m instead of the 1 km that is the MODTRAN default

binning value within the troposphere. The atmospheric transmission due to molec-

ular scattering only has also been included. The altitude profile of the atmospheric

transmittance as dictated by the LIDAR’s extinction values is in very good agree-

ment with the output of the default for the H.E.S.S. site desert aerosol model scaled

for the prevailing wind speed, a fact that gives a first indication of the LIDAR’s per-

formance. However, the performance of the ALS 450 XT LIDAR should be checked

under dusty conditions where the atmospheric corrections become relevant (see also

Section 4.4.2).
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Figure 4.13: Distribution of surface wind

speed at the H.E.S.S. site as registered by

the weather station.

4.3.2 ALS 450 XT LIDAR Validation Under Dusty Condi-

tions

The Durham group has devised active atmospheric corrections for data taking un-

der the presence of low-level aerosol populations that were based chiefly upon the

cosmic-ray trigger-rate dependence on atmospheric clarity while the CT25K LIDAR

was used to identify high density of aerosols (e.g. Nolan et al., 2008; Brown et al.,

2005a; Aye et al., 2003) (see Section 4.3.3). It is evident the new ALS 450 XT

LIDAR, operating at the Cherenkov relevant wavelength of 355 nm and an expected

maximum range of 15 km (as opposed to CT25K values: 905 nm and 7.5 km), needs

to be extensively tested under dusty conditions before being incorporated within the

atmospheric correction scheme.

The opportunity for LIDAR testing was provided during dust events between

11th − 18th of September 2007 while observing the microquasar LS 5039. In order

not to risk any interference between LIDAR and the telescopes’ cameras, the LIDAR

tests were performed at the end of each night’s observation period with the LIDAR

pointing at 20◦, to match the mean observing angle, for one hour period. The LI-

DAR’s output during a run obtained on the dustier night (i.e. 13th of September) in

comparison with that obtained on a relatively clear night together with the relevant

measurements of TOMS aerosol index is presented in the Figures 4.14.
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Figure 4.14: Upper panel. TOMS global aerosol index distribution Left: 13/09/07.

Right: 13/05/07 (TOMS, 2008). Lower panel: The altitude profile of the backscatter

coefficient as measured by the LIDAR during the relevant periods.

Figure 4.14 reveals the following problems with the operation of the ALS 450

XT LIDAR under dusty conditions:

• the cut-off of the backscatter coefficient (and LIDAR ratio) at approximately

3.5 km above the H.E.S.S. site (see 4.14, lower panel) , and

• the characteristically low LIDAR ratio (see 4.14, lower panel, right).

The following analysis was performed by the author in an effort to identify how

the LIDAR malfunction related to the observed effects.

The low cut-off problem

The LIDAR’s raw signal has been checked, to account for any software malfunction in

the derivation of the backscatter coefficient, and it was verified that above ∼ 3.5 km
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it began to oscillate around zero. For the sake of comparison, the backscatter profile

from a clear run has been also plotted. The cut-off is present in every backscatter

profile within the period of the dusty measurements.

The LIDAR’s PMT was checked for abnormal fluctuation since a maximum

fluctuation of ∼ 16% of the LIDAR’s PMT was observed between runs taken at the

beginning of September 2007. As PMT voltage calibration is not provided within

the software, this could lead to mis-interpretation of the LIDAR’s return signal.

However, during the dusty data taking period (i.e. 11th − 18th of September 2007)

the maximum deviation of the PMT driving voltage was 2.4% and for the dustier

night of 11th, for which most simulations were performed (see Section 4.3.3), was

< 0.5% and thus could be safely ignored.

Then the LIDAR’s auxiliary files were scanned in an effort to identify each pa-

rameter used for the raw signal derivation. In other words, one needs to pin-point the

different parts forming the LIDAR equation (see Section 4.2). The results showed

a severe drop of the laser nominal output value as a difference of a factor of five in

the relevant calibration coefficients was observed between measurements taken on

13/05/07 and 11/09/07. This observation was communicated to the LIDAR’s man-

ufacturer. The drop of the laser output has been verified after remotely completing

a series of calibrations tests under their instructions. In addition, updated software,

allowing for the remote control of the PMT’s driving voltage, was supplied.

Thus, as in the case of the CT25K LIDAR, the laser power output is too low to

access the nominal altitude range (i.e. 0 − 15 km). In the following analysis only

backscatter profiles up to an altitude of 3.5 km will be considered as the LIDAR’s

hardware malfunction was not identified at that stage.

The low LIDAR ratio problem

The calculated transmission, based on the extinction coefficient provided by the

ALS 450 XT LIDAR’s software, is shown in Fig. 4.15. In the same figure, two

MODTRAN-calculated transmission profiles for a desert aerosol model with a wind

speed of 4.5 m/s and a pure molecular atmosphere, together with the transmission

based on the LIDAR data on the 13/05/07, have been also plotted. The LIDAR im-
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plied transmission suggests a clear atmosphere and conflicts with both the H.E.S.S.

registered cosmic-ray trigger rate (see Fig. 4.17) and satellite measurements (see

Fig. 4.14). Indeed, a drop of 50% in the trigger rate corresponds to a 10% decrease

in transmittance. Moreover, the application of the LIDAR-derived transmittance

to cosmic ray simulations yielded a trigger rate that exceeds the observed value by

500% (Nolan, 2008).
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Figure 4.15: MODTRAN-calculated atmospheric transmittance vs LIDAR mea-

sured transmittance on 13/05/07 and 11/09/07.

The derivation of the erroneous extinction coefficient is based upon the backscat-

ter measured profile and the assumed LIDAR ratio. A method of checking the va-

lidity of the measured backscatter profiles is by calculating the backscatter ratio

(Gobbi and Barnaba, 2002):

BR =
βtotal

βm
= 1 +

βa

βm
(4.26)

Thus, the backscatter ratio is a measure of the aerosol contribution on the mea-

sured backscatter. The calculated backscatter ratios for the nights of 13/05/07 and
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11/09/07 are presented in Fig. 4.16.
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Figure 4.16: Comparison of the backscatter

ratio as measured by the ALS 450 XT LI-

DAR on 13/05/07 and 11/09/07.
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Figure 4.17: Cosmic ray trigger rate vs zenith

angle during the observation of LS5039 in

September 2007.

The backscatter contribution due to aerosols on the night of 11/09/07 is shown

clearly in Fig. 4.16 whereas the ratio value for 13/05/07 indicates a molecular−dominated

atmosphere with ratios very close to unity. This can be independently verified from

satellite measurements during the relevant periods. Indeed, a closer look at Fig. 4.14

(i.e. upper panel) reveals that the aerosol index had an average value of AI =∼ 2.5

for the 11th of September while the aerosol index for the 13th of May approaches

zero indicating an aerosol-free atmosphere.

The LIDAR ratio, on the other hand, during the dust storm data-taking is

characteristically small (i.e. see Fig. 4.14 lower panel). The average value of ∼
6 sr−1 lay outside all reported bounds (e.g. Ackermann, 1998; Barnaba et al., 2004).

Moreover, the presence of non-absorbing UV aerosols, as indicated by the low LIDAR

ratio, should be excluded from both H.E.S.S. and satellite data. Specifically, during

the observation of LS5039 under the dust episodes, a 50% reduction on the cosmic-

ray trigger rate was observed (as shown in Fig. 4.17). In addition, the strong positive

TOMS aerosol index is a clear indication of UV absorbing aerosols (TOMS, 2008).

Thus, while the backscatter measured profile agrees with satellite measurements

the LIDAR ratio assumption is erroneous leading to meaningless extinction profiles.
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In the next section a more realistic LIDAR ratio will be calculated in an effort to

derive transmission values in agreement with the observed trigger rates.

4.3.3 Correcting the LIDAR’s signal

The LIDAR ratio has already been discussed and formulated via Eq. 4.21. It

involves two quantities that depend both on aerosol size distribution and chemical

composition. Aerosols of the same composition have a common refractive index

and their size dispersion can be characterised by a lognormal distribution. Since

the atmosphere contains different aerosol components, one must research on the

variability of the local aerosol species on both size distribution and refractive index.

The soil composition of Namibia is presented in Fig. 4.18 while the air mass

trajectories ending on and above H.E.S.S site (i.e. ground level, 250 and 500 m) at

02:00 UTC on 11/09/07 are provided in Fig. 4.19.

Figure 4.18: The soil composition of Namibia

(Esposito et al., 2003).

Figure 4.19: Three day backward trajecto-

ries for air masses arriving over the H.E.S.S.

site in Namibia on 11 of September 2007 at

17:00 UTC (Draxler and Rolph, 2003; Rolph,

2003).

Namibian aerosol dust originates mainly from the desert lands and has been

identified by the GOCART (i.e. Global Ozone Chemistry Aerosol Radiation and

Transport) model as one of the ten main sources of dust globally (Taylor et al., 2002).

It is a mixture of different kind of materials (sodium, calcium, silicon, aluminium
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and sulphur). In general, desert aerosols consist of a background model irrelevant to

the local soil composition and a component representative of soil erosion under high

wind speeds (Ackermann, 1998; Kneizys et al., 1996). The aerosol size distribution

has been monitored during the AERONET campaign via ground based LIDARs for

about a year (Privette et al., 2005). The inverted aerosol size distribution for May

2001 is presented in Fig. 4.20. According to this, the size distribution of desert

aerosols can be described by the nucleation (Aitken) and the large (accumulation)

mode. Since both modes correspond to minerals their refractive index should be

identical. Furthermore, Fig. 4.19 shows that the low altitude air masses are mainly

arriving from the the land above the coast line.

Figure 4.20: Size distribution of aerosols present in Etosha Pan site for May 2001

measured during the AERONET campaign via a ground based LIDAR. Unfortu-

nately more recent data was not available from this site.

A quick review of the literature revealed that a relatively recent and very thor-

ough work on the analytical derivation of the LIDAR ratio, for desert aerosols and

elastic LIDAR operating at 355 nm, has been performed by Barnaba et al. (2004).

This method was first introduced in order to facilitate the inversion of single wave-
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length LIDAR’s response operating at 532 nm (Barnaba and Gobbi, 2001). Ac-

cording to this method the dispersion of the aerosol size distribution was taken into

account by adopting two lognormal distributions, namely R1 = 0.02 − 0.08 nm,

σ1 = 1.5 − 2.1 and R2 = 0.3 − 1.5 nm, σ2 = 1.5 − 2.0. As discussed previously, the

modes correspond to mineral aerosols and thus their refractive index would possess

common variability (mr = 1.50 − 1.55 and mi = (−0.008) − (−0.01)) (d’Almeida

et al., 1991; Gobbi and Barnaba, 2002). Finally, the fluctuation of the normalised

number concentration was assumed (i.e. N1/N1 +N2: 93 − 98 and so N2/N1 +N2:

2 − 7).

Mie theory was implemented for the computation of the backscatter and extinc-

tion coefficients with optical parameters and refractive indices within the selected

range. In order to account for all possible combinations, 20,000 different size dis-

tributions were generated by a random variation of their parameters between the

imposed bounds and the relevant extinction and backscatter coefficient were calcu-

lated. Finally, the analytical relationship between the backscatter and extinction

coefficient was obtained by a high-order polynomial fit on the resulting dispersion

of the extinction versus backscatter coefficient (Barnaba et al., 2004):

log(σa) = 40.06 + 132.75x+ 185.504x2 + 139.9882x3 + 61.273x4 +

15.58723x5 + 2.13661x6 + 0.121828x7 (4.27)

This expression was used in order to invert the LIDAR’s backscatter profile into

extinction. In order to test the corrected LIDAR’s response, simulations were per-

formed with the aid of MODTRAN (see Section 4.4). The vertical atmospheric

transmittance was estimated for the LIDAR’s wavelength 355 nm by the use of the

standard tropical density profile, which best represents the Namibian atmosphere

(see Section 4.4.2), coupled with desert aerosol models representing clear and dusty

skies (i.e. WS = 4.5 m/s and 22.5 m/s respectively, see Fig. 4.21). The difference

between the LIDAR-derived extinction and extinction derived by using the backscat-

ter profile in conjunction with the analytically derived LIDAR ratio is evident in

Fig. 4.21.
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Figure 4.21: Comparison of the corrected LIDAR transmission with various MOD-

TRAN models.

In order to verify the validity of this process, one has to apply the LIDAR inferred

atmospheric model to the simulated cosmic-ray trigger rate and seek agreement

with the observed trigger rate. The MODTRAN program was used to simulate the

atmospheric transmission that best matches the LIDAR results. The desert aerosol

model was selected for the boundary layer (i.e. 0-2 km above the H.E.S.S. site). The

wind speed was used as tuning parameter to match the LIDAR-derived transmission.

By increasing the wind speed, the density of aerosols within the boundary layer

increases, yielding lower atmospheric transmittance. Thus the wind speed is used

to modify aerosol density and does not represent the actual wind speed on the site

(Brown et al., 2005b). The results are presented in Fig. 4.22, which shows that

the LIDAR measurements agree with a desert aerosol model with a wind speed of

26 ms−1. The run numbers correspond to the corrected LIDAR response on the

night of 11/09/2007 and the default atmosphere currently used by the H.E.S.S.

simulations (Brown et al., 2005a). It was later realised by the author that the wind

speed modulation has an effect on both size distribution and chemical composition

on the MODTRAN aerosol formulation (see Section 4.4). A more efficient treatment
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of the MODTRAN code will be presented in Section 4.4.2.

Figure 4.22: Matching the LIDAR response with MODTRAN desert aerosol model.

Data Run 1 − 5 correspond to to the atmospheric transmittance calculated by the

relevant backscatter profiles for LIDAR runs on the 11th of September 2007.

A first check on the LIDAR’s corrected transmission was achieved by plotting

the transmission probability against the observed cosmic-ray trigger rate (see Fig.

4.23). The correlation between the array trigger rate and transmissivity is a strong

indication that the the correction technique is valid. This model has been applied

to a set of CORSIKA cosmic-ray simulations covering the zenith angle range of

observations (i.e. 0− 60 degrees) (Nolan, 2008). The surviving Cherenkov light has

been fed to the telescope array simulation program, yielding the simulated cosmic-

ray trigger rate appearing in Fig. 4.24. Figure 4.24 argues for a first order agreement

between observed and simulated trigger rates. One has to keep in mind, however,

that the confidence in the new LIDAR can be restored only after its operation

at the nominal laser output values. Indeed, it is hard to quantify the uncertainties

arising from the use of the LIDAR outside its operational specifications. In addition,

the LIDAR range is limited at ∼ 4 km providing only limiting information for the

transmission probability of the Cherenkov photons which are produced in average

10 km above the H.E.S.S. site.
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Figure 4.23: Corrected LIDAR’s transmission profile versus array trigger ray. Data

provided by Nolan (2008).

4.4 The MODTRAN Atmospheric Program and

γ-Ray Astronomy

MODTRAN is used extensively throughout this thesis to validate both transmis-

someter and LIDAR responses (e.g. see Figures 3.26, 4.21 respectively) in addition

of being a part of the H.E.S.S. simulation chain. It is a radiation transfer algorithm

for calculating atmospheric radiance and transmittance that has been developed by

the Air Force Research Labs (AFRL) with the aid of Spectral Sciences, Inc (SSI).

A full account of this program is given in the MODTRAN 2/3 and LOWTRAN 7

model report upon which this section is based (Kneizys et al., 1996). MODTRAN

calculates atmospheric transmittance and background radiance, single-scattered so-

lar and lunar radiance, direct solar and lunar irradiance and multiple-scattered so-

lar and thermal radiance. The measurements are performed for a spectral range

0 − 50, 000 cm−1 with the moderate resolution of 2 cm−1 FWHM in averaged steps

of 1 cm−1. The calculations are performed by the division of the atmosphere in
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Figure 4.24: Observed and simulated cosmic-ray trigger rate vs zenith angle during

the observation of LS5039 in September 2007. Data taken from Nolan (2008).

homogeneous layers whose characteristics are extracted either from internal generic

models or by the inclusion of local radiosonde data (Ientilucci, 2007). The effects of

both continuum type (i.e. molecular scattering, aerosol absorption and scattering)

and molecular line absorption (by the use of a three band absorption model based

on pressure, temperature and line-width) are all incorporated within MODTRAN.

The user has the flexibility to choose between the internal standard atmospheres

and aerosol, rain and cloud models or provide more representative values overrid-

ing the default settings. In the case of γ-ray astronomy observations are limited

to cloudless, dry nights. Thus, one is interested in finding the most representa-

tive combination of atmospheric and aerosol model starting with the parameters

provided.
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4.4.1 Standard Atmospheric and Aerosol Models

MODTRAN incorporates six built-in atmospheres each characterised by the relevant

temperature, pressure, density and mixing ratios for H2O, O3, CH4, CO and N2O

altitude profiles. The altitude ranges between 0−120 km and is divided into 50 bins.

The mixing ratio of CO2 is by the user and is set at 365 ppmv for the whole range

of atmospheric simulations produced in this thesis. Moreover, new atmospheric

constituent profiles comprised of separate molecular profiles for thirteen minor and

trace gases are also provided.

The six reference atmospheres for MODTRAN are shown in Table 4.2.

Atmospheric Model Location Period

Tropical 15 N Annual average

Mid-latitude summer 45 N July

Mid-latitude winter 45 N January

Sud-arctic summer 60 N July

Sub-arctic winter 60 N January

US Standard USA 1976

Table 4.2: MODTRAN Default Atmospheric models

In order to efficiently account for the altitude dependence of the aerosols optical

properties MODTRAN divides the atmosphere (i.e. 0 − 100 km) in to four layers,

each containing a different type of aerosols; namely the boundary layer (0 − 2 km),

the upper troposphere (2 − 10 km), the lower stratosphere (10 − 30 km) and the

upper stratosphere (10 − 30 km). The relevant layers for γ-ray astronomy are the

boundary layer and the upper stratosphere. In the boundary layer, the user can

choose between four generic aerosol models (rural, urban, maritime and desert).

Within the boundary layer, the optical characteristics and the refractive index are

taken as altitude independent. Thus, only the aerosol concentration changes. The

total aerosol number is dictated by the visibility parameter:

V IS(km) =
ln(50)

σλ550 + σmol

1

km
(4.28)
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where σλ, σmol = 0.01159 km−1 are the aerosol and molecular extinction coefficients

at 550 nm respectively. Thus, in MODTRAN the term V IS refers to the surface

meteorological range (MOR, see also Section 5.5.1). V IS takes default values for

each aerosol model that can be overwritten by the user. For moderate to low visi-

bilities (V IS = 2 − 10 km), the aerosols are well mixed within the boundary layer

and thus the aerosol vertical profile is constant. For V IS values between 23−50 km

the vertical aerosol profile follows faithfully the exponential decrease of the total

number density of air molecules.

In the next sections, the effect of atmospheric and aerosol model selection in the

Cherenkov light density will be discussed.

4.4.2 Importance of Atmospheric Modelling

The first thorough work on the effect of different atmospheric profiles on the Cherenkov

light density was undertaken by Bernlöhr (Bernlöhr, 2000). Each MODTRAN refer-

ence atmosphere (see Section 4.4.1) has been used in conjunction with 2000 vertical

CORSIKA simulated gamma ray showers for the wavelength range 300 − 600 nm.

The transmission of the Cherenkov light was calculated using the rural aerosol model

with a surface meteorological range V IS of 23 km. Figure 4.25 shows the lateral

density of Cherenkov light as a function of the core distance for the simulated γ-ray

showers arriving at a detector of an altitude 2.2 km. In the extreme case, a difference

of 60% is observed for the Cherenkov photon density close to shower axis between

the tropical and the antarctic winter standard atmosphere. For latitudes near the

H.E.S.S. site, a seasonal fluctuation of 15 − 20% is evident (see Fig. 4.25) and has

been included in energy calibrations of the H.E.S.S. array.

The fluctuation of the Cherenkov photon yield for different atmospheric profiles

can be explained in terms of the refractive index. Different atmospheric profiles

can be seen as different profiles of refractive indices. Since both the Cherenkov

emission and the angle of emission depend on the index of refraction the amount

of Cherenkov photon yield will vary. As an example, for a profile that possesses a

higher temperature within the first two atmospheric layers (0−10 km) the maximum

Cherenkov emission is more likely to be at higher altitude compared to one having a
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Figure 4.25: Average Lateral density of Cherenkov photons for 2000 CORSIKA

simulated γ-ray showers of 100 GeV. Extracted from Bernlöhr (2000).

lower temperature. Indeed, for the same altitude, a higher temperature corresponds

to higher atmospheric density (i.e. higher refractive index), and thus to a higher

Cherenkov emission probability. Consequently, a higher temperature profile forces

the maximum of Cherenkov emission to elevated altitudes.

The atmospheric model for the H.E.S.S. site was selected based on one year’s

radiosonde (i.e. radio-sounding) measurements performed in Windhoek, Namibia.

Figure 4.26 shows the radiosonde measurements, taken at midnight throughout 1999,

together with the reference pressure profiles provided within the MODTRAN pro-

gram (see 4.4.1). The tropical model (annual average) fits the data well. MOD-

TRAN provides the flexibility of incorporating actual radiosonde readings for a

maximum of 50 altitude bins. Thus, local radiosonde measurements at the H.E.S.S.

site may be used in conjunction with MODTRAN to provide a more localised at-

mospheric model.

The atmospheric transmission of Cherenkov light is modelled by the adaptation
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Figure 4.26: MODTRAN built-in pressure profiles compared with radiosonde read-

ings taken throughout 1999 at Windhoek, Namibia (Osborne et al., 2002).

of MODTRAN’s desert aerosol model at a default wind speed of of 10ms−1 for the

mixing layer, whilst the tropospheric extinction model is used for the upper tropo-

sphere. Thus, Cherenkov light extinction fluctuations are mainly dictated from the

aerosol density variation within the boundary layer. The confinement of the aerosols

within the boundary layer is supported by the old (CT25K) LIDAR’s backscatter

profiles retrieved during its three years of operation (i.e. March 2004 − April 2007).

The selected extinction model is adequate for measurements under clear atmospheric

conditions usually to be found on the H.E.S.S. site. However, H.E.S.S. telescope runs

taken under moderate to high concentration of low-level dust are usually identified

by their low trigger rate and excluded from further analysis. The Durham group

has developed an active atmospheric calibration method that has been successfully

applied to PKS 2155-304 and H2356-309. A brief description for the method will be

given below followed by some suggestions of improvements (Spangler, 2008; Brown

et al., 2005b,a) :

• The Corsika program is used to simulate the air showers induced by cosmic-ray

particles.
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• The MODTRAN default atmospheric model is modified by changing the wind

speed (i.e. 0 − 30ms−1) on the mixing layer producing a series of different

optical depth tables . The wind speed is used to modify the aerosol density

and does not reflect the actual wind speed on the site.

• MODTRAN tables are used to filter the Cherenkov light produced via the

simulated cosmic-ray showers. The transmitted light is fed into the H.E.S.S.

array simulation program and the relevant trigger rate is extracted.

• A wind speed is associated with each night’s observations by requiring agree-

ment between simulated and observed cosmic-ray trigger-rate.

• Finally, the atmosphere with the selected wind speed is applied to a large set

of γ-ray simulations leading to the derivation of the corrected parameters (i.e.

energy, effective area and mean-scale parameters).

The assumption that wind speed relates only to the aerosol number density is

not a valid one. A closer look at desert aerosol model reveals that MODTRAN

utilises two different size distribution formulations to describe the background and

dust storm conditions (Kneizys et al., 1996). The parameters of the size distributions

used in the background and dust storm desert aerosols models are given in Table 4.3:

Model i Ni (cm−3) log (σi) Ri (µm)

1 997 0.328 0.0010

Background 2 842.4 0.505 0.0218

3 7.10 × 10−4 0.277 6.24

1 726 0.247 0.0010

Dust Storm 2 1,140 0.770 0.0188

3 1.78 × 10−1 0.438 10.8

Table 4.3: Parameters used in the background desert and desert dust storm aerosol

models (Kneizys et al., 1996).
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The wind speed acts as a model selector modifying the optical characteristics

of the aerosols. Moreover, the elemental concentration of desert aerosols (i.e. Ca,

Si, S, Fe, Cl) can vary as a function of the wind speed (Kushelevsky et al., 1983).

Thus, the use of a high wind speed, as dictated by the matching of simulated versus

measured cosmic-ray trigger-rate, for observations on a dusty but non-windy night

could lead to unrealistic atmospheric models. The active calibration could use the

surface meteorological range (MODTRAN parameter: V IS) as opposed to the wind

speed (MODTRAN parameter: WSS) and the value of the wind speed can be set

to the actual value provided by the weather station. Figure 4.27 demonstrates

the difference between the used and suggested method obtained by requiring the

coincidence in transmittance between the wavelength range 360 − 550 nm for at

least one wavelength bin. The selection of both wavelength range and the vertical

transmission path (0.55 km) was driven by the transmissometer’s characteristics.
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Figure 4.27: Comparison between visibility and wind speed as model selectors.

For clear atmospheres (high visibilities and low wind speeds) only the back-

ground model is invoked and the transmittance profiles are inseparable. However,

atmospheric calibration is necessary only under dusty conditions. It is evident that

as the wind speed increases, the dust storm model comes in to play leading to an

gradually increasing the difference between the transmission profiles (see Fig. 4.27).
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The observed difference can be justified by the difference in the number of large

particles in mode 3 (see Table 4.3).

4.5 The Status of Atmospheric Monitoring

This Chapter marks the end of the first part of this thesis, which was concerned

with the atmospheric monitoring of the H.E.S.S. site. Simulations of a stand-alone

H.E.S.S. telescope, under different atmospheric assumptions, were used to quantify

the atmospheric effect on the telescope’s performance. Specifically, the simulations

used the same atmospheric model with different aerosol boundary layer scaling to

calculate the difference on stand-alone telescope’s effective sensitive area response.

It was seen that for low energies the attenuation of the signal becomes significant,

a fact that, at this time, supported the use of a transmissometer.

The DNT was later installed and tested. The MODTRAN atmospheric code

was adopted to simulate its performance with positive results. However, the DNT’s

inherent altitude constraint at 550 m necessitated its incorporation with the CT25K

LIDAR for the derivation site-specific atmospheric transmission tables. That was

proven to be impossible, mainly due to the CT25K low power, but also because of

the DNT’s 910 nm LED unreliability.

The CT25K, after an operation of three years, has ceased to work due to a

problem identified in the receiver. The incapability of the old LIDAR to derive

meaningful optical depths, coupled with the installation of the new one a few days

later, rendered the possibility of costly repairs pointless.

The much awaited ALS 450 XT LIDAR was tested under low-level dust condi-

tions with disappointing initial results. Considerable effort was dedicated by the

author to understand the fine art of interpreting the elastic LIDAR response while

operating outside specifications - a fact reflected upon in the theoretical section.

The author identified hardware and software malfunctions rendering the immedi-

ate incorporation of the ALS 450 XT within the atmospheric monitoring scheme

impossible. Specifically, the incapability of the new LIDAR to penetrate aerosol

layers at altitudes higher than ∼ 3.5 km was attributed to the LIDAR’s laser out-
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put operating at much lower power than specified. More importantly, it has been

shown that the assumption of the manufacturer lidar-ratio was erroneous. With the

aid of analytical back trajectories and satellite images, a proper functional relation-

ship between the backscatter and extinction profiles was selected and the corrected

results have been favourably compared against MODTRAN models. In addition,

the correlation between the LIDAR’s corrected transmissivity with the cosmic-ray

trigger-rate has been demonstrated.

The manufacturer has restored the laser output at the nominal level. The

ALS 450 XT currently covers the atmosphere above the H.E.S.S. site up to the height

of the Cherenkov radiation production. In addition, the manufacturer equipped the

LIDAR with a basic list of realistic backscatter-to-extinction ratios under the as-

sumption of different aerosol models. Thus, the LIDAR provides optical depth tables

than can, in theory, be directly incorporated within the H.E.S.S. analysis scheme.

Moreover, the methodology described for the derivation of realistic daily lidar-ratios

can be applied to minimise the LIDAR uncertainties.

The LIDAR, however, has yet (May 09) to be incorporated within the H.E.S.S.

DAQ. This is due to its possible interference with the telescopes’ PMTs if pointed at

the wrong direction during run time. Its inclusion within the DAQ is expected soon,

at which point the LIDAR’s response will be checked against the active atmospheric

calibration scheme based on the cosmic-ray trigger-rate, preferably with the adoption

of suggestions provided in Section 4.4.2.

An operational LIDAR will also provide the motivation to update the Namibian

transmissometer (DNT) as a direct comparison between the DNT and the ALS

450 XT is now possible. In what follows, the adaptation of the DNT for daylight

operation leading to its transformation into a competitive aviation transmissometer

will be discussed.



Chapter 5

Durham’s High Level

Transmissometer (DHLT)

In this chapter we discuss the development of and first results from the High Level

Transmissometer that has been manufactured at Durham University.

5.1 Motivation and Prior Art

5.1.1 The Durham’s Night Transmissometer

The creation of the Durham’s High Level Transmissometer (DHLT) was based on

the successful deployment of a similar instrument in Namibia that has been fully

operational for two years (as described in section 3.4).

The constant operation of the DNT allowed its comparison with standard at-

mospheric monitoring devices such as the Vaisala CT25K Ceilometer also operating

on site. The agreement between the DNT and Vaisala’s Ceilometer is evident in

Figure 5.1. This favourable comparison with Vaisala’s LIDAR, considered as one

of atmospheric market’s standard instruments, built our confidence to explore the

DNT’s day-time capabilities.

128
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Figure 5.1: Correlation between transmissivity (T) and backscatter (Bs) measured

for the first 550m above the H.E.S.S. site from Durham’s transmissometer and

Vaisala Ceilometer respectively. The linear fit is T = (0.999 ± 0.099) − (3.23 ±
0.004) × 10−6 × Bs. (Courtesy of Denise Spangler).

5.1.2 Motivation for Durham’s High Level Transmissometer

(DHLT).

Due to the nature of γ-ray Astronomy, our transmissometer needs to operate only

at night, where the battle between the signal and noise can be won relatively easily.

Following the success of the DNT, we built a day-light transmissometer prototype

which incorporates all the advantages of the night version, but can be operated

during the day, with the aspiration of promoting it into the vast aviation market.

The measurement of visibility at airports is a vital factor in aviation safety.

Visibility can be defined as a direct function of the extinction coefficient (see Section

5.5.1) . The latter can be measured either directly, by the use of transmissometers,

or indirectly via forward scatter sensors.
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Forward Scatter Sensors

In contrast to transmissometers, forward scatter sensors only measure the amount

of the light scattered by aerosols at a small solid angle. The extinction coefficient

(σ) is estimated by the assumption of a light scattering function of the prevailing

aerosols. It has been proven, however, that different aerosol distributions having

the same value of σ may exist (van der Meulen, 1992). In addition, the salinity

of aerosols may vary, leading to changes in their size distribution. For scattering

angles between 30◦ and 35◦ the scattering functions lead to the same result (for a

wavelength range 400 - 1000 nm) for most aerosol types. Thus, σ can be derived

from the following formula:

σ = cι(φ,Ω) (5.1)

where:

ι(φ,Ω) denotes the relative amount of light scattered at an angle φ in the forward

direction and observed within the solid angle Ω, and c is the calibration constant

Forward scatter sensors cost less than transmissometers and are easier to main-

tain and install. Moreover, due to their compact design, they can be positioned on

a tall mounting. Thus forward scatter sensors can be mounted at the level of pilot’s

eyes when approaching the end of the runway, which for big planes can be as high as

5 metres. That is not possible with transmissometers which, due to stability issues,

are usually mounted at a maximum height of 2.5 m above ground level.

On the other hand, due to the indirect nature of the scatter measurement, for-

ward scatter sensors cannot produce accurate results under all weather conditions.

Specifically, these instruments have been proven to work better under fog, snow

and (less frequently) under rain. However, it is not clear whether they could pro-

duce measurements of sufficient accuracy under sand-storms or smoke (Utela, 2002).

Thus, the response of a forward scatter sensor is usually calibrated against a trans-

missometer under weather conditions most likely to occur for the specific site.

The DHLT has the aspiration to fill in this gap in the airport industry by pro-

viding a transmissometer that can accurately measure visibility under all weather

conditions, incorporating the low cost and flexibility only found until now in forward

scatter sensors.
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5.2 Project Strategy

The author, appointed to work part-time on and carrying the main responsibility for

this project, constructed an action plan in order to achieve the project’s principal

objective, namely to draw a license agreement with an industrial partner:

1. develop a daylight-operating prototype quickly, without particular regard to

cost, in order to demonstrate that, in principle, an instrument could be built

that would operate during the day and over the required distances,

2. test and optimise the prototype,

3. calibrate the prototype and validate its performance by estimating its com-

bined uncertainty, thereby realising its strengths and weaknesses and

4. advertise the instrument’s innovative characteristics, performance and price in

order to identify interested potential distributors.

In addition to developing quickly a daylight working prototype, one should iden-

tify, and if possible develop, ways of reducing the costs of the instrument, this being

a major element in fulfilling the requirements of a commercial instrument.

In what follows an account will be given of the author’s effort to meet the first

three requirements set by this action plan. The last requirement of the action plan

was commissioned to RTC North (McStea, 2006), who performed market research

by contacting possible licensees.

All in all, the author has been responsible for the algorithms used to perform the

transmission and MOR calculations, the optical design, all data analysis, error min-

imisation, instrument calibration and liaison with Durham’s University Electronic

and Mechanical workshops and RTC North (see also Chapter 1).

5.3 Hardware

The basic design of the Durham transmissometer involves the use of an LED-based

transmitter and a detecting camera, with suitable software for locating the LED in



5.3. Hardware 132

camera’s field of view and measuring its intensity.

5.3.1 The light transmitter

The Namibian transmissometer employs an array of LEDs operating at different

wavelengths. Our first modification to this design was to use a single super-bright

broad-spectrum LED (capable of producing a typical luminous flux Φ = 80 lm) as the

light source (Lumileds, 2005). This follows the recommendations of the International

Civil Aviation Organisation (ICAO), which notes that the usage of monochromatic

light sources may lead to errors under some weather conditions (ICAO, 2005). The

main optical and electrical characteristics of the selected Luxeon c© III Star LXHL-

LW3C are listed in Table 5.1. In addition, the LED’s typical emission spectrum

and spatial radiation pattern are provided in Figures 5.2 and 5.3 respectively. It is

worth noticing that Luxeon’s super bright LED was initially offered in cool white at

a colour temperature of 5500 K. Thus, its emission spectrum (as shown in Fig. 5.2)

was expected to deviate from the spectral power distribution of the standardised

incandescent lamp (Wyszecki and Stiles, 1982), which has a colour temperature of

2700 K, and is required for the visibility measurement (see Section 5.5.1). This

problem was rectified by the acquisition of a warm white Luxeon LED (3000 K

colour temperature) that become available later (see Section 6.9.1).

Figure 5.2: Typical cool white spectrum of

Luxeon III Star LED at 1 A test current and

junction temperature TJ = 25◦C (Lumileds,

2005).

Figure 5.3: Representative spatial radiation

pattern for Luxeon III Star LED at 1 A test

current and junction temperature TJ = 25◦C

(Lumileds, 2005).
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Typical characteristics of the Luxeon III Star LXHL-LW3C LED

Flux Optical

Luminous Drive Colour Total Viewing

Flux Current Temperature Included Angle

(lm) (A) CCT (K) Angle (degrees) (degrees)

65 0.7 5500 160 140

80 1.0

Electrical Characteristics

Drive Forward Dynamic Temperature Thermal

Current Voltage Resistance Coefficient of Resistance

Vf Junction to

(A) (V) (Ω) (mV/◦C) Case (◦C/W )

0.7 3.70 0.8 −2.0 17

Table 5.1: Typical characteristics of the Luxeon III Star cool white LED. Drawn

from the Luxeon manual (Lumileds, 2005).

The LED (see Figure 5.5) is mounted in a polycarbonate lens providing a beam

of 3◦ FWHM. In front of the LED’s optics sits a diffuser in order to smooth both its

lateral profile and the effect of its central obstruction (see Figures 5.4, 5.5 and 5.6).

A control system for the LED that would provide a stable current independent of

temperature was designed at Durham and a suitable PCB produced (Moore, 2008),

shown in Figure 5.6 (a circuit diagram can be found in the Appendix B.2). This can

be programmed to operate the LED under a wide range of currents (i.e. 35%−100%)

to provide for better calibration and to allow the transmissometer to be used over a

wide range of distances. A photodiode is employed to monitor the intensity of the

LED, and the drive characteristics and temperatures of the LED and its associated

electronics are monitored. The stability of the LED current and temperature can

be used for quality assurance of the data, while the photodiode’s signal is used for

the active calibration of the instrument (see Section 5.6.5).

The transmitter is driven using RS232, as the baselines required by the aviation
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industry are small, typically 25 − 70 m. However, the instrument in Namibia is

operated via a licence-free radio connection, and this possibility exists for the new

instrument. The Namibian transmitter is also solar-powered for use in its remote

location, and again this remains an option (Le Gallou, 2005).

Figure 5.4: The light transmitter. The controller system is towards the top of the

enclosure and the power supply is at the bottom right. The LED is located behind

the large, square diffuser.
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Figure 5.5: A closer look at the LED’s op-

tics. The photodiode - now located behind

the diffuser (see in Figure 7.2)- and the tem-

perature gauge are also clearly identifiable.

Figure 5.6: A closer look at the PCB.

5.3.2 The light receiver

The light receiver (see Figures 5.7 and 5.8) is based around the monochrome uEye

CMOS camera manufactured by IDS (Imaging Development Systems). The camera

(see Figure 5.9) is equipped with a light sensitive 1/3′′ sensor with rolling shutter and

has a resolution of 640×480. It comes with a C-Mount that allows for a wide field of

view when equipped with a suitable lens, providing for simple and robust alignment.

Specifically, two lenses with focal lengths of 16 mm and 105 mm have been used to

give a field of view that varies from 6.50◦ to 0.50◦ across respectively. Even with

the bigger lens, the field of view is more than adequate to prevent problems due to

misalignment.

The camera is driven using Arcom’s Apollo SBC (Single Board Computer) via

a USB 2.0 cable. The Apollo is an EBX format, high functionality PC-compatible

processor board based around the 855GME/ICH4 chipset (Arcom, 2005). The

selected version includes an 1.6 GHz M Celeron processor, 512 Mb of memory, a

40 Gb hard disc drive and offers all standard features and connectors found on a
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Figure 5.7: The light receiver. One can clearly identify the Apollo SBC with its

power supply and hard disc, the camera equipped with the 16 mm lens and a simple

temperature monitoring device.
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Figure 5.8: The light receiver with the lid

closed. The heat sink was used in the initial

stages of development. The CMOS camera,

located at the bottom right of this photo-

graph, was later relocated to a separate box

to maintain temperature stability.

Figure 5.9: The camera equipped with the

big lens (f = 105 mm) in its separate box.

PC motherboard (see Figure 5.10). It is running under license free SUSE 9.3 Linux.

This camera has the further advantage of being considerably less expensive than

the CCD camera used in the original instrument, and immediately contributes to a

reduction in manufacturing costs.

Both the camera and the transmitter are enclosed by two identical enclosures

that meet IP66/67 standards of ingress protection. The receiver’s box was equipped

with a big contact heat sink (see Figure 5.8) in order to resolve heating issues

during the hot summer days. After exhaustive tests, which included the creation of

a controlled air flow throughout the receiver, it was decided that the camera should

be totally isolated from the receiver’s other instrumentation (see Fig. 5.9).
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The transmitter and receiver are both mounted in steady bases (manufactured

in the Physics Workshop at Durham) that allow easy mechanical alignment.

Figure 5.10: Apollo ‘at a glance’. Taken from its technical manual (Arcom, 2005).

5.4 Software

5.4.1 Measurement algorithm

The program that operates the transmissometer (dlgmainview.cpp) is based on the

licence-free code that drives the monochromatic CMOS camera. It is responsible for

synchronising the operation of the LED with the camera in order to take exposures

optimised for the dynamic range of the camera. It also measures the background

intensity by two independent methods to allow for an accurate determination of the

observed LED intensity. In the first method, the observed intensity of the LED
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and luminous background is calculated from the picture taken with the optimised

exposure time by summing the pixel values of the 5× 5 pixel square centred around

the brightest pixel. The intensity of the background is then calculated by summing

the values of the pixels located at a distance between 10 and 20 pixels from the centre

of the brightest spot. The observed LED intensity is calculated by subtracting the

normalised average values. In the second method, the intensity of the background

is calculated by taking a dark frame of 5× 5 pixels. By subtracting this value from

the overall intensity calculated from the ON picture, a second value for the observed

LED intensity is derived.

The operational algorithm can be described as the sum of the following steps:

• the LED is switched ON,

• after a short delay, an exposure is taken by the CMOS camera with an exposure

time that is believed to be typical of transmissometer’s baseline and site of

operation,

• the picture taken is analysed in order to locate the brightest array of pixels

(of size 3 × 3) and determine its intensity,

• this maximum intensity is required to be between 170 and 230 ADUs (i.e.

Analog-to-Digital Unit). If this condition is not satisfied a loop of exposures

with successive corrected exposure times is initiated until the intensity criteria

are met,

• the observed intensity (Rl +RB) of the LED and luminous background is cal-

culated from the picture taken with this optimised exposure time by summing

the pixel values of the 5 × 5 pixel square centred around the brightest pixel.

The intensity of the background is calculated by summing the values of the

pixels located at a distance between 10 and 20 pixels from the centre of the

brightest spot. The observed LED intensity (R1) is calculated by subtract-

ing the normalised average values. (Hereafter, this method of extracting the

background intensity from the CMOS ON frame is referred as Method A),

• the LED is switched OFF,
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• after a delay, optimised to take into account the short term variation of the

background intensity, an OFF exposure is taken having exactly the same ex-

posure time as the ON exposure,

• the intensity of the background is now calculated by a dark frame of 5 × 5

pixels. By subtracting this value from the overall intensity (Rl+RB) calculated

from the ON picture a second value (R2) for the observed LED intensity is

calculated. (Hereafter, this method of inferring the background intensity from

the difference between the ON and OFF CMOS frames is referred as Method

B),

• the process continues until any desired length.

The output of the transmitter’s photodiode when the LED is OFF is constantly

monitored. This is used to discriminate between day/night conditions and to switch

the program to send the data to the relevant day/night folders.

5.4.2 Data Structure

The PCB has the ability to monitor many parameters that can be used to better as-

sess the measured LED intensity. Specifically, the monitored quantities, in addition

to the observed LED intensity, include:

• day and time of the measurement,

• values of the current and voltage that drive the LED (ILED, VLED),

• photodiode signal that measures the LED’s direct transmission,

• temperature of the PCB and LED optics,

• coordinates of the brightest pixel.

The data-files are written in ASCII format. Part of a typical file is listed below:

‘‘-------------------

Mon Feb 26 14:37:02 2007

14:37:35 4 197.449 198.076 24.96000 262 260 201.469 4.020 201.469 3.394 0.991 8.970 13.2 11.7 2.484 0.641

14:37:41 5 198.633 198.974 24.96000 262 263 202.429 3.796 202.429 3.454 0.991 8.970 12.7 11.7 2.489 0.636’’
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The columns are: “time, Intensity(ON-OFF) 1st method, (ON-OFF) 2nd method,

exposure time, X coordinate of the brightest pixel, Y coordinate of the brightest

pixel, Intensity ON, Intensity OFF 1st method, Intensity ON, Intensity OFF 2nd

method, LED current, LED voltage, ON board temperature, OFF board tempera-

ture, photodiode voltage (LED ON), photodiode voltage (LED OFF)”

The stability of the LED current and temperature can be used for quality assur-

ance of the data while the photodiode’s signal is used for the off-line calibration of

the instrument (see Figure 5.24). Moreover, the coordinates of the centre of the light

spot are traced to allow for the prompt alignment between receiver and transmitter.

The author developed a purpose-built readout program, based in Root, that pro-

vides a processing suite capable of handling the relatively large amount of discrete

data provided by the instrument. These data are used to calculate transmittance

and visibility values and the program is able to represent graphically any usable com-

bination of calculated and monitored quantities. This program will be presented in

Section 5.7.4, after the introduction to the mathematical methods for the calculation

of both transmittance and visibility.

5.5 The calculation of visibility

The term visibility is generally used to define the greatest distance that a prominent

object can be seen and identified by unaided, normal eyes. Thus, it is a complex

psycho-physical phenomenon depending mainly on the atmospheric extinction coef-

ficient (σ). While σ can be measured objectively, visibility is also affected by subjec-

tive factors caused by differences in individual visual perception and interpretative

ability. Moreover, visual perception is governed by different physical mechanisms

during day and night time. The relative sensitivity of a normal observer at various

wavelengths (i.e. luminous efficacy) is shown in Figure 5.11. The observed difference

is due to the fact that day vision (photopic) involves the fovea centralis (located at

the central part of the eye’s retina) consisting of cones, while night vision (scotopic)

involves rods (peripheral part of the retina) that are absent from the fovea.

The cones are responsible for light-adapted vision. Figure 5.12 shows that cones
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Figure 5.11: Relative sensitivity curve for the

C.I.E. Standard Observer. The data files for

this graph were adopted from Wyszecki and

Stiles (1982).

Figure 5.12: Density curves of coned and

rods on the eye’s retina. Taken from

Williamson and Cummins (1983).

are very closely packed within the fovea centralis. Thus, this region of close-packed

cones provides eye’s highest visual resolution. Moreover, cones are responsible for

colour perception as their total number of 6-7 million can be discriminated into red

(64%), green (32%) and blue (2%). Cones are, therefore, responsible for both colour

vision and the highest visual resolution.

On the other hand, rods are both more numerous and more sensitive to light

than the cones. A typical retina consists of 120 × 106 rods which are distributed

in the retina as shown into Figure 5.12. Even though rods are absent from the

fovea, their density increases rapidly at a short angular distance from it, occupying

a large area of the retina. Due to their light sensitivity rods are much better motion

detectors than cones. The domination of rods in the peripheral vision explains its

sensitivity to light.

Photopic vision is active for luminances greater than 3 cdm−2 while scotopic

vision dominates for luminances lower than 0.01 cdm−2 (Palmer, 2003). For light

levels between photopic and scotopic visions, both cones and rods are simultane-

ously active. The derivation of a composite spectral response for the mesopic (i.e.

in-between) region is difficult due to both the different spectral and light level sen-
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sitivities between the cones and the rods and is a topic of current research (Or-

reveteläinen, 2005).

5.5.1 Practical Estimation of Visibility

The confusion related to the measurement of visibility for aeronautical purposes

is reflected in the plethora of visibility definitions. Indeed the aeronautical-related

visibility can be defined (and therefore reported), in the following ways:

• Meteorological Optical Range (MOR) is the length of the path in the atmo-

sphere required to reduce the luminous flux in a collimated beam from an

incandescent lamp, at a colour temperature of 2700 K, to 0.05 of its original

value, the luminous flux being evaluated by means of the photometric lumi-

nosity function of the International Commission on Illumination (CIE) (metre,

m or kilometre, km) (WMO, 1992),

• Visibility for aeronautical purposes (VIS-AERO), is the greater of:

a) the greatest distance at which a black object of suitable dimensions can

be seen and recognised when observed against a bright background; b) the

greatest distance at which lights in the vicinity of 1000 candelas can be seen

and identified against an unlit background (ICAO, 2000; C̆ervená, 2005).

• Runway Visual Range (RVR) is the range over which the pilot of an aircraft

on the centre line of the runway can see the runway markings or the lights

delineating the runway or identifying its centre line (WMO, 1995).

To add to this confusion MOR and VIS-AERO are often forecasted interchangeably

(AMOSSG, 2006).

MOR is directly related to the atmospheric extinction coefficient and does not

depend on the time of the observation (day/night). It is close to an observer’s

estimation of visibility during the day (i.e. visibility by contrast: see next section).

The latter depends on the observer’s acuity and the object observed but in practice
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the contrast threshold is fixed at 0.05. The mathematical relation between the MOR

and extinction coefficient can be found from equation 3.2 by requiring a transmission

coefficient T of 5%:

T (d) =

(

I0
I

)

= 0.05 = e−σ(MOR) ⇒MOR =

(

ln( 1
0.05

)

σ

)

(5.2)

Even though MOR can be used accurately for day-time estimation of visibility,

during the night MOR underestimates the visibility because the observer’s percep-

tion of light sources increases. That leads to the ICAO’s definition of aeronautical

visibility. According to this definition VIS-AERO depends, in addition to the at-

mospheric transparency, on the intensity of the light source (1000 Cd) and the

background luminance. The difference between VIS-AERO and MOR increases for

low values of visibility and background luminance (AMOSSG, 2006).

The RVR takes into account the dedicated runway lights, used to guide the

pilots, which have an average intensity of 10000 Cd. The average height of a pilot’s

eye-level in an aircraft above the centre line of the runway is 5 m. It should be

noted that for larger aircraft this height could exceed 10 m. In practice, RVR is

calculated for a height of 2.5 m above the runway. RVR, therefore, depends on

the atmospheric extinction coefficient, runway lighting and background illuminance.

The difference between the three different expressions of visibility and its variations

between day/night is demonstrated in Figures 5.13, and 5.14 respectively.

Daylight Visibility

Daylight visibility involves seeing an dark object against the bright sky background.

When a black object is viewed from a distance through an illuminated atmosphere

the observed contrast decreases and image illuminance is attenuated. Contrast lu-

minance is defined by Koschmieder (Koschmieder, 1924) as:

C =
Lo − Lh

Lh
(5.3)
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Figure 5.13: Ratios of RVR/MOR,

VIS/MOR and RVR/VIS are plotted

as a function of MOR during the day. The

data files for this graph were adopted from

AMOSSG (2006).

Figure 5.14: The same ratios as in Figure

5.13, are plotted against MOR during the

night . An intensity of 10000 Cd and 5000

Cd for side and axial runway lighting have

been considered. The data were taken from

AMOSSG (2006).

where:

Lo is the luminance of the object

Lh is the luminance of the horizon sky.

The contrast transmittance can be defined:

Contrast Transmittance =
C

Co

(5.4)

where:

C is the apparent contrast at a given distance

C0 is the initial contrast observed at a very close distance (thus, eliminating the

atmospheric effect).

By adopting a contrast detection threshold for the human eye and assuming that

contrast and radiometric transmission are the same, MOR can be calculated from

transmissometer’s measurements via the Beer-Bouguer transmission equation 5.2
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(Farmer, 2001b):

I

Io
=

C

C0
= e−σx (5.5)

The luminance of a perfectly dark target is by definition Lo = 0 that gives a

contrast of C = −1 (the negative sign indicates that the target is darker than its

background). The value of the contrast ratio threshold viewing this target is assumed

to be 0.05 for aeronautical purposes (a value of 0.02 is adopted in meteorology). By

substituting these values into equation 5.5 and expressing the extinction coefficient

in terms of the transmissometer’s measurements, one gets the visual range or MOR:

MOR =
R ln (0.05)

ln I
I0

(5.6)

where R is the transmissometer’s baseline.

The MOR calculated in this way is very close to an observer’s estimation of visibility

during the day. The latter depends on the visual acuity of the observer and on the

contrast of the object observed (see Section 5.5.1). These parameters are set by

definition to 0.05 and -1 respectively.

Thus, the daylight visibility is a function of σ which is estimated directly from

the transmissometer.

Night-time Visibility

Night-time visibility involves the distance at which a runway light of a known in-

tensity can be seen. Under prevailing artificial lighting conditions the general form

of Allard’s law (Allard, 1876) can be expressed as:

Et =
I exp

[

−
∫ V

0
σ(x)dx

]

V 2
(5.7)

where:

I is the intensity of the runway light

Et is the visual threshold of illumination, which is defined as the smallest illumi-

nance required by the eye to make a point (or small) light source visible (i.e. the

observer’s sensitivity to the illumination intensity) (ICAO, 2005)
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and V is the visual range.

If the extinction coefficient is constant within this range equation 5.7 becomes:

Et =
I0exp(−σV )

V 2
(5.8)

One can introduce the transmission factor as calculated by the transmissometer

T = e−σR in order to make equation 5.8 more usable (Petitpa, 1982):

T
V
R = e−V ⇒ Et =

I0T
V
R

V 2
⇒ 2 lnV + lnEt = ln I0 +

V

R
lnT (5.9)

where:

R is the transmissometer’s baseline.

Using the above equation RVR can be calculated by setting the transmissometer’s

baseline R and light intensity. The standard for aeronautical purposes is R=750 ft

and I0 = 10, 000 candela. Corrections must be taken into account in order to com-

pensate for the actual transmissometer’s characteristics. The visual threshold of

illumination also needs to be estimated. The value of this threshold depends mainly

on the background luminance (B) against which the point (or small) light source is

seen. The background luminance was initially separated into four categories, corre-

sponding to different background conditions ranging from a dark night to a bright

day fog, each of which was allocated a constant threshold of illumination as listed in

Table 5.2. The recommended stepped function between the illumination threshold

and the background luminance is graphically represented in Fig. 5.15. It is evident

that the illumination threshold ranges over three orders of magnitude between ex-

treme background conditions (night to bright day fog) whereas for adjacent steps

it varies by one order of magnitude. In practice, modern transmissometers monitor

constantly the background luminance (B), and ET is approximated by the analyti-

cal expression of the continuous curve intersecting the steps in the middle (see Fig.

5.15) (ICAO, 2005):

log(ET ) = 0.57 log (B) + 0.05[log (B)]2 − 6.66 (5.10)
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Table 5.2: The steps of the visual threshold of illumination under different back-

ground conditions (ICAO, 2005).

Condition Threshold of illumination (lx) Background luminance (cd/m2)

Night 8 × 10−7 ≤ 50

Intermediate 10−5 51 − 999

Normal day 10−4 103 − 12 × 103

Bright day (sunlit fog) 10−3 > 12 × 103

Figure 5.15: The variation of the visual threshold of illumination (ET ) as a function

of the the background illuminance (B). The recommended values for the illumina-

tion threshold under different background conditions have been adapted from ICAO

(2005).

Thus, for the calculation of the RVR one needs only three parameters; namely:

the transmittance factor (or MOR), the luminous intensity of the runway lights (I)
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and the background luminance (B). The last can be determined by the provision of

an extra background luminance monitor.

5.6 System Performance

5.6.1 Eliminating Background Intensity

A very important aspect of DHLT is that the background intensity is calculated by

two independent methods. These methods have been proven to work in Namibia

where only night-time observations are taken. In order to deal with the high-

intensity background associated with our day prototype more effectively, we devised

a black shield around the transmitter’s window. Figure 5.16 shows the variation of

the relative difference between the values obtained by the different methods during

a relatively bright day. The percentage difference is very small and illustrates the

reliability of the device.

Figure 5.16: Percentage difference between values of visibility measured with the

DHLT, calculated by using the two different methods (outlined in Section 5.4.1).

The difference is very small, and illustrates the comparability of the two methods.
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5.6.2 Averaging-Time Optimisation

Each individual transmissometer reading suffers from the statistical fluctuation that

is inherent in any photon counting method. This uncertainty can be limited by aver-

aging over a large number of measurements. However, the presence of meteorological

interference between the transmissometer’s transmitter and receiver units (e.g. a fast

moving fog front) could also lead to rapidly fluctuating irradiance measurements.

Thus, one needs to find the optimum averaging time that gives a transmissometer

signal that is both steady and sensitive to swift changes in the atmospheric trans-

parency. This objective was tackled by calculating the 95% confidence interval as

a function of averaging time under stable atmospheric conditions (see Figure 5.17).

The individual measurements used had already been corrected for small variations

of the source’s intensity (see Section 5.6.5). Figure 5.17 convince us that using an

averaging time greater than two minutes will not lead to a significant improvement

of the measurement’s accuracy.

Figure 5.17: 95% confidence interval around the mean CMOS irradiance plotted

against signal averaging time for the DHLT.
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5.6.3 Spot Size Optimisation.

The light signal from the transmitter is registered in CMOS photodiodes (pixels)

where the received light is translated into electrons. For the DHLT characteristics,

a baseline of 45 m, aperture 2 mm and camera focal length of 105 mm, the LED

produces a spot of 15 pixels radius within the camera’s field of view. Analysis of

the full spot size would produce adequate statistics, but suffer from charge overflow

from the brightest pixels located at the spot’s centre, thereby increasing the signal

variation. One needs to find the optimum size that gives the golden mean between

statistics and the signal’s standard deviation. For this purpose, both the mean value

of the spot intensity and its standard deviation have been plotted for a wide range

of pixel apertures from squares 9 to 169 of side (see Figures 5.18, 5.19 respectively).

Figure 5.18: The mean value of the mea-

sured intensity of DHLT is plotted against

the number of the pixels used for its calcula-

tion.
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Figure 5.19: The ratio of the standard de-

viation over mean intensity of the DHLT

(i.e.: SD
MeanInt

) is plotted against the number of

pixels used for the calculation of the mean

intensity.

Figure 5.19 shows that a 5× 5 measuring aperture minimises the standard devi-

ation over the measured intensity ratio, yielding the most consistent measurements.

Therefore, a square, centred in the brightest pixel, of side 5 pixels is used.
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5.6.4 Window Material Selection

The original transparent plastic window that covered both transmitter and receiver

(see Figure 5.8) had a very low transmittance value (∼ 60%) that could have re-

stricted the transmissometer’s performance under low visibility conditions. This

issue was addressed with the provision of a new glass window for the receiver unit.

The new glass material allows for a very good transmittance value of (87.5±0.61)%,

as recent tests revealed (see Figure 5.20). This measurement was taken in the morn-

Figure 5.20: New glass window transmittance.

ing of a relatively bright day. It is worth noticing the good agreement between the

different methods of estimating background lighting conditions (the black and blue

points representing Method A and Method B respectively are hardly distinguishable.

For the definition of Methods A and B see Section 5.4.1).

5.6.5 Calibration and Linearity Tests

Due to the complexity and the psycho-physical nature of visibility, there is no stan-

dard test method for assessing visibility sensors. Since a “standard atmosphere”

(in which a transmissometer can be checked) does not exist, one must look at the

consistency between measurements under the assumption of steady atmospheric

conditions.
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Table 5.3: Calibration Constants for Durham’s High Level Transmissometer

Instrument Used Measured Quantity Accuracy

Bosch DLE 150 laser finder R = 44.50m 3 mm

Longman Vernier Caliper Aperture=4.00mm 0.05 mm

In order to calibrate our instrument, we need to estimate the LED’s irradiance

that would have been registered by the CMOS camera if the intervening atmosphere

between transmitter and receiver was transparent. In practice, the calculation of

I0 is performed under clear atmospheric conditions and visibility above 30 km. For

the visual estimation of visibility, Penshaw Monument, which stands (well in front

of the background) on a hill approximately 30 km from the Physics Department, is

used (see Figure 5.21). The calibration is currently performed on the roof of the

Physics Department. Pre-calibration consists of the following steps:

• clean all optical components and windows,

• set up the units and measure the distance between them with a laser finder,

• verify that the light spot sits at the centre of the receiver’s field of view,

• warm-up the LED for a few minutes to get a stable temperature (the LED is

powered by a temperature-stabilised constant current generator) and

• select an appropriate exposure time (i.e. 18 ms) for the calibration aperture

in order to give a signal at the high end of the CMOS range.

The calibration coefficient calculated for the distance and aperture (as shown in

Table 5.3), is 219.23 ADUs (or 12.12 ADU
ms

) with a standard deviation of 0.31%.

The DHLT operated under fixed distance and aperture. The above measured

quantities and uncertainties can be used for the calculation of an expanded uncer-

tainty of I0 should one wish to perform calibration runs at other distances.

The linearity of the instrument has been verified by using calibrated neutral

density filters with optical densities 0.04, 0.3, 0.8, 1 and 1.5 to provide known trans-
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Figure 5.21: The view from the roof of the Physics building on a clear day. Penshaw

monument is easily identified against the background.

mittance check points. Figure 5.22 shows how the measured transmittance compares

with the theoretically calculated values.

Figure 5.22 shows the linear response of the receiver and gives us a first clue about

the accuracy of the instrument. Ideally, the calibration process needs both more

check points and longer calibration runs. Winter weather conditions, combined with

the effort to keep the temperature variation of the CMOS camera to an acceptable

range, did not allow the usage of a wider combination of ND filters. The standard

deviation associated with the calibration coefficient calculation (i.e. 0.31%) will be

used in a first attempt to calculate instrument’s accuracy (see Section 5.7.3).

The LED can be programmed to operate under a wide range of currents (i.e.

35−100%). Figure 5.23 shows the linear response of the CMOS camera over a wide

range of LED intensities.
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Figure 5.22: Measured transmittance of the DHLT versus neutral density filter-

derived checkpoints, from a density of 0.04 to 1.5. The linear fit to the data reveals

a small non-linearity correction.

Active Calibration

A particularly important and innovative feature of the DHLT is the active calibration

system we have devised. Variation of the light source’s brightness constitutes the

major source of uncertainty in any transmissometer. Traditional transmissometers

use a pre-calibrated light source, whose drift is calculated as a function of accumu-

lated source usage and various other calibration factors, so that a passive correction

may be applied to the raw transmissometer readings. In DHLT, the photodiode pro-

vides the means for continuous monitoring of the LED’s brightness, which enables

us to take into account any LED fluctuation in real time. Figure 5.24 shows the

percentage deviation from the mean value of the observed LED intensity before and

after the correction. It is worth noticing that even after the photodiode’s voltage

correction, a fluctuation of 1.5% is still evident in the registered signal (see Figure

5.24). This fluctuation originates from the photodiode’s half-hour warm-up time

and should be taken into account, especially in the calibration process.
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Figure 5.23: Measured LED intensity versus applied LED voltage, showing the good

linear response of the CMOS camera.

5.7 Durham’s High Level Transmissometer Un-

certainty Estimation

In this section, known sources of uncertainties that limit the performance of DHLT

will be discussed. A mathematical method, used to quantify the effects of these

sources, will be also presented.

5.7.1 Uncertainties Associated with the Receiver Unit

The light receiver is based around the monochrome uEye CMOS camera, manu-

factured by IDS (Imaging Development Systems). The camera is equipped with a

light sensitive 1/3” sensor with rolling shutter and has a resolution of 640×480 (see

also 5.3.2). The most prominent characteristic of the camera is its dynamic range

of 62 dB. The dynamic range (dr) of a CCD/CMOS image sensor is defined as the

ratio of the camera’s maximum pixel capacity over the fluctuation of the camera’s

read-out noise (i.e. dr = 20 log
full well capacity

RMS read-out noise
) (Martinez and Klotz, 1998).

Thus, a dynamic range of 62 dB represents a ratio between the saturation pixel

output signal and the read-out noise of 1258:1. The camera is equipped with an
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Figure 5.24: The percentage deviation of the LED intensity from its mean value

before and after calibration using the photodiode. Our calibration system ensures

that data are usable almost as soon as the transmissometer is switched on.

8-bit “on-chip” digitiser that allows for 256 levels of grey. That limits the camera

resolution to an ideal transmittance level of T = 1/256 = 0.0039, which in turn puts

a lower limit to the measured MOR (for a baseline of 44.5 m) at 24 m. For an indus-

trial instrument, this resolution can be improved easily by using a sensor possessing

higher level of both linear range and digitisation. It was decided therefore to base

the theoretical estimation of the receiver’s uncertainty to an alternative camera,

namely the C-Cam Technologies BCi4-U-M-20 (C−Cam Technologies, 2006), which

had been originally selected to equip the final version of DHLT (i.e. the development

of the industrial version of the DHLT began one year latter, after securing a PIPSS

grant at which time the ATIK-16 CCD camera possessing better characteristics than

the BCi4-U-M-20 at a comparable price was selected; see Section 6.5.1). The BCi4-

U-M-20 possesses a linear dynamic range of 68 dB (2750:1) -that can be extended

to 100 dB (105:1) for limited exposures- which is coupled with a 12 bit converter

offering 4096 levels of grey. Performing the same calculations for the aforementioned

sensor and a 44.5m baseline gives:

T =
1

4096
= 0.00024 and MOR=15.9m (5.11)
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for transmittance and meteorological range resolutions respectively. The use of

14 and 16 bit digitisers, readily available on the market, can improve the above

resolutions drastically.

A list of possible sources of uncertainties that will limit the performance of any

selected camera is provided below:

1. Temporal Noise:

• read-out noise,

• thermal noise,

• pixel photon shot noise, and

• MOS Device Noise.

2. Fixed pattern (spatial) noise

A short discussion on the nature of the listed sources of error, along with the

techniques used to control and eliminate them, will be the focus of the next sub-

sections.

Temporal Noise.

Read-out Noise. To produce an image from the electrons deposited in each sen-

sor’s photodiode requires the charge of each photodiode to be measured and con-

verted into a digital value. This read-out process is never perfect and an uncertainty

is produced each time a digitised signal is sent to the computer. The origin of this

noise is partly due to the CMOS amplifier (the amount of charge in each photodiode

is too small to be measured without amplification) and noise at the output level.

The main source of error on the CMOS camera is the pixel reset noise (kTC). This

noise is produced each time a capacitance C is reset to a given voltage via a resis-

tance R. In CMOS sensors, R is provided by the reset transistor and C is the total

capacitance in the input node.

In order to reduce the reset noise, the CMOS KAC-9618 sensor applies corre-

lated sampling, and contains a CMOS active pixel array consisting of 488 rows by

648 columns. This active region is surrounded by 8 columns and 8 rows of optically
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Figure 5.25: CMOS Active Pixel Sensors of the KAC-9618. Taken from sensor’s

manual (KODAK, 2007).

shielded (black) pixels as shown in Figure 5.25. At the beginning of a given integra-

tion time, the on-board timing and control circuit will reset every pixel in the array,

one row at a time, as shown in Figure 5.25. Note that all pixels in the same row are

simultaneously reset, but not all pixels in the array.

At the end of the integration time, the timing and control circuit will address

each row and simultaneously transfer the integrated value of the pixel to a correlated

double-sampling circuit and then to a shift register as shown in Figure 5.26. Once

the correlated double-sampled data have been loaded into the shift register, the

timing and control circuit will shift them out, one pixel at a time, starting with

column “a”. The pixel data are then fed into an analogue video amplifier, where a

user programmed gain is applied and the analogue value of each pixel is digitised.

With this “CCD-like” correlated sampling, the RMS temporal noise of the pixel

output averaged over all pixels in the array is reduced to:

Read-out Noise = 4 ADUs (5.12)

according to the sensor’s manual. This value will be used in order to calculate an

expanded uncertainty in transmittance, and, therefore, in MOR. The aforementioned

value also implies that, in low visibility conditions, the largest noise component is
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Figure 5.26: Sensor’s addressing scheme. Excerpt from the KAC-9618 sensor manual

(KODAK, 2007).

due to the reset transistor noise.

Dark Current. Dark noise originates from the accumulation of heat-generated

electrons on the CMOS sensor. The dark current possesses the following character-

istics, which facilitate the elimination of dark noise (Klotz, 1998):

• it is a reproducible phenomenon: in identical temperature and exposure time

conditions, a given sensor accumulates the same amount of electrons with a

narrow statistical dispersion,

• it is quasi-proportional to the integration time and

• It strongly depends on the CMOS sensor temperature. Its intensity increases

by a factor of 2 if the sensor’s temperature is increased by 6 ◦C.

The DHLT applies the standard “astronomical technique” for reducing this back-

ground noise: namely, two images are taken with the LED switched ON and OFF

respectively, under the same temperature and exposure time conditions. By sub-

tracting the latter image, which contains background and thermal charge, from the

former, this noise is almost eliminated. However, one can never be totally clean

of thermal electrons, as they obey a Poisson distribution. In our case, each pixel
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generates 130 ADUs, at a temperature of 25 ◦C, and the representative exposure

time is 18 ms; thus, the number of the thermal ADUs to remove is 2.34. However,

its uncertainty cannot be removed:

Dark Signal RMS =
√

2.34 = 1.53 ADUs (5.13)

Other Sources of Temporal Noise Other noise sources in the pixel include

photon shot noise and the MOS device noise. The values for both these temporal

sources of noise have been incorporated in the calculation given for the readout

noise (see equation 5.12). Thus, the overall temporal noise can be given by adding

in quadrature the readout noise with the dark current noise:

Temporal Noise =
√

42 + 1.532 = 4.28 ADUs = 0.11% (5.14)

Pixel Photon Shot Noise Pixel photon shot noise originates from the differ-

ences of the arrival time of photons to the sensor. The process of photon detection

obeys Poisson statistics, which means that the Signal-to-Noise Ratio (SNR), corre-

sponding to a detection of an average number of photons (N), is:

SNR =
√
N (5.15)

That limits the SNR whenever signals close to saturation level are detected.

MOS Device Noise MOS Device Noise originates from both thermal and

flicker (1/f) noise of the MOS transistors. Thermal noise is controlled by limiting

the bandwidth of the amplifier. On the other hand, 1/f noise is highly suppressed

via rapid double sampling.

Fixed Pattern (Spatial) Noise (FPN)

FPN refers to a non-temporal spatial noise generated by the non-ideal nature of the

components. These might include mismatches in the pixels and variation in column

amplifiers. The spatial noise can be divided into pixel-FPN and column-FPN. The

former originates from variations in the in-pixel transistors whereas the latter comes

from analogous dispersion in the column amplifiers (Turchetta et al., 2003). After
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the analogue value of each pixel has been converted into digital data, the CMOS

sensor corrects for bad pixels in order to suppress FPN noise.

In practice, the total spatial noise in the dark, at a temperature range between

20-80 ◦C, can be found by root-sum-square summation of the offset FPN (0.1%)

and the Dark Signal Non-Uniformity (DSNU) RMS value from figure 5.27 (both

provided in the sensor’s manual).

Figure 5.27: Dark signal and dark signal non-uniformity versus temperature. Taken

from the sensor’s manual (KODAK, 2007).

From the Figure 5.27 we can extract the RMS value of the DSNU is 1.74 ADUs for

an exposure time of 33 ms. Since the typical exposure of Durham’s transmissometer

receiver is 18 ms, the spatial noise at a temperature of 25 ◦C is:

Spatial Noise =
√

(FPN)2 + (DSNU)2 =

√

0.12 + (1.74
18

33

100

4096
)2 = 0.1% (5.16)

Overall Camera Noise

The overall noise from the camera’s components can be calculated by root-sum-

square summation of temporal and spatial noise:

Camera Noise =
√

0.12 + 0.112 = 0.15% (5.17)
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5.7.2 The Transmitter’s Uncertainties

The DHLT light transmitter is based around a single super-bright LED (80 lm). It

is powered by a steady-current and temperature-independent generator (see Section

5.3.1). As fluctuations of the LED’s intensity could lead to direct misinterpreta-

tion of transmittance, and thus MOR, its intensity is constantly monitored by a

photodiode. The photodiode’s output voltage is used for the calibration coefficient

correction in the read-out level (see Section 5.6.5). This correction, however, re-

duces but does not eliminate the fluctuations caused by the photodiode’s half-hour

warm-up time. Indeed, a variation of 1.5% (reduced from 3%) is evident in the

corrected data (see Figure 5.24). During the DHLT calibration, sufficient warm-up

time was allowed; this, combined with the new window material, reduced drastically

the uncertainties previously calculated.

A purpose-built PCB, manufactured in Durham, is used to monitor the LED’s

properties. Specifically, the LED and electronic board temperatures, in addition to

the LED’s supplied voltage and current, are monitored (see Section 5.3.1). This

provides a handy tool for quality control, as results associated with abnormal be-

haviour of the LED can be easily eliminated. The associated uncertainty of the data

(after being corrected for the photodiode voltage and checked for abnormalities) is

reflected in the standard deviation of the measured signal and the offset deviation of

known transmittance points. In the next section, the uncertainties associated with

the calibration process, together with a combined uncertainty estimation, will be

provided.

5.7.3 Calibration and Combined Uncertainty Calculations

The transmissometer equation (5.6) implies that the precision of MOR is limited

by the precision of the transmittance and baseline measurements. As seen in Table

5.3, the DHLT’s baseline is estimated via a laser finder at a very high precision

in comparison with the estimation of transmittance. Thus, only the uncertainty of

transmittance needs to be calculated. In order to calculate an uncertainty associated

with the transmittance measurement, one must combine the relative uncertainty of
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the calibration coefficient with the uncertainties associated with both raw transmis-

someter readings and overall camera noise, according to the equation:

T =
I0
I

⇒ σT

T
=

√

(
σI

I
)2 + (

σI0

I0
)2 + (Cam Noise)2 (5.18)

An additional term, namely Fsource = f(t), was used within the above equation

to take into account the expected variability of the constant source as a function

of time. Durham’s transmissometer uses a pulsing LED, the output of which is

constantly monitored and used for active calibration of data. Therefore, there is no

need to pre-calibrate the LED.

The relative uncertainty associated with the calibration coefficient is 0.31%. A

typical value of the relative uncertainty, associated with the raw transmissometer

readings, is 0.70% whereas the camera’s overall noise equals 0.15% (see 5.7.1). Sub-

stitution into equation 5.18 gives:

σT

T
= 0.78% (5.19)

The above relative uncertainty might be used only as a baseline as equation 5.18

cannot quantify all the possible sources contributing to the transmissometer’s un-

certainty. A list of possible sources of error in transmissometer readings is provided

below:

• on very windy days, instability of the transmitter’s/receiver’s mounting can

cause erratic jumps of the light spot within the CMOS field of view,

• relative reduction of transmittance due to contamination,

• atmospheric conditions between transmitter and receiver not being represen-

tative of the local air mass and

• fluctuations in the transmitted light intensity due to optical turbulence.

A more realistic evaluation of the error associated with the transmittance mea-

surement could be achieved by the comparison of the corrected transmissometer

measurements (using the fit of Figure 5.22) with the theoretical expected values

(see Figure 5.28).
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Figure 5.28: Corrected transmittance compared with theoretical expected values.

Graph 5.28 implies a typical deviation from the expected transmittance of 0.84%.

Thus, for an estimation of the relative overall uncertainty associated with the trans-

mittance measurement, one should quadratically add the combined uncertainty (pro-

vided in equation 5.19) to the typical deviation from the theoretically estimated

transmittance:

(σT

T

)

=
√

0.782 + 0.842 = 1.15% (5.20)

The error in the transmittance factor T is usually expressed as (van der Meulen,

1992):

σT = α + βT (5.21)

where:

α is the transmissometer’s offset due to a systematic error related either with cal-

ibration or with the electronics, and β is the relative decrease of the measured

transmittance due to the contamination effect.

The accepted values in the market today are α = 1% and β = 5% (van der Meulen,

1992). Durham’s Transmissometer is regularly cleaned and the receiver’s window
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can be equipped with a wiper similar to the one used in our Namibian model. Thus,

we can safely set the constant β = 0 whereas α = 1.15% is given in equation 5.20.

In order to translate this value into relative error of MOR, one must differentiate

the transmissometer equation (van der Meulen, 1992):

MOR =
Rln(0.05)

ln( I
I0

= T )
⇒ σMOR

MOR
=

1

ln(T )

σT

T
(5.22)

From the above equation is obvious that MOR is limited by both the resolu-

tion of the transmittance measurement and transmissometer’s baseline (R). Figure

5.29 shows the percentage variation of MOR as a function of the transmittance fac-

tor. The exponential increase of the relative uncertainty associated with the MOR

measurement sets the limits on both sides of the MOR range.

Figure 5.29: Percentage error of measured MOR as a function of 1.15% error in

transmittance.

The baseline of the transmissometer is currently limited to 44.5 m by the di-

mension of the roof of the Physics Department where it is currently installed. As

the range of MOR measurements is also limited by the transmissometer’s baseline

(see Equation 5.6), the operational range of the DHLT has been calculated as in

Equation 5.22 for three baselines, by the adoption of camera with 12-bit resolution
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and 72 dB dynamic range. In addition to the 44.5 m baseline currently in use, the

transmissometer’s operational range calculations (based on a 1.15% relative trans-

mittance error) have also included baselines of 12 and 75 m, the most commonly

used in aviation industry today. Specifically, in Figures 5.30, 5.32 and 5.31, the

operational range of the transmissometer has been calculated for a baseline of 12 m,

44.5 m and 75 m respectively, providing that an error of 5%, 10%, 15% and 20%

was accepted.

Figure 5.30: Relative error in the determi-

nation of MOR as a function of MOR for a

baseline of 12 m.

Figure 5.31: Relative error in the determi-

nation of MOR as a function of MOR for a

baseline of 75 m.

The MOR range of the DHLT within which the accuracy is better than 20% is

also provided in Table 5.4 for the sake of convenience.

Table 5.4: Durham’s High Level Transmissometer Performance.

Baseline (m) Operational Range (m) Accuracy

12.0 8 − 702 Better

44.5 29 − 2603 than

75.0 49 − 4386 20%

Thus, the DHLT’s operational range varies, depending on the selected baseline,

from 7.8 m to 4.4 km with accuracy better than 20% over the whole field range.
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Figure 5.32: Relative error in the determination of MOR as a function of MOR for

a baseline of 44.5 m.

Table 5.5: Visibility Sensor Manufacturer Specification. Taken from (Crosby, 2003)

Manufacturer Sensor Operational Range Accuracy

Aanderaa Instruments A/S Model 3340 20 m − 3 km < 20%

Model 6000 20 ft − 10 miles ±10%

Belfort Insrtument Model 6100 20 ft − 10 miles ±10%

Model 6230 17 ft − 30 miles ±10%

Biral, LTD Model VF-500 3 m − 16 km ±5%

EnviroTech Sensors Model SVS1 20 m − 16 km ±10%

Optical Scientific, Inc Model OWI-130 1 m − 3 km ±20%

Qualimetrics Model 6364-E 10 m − 32 km ±10%

Vaisala, Model 10 m − 10 km ±10%

Inc PWD21 10 km − 20 km ±15%

The above stated accuracy can be improved by:

• the use of a wider linear dynamic range. If the full 100 dB range of the camera

(under limited exposure) is to be used, a 14-bit digitiser would be necessary,
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• the improvement of the calibration process, with the use of ND filters that

have been recently calibrated to a high degree of accuracy, and

• the temperature stabilisation of the transmitter/receiver units.

The DHLT’s calculated uncertainty of 20% is in good agreement with today’s

market expectations for the similarly priced forward scatter sensors (see Table 5.5).

However, it should be noted that the present work is an effort to evaluate the

potentials of a prototype under constant revision and testing. Therefore, the claimed

uncertainties should be treated as a guideline. Any firm claim on a visibility sensor’s

accuracy must be backed up with hundreds of hours worth of data under various

weather conditions, and, most importantly, must be checked against a reference

visibility sensor.

5.7.4 Read-out Program and Data Quality Control

As discussed in Section 5.4.2, the transmissometer data is directed to ASCII files.

These files are immediately available to the user. The output update rate is 7 seconds

and can be reduced by 2-3 sec if required. That provides, to the experienced user,

a handy tool for sorting out problems very quickly.

For the proper analysis of the data the Root script ReadTranstest.C must be

invoked. This program reads the data-file, makes the necessary calculations and

plots the results. Root is not installed into the transmissometer’s computer due

to space limitations. However, the transmissometer’s computer can be operated

remotely since it is connected to the local network. That allows for quick access to

the data.

The read-out program initially employed on the DHLT was very similar to the

one used in the Namibian transmissometer. Figure 5.33 shows a typical plot from

the Root script. In this example, the transmittance factor has been plotted against

run number for the calibration run obtained using the filter with optical density 0.04.

The measured transmittance is very close to the expected value of 0.91. However,

Figure 5.33 also reveals that time data are difficult to handle within Root.
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Figure 5.33: Transmittance measured during the calibration run using an ND filter

(OD=0.04). The DHLT frequency is 0.14 Hz

In order to both improve the usage of time and to facilitate quality control of the

data, a new read-out program was written. The transmissometer’s data, including

raw transmissometer readings and monitored quantities, are now plotted against

time within the same sheet. A typical output screen is presented in Figure 5.34.

Closer inspection reveals a correlation between the sudden drop of transmissometer

ADU counts with the re-location of the Y-coordinate of the brightest camera spot

(i.e. LED image). The first and second image in the first row represent the raw

transmissometer signal as a function of time using methods A and B for background

elimination respectively. The first image in the second row shows the variation of

the Y-coordinate of the brightest pixel as a function of time. In this example, a gust

of wind is probably responsible for the vertical oscillation that resulted in this drop

in digital counts. Therefore, the circled data should not be taken into account for

transmittance/MOR calculations.

5.7.5 “Teething” Problems and Preliminary Results

The DHLT has been operational between January 2006 and September 2007. At the

beginning of its operation some “teething problems” were addressed. Specifically,

in the original design the camera was located in the same cabinet as the Single

Board Computer (SBC), power supplies and other supporting electronics, as shown

in Figure 5.7. That led to an unacceptable variation in camera’s temperature.
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Figure 5.34: Part of the new read-out program’s output. See text for discussion.
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Moreover, during the hottest summer days, the temperature of the CMOS sensor

reached its maximum limit of 50◦C. This problem was firstly tackled by mounting

a big heat-sink at the receiver’s window (see Figure 5.8). Although that helped to

stabilise the camera’s temperature its value remained at unacceptable levels so the

camera was isolated in a separate cabinet (see Figure 5.9).

Figure 5.35: The anti-correlation between LED (ON-OFF) and background (OFF)

signals.

Another problem was the alarming anti-correlation that was sometimes found

between the receiver’s measured LED and background intensities (see Figure 5.35).

After exhaustive testing of the equipment it became clear that a bug in the software

was responsible for this behaviour. Namely, in order to maximise the camera’s

dynamical range, a loop over optimised exposure-times is initiated until the value

maximum intensity is between 170− 230 ADU (as discussed in Section 5.4.1). This

value had been calculated as the mean of the brightest 5 × 5 cluster of pixels. It

became clear that whenever this mean intensity settled close to the upper limit

of 230 ADU, the brightest pixel had already saturated (i.e. its intensity exceeded

255 ADU) and that in turn led to the observed anti-correlation between the LED’s

and background’s measured intensities. This problem was rectified by using only the

brightest pixel for the exposure-time loop and the cluster of 5×5 for the calculations
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of the mean LED intensity, removing the problems as Figures 5.36 and 5.37 testify.

Figure 5.36: LED and background intensities

plotted against time.

Figure 5.37: LED intensity plotted against

the background Intensity.

Moreover, under very bright conditions the background intensity can be as high

as 1
2

of the signal, thereby limiting the dynamical range of the CMOS sensor (see

Figure 5.35). That triggered the manufacture of the black shield around the re-

ceiver’s window (see 5.6.1). This, combined with the use of a much smaller aperture

and a camera equipped with a 105mm focal length lens (as opposed to the 16mm

lens used originally) drastically lowered the background intensity level as shown in

Figures 5.36 and 5.37.

After addressing these “teething problems”, the instrument was tested under dif-

ferent weather conditions. Figures 5.38 and 5.39 show typical values of the visibility

over day and night respectively.

5.7.6 Conclusions and Future Directions

The Durham γ-ray group has manufactured working day-light transmissometer pro-

totype, based on a CMOS camera, at a construction cost of £1 k. Prior art aviation

transmissometers utilise photodiodes as photo sensors requiring a very accurate

alignment between transmitter and receiver units (see also Section 6.1). Thus, they

are mounted on rigid bases at a maximum height of 2.5 metres above the ground

to allow for good mechanical stability (e.g. Telvent, 2008). According to the RVR



5.7. Durham’s High Level Transmissometer Uncertainty Estimation 174

Figure 5.38: Day-time visibility measured

with the Durham transmissometer

Figure 5.39: Night-time visibility measured

with the Durham transmissometer.

definition visibility sensors should be mounted at the height of the pilot of an air-

craft on the centre line of the runway (see Section 5.5.1). For larger aircraft, this

point is 5 metres above the ground. As the alignment of our transmissometer is not

so critical due to its wide field of view, stability is much less of a problem making a

5 m height easily attainable, and this could provide a clear advantage over existing

products.

The DHLT performance has been established. Specifically,the DHLT resolution

in transmittance is 1.5% leading to an 20% uncertainty in the MOR determina-

tion within the DHLT operational range as dictated by the selected baseline 5.7.3.

Although this is an acceptable value for similarly priced forward scatter visibility

sensors (see Table 5.5), the best attainable resolution of today’s cutting-edge trans-

missometers is 0.005% yielding an accuracy of 1% over the whole MOR range (e.g.

Telvent, 2008). Thus, a drastic improvement on the DHLT resolution is needed

in order to reach the level of the required accuracy in the transmittance measure-

ment. The thorough estimation of the DHLT’s combined uncertainty suggest that

the following changes can be made in order to optimise the DHLT’s resolution:

• use a CCD sensor possessing much higher dynamic range and lower noise than

the uEye CMOS;

• thermally stabilise both the LED and the light detector;
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• use more accurate neutral density filters for calibrating the DHLT;

• optimise the measurement algorithms for maximum signal to noise under a

broad range of visibilities.

The suggested changes are expected to increase the DHLT’s construction cost. The

overall DHLT cost, however, will be minimal in comparison to the price of a typical

aviation transmissometer of £ 50 k. In addition, the cost of the suggested hardware

and software changes can be counterbalanced by the use of simple microprocessor-

based technology with an embedded control program rather than a complete PC to

control the system.

Regional Technology Centre (RTC) North Ltd. were commissioned to undertake

research to assess the potential market for the novel DHLT. It was not until a matter

of days before the end of the grant period that we gained some strong interest from

Aeronautical and General Instruments Ltd. (AGI) in Dorset, which came about via

the market research. The author demonstrated the transmissometer to them, and

they performed a technical assessment with positive results. AGI are particularly

interested in the airport applications, and see the Durham instrument as a potential

replacement for the transmissometer which they manufacture currently and is com-

ing to the end of its useful design life. As a result, AGI and Durham University drew

up a license agreement to pursue future development of the instrument. The work

has already started as part of a technology transfer between Durham University and

AGI and is the subject of the following chapter.



Chapter 6

The long road from γ-ray site

atmospheric monitoring to the

aviation market

In this chapter we discuss the steps taken so far in order to transform the DHLT

prototype (as described in Chapter 5) into an automatic Runway Visibility Range

(RVR) sensor capable of meeting both the high standards set by the aviation au-

thorities and being competitive within the demanding airport market. This work is

being funded under the PPARC (now STFC) Industrial Programme Support Scheme

(PIPSS).

6.1 Generic Design Considerations for Aviation

Transmissometer

The principal transmissometer designs currently used in the aviation industry are

shown in Fig. 6.1. The simplest transmissometer configuration is shown Fig. 6.1-I

and consists of a light transmitter and receiver separated by a set baseline (b). The

transmitter unit utilises a light source (i.e. tungsten-halogen [e.g. AGIVIS (AGI,

1990)], xenon flash lamp [e.g. Revolver transmissometer (Telvent, 2008), MITRAS

transmissometer (Vaisala, 1995)] or a high intensity white LED [e.g. LT31 trans-

176
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missometer (Vaisala, 2004), 5000-200 extended MOR transmissometer (MTECH,

2008)]). The light source is frequency modulated either mechanically via choppers

or, more recently, electronically, to optimise the transmissometer’s reliability (i.e.

LT31). A lens is utilised to collimate the light beam to a divergence of a few millira-

dians, defined by the size of the light source or field stop used and the focal length of

the lens. The light beam passes into the atmosphere through a transparent window

of high transmissivity. The light is collected by the receiver and focused via a lens

on to an aperture, having a size determined by the light beam’s divergence angle,

for the efficient removal of the off-axis scattered light. Finally, the surviving photons

are directed to the detector, which usually consists of a photodiode fitted with a

photopic response filter.

The alternative arrangement illustrated in Fig. 6.1-II has the benefit of contain-

ing both the light source and light detector, accompanied by the relevant electronics,

in one unit, while a passive retro-reflector is located in the opposite unit, thereby

doubling the transmissometer’s operating baseline. The transmitted and reflected

beams are discriminated within the active transmissometer unit via a beam splitter

(see Fig. 6.1-II). A beam splitter can also be used in the double-ended transmitter

unit to create a reference beam for controlling the light source output.

Although aviation transmissometers are conceptually simple instruments, the

strict accuracy requirements (see Section 6.2) necessitate very fine optical alignment

between the light transmitter and receiver components, making transmissometer

construction challenging. The alignment should be preserved under strong winds,

temperature fluctuations and climatic changes affecting the soil under the transmis-

someter’s installation site. It is worth noting that the alignment preservation be-

comes crucial under severe weather conditions where RVR is expected to be low and,

therefore, needs to be measured with the highest accuracy (Canton and Wetherell,

1995). Thus, conventional transmissometers should be mounted in concrete bases of

exemplary rigidity. These mountings not only increase dramatically the transmis-

someter’s installation cost but constitute a threat to aviation safety. These safety

concerns are usually addressed by placing the transmissometers 120 m away from

the runway centre line whose visual range needs to be determined (ICAO, 2005).
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Figure 6.1: Schematic diagrams of the single (II) and double (I) ended transmis-

someter designs used in aviation industry today.

Thus, an additional source of error is introduced that would be more prominent in

areas of localised weather (e.g. coastal or mountainous locations) where an accurate

determination of RVR is most needed (Canton and Wetherell, 1995). The cost of

a runway closure due to faulty RVR readings exceeds, in an average USA airport,

$ 1 million per hour according to official Federal Aviation Administration (FAA)

estimations (Canton and Wetherell, 1995).

The main deviation of Durham’s solution to the prior-art transmissometer de-

sign is the replacement of the receiver’s photodiode with a CCD sensor. The spatial

information of the light spot is retrieved in each measurement cycle and the coordi-

nates of the brightest pixel/centroid are determined. Thus, any small physical shift

of the transmissometer’s mounting would be translated in to a corresponding shift of

the brightest pixel/centroid within the CCD sensor field of view. The disadvantage

of using a CCD sensor as opposed to a photo-diode is the restricted modulation

frequency of the light source (i.e. a few Hz). This can cause problems in reject-

ing the background noise especially in cases where the visibility fluctuates rapidly.

This problem has been resolved by implementing an additional method of extracting
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the background noise from the same CCD frame that is used for the atmospheric

transparency calculation (i.e. see Section 5.4.1).

6.2 Requirement for the Durham Transmissome-

ter

The work described in Chapter 5 was a ‘proof-of-concept’ for the daylight operation

of Durham’s patented technique. In order to translate this successful technique into

a viable commercial product, the following marketing specification has to be met

(Clark, 2008):

1. Reliable components that minimise the instrument’s uncertainty budget are

required. Specifically, the daylight prototype resolution in transmittance of

1.5% should be minimised to a value approaching 0.005% in accordance with

the ICAO recommendations (ICAO, 2005) (see Section 5.7).

2. The selected photo detector should possess a linear photopic response in order

to provide a ±1% accuracy for MOR. In order to achieve the required accuracy

an automatic window contamination compensation system must be included

(see Chapter 7).

3. The lifetime of the selected light source must exceed 50,000 hours and the

MTBF of the selected photo-detector must be greater than 20,000 hours.

4. The external equipment should remain operational within a temperature range

of −40 to 60◦C, humidity up to 100% and wind speeds up to 60 m/s,

5. The relevant environmental requirements for the internal system are: temper-

ature between 10 and 35◦C, relative humidity up to 60%.

6. The frequency of the transmissometer should be optimised at 1 Hz.

7. The transmissometer should possess a quick alignment mechanism. The align-

ment time should be less than 10 min.



6.3. Action Plan 180

8. The transmissometer’s software must be modified according to AGI specifica-

tions and tested for safety by the Safety Regulatory Group before embedding

into a microprocessor system for commercial manufacture.

9. The production cost of the transmissometer should not exceed £8000.

10. An innovative solution for automatic calibration without the need of user in-

tervention would be a desirable feature if achievable within the cost target of

£8000.

It has been decided that AGI, being an expert in transmissometer manufacture,

would be responsible for construction of the transmissometer’s housing in accordance

with the marketing requirement specification (i.e. items 4 and 5). In terms of

software, Durham would be responsible for re-writing the software in Visual Basic

under Windows, as opposed to the C++ and Root software used in the daylight

prototype, in order to assist AGI in complying with the Safety Regulatory Group

requirements (i.e. item 8).

Therefore, the subject of the following sections is the work undertaken between

October 2007 and May 2009, on both software and hardware, in an effort to meet

the requirements set by this challenging list.

6.3 Action Plan

Careful planning of the work needed to fulfil the set requirements could be the

most decisive step towards its success. The author, being fully responsible for this

project, constructed the following action plan. This will dictate the presentation of

the content of this and the following chapter.

1. Select the transmissometer’s light detector and establish its theoretical maxi-

mum resolution in transmittance (see Sections 6.5.1 and 6.6.1).

The first consideration should be meeting the accuracy requirement in the

transmittance measurement throughout the assessed RVR range of 50 to 2000m.

The minimum transmittance that can be measured is limited by the dynamic

range of the selected light detector (see Section 5.7.1). Thus, the first priority
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should be the acquisition of a CCD detector offering a theoretical resolution

in transmittance in accordance with the ICAO (i.e. 0.005% (ICAO, 2005)). In

addition, the selected camera should operate within the environmental limits

set for the transmissometer’s internal systems (see item 5 of Section 6.2).

2. Evaluate the transmissometer’s optimum baseline based on the calculated

transmittance resolution (see Section 6.6.2).

The optimum baseline, needed to calculate the transmissometer’s performance

in MOR/RVR, depends on the light detector resolution. Thus, the analysis

for selecting the transmissometer’s optimum baseline should directly follow

the calculation of the minimum transmittance that can be measured by the

instrument.

3. Alter the software of the old transmissometer prototype (see Section 6.7.1) in

order to:

• meet the single baseline specification (Modulation of both CCD exposure

time and the LED’s driving current as presented in Section 6.7);

• permit online analysis of the data in compliance with aviation indus-

try standards. (Migration from C++ and Root to the aviation industry

accepted Visual Basic standard offering online data analysis).

4. Evaluate the performance of the transmissometer prior to constructing the

new transmitter unit (see Section 6.8).

Test the new CCD detector together with the accompanying software in con-

junction with the old transmitter. The result will highlight the required level

of accuracy for the new transmitter unit. It is worth noticing that the design

of transmitter unit, although more complicated in comparison with the design

of the receiver unit, is based on the prior art and therefore the accuracy can

be estimated more easily.

5. Construction and optimisation of the new transmitter unit (see Section 6.9.2).

The stability of the light source will be ensured via the implementation of a

light output monitor feedback loop that utilises a sensitive RGB photodiode.
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The light transmitter will be equipped with a Peltier device that will be mod-

ulated via a temperature feedback loop to drive the light source at a steady

temperature (see Section 6.9.3).

6. Test the new transmissometer and resolve any instabilities in order to meet the

long term stability requirements (see third requirement of Section 6.2) prior

to the field test (see Section 6.12.2).

7. Finally, Chapter 7 will be dedicated to the ongoing project work:

• Durham’s novel window monitoring unit.

• A novel idea for the automatic calibration of the new transmissometer.

• Photopic response calibration.

6.4 Trasnmissometer Configuration Under Test-

ing

The transmissometer was constantly under revision and numerous hardware and

software solutions had been tested until reaching its final optimised stage. For the

sake of clarity, therefore, a table relating the instrument’s configuration to the results

obtained throughout the project is provided in Table 6.1.
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Description Software Hardware Hardware Tests

Receiver Transmitter

Old ATIK-16 DHLT Sections

transmitter- Brightest-pixel 135 mm lens transmitter 6.6

new receiver Centroid (see Section 6.8

ATMX-I (small aperture) 5.3.1)

Telescope Centroid In Lab: Sky-Watcher and Manfrotto Section

Based, (small ATIK-16 PCB control 6.10

Centroid aperture) 135 mm lens

Algorithm Outside:

ATIK-16

Sky-Watcher

ATMX-II Manfrotto

Telescope Background In Lab: Sky-Watcher and Manfrotto Sections

Based, based ATIK-16 DAQ/PC control 6.11

Threshold threshold 135 mm lens Light output control 6.12

Algorithm (large Outside:

aperture) ATIK-16

Sky-Watcher

ATMX-III Manfrotto

Telescope Background In Lab: Sky-Watcher and Manfrotto Section

Based, based ATIK-16 DAQ/PC control 6.13

Final threshold 135 mm lens Light output control

(large Outside: LED temperature control

aperture) ATIK-16

Sky-Watcher

ATMX-IV Manfrotto

Table 6.1: Configuration of the Durham’s Aviation Transmissometer (ATMX)under

Testing. It was necessary to use a 135 mm lens in the laboratory to avoid saturating

the CCD since the transmitter and receiver were necessarily close together.
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6.5 Receiver

6.5.1 ATIK-16 CCD camera

The Achilles heel of the old DHLT working prototype, which limited its accuracy to

20%, was the use of a CMOS camera with a modest dynamic range coupled with an

8-bit digitiser. That limited the camera’s resolution to a theoretical transmittance

level of T= 0.0039 (as discussed in Section 5.7.1). In addition, the camera’s dynamic

range (i.e. 62 dB or 1258:1) could never have been fully explored, as the ADC offered

256:1 resolution at best. Furthermore, the old design did not allow for camera

cooling, making dark current a dominant source of noise during periods of very low

visibility (requiring measurements to have unusually long exposure times) and high

temperature, thereby limiting the camera’s dynamic range.

Following thorough market research, the ATIK-16 CCD camera (ATIK Instru-

ments, 2007) was selected over the original 8-bit uEye (see Section 5.3.2, Fig. 5.9)

and the later 12-bit BCi4-U-M-20 CMOS cameras. The ATIK-16 camera has an es-

timated well depth of 55000 electrons per pixel and a read out noise of 10 electrons

per pixel (RMS). That gives a dynamic range of 5500:1, which can be fully explored

with the aid of the 16-bit converter offering 65536 levels of grey. In addition, the

ATIK-16 CCD camera is equipped with a Peltier thermo-electric cooling device ca-

pable of maintaining the CCD at 25◦C below ambient temperature. As a result, the

thermal noise of the new camera is less than 0.1 electron/sec and thus negligible in

comparison with the typical (i.e. at 25◦C) thermal noise of 130 electrons/sec of the

old CMOS camera. However, the temperature of both the CCD camera and the

photodiode array responsible for the LED output monitoring should be constantly

monitored as the spectral response of both instruments is temperature dependent.

The spectral sensitivity characteristics of the CCD image sensor (ICX429) must

eventually be altered in order to closely approximate the CIE photopic luminosity

function (see Section 7.5).

The CCD camera was initially equipped with a 135 mm lens for immediate

testing. It was later decided to replace the lens with the Sky-Travel telescope (Sky-

Watcher, 2007) with a focal length of 400 mm, which offers a better magnification of
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Figure 6.2: The new ATIK-16 CCD camera

equipped with a 135 mm lens.

Figure 6.3: The ATIK camera mounted in

the Sky-Travel telescope.

the LED image (see Section 6.9.1) and is more economical (i.e. £ 99) in comparison

with typical camera lenses.

The receiver unit (i.e. the CCD camera equipped with either lens or telescope) is

mounted on a photographic tripod. In order to increase the stability of the receiver

unit and minimise its alignment time with the transmitter, the Manfrotto geared

tripod head, presented in detail in Section 6.10, is used.

Finally, the ATIK-16 CCD sensor should possess a lifetime in excess of 20,000 h

in accordance with AGI’s requirements (see Section 6.2). It is believed that the

lifetime of the CCD sensor will exceed the specification even though it is not com-

mon practice for the manufacturers of astronomical CCD sensors to provide official

compliance to such a requirement. The degradation of the CCD’s performance over

long time intervals can be taken into account by the frequent re-calibration between

of instrument (see Section 7.4.1).

6.6 Baseline Considerations

In order to construct a competitive aviation transmissometer, one should estimate

the optimum baseline length that, coupled with the instrument’s transmittance res-

olution, will dictate the accuracy of the MOR/RVR measurements over the whole

range of their assessment. Specifically, one could express the baseline length (R) in
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terms of the calculated MOR or RVR (V) and transmissometer’s measured trans-

mittance (TR) as follows (see Equations 5.2 and 5.9):

MOR

R
≈ −3

lnTR

(6.1)

and

R =
V lnTR

2 lnV + lnET − ln I
(6.2)

From equations 6.1 and 6.2 it is clear that both MOR and RVR measurements

depend on the transmissometer’s baseline and do not possess a linear relationship

with the measured transmittance TR. That causes a trade-off between the transmis-

someter baseline and its resolution and dynamic range:

• too short a baseline would require very high resolution in transmittance for

determining MOR/RVR with an acceptable accuracy,

• too large a baseline would limit the lower end of MOR/RVR measurement,

• finally, using longer baselines to measure a set range of MOR/RVR would dic-

tate an increase in the transmissometer’s dynamic range. In standard trans-

missometers, that can be achieved by either increasing transmitter’s light in-

tensity or by using dual baseline systems (ICAO, 2005). In our case, the linear

response of the CCD detector allows the optimisation of the transmissometer’s

dynamic range by adapting the exposure time.

For the aviation industry, the useful range of MOR assessment is:

MOR: 10 - 2000 m

Therefore one needs to find the optimised baseline for which an acceptable value

of accuracy (i.e. 1%) can be attainable within the whole MOR range (the relevant

RVR range will be derived in Section 6.6.2). In this work we will try to find the

baseline optimised for the transmissometer’s resolution in accordance with sugges-

tions and examples within the ‘Manual of RVR Observing and Reporting Practices’

approved by the I nternational C ivil Aviation Organisation (ICAO, 2005) . In order

to achieve this, one has to estimate the minimum transmittance that can be detected

by the CCD sensor.
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6.6.1 Transmittance Resolution Estimation

The resolution of Durham’s transmissometer is limited by the noise sources (i.e.

read-out noise, photon shot noise, FPN and thermal noise) that have already been

discussed in detail (see Section 5.7.1) and, most importantly, by the level of back-

ground (stray) light within the measured signal. The methodology for the estima-

tion of a theoretical resolution in transmittance, for the ATMX-I transmissometer

equipped with the ATIK-16 CCD, differs from the one presented in Section 5.7 in

the following ways:

• the calculation has to be based on the receiver unit, since the baseline length

will dictate the design of transmitter. Thus, one should calculate an approx-

imate baseline length before committing the funds for purchasing expensive

optical components,

• the new design allows for the constant and independent determination of the

read-out and background noise, allowing for the elimination of the systematic

sources of noise. One has to take into account, however, the photon noise

relevant to both the read-out and background signals, and

• the dark-count noise has a non measurable effect on the signal and spatial

noise, but can be eliminated by proper flat-fielding calibration.

The new software, for use with ATIK-16 camera, begins by setting the exposure

time of the CCD sensor in order to produce an output signal of 50 kADUs. This

signal is comprised of:

SON = SLED + SD + SB + bro + bFPN (6.3)

where:

SLED is the signal produced by the LED

SD is the dark current signal

SB is the signal induced by the background

bro is the bias so that the read out noise never drives the A/D input negative

(McLean, 1997)
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and bFPN is the spatial (non-temporal) noise generated by variations in the pixel to

pixel response on the incident light.

The combination of short baseline (dictated by the space limitations in the lab-

oratory) and an ultra bright white LED leads to exposure times, for a signal of

50 kADUs, of the order of 7 ms. The Peltier cooling of the CCD sensor keeps the

dark current below a maximum of 0.1 e−/s. The dark current over the set exposure

is:

SD =
0.1 × 7 × 10−3

g

e−

s
× s× 1

e−
(6.4)

where g is the conversion factor:

g = full well capacity/levels available = 55000 e−/65536 = 0.84 e−

Thus, the exposure time used does not allow for an accumulation of dark current

capable of producing a measurable variation in the detected signal. In addition,

the non-uniformities introduced by variation in both quantum efficiency and illu-

mination can be treated by taking flat frames. These consist of exposing the CCD

camera to a uniform field of light for the same period as was used to acquire the

signal. Under uniform illumination, the CCD reveals the pixel to pixel variations

in sensitivity, enabling their correction. Flat frames require suitable dark frames

for the background subtraction. Thus, in addition to removing various efficiency

inconsistencies, flat dark-subtracted frames will add a small photon-induced noise

that needs to be evaluated. For this work, we will consider the photon-induced

noise as negligible. Finally, as noted above, the exposure time used does not allow

for a measurably large accumulation of dark current. In addition, the combination

of both small aperture and minimal exposure time did not allow for a measurable

background signal under different lighting conditions. For the sake of completeness,

however, a 30 ADU background signal will be considered to account for possible

restriction of the dynamic range during brighter conditions. Taking into account a

250 ADU bias of the CCD camera, equation 6.3 becomes:

SON = SLED + 0 + 30 + 250 + 0 (6.5)
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The total noise in the ON image, measured in ADUs, is:

σON =
1

g

√

σ2
LED + σ2

B + σ2
RO (6.6)

where σLED, σB are the photon shot noise of the LED signal and background signal

respectively and σRO is the read-out noise. All errors are expressed in units of

electrons (e−). Both LED and background signals obey Poisson statistics:

σLED =
√

49720 × 0.84 = 204.36 e− and σB =
√

30 × 0.84 = 5.02 e− (6.7)

The camera’s read out noise has been measured in the lab for the centroid pixel and

for a 15 × 15 array of pixels, centred at the centroid pixel, as follows:

Mean Intensity1×1 = 270.5 with SD = 11.3 and

Mean Intensity15×15 = 251.5 with SD = 0.74

where all measurements are expressed in ADUs.

The combined noise associated with the ON signal is (6.6, 6.7):

σON =
1

0.84

√
204.362 + 5.022 + 112 = 243.71 ADUs (6.8)

In order to subtract the bias and the background noise from the signal an OFF

frame is taken having exactly the same exposure as the ON frame, with the light

source’s shutter switched OFF. The intensity of the OFF signal is:

SOFF = SD + SB + bro + bFPN = 30 + 250 + 0 = 280 ADUs (6.9)

The uncertainty with which this background signal can be calculated is:

σOFF =
1

g

√

σ2
B + σ2

RO =
1

0.84

√
5.022 + 112 = 12.09 ADUs (6.10)

By subtracting the background (OFF) frame from the ON frame one can extract

the signal produced by the LED itself:

SON−OFF = (SLED + SD + SB + bro + bFPN) − (SD + SB + bro + bFPN)

= SLED = 49.720 ADUs (6.11)
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The noise related to the LED signal, however, will be increased in comparison with

the ON signal because the subtraction process involves taking into account a larger

number of e−:

σLED =
√

σ2
ON + σ2

OFF = 244 ADUs (6.12)

The resolution (i.e. signal to noise ratio) of the CCD camera can be calculated at

the set ON intensity of 50000 ADUs as below:

SNRON−OFF =
49720

244
= 203.77 (6.13)

In order to optimise the CCD resolution one can use the common method of aver-

aging several ON and OFF images (Berry and Burnell, 2005). The current aviation

practice dictates that transmissometer readings should be averaged over one minute

periods (ICAO, 2005). The updating frequency of Durham’s transmissometer per-

mits for 30 ON and 30 OFF frames in a minute. The noise of the averaged frames

can be calculated from the following formula:

σ̄ =
σON + σOFF

N
= 2.85 ADUs (6.14)

The signal to noise ratio for the averaged frames has now increased to 17445 giving

an exemplary transmittance resolution of 0.0057%. This value is in good agreement

with the minimum transmittance value of 0.005% required by the ICAO, and can

be further improved by taking more ON than OFF frames.

One should not forget that the above estimated resolution was based on the

CCD sensor alone, without considering errors caused by contamination of the trans-

mitter/receiver optics, weather phenomena causing forward scattering towards the

receiver etc. On the other hand, all calculations were performed under a pre-set

exposure of ∼ 7 ms that is adequate for a 50, 000 ADU signal to be produced in the

CCD sensor during a clear day; the CCD sensor currently allows for a maximum

256 ms exposure, corresponding to very low visibility. Initial testing of the ATMX-I

( i.e. old transmitter unit in combination with the new CCD sensor) proved that the

old LED was able to produce a 50, 000 ADU signal even when the sensor was sitting

behind a neutral density filter (OD = 3). Thus, even in situations where visibility

is reduced by a factor of 103 in comparison with an “average clear” day, one will
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be able to use the whole dynamic range of the camera. It is therefore possible for

the powerful Durham technique, based on the excellent linearity of the CCD sensor

over exposure time, to improve drastically the resolution in MOR/RVR measure-

ments offered by today’s transmissometers (ICAO, 2005). In order to both verify

and quantify this improvement, we need to proceed in the manner of Section 5.7.3

following the completion of the transmitter unit.

6.6.2 Baseline Calculation vs MOR and RVR

In order to calculate the accuracy of the MOR (meteorological range) measurement

for the ATMX-I transmissometer within the useful range 10−2000 m, as a function

of MOR itself, one has to use Equation 5.22. Equation 6.1 allows the MOR to be

expressed in baseline multiples. Thus, by plotting the relative error in MOR (%)

as a function of MOR itself, translated in baseline multiples, we can estimate the

optimum baseline that gives a relative error of MOR of less than 1% within the

whole range of the MOR range (see Fig. 6.4).

Figure 6.4: Relative MOR error due to the ATK-16 CCD sensor resolution in trans-

mittance.

According to Figure 6.4, a single baseline of ∼ 24 m will be adequate to cover the
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full MOR range of 10 − 10000 m. One has to take into account, however, that this

calculation was based on optimal performance of the CCD sensor (as calculated in

the previous section) providing an order of magnitude calculation for the baseline.

That will enable us to set the optical requirements for the transmitter unit.

A similar baseline optimisation can be performed when the visual range needs

to be expressed as Runway Visual Range (RVR). Before attempting to calculate

the transmissometer’s maximum operational baseline in terms of RVR, one needs

to translate the MOR operating range (i.e. 10 - 2000 m) into an RVR range. The

derivation of meteorological range (MOR) involves seeing dark objects during the

day. The contrast of these objects with the background against which the viewing

takes place is assumed to be fixed at 0.05. Thus, the visual range by day is assumed

to be independent of the background luminance and viewing angle (ICAO, 2005).

The RVR is a better way to report visibility as it can be accurately calculated for

both daytime and nighttime conditions. It is defined by the distance over which

a pilot (who flies just above the centre line of the runway) can identify runway

markers or runway lights (as discussed in Section 5.5.1). For the same reason, this

calculation is more involved than the MOR, as it takes into account the intensity

of the runway lights (I) and the visual barrier of illumination (ET ) over which an

“average - sighted” pilot could discriminate a small runway light. This relates to the

background luminance against which the light is viewed and it is usually defined as

ET = 10−4 lx and ET = 10−6 lx on a normal day and night respectively (see Table

5.2 and Fig. 5.15 of Section 5.5.1). In order to understand better the relationship

between MOR and RVR, the ratio of RVR over MOR (i.e. RV R
MOR

) is plotted against

MOR by setting the runway lights at 10000 cd and discriminating between a day and

a night runway-light based RVR calculation (i.e. ET = 10−4 lx and ET = 10−6 lx).

Figure 6.5 provides the means for translating MOR into RVR values. During the

night, an extreme MOR value of 10 m corresponds to an RVR value of 50 m. During

the day, MOR (Kosschmieder’s law) would be greater than RVR (Allard’s law) at

the high end of the MOR range and, therefore, the reported RVR is by definition

equal to MOR (see Section 5.5.1). Thus the aviation industry’s useful range for the

RVR assessment is:



6.6. Baseline Considerations 193

Figure 6.5: The connection between RVR and MOR. The values used for the in-

tensity of the runway lights (I) and the visual barrier of illumination (ET ) for day

and night conditions respectively are also shown in the graph. Based on ICAO

requirements (ICAO, 2005).

RVR: 50 - 2000 m

Equation 6.2 can be used to relate the transmissometer’s maximum baseline

length (i.e. Rmax) to the transmittance resolution (i.e. tRmax):

Rmax =
V ln tRmax

lnET + 2 lnV − ln I
(6.15)

where:

I is the intensity of the runway light

ET is the illuminance threshold (i.e. the observer’s sensitivity to the illumination

intensity)

V is the visual range
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and tRmax is the minimum transmittance that can be accessed by the transmissome-

ter.

Equation 6.15 allows for the calculation of the maximum baseline length that

should be used to assess the low RVR limit of 50 m using a transmissometer with

0.0057% resolution in transmittance. Thus, by fixing the luminous intensity at

I = 10000 cd, and discriminating between diurnal and nocturnal conditions, by

setting ET to 10−4 lx and 10−6 lx respectively, it is possible to plot the maximum

baseline needed for accessing the minimum RVR point of 50 m as a function of the

transmittance resolution for the day and night cases as shown in Fig. 6.6.

Figure 6.6: Maximum baseline of the ATMX-I as a function of the sensor’s resolution

in transmittance.

According to Figure 6.6 the baselines capable of accessing the whole RVR range,

with an accuracy better than 1%, will be:

Rday = 24.4 m and Rnight = 17 m



6.7. Software Considerations 195

During the day time, baseline calculations based on either MOR or RVR are

compatible, but the baseline length will be dictated by the night-time conditions.

6.7 Software Considerations

The DHLT camera was driven via a C++ program provided by the manufacturer

that was altered in order to synchronise transmitter and receiver units and extract

the beam’s intensity. The analysis of the data was performed off-line with the aid

of Root: the standard analysis software for high energy physics, but completely un-

known to the world of industrial atmospheric physics. For the new transmissometer

it was decided to re-write the software, initially using Visual Basic, in order to com-

ply with the industry’s accepted standards. In addition to the alterations dictated

by the incorporation of the new parts (CCD camera, LED, photodiode etc), the

ATMX-I’s algorithm differs substantially from the old one (see Section 5.4.1). The

old algorithm, used with minor alterations in both the DNT and DHL transmis-

someters, already described in Sections 3.4.2 and 5.4.1 respectively, was based on

producing a signal between 2/3 and 1/3 of the camera’s dynamic range by altering

the exposure time whenever the signal dropped outside this region. The overall

resolution in transmittance was dictated therefore by camera’s:

1. dynamic range (mainly limited by its well depth, read-out noise and digitiser),

and

2. resolution in exposure time.

In order to achieve the best possible accuracy in the transmittance measurement

(see also Section 6.6.1), the signal-to-noise ratio should be optimised under different

weather conditions. The light output of the LED source can be controlled by the

forward current driving the LED. Indeed, the considerable increase of the power

of LED outputs, witnessed in the ∼ 3 years since the completion of the Namibian

transmissometer, has been mainly achieved by increasing the forward current (see

Table 6.2). The disadvantage of using high-current driving LEDs is the increase

of power consumption leading to a higher junction temperature (the ambient tem-
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perature and system’s thermal resistance being the same) (Pinter and Sarakinos,

2008). The higher junction temperature degrades both the LED’s light output and

life expectancy. The novelty of the new software, therefore, consists of controlling

the driving current, in addition to the exposure time, in order to maximise both the

signal-to-noise ratio and the LED’s performance.

Preliminary tests of the ATMX-I, for a 20 m baseline, proved that in a clear

atmosphere (visibility ≥ 30 km) only 35% of the maximum driving current is re-

quired to produce a 40 kADU signal (i.e. ∼ 2/3 saturation level) at a 4 ms exposure.

Hazy conditions were simulated by the use of different neutral filters with optical

densities ranging from 0.1 to 3. It was shown that a near-optimum signal can be

achieved even when the transmittance has been reduced to one hundredth of its

original value.

The new software was evaluated under these initial tests and its logic is presented

in Figure 6.7. It starts by trying to produce an optimum signal (i.e. 2/3 saturation

level) with a 35% driving current. The excellent linearity of the CCD sensor over

exposure time (see Figure 6.20) allows for the evaluation of the optimum exposure

(i.e. time needed to produce optimum signal) based on the 1 ms exposure step.

If the predicted exposure time lies above one half of the maximum exposure (i.e.

1/2 × 240 = 120 ms) then the driving current is switched to 100%. The signal is

allowed to drop below the optimised region down to 5σ of the noise level only when

both maximum exposure and driving current values have been reached.

6.7.1 The brightest-pixel based measuring algorithm prob-

lem

The ATMX-I CCD sensor’s excellent resolution revealed a serious drawback of the

technique employed in the DHLT instrument (see Section 5.4.1), which was based on

the determination of the brightest pixel. According to this technique, the intensity

measurement was based on extracting the counts of the pixels located on a suitable-

sized square centred on the brightest pixel. The first results from the incorporation

of the ATIK-16 camera with the brightest-pixel algorithm are shown in Figures 6.8

and 6.9.
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Figure 6.7: Flow chart of the software responsible for the control of the ATIK-16

CCD exposure time and the LED driving current control.
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Figure 6.8: Fluctuation of the LED signal

(i.e. ON-OFF) during a calibration run.

Figure 6.9: Fluctuation of the read-out noise

(i.e. OFF) for the same calibration run.

The plot in Figure 6.8 suggests a signal variation in excess of 2000 ADUs -

one order of magnitude higher than the expected value - while read-out noise was

very stable throughout the measurement (see Figure 6.9). At first it was thought

that the ON-OFF fluctuation might be the cause of inaccuracies in determining

the exposure time (read-out noise being independent of exposure time). For the

measurement in discussion, the exposure time has been set to 7 ms, a value that lies

suspiciously close to the exposure resolution of 1 ms. After constructing a monitor

that contains both the visual and numerical representation of the LED’s light spot

on the camera (see Figure 6.10) it became clear that the brightest pixel could be

located anywhere within the spot. Thus, the normalised mean intensity measuring

7× 7 pixels square, centred on the brightest pixel, may not be representative of the

light spot (as Figure 6.10 clearly demonstrates). Thus, the measuring algorithm was

re-written to incorporate a centroid algorithm that is the subject of the following

Section.

6.7.2 The Centroid Algorithm

The ability to locate the centre of an object’s image (as registered by a CCD camera)

with sub-pixel accuracy is a vital requirement in many fields (see, e.g., (Ares and

Arines, 2004)). In astronomy one is interested in discriminating between sources

mapped into a digital image and determining their relative position. In adaptive

optics the wavefront measurement methods (e.g. Shack-Hartman wavefront sensor)

depend on the ability to measure the displacement of the spots formed by dividing
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Figure 6.10: Image of the LED as seen by the ATIK-16 CCD sensor. The cross

identifies the brightest pixel, which happens to be located away from the centre.

Thus, the aperture fixed at this pixel might include background pixels, in which

case the light spot intensity will be underestimated.

wavefront via a lenslet array (Baik et al., 2007). In image analysis, basic image

processing techniques (e.g. geometric transformations to restore a distorted im-

age) require the knowledge of the location of common characteristics within images

(Morgan et al., 1989). There is, therefore, a healthy literature concerning the appli-

cation and limitations of centroid algorithm variations (e.g. see Stone (1989) for a

comparison of centroid algorithms used in astronomy).

The centroid algorithm in our application is designed for optimum speed in an

effort to maximise the instrument’s frequency. The brightest pixel is located and

a square window, that includes the whole LED spot, is constructed. The length of

this window for the current experimental set-up is 50× 50 pixels but the optimised

length will eventually be dictated by the final combination of optics, aperture and

baseline. A typical histogram of the intensity distribution of this 50×50 pixel image

is presented in Figure 6.11.

The grey level histogram (Figure 6.11) has a clear bimodal distribution. Indeed,

the combination of very small apertures, bright LED and flexible exposure time



6.7. Software Considerations 200

Figure 6.11: Typical histogram of the intensity distribution of the image of the LED

recorded by the ATIK-16 camera used in analysis.

allows for a clear discrimination between the LED signal and background under

different weather conditions. The typical histogram of the digital image suggests

that there is no overlap between background and signal pixel distributions. Thus,

a threshold value can be easily determined from the image histogram as the valley

between the two dominant modes (i.e. T = I(i, j)max/2). One can now retain only

the pixels with values greater than a half of the brightest pixel while eliminating the

rest of the pixels by the following semi-thresholding process (Haralick and Shapiro,

1992):

I(i, j) =







I(i, j) : I(i, j) ≥ T

0 : I(i.j) < T
(6.16)
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where:

I(i,j) is the grey level intensity at (i,j) and T = I(i, j)max/2

Finally, the centroid (xc, yc) can be calculated from the following equations (Baik

et al., 2007):

xc =

x0+L/2
∑

i=x0−L/2

y0+L/2
∑

j=y0−L/2

Iij × xi

x0+L/2
∑

i=x0−L/2

y0+L/2
∑

j=y0−L/2

Iij

(6.17)

yc =

x0+L/2
∑

i=x0−L/2

y0+L/2
∑

j=y0−L/2

Iij × yi

x0+L/2
∑

i=x0−L/2

y0+L/2
∑

j=y0−L/2

Iij

(6.18)

where:

Ii,j (or I(i,j)) is the intensity (ADUs) of the pixel located at the ith column and jth

row

x0, y0 are the coordinates of the brightest pixel and

L is the length of the square aperture used (i.e. L = 50 pixels for the current

experimental setup).

This simple centroid algorithm replaced the brightest-pixel algorithm ensuring

that the measuring box is always centred at the estimated centroid as opposed to

the brightest pixel centering (see Fig. 6.10). Thus, by eliminating the fluctuation

introduced by the inclusion of background pixels into the signal due to the measur-

ing aperture’s off-centring, the transmissometer’s signal variation (i.e. RMS) has

been brought down to less than 200 ADUs; a value in excellent agreement with the

statistical uncertainty in the photon count (i.e.
√
counts = 216 ADUs).

The implementation of this simple centroid determination algorithm should yield

sub-pixel accuracy (i.e. 0.01 pixels (Carlson, 1999)), which is more than sufficient

for our application. It has been shown (Cao and Yu, 1994; Ares and Arines, 2004)

that the centroid variance can take the following form:
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σ2
xc

=

L
∑

i=0

σ2
Nx

2
i

〈It〉2
=

σ2
N

〈It〉2
(

L3 − L

12

)

(6.19)

where:

σ2
N is the noise variance, and

〈It〉 is the mean of the total intensity

In deriving this equation the following assumptions were made (Ares and Arines,

2004):

• the covariance of error fluctuation between pixels is negligible (uniform spatial

pixel response), an assumption that is justified by both the number of pixels

within signal’s aperture (of length L) and the flat fielding correction,

• the signal is contaminated by an additive Gaussian noise that possesses zero

mean and a variance of σ2
N , and that

• the average centroid position is centred on the signal window.

Equation 6.19 implies that the uncertainty in the centroid determination is pro-

portional to the area of the signal window and inversely proportional to the signal to

noise ratio. In our case, the software has revolved around optimising the signal-to-

noise ratio (see Section 6.7) and the optimised sub-aperture length is L = 7 pixels

(see Fig. 6.18).

An alternative method of validating the centroid algorithm is by Gaussian fitting

the marginal distribution of the LED spot image:

Pxi =

x0+L/2
∑

j=x0−L/2

Iij (6.20)

Pyj =

y0+L/2
∑

i=y0−L/2

Iij (6.21)

In Figure 6.12 the 3-d intensity distribution of the LED projection into the

camera is presented. The average marginal distribution (i.e. P̄xi = Pxi

L+1
) of the
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Figure 6.12: Three dimensional plot of the

LED intensity distribution.

Figure 6.13: Average marginal sums distri-

bution (along columns of Fig. 6.12) and its

Gaussian fit.

same LED image along the x-axis is shown in Figure 6.13. It is clear that the

signal faithfully follows a Gaussian distribution, yielding a value of 26.648 for the

centroid’s x-coordinate. The analytically calculated value (i.e. Equation 6.17) was

xc = 26.697, thus the same within the integer pixel accuracy demanded by our

application. The Full Width Half Maximum (FWHM) of the distribution is ∼
21 pixels leading to a maximum signal aperture of 7 × 7. This selection is mainly

driven by the limited 8 − bit resolution over exposure time. One could use a 50 ×
50 aperture that would account for the whole signal leading to a more accurate

derivation of its intensity. However, that would limit the dynamic range of the

instrument. In the following section (i.e. 6.7.3) we will investigate diffusers providing

a “top-hat” intensity distribution that allow for more of the signal to be used without

limiting the sensor’s dynamic range.

6.7.3 Hardware optimisation of the ATMX-I transmitter

The first tests of the new camera suggested that the LED produces a CCD signal

with an almost perfect Gaussian distribution (see Figure 6.13). The width (FWHM)

of this distribution will set a limit the size of the aperture than one may use in order

to retrieve the LED’s intensity. In general, the diameter of the LED image on the

CCD can be calculated from the camera’s optical characteristics by the following
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equation:

Φimg =
Φtargetf

d
√

x2 + y2
(6.22)

where: Φimg,Φtarget are the diameters of the LED image (in pixels) and the trans-

mitter’s aperture respectively (cm)

d is the distance between transmitter-receiver

x,y are the CCD pixel sizes in the relevant direction (i.e. 8.6µm × 8.3µm), and

f is the focal length of the camera’s lens.

The measurement of the LED intensity, after the light has travelled a distance

d, consists of averaging values from neighbouring pixels located at the top of the

signal distribution. One should aim, therefore, to produce a signal having a “top-

hat” distribution, in order to minimise the uncertainty budget. That is, to bring

the standard deviation of these average values to the level of the read-out noise

fluctuation.

The LED beam can be diffused and shaped by using the novel Thorlab diffusers

(ThorLabs, 2008). Due to their special design, these engineered diffusers can be used

to control the shape of the LED projection and slightly modify the LED’s Gaussian

intensity distribution towards a “top-hat” profile.

As our application implements square-aperture photometry, the ED1-S20 diffuser

was selected due to its square scatter shape with an 20◦ flat region. Initial tests were

encouraging.

The first test of the ED1-S20 diffuser consisted of mounting it at the exit of the

ATMX-I transmitter unit, on the top of the DHLT’s diffuser (see Fig. 5.4). The

first results are presented in Figures 6.14, 6.16 and 6.15, 6.17 for the new and old

diffuser respectively. It is clear that the addition of the ThorLabs ED1-S20 diffuser

resulted in a smoother “top-hat” intensity distribution. This is more evident if one

compares the equi-intensity plots: the new diffuser (see Fig. 6.16) eliminates the

structure seen in Figure 6.17.

The ThorLab diffuser allows for a wider sampling of the intensity distribution.

In order to find the optimum aperture size, one should plot the extracted average

value and its related uncertainty (RMS) as a function of the number of pixels used

for these calculations.
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Figure 6.14: Three dimensional plot of the

LED intensity distribution with the Thorlab

engineered diffuser.
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Figure 6.15: Three dimensional plot of the

LED intensity distribution with a typical dif-

fuser.

Figure 6.18 calls for the use of either a 7×7 or an 11×11 pixel aperture. It is worth

noticing that the intensity can be measured with a minimum uncertainty of 40 ADUs,

a value which is comparable with the read-out noise fluctuation (i.e. 11 ADUs). The

completion of the ATMX-II transmitter unit will dictate an analogous procedure for

the calculation of the instrument’s optimised aperture.

6.8 First Linearity Tests

In order to get a first idea of the transmissometer’s performance it is necessary to

check the measured transmittance against known transmittance points provided by

neutral density filters. This process was performed for the old DHLT prototype

(see Section 5.6.5). The new software, optimised for maximum signal-to-noise ratio,

dictates a different approach as the measured signal has to be normalised for both

exposure time and the driving current under which the measurements were taken.

In order to derive the relevant normalisation procedures, the linearity of the CCD

camera over exposure time and driving current needs to be investigated.

All tests have been performed using the ATMX-I on the roof of the Physics

department. The receiver-transmittance distance was fixed at 20 m under clear and
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Figure 6.16: The equi-intensity plot of the

LED image with the Thorlab engineered dif-

fuser.
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Figure 6.17: The equi-intensity plot of the

LED’s beam image with a typical diffuser.

stable atmospheric conditions with visibilities in excess of 30 km.

6.8.1 Driving Current Normalisation

In order to determine the camera response under different LED light outputs, the

LED was driven with a DC current ranging from 35−100% of its maximum capacity.

The results are illustrated in Figure 6.19. Each point was calculated as the average

of 20 measurements and the relevant standard deviation is illustrated by the error

bars.

As ATMX-I transmitter was operating without the aid of a monitoring photodi-

ode, the driving current modulation could not have been used to optimise the LED’s

image signal-to-noise ratio. Indeed, even though a linear trend is evident in Figure

6.19, the precision is not sufficiently adequate to allow the use of the full range of

the driving current as a tool for optimising the LED’s image signal-to-noise ratio.

This becomes more evident for the extreme value of the LED driving current, where

an increase of 65% corresponds to almost a 100% increase of the relative LED light

output. Thus, the new software uses only two extreme settings of current (i.e. 35%

and 100%), thereby maximising the instrument’s dynamic range. By default the

35% setting is used and a switch to the LED’s maximum output occurs only when
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Figure 6.18: Average LED intensity and its uncertainty as a function of the measur-

ing aperture size used, for the ATMX-I instrument with ThorLabs ED1-S20 diffuser.

the prevailing atmospheric conditions prevent the detection of an optimised signal.

These measurements are normalised to the 35% level according to Equation 6.23:

CI =
CCD counts at 35%

CCD counts at 100%
⇒ Normalised Counts = CI×Measured Counts (6.23)

The normalisation factor (CI) is determined whenever a re-calibration (switch

between the extreme current settings) of the transmissometer occurs. In our case,

CI=1.98 with a relative uncertainty of 0.9%. Following a re-calibration, time is

allowed for the LED’s temperature stabilisation.

6.8.2 Linearity over exposure time

CCD sensors are nearly perfect linear detectors with a linearity often better than

0.01% (Martinez and Klotz, 1998). That means that there is a linear relationship

between the number of electrons produced by the light arriving in each pixel (input

signal) and the digital value stored for this pixel (output value) (Howell, 2000). It

was due to this high linearity, over a wide range of different light inputs, that CCD
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Figure 6.19: Camera response under different driving LED currents.

sensors swiftly replaced photographic plates, revolutionising astronomical observa-

tions (Ferrero et al., 2006).

The expected CCD linearity over the exposure time was verified by plotting the

camera measured counts over an exposure range of 60 to 100 ms. This exposure

range was achieved by the use of a neutral density filter (O.D. = 1) and a default

forward current of 35%. The results are shown in Figure 6.20. As in the case of

the driving current linearity, a set of twenty measurements has been taken for each

exposure check point and the error bars denote the standard deviation. The number

of measurements used, common to both normalisation procedures, has been selected

as the mid-point of the expected optimum transmissometer’s frequency (i.e. ∼ 1Hz),

taking into account the ICAO recommendation for 1 min averaging time in reporting

visibility values.

The linear relationship of the CCD response over exposure time is apparent in

both Figures 6.20 and 6.21. Indeed, the linear equation resulting from the least-

squares fit to the experimental data (see 6.20) can be used as a measure of the

non-linearity of the CCD sensor:
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Figure 6.20: The ATIK-16 CCD’s near per-

fect linearity over the range of the exposure
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Figure 6.21: The CCD’s count rate vs expo-

sure time.

Clin =
Maximum Deviation

Maximum Signal
× 100 ⇒ Clin =

(Nmeas −Nexp)max

(Nexp)max
× 100 (6.24)

where:

Clin is the non linearity correction, Nmeas is the measured counts and Nexp is the

expected counts

One can use the linear equation to compute the expected counts for each exposure

time and then find the maximum deviation from the experimentally determined

counts. In our case, the maximum deviation (21.3 counts) occurs at the maximum

signal (40842 counts) leading to non-linearity correction of only ∼ 0.05%.

A different method that can be used to verify the extent of the CCD’s non-

linearity is by plotting the CCD’s count rate (measured counts/exposure time) as

a function of the exposure time (see Figure 6.21). Deviation from this ratio, that

should be constant for a linear CCD sensor, yields the non-linearity correction with

the aid of parameter α:

Nmeas = Nexp(1 + αCexp) (6.25)

The α parameter can be determined by fitting a straight line to the count rate

data determined by dividing the bias subtracted counts over the exposure time (i.e.
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Nmeas−Nbias

t
):

α =
B

A2
(6.26)

where:

B is the slope and A is the y-intercept of the corrected count rate fit.

The straight-line fit in Figure 6.21 yielded an α value of 0.02× 10−6. Thus, even

at the maximum signal of 40 kADUs the non-linearity correction is:

Clin = αNexp × 100 = 0.08% (6.27)

According to these results the deviation from linearity is so small that a non-

linearity correction is not necessary even for the highest intensity values. Thus, the

CCD’s near perfect linearity, over the measured range of data values, justifies the

usage of the exposure time in order to increase the transmissometer’s dynamic range

in transmittance.

The linearity tests revealed, however, a problem with the CCD sensor. The bias

level of ∼ 3311 ADUs (i.e. y-intercept of the linear fit on Figure 6.20) was unexpect-

edly high in comparison to the read-out noise level of ∼ 250 ADUs. This abnormal

bias level limits the CCD’s usable dynamic range and points out a malfunction of

the CCD electronics. This malfunction also explains why the CCD’s sensor linearity

was validated for a moderated range of exposure times (i.e. 60 − 100 ms). While

waiting for the problem to be resolved, the vendor released the new ATIK-314E

camera offering a 16-bit resolution in exposure time and possessing superior noise

characteristics than the ATIK-16 camera. It was decided to upgrade to ATIK-314E

for reasons that will be discussed in Section 6.11.1. Thus, the calculated linear-

ity for exposures times between 60 − 100 ms can provide a good estimation of the

ATIK-314E performance over the whole range of the exposure values utilised in the

measurement of atmospheric transmissivity.
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6.8.3 Neutral Density Filter Test

After the determination of the normalisation coefficients one can check the linearity

of the whole ATMX-I instrument. Five neutral density filters with optical densities

0.1, 0.3, 0.5, 1 and 2 have been selected for this test. In addition to linearity

verification, the ability of the new software to produce an optimum signal over a

wide range of transmittances will be put to the test.
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Figure 6.22: Camera response to different filters before normalisation. The exposure

time is modulated to produce a 40 kADU signal in all but the foggiest conditions

(i.e. OD=2). For transmittance lower than 1% the both LED driving current and

CCD exposure are set to their maximum values.

The raw results of the test are presented in Figure 6.22. By examining this graph,

one can verify that the algorithm is able to produce a signal very close to 40 kADUs,

for all but the filter with optical density 2, by altering the exposure time. When the

filter OD= 2 is used, simulating a transmittance of 1%, the algorithm switches the

LED driving current to 100% and sets the exposure value to the maximum usable

value (i.e. 239 ms). Thus, even at 1% transmittance, the signal-to-noise ratio is very

good and the dynamic range of the instrument is extended from 20 kADUs down to
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a just detectable signal (5× read-out noise: ∼ 1, 200 ADUs).

In order to examine the linearity of the ATMX-I configuration of the transmis-

someter, the raw values must be normalised for both driving current and exposure

time. The linearity test over exposure time has been undertaken by the use of a

filter with optical density of 1 (see Fig. 6.20). The raw values, therefore, obtained

under a specified exposure time and driving current, need to be compared with the

relevant values (i.e. same driving current and exposure time) that the CCD is ex-

pected to register when sited behind an OD = 1 filter. This normalisation of the raw

signal, at the 1% transmittance level, can be achieved with the aid of the following

comparative coefficient κ:

κ =
Raw Signal

A+B exposure
× CI (6.28)

where:

A, B are the constants calculated by the linear least-square regression (see Fig. 6.20)

and

CI is the driving current normalisation factor (see Equation 6.23).

Finally, the measured transmittance can be calculated from the following equa-

tion:

T =
κ with filter

κ without filter
× 100 (6.29)

The comparison of the measured transmittance against the filter-derived trans-

mittance checkpoints is shown in Figure 6.23

In this case, the linearity of the transmissometer can be found directly by the

deviation of the slope of fitted line from the ideally expected value of 1. The linear fit

yields an excellent non-linearity correction, ranging between 0.17 and 0.33%. This

value is less than half of the value calculated for the old prototype. It is expected

that the use of the telescope-based transmitter (see Figure 6.26) providing a more

focused beam, in conjunction with recently acquired ThorLabs diffuser, will minimise

further the transmittance uncertainty. One has to take into account, however, that

at this level of accuracy the uncertainty introduced by the calibration of the neutral
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Figure 6.23: Measured transmittance of the ATMX-I versus neutral density filter-

derived checkpoints, from a density of 0.1 to 1.0. The linear fit to the data reveals

a very small non-linearity correction.

density filters may be the limiting factor in transmittance resolution.

One has to note that the new software was built and tested by using the DHLT

transmitter unit in conjunction with the ATIK-16 CCD sensor (i.e. ATMX-I).

The construction of the first transmitter, based on the Sky-Watcher telescope (i.e.

ATMX-II), was completed during April 2008 (see Figure 6.26). Thus, the optimisa-

tion of the software based on the telescope transmitter optics will be the next logical

step.

6.9 The Telescope-Based Transmitter Unit

6.9.1 Transmitter Parts

The S9706 Hamamatsu Photodiode

In the DHLT transmissometer a simple photodiode (IPL’s 10040 (IPL, 2000)) was

used to monitor fluctuations of initial beam intensity (see Figures 5.4, 5.5). The old
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design suffered from the following major issues:

• limited resolution of the photodiode dictated by the 10-bit digitiser of the

transmitter’s micro-processor,

• the photodiode was simply mounted at an angle of ∼ 20◦ to the LED. There

was no means of extracting and guiding a known portion of the initial LED

beam into the photodiode,

• there was no cooling of the photodiode. That limited the photodiode’s dynamic

range on hot days, and

• the two light monitoring devices (photodiode, camera) had different spectral

responses.

An integrated solution requires changes in both instrumentation and design. A

new photodiode array, namely a Hamamatsu S9706 digital colour sensor, was there-

fore purchased. This encapsulates three built-in registers that allow for simultane-

ous measurement at 615, 540 and 465 nm wavelengths respectively (RGB colours)

(Hamamatsu, 2007). In addition to the higher 12-bit resolution, the new photodi-

ode’s RGB spectral sensitivity allows for better matching with the final camera’s

spectral response.

In order to monitor the beam’s initial intensity more effectively, a beam splitter

in conjunction with guiding optics (fibre optic guide) is used. In addition, the

photodiode is located in an isolated compartment within the transmitter’s control

box (see Fig. 6.27), and is equipped with a Peltier cooling device. The cooling will

keep the dark count noise at acceptable levels regardless of the ambient temperature

fluctuations while the photodiode feedback loop will drive the light source towards

a fixed intensity value (see Section 6.9.3).

LEDs

The ATMX-I transmissometer employed a white super-bright (80 lm @ 1A) Luxeon-

III LED. Brief market research revealed successors offering a ∼ 70% increase in

typical luminous flux. This is particularly important, especially during very bright
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days where the LED’s maximum light output will set the signal to noise ratio and,

therefore, determine the instrument’s resolution.

In addition to the enhanced luminous flux, the selected white LED should possess

an emission spectrum approximating the emission of the CIE standard illuminant A

(Section 5.5.1). The super-bright LED that best matches this criterion is the warm

white (i.e. 3000 K colour temperature) Luxeon L2K2 MWW4 (Lumileds, 2007),

which was selected to equip all of the transmissometer’s later versions (ATMX-

II,III,IV). The L2K2 warm and neutral white LED emission are provided in Figures

6.24 and 6.25 respectively. As expected, the emission spectra of the warm white

LED approximates better the spectral power distribution of the standardised CIE

Illuminant A (Wyszecki and Stiles, 1982).

Finally, according to the manufacturer the L2K2 LED has an expected life span

of 50,000 h, when driven at 1 A with 70% lumen maintenance. In our application

the LED’s emission is constantly monitored. Moreover, the LED temperature is

kept to a minimum via an innovative Peltier coupling, and thus the LED’s lifetime

is expected to exceed the specification required (see Section 6.2).

Figure 6.24: Typical warm white spectrum of

Luxeon K2L2 LED at 1 A test current and

junction temperature TJ = 25◦C

Figure 6.25: Typical neutral white spectrum

of Luxeon K2L2 LED at 1 A test current and

junction temperature TJ = 25◦C

6.9.2 Telescope-Based Transmitter Construction

It was decided to base the transmitter unit for the ATMX-II and subsequent in-

struments on the Sky-Travel 80 mm refractor telescope (Sky-Watcher, 2007). A

Sky-Watcher auto-focuser will be responsible for LED focusing. The construction of
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Typical characteristics of the L2K2-MWW4-11-BU00 LED

Flux Optical

Luminous Drive Colour Total Viewing

Flux Current Temperature Included Angle

(lm) (A) CCT (K) Angle (degrees) (degrees)

100 1 3000 160 140

130 1.5

Electrical Characteristics

Drive Forward Dynamic Temperature Thermal

Current Voltage Resistance Coefficient of Resistance

Vf Junction to

(A) (V) (Ω) (mV/◦C) Case (◦C/W )

1 3.72 0.6 −2.0 9

Table 6.2: Typical characteristics of the Luxeon L2K2 warm white LED. Drawn

from the Luxeon manual (Lumileds, 2007).

the final transmitter is underway (April 2009) and the status of our building efforts

is illustrated in Figures 6.26 and 6.27.

The telescope’s eye-piece has been replaced with a custom-made aluminium LED

enclosure. The LED has been directly mounted at the the centre of the copper heat

sink covered by an aluminium shroud, and is equipped with a variable rate fan

system (see Figure 6.27, lower panel: left). The heat sink is attached to the LED

holder which is directly mounted on the telescope (see Fig. 6.26). The photodiode

is located on a separate isolated unit within the transmitter’s control box (see Fig.

6.27, lower panel: right). The connection between the LED and the photodiode is

achieved via an optical fibre.

The telescope-based transmitter unit has been under constant revision until

reaching its final stage (ATMX-IV, April 2009). For the sake of simplicity and

practicality, the telescope-based transmitter was originally controlled by the DHLT

PCB (see Figure 5.6, Appendix B.2). As described earlier, it was quickly proven that
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Figure 6.26: The ATMX-II light transmitter unit.

the DHLT photodiode needed to be replaced as its resolution was not compatible

with the ATIK-16 sensitive CCD camera. In order to use the S9706 photodiode a

separate PCB with its own small microcontroller (see Appendix B.3 and Fig. 6.27,

lower panel: right) was manufactured by the Durham University Electronic Work-

shop (DUEW) (Moore, 2008). As the optimisation of the transmitter’s frequency

dictated major changes on the PCB firmware, attainable only by the DUEW and

thus delaying the project, the author decided on the replacement of the main PCB

controller by a laptop and a data acquisition board (see Fig. 6.27). The benefits of

such a solution are listed below:

1. The implementation of the “PCB-free” solution allows full control over the

transmitter’s hardware and software leading to elimination of unnecessary

measurement delays in controlling the LED via the PCB originally designed

for night transmissometer (i.e. background free) operation.

2. It allows for an easier implementation of a closed-loop system to maintain the

light output on a constant level.

3. Finally, the implementation of a computer controlled transmitter would dras-
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Figure 6.27: Upper Panel: The new transmitter’s control box. Lower Panel Left:

The custom LED holder attached to the heat sink. Right: The photodiode with the

purpose built microcontroller and its power supply.

tically reduce its development time.

The migration of the old PCB transmitter controller to the laptop/DAQ solution

was completed in December 2008 allowing for the full hardware and software TMX

control for the first time. That made possible the construction of a thermally stable

LED source, which is the subject of the following section.
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6.9.3 The Durham Thermally Stable LED Source

Background Theory

LED emission intensity depends on junction temperature. In general, an LED’s

emission intensity decreases exponentially with increasing temperature according to

the equation:

I = I0 exp − T
Tc (6.30)

where:

I0 is usually taken as the LED intensity at a junction temperature of 25 ◦C and

Tc is the LED’s characteristic temperature, which describes its temperature depen-

dence (Schubert, 2003).

This can be attributed to the increase of both non-radiative recombination and

surface recombination following an increase in the LED’s temperature. Equation

6.30 is empirical and does not provide a theoretical connection with the underly-

ing physical processes. Indeed, the degradation of the light intensity of the white

Luxeon K2 LED, used in our application, as a function of its junction temperature

is almost linear throughout the LED’s operating temperature range, as shown in

Figure 6.28. In addition to significant light intensity degradation, the wavelength

of emitted radiation will shift towards higher values with increasing LED temper-

atures. Specifically, the dominant emitted wavelength is inversely proportional to

the semiconductor’s effective energy gaps, and these become slightly smaller with

increasing temperature (Mroczka and Parol, 1993). Thus, in the case of the Durham

transmissometer, where stability of the LED light source is imperative for a correct

estimation of transmittance, efficient temperature compensation is needed. In our

application the LED intensity must be kept near maximum over a wide range of

ambient temperatures in order to optimise the resolution in transmittance. Before

discussing the details of the novel LED light source which allows us to achieve this,

a brief description of the prior art will be given.
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Figure 6.28: Relative light intensity as a function of Luxeon K2 white LED junction

temperature.

Prior Art

A quick search through patents and the internet revealed the following methods for

producing a stabilised LED-based source:

• Temperature control method: The LED junction temperature is determined by

measuring the board temperature and the LED’s forward voltage and current

and applying the equation:

Tj = TB + θJBILEDVfI0 (6.31)

where:

θJB is the junction to board thermal resistance in ◦C/W

By using the manufacturer’s LED-specific temperature plot (e.g. Fig. 6.28),

an intensity value consistent with the new temperature is calculated. This is

used as feedback to drive the LED towards a stable intensity value. Such a

solution is disclosed in U.S. Pat. No. 6,717,559 granted to (Weindorf, 2004).

The invention is used for backlighting Liquid Crystal Displays (LCD). An

alternative method based on sensing the ambient temperature is described in
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U.S. Pat. No. 6,693,394. This invention uses an ambient temperature sensor

connected to a regulator for adjusting the current flow to the LED in response

to the measured ambient temperature (Guo and Russel, 2004). Both solutions

require complex circuits encapsulating thermo-sensitive sensors. In addition,

the temperature gradient between these sensors and the LED could lead to

compensation errors (Bera et al., 1993).

• Light Output Method: According to this method the light output is mea-

sured via a photodiode and this information is used to modulate the driving

current of the LED. The problem with the näıve implementation of the light

sensor feedback is that as the LED temperature increases its luminous inten-

sity decreases, resulting in operating the LED at higher currents, which in

turn increase LED’s dissipated power and, thus, temperature. Our method,

which allows an effective “photodiode-feedback” without the aforementioned

problems, is the subject of the next section.

Description of the Transmissometer’s temperature stabilised light source

In our application the LED intensity must be kept near maximum over a range of

ambient temperatures (i.e. 10 and 35◦C, see Section 6.2) in order to optimise the

resolution in transmittance. This is achieved by maintaining the LED at a low tem-

perature via the coupling of the LED with a Peltier device, which is also connected

to a copper heat-sink supported by a fan. This solution provides an optimised ther-

mal path for the heat dissipation from the LED, in comparison with prior art, and

ensures maximum LED brightness operation over the whole temperature range. For

best results, a feedback loop implementing a temperature sensor can be used to drive

the Peltier device towards a steady LED temperature. The small fluctuations of the

LED’s junction temperature are compensated via a light output monitor feedback

employing a thermally stable photodiode, which is coupled to the LED by means

of an optical fibre. The photodiode is located in a separate box fully shielded from

background light (see Fig. 6.27). The thermal noise of the photodiode is kept into

a minimum via a second Peltier device. The photodiode can be kept at a constant

temperature by regulating the Peltier’s device driving current as described above.
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A schematic view of the light transmitter operation is provided in Figure 6.29.

Figure 6.29: Operation of the transmitter unit implemented in the ATMX-III and

IV transmissometers.

The purpose of the transmitter is to maintain a constant light output from a

high power LED. The operation of the transmitter can be described as the sum of

the following steps:

1. A PC running a bespoke application provides the processing to maintain the

light output at a constant level,

2. the user sets the desired intensity level using the application,
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3. a nominal voltage value is set by the PC via the 12 bit DC converter to

produce a luminous output from the LED. Part of this output is being directed

through an optical fibre into an isolated and thermally stable photodiode. The

photodiode has a 12-bit resolution and is capable of registering LED intensity

via three different RGB colour sensors (i.e. at λ = 615, 540 and 465 nm

respectively),

4. the PC requests the reading from the photodiode and compares it against the

set reading, and finally

5. an adaptive algorithm sends a correction value to the D/A converter to adjust

the light output to maintain a constant level.

6.10 Transmitter Design Optimisation

6.10.1 Achieving quick alignment and Resolving stability

issues under strong winds

Preliminary tests of the first telescope-based transmitter (i.e. ATMX-II) revealed

that its alignment with the receiver unit had become increasingly difficult, coun-

teracting the higher resolution offered by the magnified LED spot. The alignment

time sometimes exceeded 10 min, a period considered as a maximum by the current

aviation industry standards (in Section 6.2).

The Manfrotto geared tripod head (see Fig. 6.30) was selected in order to both

minimise the alignment time and increase system’s stability. The head offers precise

geared movement in 3 directions, namely pan, tilt and levelling (i.e. side-to-side tilt).

It incorporates a quick release camera plate system and is suitable for both transmit-

ter and receiver units. It also incorporates a unique feature that allows the instant

disengagement of the gears and rough positioning of the transmitter/receiver unit

by hand, followed by instant re-engagement for ultra-precise final alignment (Man-

frotto, 2008). After the alignment fine-tuning, the head mounts in place offering

exemplary stability for both transmissometer units (i.e the centroid of the LED’s
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image is located with ±1.5 pixel accuracy, even under windy conditions, as shown

in Figures 6.31 and 6.32).

Figure 6.30: The Manfrotto 410 geared head (Manfrotto, 2008).

The incorporation of the 410 Manfrotto geared head into the ATMX-II and

subsequent transmissometers reduced the length of the alignment procedure to less

than five minutes. In addition, the three dimensional plot of the LED spot revealed

a more precise alignment in comparison with that achieved without the geared head

over a 20-25 min period.

Testing the ATMX-II transmissometer’s stability under strong winds

The ‘windy test’ was performed on 31/03/08. The test took place on the roof of

the Physics Department, with clear skies (i.e. visibility greater than 30 km), for a

baseline distance of 25 m and at a height of approximately 1.8 m. In the vicinity of

the transmissometer set up there is a weather station installed originally to support

astronomical observations. It offers information about the temperature, wind speed

and rain fall. At the time of the test the average wind speed was 35 mph while

occasional gusts of over 45 mph were registered.

The stability of the geared head was checked by plotting the centroid coordinates

during the course of a typical measurement (see Figures 6.31, 6.32).
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Figure 6.31: Variation of the x centroid co-

ordinate as a function of time in the ATMX-

II under windy conditions. Maximum devia-

tion is 3 pixels
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Figure 6.32: Variation of the y centroid co-

ordinate as a function of time in the ATMX-

II under windy conditions. Maximum devia-

tion is 3 pixels.

The biggest deviation of the mean centroid position (460,205) is 3 pixels in both

directions. The uncertainty in estimating the centroid is about one pixel itself.

Thus, the Manfrotto 410 geared head offers acceptable stability even when tested

under strong, gusty winds.

Testing the ATMX-II resolution under strong winds exceeding 40 mph

After establishing the stability of the the ATMX-II transmissometer we took this

opportunity to estimate the ‘real-life’ resolution of the new instrument under strong

winds.

We have two tools at our disposal in order to produce small but detectable

changes in the LED output: either by altering the LED’s driving current or by

using a neutral density filter. The resolution achievable by neutral density filters

is dictated by the filter with optical density 0.04 providing a ∼ 8.8% difference in

transmittance. On the other hand, one can scale the driving current in 1% steps

offering an average resolution in transmittance of 0.98% (min: 0.65%, max 1.35%).

Thus, for testing the new system’s resolution under the worst case scenario (strong

winds coupled with the use of a diffuser) the driving current was increased with 1%

steps from 63% to 70% of its maximum. The results are shown in Figure 6.33.
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Figure 6.33: Registered raw intensity for different LED driving currents in the

ATMX-II under windy conditions.

In Fig. 6.33, the standard deviation of each point - corresponding to the average

value of 10 measurements - is denoted with the black error bars whereas the expected

Poisson noise of the measured signal is identified by the blue ones. According to

Fig. 6.33 the smallest change in transmittance (i.e. 0.65%) is registered when

increasing the driving current from 63 to 64%. Thus, Figure 6.33 suggests that

the smallest achievable change in the LED output (i.e. for driving currents of 63

and 64%) can be clearly identified by the camera lying outside the bounds formed

by the measurement uncertainty. One might also note that the standard deviation

of the measurements exceeds the value quoted on Fig. 6.38. That can be easily

explained by statistics as in the resolution test each check point corresponds to 10

measurements in comparison with the 30 needed for the diffuser test. Indeed, a

second test was performed at the end of the resolution test for the nominal values

of driving current and baseline (i.e. 35% and 25 m respectively). In this case the

signal has been extracted as the average of 30 neighbouring measurements (see Fig.

6.34).
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Figure 6.34: Variation of the CCD registered intensity in the ATMX-II under clear

atmospheric condition and gusty winds of 45 mph.

Thus, RMS decreases from 133.4 to 78.4 ADUs for signals computed as the

average of 10 and 30 single measurements respectively. The theoretical relation

between the calculated RMS is:

σ10 = σ30

√
3 (6.32)

The theoretically derived value for σ30 is 77.11 ADUs, therefore within the mea-

suring uncertainty, essentially identical with the experimentally derived value of

78.4 ADUs (i.e. the difference between theoretically and experimentally derived

values is only 1.6%).

6.10.2 Re-examining the use of a diffuser on the ATMX-II

system

The telescope-based ATMX-II transmitter allowed for a very detailed mapping of

the LED spot, revealing potential problems with the use of the ThorLab diffuser
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described earlier in Section 6.7.3. The diffuser is used in order to produce ‘top-hat’

signal in an effort to calculate the representative signal’s intensity via an increased

number of pixels minimising, therefore, the relevant uncertainty. The magnified

projection of the LED into the CCD camera revealed the following problems that

could potentially compromise the transmissometer’s efficiency:

• the construction of the diffuser can be mapped onto the camera, increasing

the standard deviation of the extracted intensity,

• the engineered diffuser can potentially lower the efficiency of the camera in

detecting small changes in the intensity.

In addition, the use of any diffuser would limit:

• the LED output,

• the transmissometer’s operating frequency, as the use of a larger aperture for

extracting the signal’s intensity will increase the processing time.

In order to quantify the effect of the first list of potential problems on the extracted

signal, one has to define an optimised measuring aperture for the new system with

and without diffuser and compare their relevant standard deviations. This proce-

dure has been performed already for the ATMX-I unit (see Section 6.7.3). The

transmissometer’s software allows the control of the measuring aperture by altering

n that is related to the aperture length by:

Aperture Size = 2 × n + 1 (6.33)

For the new system optimisation, n is allowed to increase between 1 and 6 leading

to six measuring apertures ranging from 3 × 3 to 13 × 13 pixels. The optimised

measuring aperture is determined as the aperture that yields the minimum standard

deviation over average signal ratio.

Both tests were performed under identical atmospheric conditions and system

configurations. The mean value of each different aperture used was extracted as

the average of 30 measurements, for both cases, taking into account the suggested
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Figure 6.35: The standard deviation of the mean value of the measured intensity over

the mean intensity is plotted against the number of the pixels used for its calculation

(measurement performed with ATMX-II under strong winds). Left Panel: ATMX-II

equipped without diffuser. Right Panel: ATMX-II equipped with ED1-S20 diffuser.

1 min average in reporting the transmittance/visibility value according to the current

aviation industry consensus.

Figure 6.35 suggests the use of square measuring apertures with sides 6 and

4 pixels for the measurements with and without diffuser respectively. One might

notice that the test with diffuser terminates at n=6 (13×13 pixels aperture) possibly

before the minimum ratio has been reached. The culprit is the processing time

approaching the download time limiting the ATMX-II’s operating frequency.

These results offer a first insight on the ATMX-II’s accuracy. The standard

deviation of the average value of 30 measurements are 75 and 60 ADUs for optimised

aperture tests (i.e n=6 and n=4) with and without diffuser respectively, giving the

slight advantage to the no-diffuser solution. Both values lie well below the expected

photon induced noise of ∼ 200 ADUs. In order to determine the set-up that yields

the minimum uncertainty a thorough test was performed.

6.10.3 Comparison between different configurations for the

ATMX-II

The comparison tests were performed on the 1/04/08 under windy conditions (i.e.

30-35 mph). The experimental setup was similar with the one described in Section
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6.10.1 (i.e. baseline = 25 m, visibility > 30 km).

In order to better visualise the projection of the LED into the CCD camera during

the tests both vertical and horizontal histograms of the registered LED intensity have

been plotted while the colour map of the intensity is shown in the middle of each

graph (see Figures 6.36, 6.37).
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Figure 6.36: Detailed profile of the LED spot

with diffuser.
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Figure 6.37: Detailed profile of the LED spot

without diffuser.

The almost perfect Gaussian fit of the intensity histograms presented in Fig.

6.37 argue for a set-up without diffuser, however one should remember that the use

of the diffuser allows the sampling of more pixels, leading to a reduced uncertainty.

The data from both tests were plotted and the relevant standard deviation is shown

in Fig. 6.38.

Figure 6.38 shows the typical variation around the mean intensity over 30 mea-

surements for the new instrument and the best value attained for the same system

with the addition of a diffuser (the typical standard deviation is 78.4 ADUs). The

results are very similar and suggest that taking out the diffuser would give a slightly

more responsive system for less cost.
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Figure 6.38: Comparison of intensity variation retrieved with and without diffuser.

6.11 The Threshold-Based Algorithm

6.11.1 The limitations of the ATIK-16 Camera

After the software and hardware optimisation of the ATMX-II it became apparent

that its performance in terms of resolution and frequency is limited by:

• The 1 minute RMS values being one order of magnitude higher than the phys-

ical limitation of 13 ADUs dictated by the CCD read-out noise.

• The 5 seconds full frame download time of the used CCD sensor (ATIK In-

struments, 2007)

As both limitations are directly related to the CCD sensor performance (i.e.

resolution in transmittance is limited by the CCD 8-bit dynamic range over expo-

sure time) the author searched for a CCD sensor offering higher performance while

meeting the strict manufacturing budget set in Section 6.2. In the next section the

reasoning behind the selection of the final instrument’s design and components, as

dictated by the manufacturing budget of £ 8000, will be discussed. Furthermore,

the compromises, induced by the budget-driven selections, in terms of accuracy in
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transmittance will be measured. It will be seen that one should be constantly aware

of the CCD - and electronics - market, as even a one year difference between equally

priced components may correspond to a performance increase capable of simplifying

the measuring algorithm which in turn greatly improves the instrument’s resolution.

6.11.2 Motivation for the threshold-based Measuring Algo-

rithm

In the beginning of the project, the set manufacturing budget (see 6.2) dictated the

purchase of the ATIK-16 CCD camera (see Section 6.5.1) equipped with a 16 bit

converter offering a wide dynamic range of 65536 levels of grey. The limiting factor

is set, however, by the 8 bit dynamic range over exposure time. The proven lin-

earity of the CCD camera over exposure time (see Fig. 6.20) suggests the use of

the exposure time alone is sufficient to cover the whole transmittance range with-

out sacrificing accuracy. However, the limited resolution over exposure time of the

current CCD camera is extended, in order to cover the whole transmittance range,

by the following:

• increasing the LED driving current at low visibility conditions, and

• extracting a value for the intensity of the whole LED induced spot from a

small measuring window located near the top of the intensity distribution.

Both methods result in a reduction of the accuracy in measuring the atmospheric

transmittance. Indeed, modulating the driving current results in the LED’s temper-

ature instabilities compromising the ATMX-II’s accuracy. As a light output control

was not installed in the ATMX-II, a nonlinearity of 4.5% of the CCD response over

different LED driving currents was observed (see Fig. 6.19).

In the same manner, the use of a small measuring window fixed at the top

of the intensity distribution would yield a representative value for the whole LED

intensity without sacrificing much of the CCD’s dynamic range. Specifically, the

measuring algorithm begins by setting a proper exposure time leading to a brightest

pixel value of ∼ 40000 ADUs. Thus, if one uses a small measuring aperture around
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the centroid of the intensity distribution (7 × 7, or 11 × 11), accounting for ∼ 5%

of the whole light spot, the average intensity value would be ∼ 38500 ADUs (i.e.

allowing the exploration of the full dynamic range) in comparison with an average

value of ∼ 25500 ADUs obtained by the use of ∼ 80% of the light spot. The use of

a small measuring window leads to uncertainties (i.e. 1 min variation of measuring

transmittance) of ∼ 90−130 ADUs, one order of magnitude higher than the physical

limitation of 13 ADUs dictated by the CCD read-out noise (see Fig. 6.45).

Fortunately, a few weeks after the completion of ATMX-II instrument (i.e. May

2008), an upgraded model of the CCD camera, namely the ATIK-314E, became

available conveniently priced at £ 784. This camera offers a 16-bit dynamic range

over exposure time with a 1 µs steps in comparison with the 8-bit range coupled

with 1 ms resolution offered by its predecessor, the ATIK-16. The use of the new

CCD camera would allow a more precise determination of the LED intensity by

integrating over all ‘signal containing’ pixels. In addition to the enhanced dynamic

range over exposure time the new camera offers:

• a USB-2.0 performance leading to a 1.6 s full-frame download time (i.e. the

relevant period for the current camera is 5 s), and

• a read out noise of 4 e−, a vast improvement in comparison with the 13 e−

read-out noise of the CCD camera in use.

Thus, the use of the new CCD camera would offer a more accurate transmissometer

that would be able to operate at higher frequency.

The delivery of the ATIK-314E CCD camera, however, was much delayed due

to the customised software needed to achieve the 1 µs resolution in exposure time.

Thus, it was decided to implement the background threshold based algorithm, which

would be used for the ATIK-314E camera, in the ATIK-16 camera while awaiting the

new one. The implementation of the optimisation of this new background algorithm

into the ATIK-16 camera will be the subject of the following Sections.
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6.11.3 Implementation of threshold-based measuring algo-

rithm

The simplest and quickest way to implement the new measuring algorithm is by

setting a threshold based on the value of the background corrected brightest pixel

intensity. In this manner, all pixels are scanned but only those exceeding the thresh-

old value are selected for analysis. A simple test was devised to determine the op-

timum threshold. Firstly, the threshold has been increased from 5% to 70% of the

brightest pixel intensity with an initial step of 5% followed by 10% steps. All mea-

surements have been taken over a 1 min measuring period. The results are shown in

Figure 6.39. The effect of threshold on both measured intensity and the number of

pixels used for this calculation is presented. As expected, an increase in the select-

ing threshold yields higher values of intensity that has been averaged over a smaller

number of pixels. Figure 6.39 suggests that the compromise between statistics and

intensity is achieved for a threshold value of ∼ 25%. Thus, for determining the

optimum threshold value, a new test was performed covering the threshold range

13% − 30% with a 1% resolution around the expected optimum of 25%.
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Figure 6.40 confirms that the optimum threshold value is 25%. The variation

of a typical 1 min intensity measurement is shown in Fig. 6.41. The standard

deviation of ∼ 28 ADUs approaches the limit imposed by the read-out noise of
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13 ADUs (without taking into account the other electronics). The fluctuation of the

number of pixels exceeding the set threshold during the measurement is also shown

in Fig. 6.40. The expected anti-correlation between the determined intensity and

the number of pixels used in the determination should not be present within the

9.4 pixels RMS of the fluctuation. That is more evident in Fig. 6.42 where least-

square regression gives a small anti-correlation of r2 = 0.11 which is not statistically

different from no correlation.
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tion at a fixed threshold of 25%.

6.11.4 Optimisation of the threshold-based measuring algo-

rithm

The new measuring algorithm works by a setting a threshold based on the brightest

pixel of the LED’s light spot. This method was implemented for the sake of simplicity

in order to provide a quick comparison between the different measuring approaches,

namely using a measuring window of 7 × 7 pixels as opposed to using 75% of the

signal, corresponding to thousands of pixels. The implementation of the new method

brought the standard deviation of the signal averaged over 30 measurements (i.e. 1

min measurement interval) down to 30 ADUs from an average value of ∼ 110 ADUs
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(see Section 6.10.3). The Achilles heel of this simple algorithm, however, is that it

depends solely on the value of the brightest pixel, which might vary considerably.

A better statistical method was devised based upon the mean and the standard

deviation of the background intensity:

• the OFF image is scanned and the mean intensity and its variation are calcu-

lated (<IOFF>, σOFF), and

• The ON image is scanned and all pixels with values lying 5σ above the back-

ground average value are integrated to derive the signal’s mean intensity:

xi > Threshold = < IOFF > +5σOFF and (6.34)

Signal =

N
∑

i=1

xi

N

where xi is the ith pixel and N is the number of pixels that satisfy Equation

6.34.

By setting the threshold at 5σ above the average noise counts we make certain

that only signal containing pixels will be used in extracting the signal value. Indeed,

the probability that a background pixel will lie above a range of 3.290σ is only

0.1%. The assumption behind this evaluation is that both background and signal’s

registered counts are well approximated by a Gaussian distribution. That is a valid

assumption, however, since even the smallest background rate registered by the

camera, namely a background due to read-out noise of 250 ± 30 ADUs, is large

enough that the Poisson distribution (expected for both signal and background) is

well approximated by a Gaussian.

The next logical step entails the use of distance cuts in conjunction with the

threshold method currently used. The use of an ‘astronomical’-like algorithm to

identify the LED’s projected light-spot borders starting from either the brightest

pixel or the centroid is also under consideration. Such a code can be used to control

stepping-motors for the automatic alignment of the transmissometer, or, if that is

proven to be economically inefficient, to warn the user of a requirement for manual

re-alignment.
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The benefits of using this stable measuring algorithm as opposed to a fixed (9×9

or 13 × 13) pixel aperture are listed below:

1. Optimum transmittance resolution.

The typical standard deviation for the average intensity value over 1− min re-

porting intervals has been brought down to read-out noise fluctuation that sets

the physical limit on the attainable transmittance resolution (i.e. ∼ 18 ADUs,

see Figure 6.43). The daily fluctuations of the one minute intensity values,

under controllable atmospheric conditions within the lab, will be presented in

Section 6.12.
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Figure 6.43: Variation of the LED intensity for a typical 1 min measurement by

using the background optimised threshold.

2. Minimal signal fluctuation related to the brightest pixel’s displacement.

The small aperture algorithm was very sensitive to vibrations of the LED light

beam primarily caused by gusty winds. Temperature variations and earth

movement can also cause misalignment between receiver and transmitter in

the long term. Indeed, the use of small measuring window (e.g. 9 × 9 pixels

for a system without diffuser, see Section 6.10.2) to calculate the intensity of

the whole LED induced light spot assumes a symmetric and homogeneous light
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beam. In order to better visualise the LED induced light spot onto the CCD

camera, under windy conditions, one could plot the profiles of the intensity

along the orthogonal lines crossing the brightest pixel (or centroid) followed

by the relevant 2-d colour diagram of the light spot. A grey scale 2-d repre-

sentation of the light spot has also been plotted followed by its 3-d schematic.

This three-fold visualisation allows us to take a snap-shot of the light spot

and examine the symmetry and homogeneity of its intensity distribution. In

addition, the alignment of the instrument, under windy conditions, can also

be checked. A quick comparison of the one, two and three dimensional in-

tensity distributions, obtained under extreme weather conditions (see Figures

6.44), with those obtained under moderate wind (see Fig. 6.37) convinces us

that symmetry is not preserved for winds approaching the top end of the ex-

ternal environmental specifications (see Section 6.2). For a more quantitative

comparison, the RMS of the measurements performed under extremely windy

conditions for two set-ups with and without the ED1-S20 diffuser, has been

calculated and their typical fluctuation corresponding to 1 min data taking

is shown in Fig. 6.45. The results obtained without the diffuser possess the

greater variation (i.e. σ = 216.3 ADUs) over the whole range of different set-

ups tested, whereas the relevant RMS value for measurements taken with the

diffuser is 168.8 ADUs. That seems to be in conflict with the results obtained

in Section 6.10.3 yielding smaller fluctuations for the ATMX-II without a dif-

fuser. A closer look at the data, in the case of the set-up without diffuser,

convinces us that the measured 1 min fluctuation has been magnified by the

abnormal intensity minima corresponding to the second, seventh and fifteenth

measurement number respectively. Indeed, the plot of the variation of the

brightest pixel coordinates over the same period revealed a perfect correlation

as each intensity minimum corresponds to a jump of the brightest pixel coor-

dinates (see Fig. 6.45). A displacement of the brightest point by just one pixel

corresponds to a 2% difference on the registered intensity. One has to discard

these pixels (3 out of 20) in order to bring the intensity variation to an accept-

able level (i.e. from 216.3 to 110.5 ADUs, see Fig. 6.45) in accordance with



6.11. The Threshold-Based Algorithm 239

5000
10000
15000
20000
25000
30000
35000
40000
45000

10

20

30

40

50

5000
10000
15000
20000
25000
30000
35000
40000
45000

10

20

30

40

50

10 20 30 40 50

 

2.260E4
2.380E4
2.500E4
2.620E4
2.740E4
2.860E4
2.980E4
3.100E4
3.220E4
3.340E4
3.460E4
3.580E4
3.700E4
3.820E4
3.940E4
4.060E4
4.180E4
4.300E4
4.420E4
4.520E4

 

 

10 20 30 40 50

10

20

30

40

50

 

10
20

30
40

50

0

10000

20000

30000

40000

50000

10
20

30
40

50

R
aw

 C
C

D
 In

te
ns

ity
 (A

D
U

s)

Y AxisX Axis

Figure 6.44: Three-fold visualisation of the light spot for LED coupled with op-

tics without the ED1-S20 diffuser under windy conditions: Horizontal and vertical

intensities profiles and colour map, grey map and 3-d light spot intensity profile.

results presented in Section 6.10.3. The background threshold-based measur-

ing algorithm was tested, under the same conditions, yielding 1-min intensity

and brightest pixel coordinates fluctuation shown in Figures 6.43 and 6.46

respectively. These figures argue for a non-correlation between the brightest

pixel coordinate and the intensity measured. The maximum deviation in inten-

sity is 0.2% an order of magnitude better than the small-aperture algorithm.

Thus, the background threshold-based algorithm provides optimum resolution

independent of the brightest pixel (centroid) displacement even under extreme

weather conditions.

The stabilisation of the ATMX-III transmissometer implementing the background

based algorithm and leading to the first long term tests will be the subject of Section

6.12.
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Figure 6.45: Upper panel: Right: CCD raw counts for measurements taken with

LED and optics with and without the ED1-S20 diffuser using the ATMX-II. Left:

Plot of the X brightest pixel coordinate during the same measurement. Lower panel:

CCD registered intensity after filtering out abnormal brightest pixel position.
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Figure 6.46: Plot of the brightest pixel X coordinate during the measurement shown

in Fig. 6.43.
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6.12 ATMX-III Stability Tests

6.12.1 Preliminary test inside the laboratory

Upon completion of the light output feedback loop construction, which entailed re-

placing the PCBs with a laptop and a data acquisition board (see Section 6.9.3),

the system has been subjected to short-term tests both inside and outside the lab

in order to evaluate its stability. A preliminary test was performed by requesting

a stable photodiode light output level, for the green photodiode’s sensor, of 3500

ADUs. In order to check the performance of the light source under sharp thermal

changes, the LED was subjected to a heat gun operating between segments 85-107

of the measuring period shown in Fig. 6.47. The photodiode’s response at the RGB

wavelengths over the full 350 measurement cycle is presented in the upper panel

of Fig. 6.47. During these tests, the L2K2 warm white LED (see Table 6.2) had

been temporarily replaced by the Luxeon c© III Star LXHL-LW3C (see Table 5.1),

originally used in the DHLT prototype, due to earlier equipment failure. In contrast

to the warm white L2K2 emission spectrum (i.e. 3000 K CCT, see Fig. 6.24), the

cool (i.e. 5500 K CCT) LXHL-LW3C LED’s spectral power distribution possesses

a narrow emission peak at ∼ 435 nm followed by a secondary much wider peak

at ∼ 550 nm (see Fig. 5.2). The agreement between the expected and measured

emission spectra has been checked by extracting the normalised intensity values at

the RGB wavelengths from Figure 5.2 (i.e. 0.29 at 615 nm, 0.45 at 540 nm and

0.16 at 465 nm) and comparing the R/G, B/G and B/R ratios with the relative

RGB intensities registered during the short tests presented in Figures 6.47 and 6.48

(see Table 6.3). The agreement between expected and measured relative intensities

is excellent, taking into account that the experimental error in extracting the nor-

malised intensity from Fig. 5.2 can be as high as 12.5% around 465 nm due to the

limited resolution in wavelength (±1 nm) combined with the very narrow emission

peak at ∼ 435 nm.

The ability of the transmitter’s controlling algorithm to produce a stable light

output, even under accute ambient temperature changes, has been verified by form-

ing the normalised histograms of the green photodiode’s sensor amplitudes presented
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Figure 6.47: Upper Panel: Short term variation of the photodiode’s signal from its

green, red and blue sensors. A heatgun was applied to the LED between measure-

ments 85-107. Lower Panel. Left:Mean normalised amplitude distribution of the

photodiode’s green (controlled) signal over the 350 measurement cycle. Right:Mean

normalised amplitude distribution of the CCD signal over the 350 measurement

cycle.

in Fig. 6.47 (i.e. lower panel, left). The typical RMS over a 1-min measurement

cycle is 0.037%. Thus, the accuracy of the method is essentially limited by the

photodiode’s 12-bit serial output, leading to an ideal resolution of 0.024%. For
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Ratio Expected Measured Average Deviation

From Fig. 5.2 From Fig. 6.47 From Fig. 6.48 (%)

R/G 0.644 0.611 0.625 0.4

B/G 0.355 0.357 0.350 1.0

B/R 0.552 0.583 0.560 3.5

Table 6.3: Comparison between the expected and measured intensity distribution

at RGB wavelengths

this reason, the stability of the light transmitter has been simultaneously checked

against the more sensitive 16-bit camera. Figure 6.47 (i.e. lower panel, right) shows

the mean normalised response of the CCD camera yielding the more realistic 0.043%

1-min instability for the light-source. It should be noted, however, that maintaining

a steady light output (i.e. independent of the LED temperature fluncuations) at

540 nm can not secure stable emission spectra over longer periods. Indeed, LED

emission temperature depends strongly on junction temperature; not only do tem-

perature variations introduce changes in LED intensity, but the wavelength of the

emitted radiation shifts towards higher values with increasing LED temperature.

The effect of the the LED’s spectral drift with temperature became apparent during

the long-term stability tests (see Section 6.12.3) leading to the implementation of

an additional temperature feedback loop (see Sections 6.9.3, 6.13). The resolution

of teething problems related to the newly-built ATMX-III instrument that allowed

for these long-term stability tests will be the subject of the next section.

6.12.2 Short-term test outside the laboratory and teething

problem resolution

A longer test was performed on the roof of the Physics Department on October 28th

2009. The intensity level was set at 4000 ADUs (using the green sensor photodiode)

for 1530 measurement cycles, corresponding to 3 hours from 15:14 UT to 18:13 UT.

The variation of the RGB photodiode sensor signal over this period is shown in Fig.

6.48.
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Figure 6.48: Variation of the photodiode’s RGB sensors for the 3h test.

Figure 6.48 revealed a problem with instantaneous erratic readings that are

present as the lines appearing simultaneously in the three wavelength channels.

The problem has been identified as the erratic fluctuations of the D/A output. The

implementation of a low pass filter stabilised the D/A output resolving the problem.

However, conducting uninterrupted test for periods longer than ∼ 3 h has proved

difficult due to frequent CCD sensor stalls and PC resets. The CCD malfunction

was attributed to the frequent transmission of broken data packages between the

transmitter and the receiver. The implementation of a simple check-sum secured

transmission of complete packages only. The frequent PC reset problem was related

to the erratic fluctuations of the mains supply probably caused by the intermit-

tent use of the Physics Department elevator. The acquisition of the Smart-UPS

(APC, 2006) secured the PC’s uninterrupted operation. These changes allowed for

long-term stability tests that will be the subject of the next section.

In order to evaluate the mid-term stability of the ATMX-III transmitter from

the collected data (see Fig. 6.48), one could filter out the erratic measurements

and proceed in the manner of Section 6.12.1. The distribution of the photodiode’s

registered amplitudes at 540 nm is given in Fig. 6.49 and the relevant plot for the

CCD’s registered signal is provided in Figure 6.50.

The width of the distribution in Fig. 6.49 corresponds to a FWHM fluctuation of
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Figure 6.49: Mean normalised amplitude dis-

tribution of photodiode’s green (controlled)

signal over the 3 h test.

Figure 6.50: Mean normalised amplitude dis-

tribution of CCD signal over the 3 h test.

1.5 ADUs arguing that upgrading into a higher serial output dynamic range (i.e. 14-

16 bit) is the only way to improve the transmitter’s accuracy. This is also supported

by the fact that the RMS of photodiode’s green sensor distribution, obtained by

using all available data, is equal to the typical fluctuation over the 1-min averaged

data (i.e. ∼ 0.3%).

The stability of the ATMX-III over the short 3 h test is presented in Figure 6.50.

The RMS has been calculated using the data registered by the CCD sensor and

their 1-min average values (see Table 6.4). The richer structure appearing in the

histogram of Figure 6.50 can be explained in terms of the higher sensitivity of the

16-bit CCD camera. The measured typical RMS over the 3 h measurement is four

times larger that the one calculated for the green photodiode response, a deviation

not observed in the shorter-term stability test (see Section 6.12.1). The possibility

of spectral shift over the short time test was checked by plotting the normalised

histogram of photodiode’s red sensor response (see Fig. 6.51). The RMS of this

distribution is 0.04% showing a very stable LED signal at 615nm. The observed

difference can be explained, therefore, by the fact that the baseline of this test

has been set to the nominal value of 25 m and the test was performed under real

(i.e. out of the lab) conditions. Thus the CCD responds, in addition to the LED

luminous output, to visibility. The stability of the configuration ATMX-III has been
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tested under short term tests yielding acceptable results. In the next section the

ATMX-III’s mid- and long term stability will be established.

Figure 6.51: Mean normalised amplitude distribution of photodiode’s red (uncon-

trolled) signal over the 3 h test.

6.12.3 Long Term tests

The software and hardware changes described in the previous Section allowed for

a smooth transmissometer operation free of stalls, resets and spurious readings. In

order to establish the long-term stability of the transmissometer, a three day test

was conducted between 14th-19th January 2009. The test was performed inside the

lab at a baseline of ∼ 5 m to exclude fluctuation due to atmospheric changes. The

time variation of the CCD signal and background measurements are shown in Fig.

6.52.

Figure 6.52 shows the expected independence between CCD signal and back-

ground. It also reveals a periodic fluctuation of signal between diurnal and noctur-

nal conditions. In order to evaluate the effect of this diurnal/nocturnal variation the

histogram of the CCD’s registered signal amplitude has been plotted in Fig. 6.53.

The peaks corresponding to the maximum/minimum amplitudes registered dur-

ing nocturnal/diurnal conditions are clearly identifiable. The diurnal/nocturnal

fluctuation occurs despite the implementation of the feedback output loop that se-
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Figure 6.52: Variation of the CCD registered signal and background over the 3 day

test of the ATMX-III system.

cures a constant emission at 540 nm independent of temperature changes. This can

be explained by the fact that a temperature rise of the LED’s junction temperature

will result in a decrease of the light intensity followed by an increase in the peak

emission wavelength and usually an increase in the spectral bandwidth (Murtaza

and Senior, 1994). The spectral bandwidth change is much smaller compared with

the white LED bandwidth so its effect can be safely neglected. Thus, securing a con-

stant LED emission at 540 nm cannot guarantee the optical source output stability

due to the spectral shift associated with temperature fluctuations. The magnitude

of the spectral shift is quantified by the temperature coefficient of spectral shift

(i.e. Ks = ∆λD/∆TJ) and its value is usually provided within the specification

of monochromatic LEDs (i.e. ranges from 0.04 to 0.09 nm/◦C between green and

amber for Luxeon K2 LEDs Lumileds (2007)). The spectral emission of the warm-

white LED, for a driving current of 1 A and junction temperature of 25 ◦ C, has

been presented in Fig. 6.24. The dependence of its spectral drift can not be defined

by a single coefficient and the effect of this drift on the LED measured intensity will

also depend on the CCD spectral sensitivity (see Figures 7.11 and 7.12).

The stability of the ATMX-III transmitter was evaluated over 1-day and∼ 3-day

(65 h) periods. For the estimation of the ATMX-III instability the RMS of the
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Figure 6.53: Amplitude distribution of CCD signal over the 3-day test.

distributions, formed by the individual and the 1-min averaged measurements, has

been calculated (see Table 6.4). As a thermocouple has not been implemented in the

ATMX-III transmitter, one can try to correct for the effect of temperature variations

shown in Fig. 6.53 by seeking for correlation between the CCD registered signal

and the red sensor photodiode signal. The time variation of the CCD signal and

photodiode’s red sensor is plotted in Fig. 6.54 and indicates a clear anti-correlation

between the CCD and red-photodiode registered signals. The CCD signal can be

plotted as a function of the photodiode’s red signal output and fitted with a straight

line to yield the linear fit coefficients (see Fig. 6.55). These coefficients can in turn be

used to produce a corrected histogram of the 3-day CCD intensity variation taking

into account photodiode’s red channel fluctuation. The corrected histogram of the

CCD signal variation over the 3-day stability test is provided in Figure 6.56.

Thus, by indirectly correcting the transmissometer signal for temperature varia-

tions, via the photodiode’s signal at 615 nm, the transmissometer instability, over 1

and 3-day periods, has been reduced by ∼ 42%. The alternative method of control-
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Figure 6.54: Variation of CCD and red sensor

photodiode signal during the 68 h test

Figure 6.55: CCD 1-min average signal as a

function of the photodiode’s red sensor devi-

ation from its mean value during the 3 day

test

ling the LED intensity by fixing photodiode’s red channel response and correcting

the transmissometer signal for the green sensor fluctuation has been also tested,

yielding increased values for the transmissometer’s daily instability (i.e. 0.36% prior

to 0.14% after correcting for photodiode signal fluctuation at 540 nm).

Thus, corrections based on the red channel of the photodiode yield an acceptable

daily transmissometer fluctuation of 0.1% but suffer from the following side effects:

• A magnification of the 1-min signal variation due to the photodiode’s limited

resolution, and

• the assumption that any fluctuation of the red photodiode sensor is related to

a temperature fluctuation.

Indeed, the application of the red-sensor linear fit coefficients (see Fig. 6.55) to

the raw transmissometer data over 1 minute yields a typical RMS fluctuation of 0.6%,

thus limiting the transmissometer’s resolution by more than one order of magnitude

(i.e. 0.043%, see Section 6.12.1). For this reason, the red channel correction does

not improve the 1-min averaged data (see Table 6.4). Moreover, any atmospheric

fluctuation within the laboratory (relative humidity) will produce a signal variation

independent of the photodiode’s response yielding additional sources of error for the

linear coefficient estimation.
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Figure 6.56: Red signal corrected amplitude distribution of CCD signal over 3 days.

These results underline the necessity to thermally stabilise the LED, in addition

to its spectral light output stabilisation, an aim which was achieved towards the

completion of this thesis (i.e. May 2009). The preliminary results on the perfor-

mance of the final incarnation of Durham’s transmissometer (ATMX-IV) will be the

subject of the next section.

6.13 ATMX-IV Tests

The construction of the temperature feedback loop started after reaching a state

of a stabilised transmissometer (i.e. capable of operating for more than a month

without failure or spurious readings) to allow for a more efficient component-by-

component debugging. As the author is currently working (May 2009) towards the

implementation of an accurate and stable temperature compensation algorithm, a

more simplistic method has been devised to allow the inclusion of the final trans-

missometer version (i.e. ATMX-IV) results within this thesis. The LED has been

directly mounted to a Peltier unit and is equipped with the K-novus (Novus, 2007)

thermocouple providing a temperature resolution of 0.1 ◦C. The temperature read-
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ings are used to switch the Peltier unit on/off, setting the LED temperature to a

full oscillation within the 1-min measurement interval. Specifically, the simplistic

algorithm switches the Peltier unit on at the beginning of the measurement, driv-

ing the LED towards lower temperatures.When the LED temperature drops below a

predetermined level (i.e. 10 ◦C) the Peltier unit is switched off. This causes the LED

temperature to oscillate around the fixed temperature with max/min temperature

values of ±1.5◦C. The period of the LED’s temperature oscillation is approximately

1-min (see Fig. 6.57) allowing for very stable 1-min intensity values.

Figure 6.57: Time variation of the CCD signal and LED temperature.

For this short test photodiode’s light output was set at 2500 ADUs and the tem-

perature cut off level to 10 ◦C. The raw CCD signal varies by as much as 220 ADUs

(i.e. 1%) due to the temperature oscillation and its RMS value is 0.15%. How-

ever, the 1-min averaged CCD signal possesses a maximum/minimum variation of

12 ADUs, a value comparable to the CCD physical limitation due to read-out noise,

yielding an RMS of 0.012%. An initial 2 h test yielded an RMS fluctuation of 0.05%

(see Table 6.4). It should be noted, however, that ATMX-IV exemplary stability,

proven by the short-term test, has resulted in an instrument very sensitive to the

small atmospheric variations more probable to occur during the longer-term tests. A

noticeable drop in the stable ATMX-IV signal was present each time one of the ob-

servers entered the lab to check the progress of the longer test. It eventually became

apparent that the ATMX-IV was responding to the increased water vapour intro-
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duced by the testers’ hot beverages. The ATMX-IV exemplary resolution allowed

us, for the first time, to disentangle minor atmospheric differences within the labora-

tory over the small baseline of ∼ 5 m. Thus, in order to determine the mid and long

term stability of Durham’s transmissometer final version (i.e. ATMX-IV) one has to

make use of a standardised air tunnel in accordance with airport transmissometer

specifications (Clark, 2008).

A more sophisticated algorithm allowing for a linear temperature compensation

via the Peltier driving current is currently being devised. It is expected that the

temperature oscillation can be limited to ±0.1◦C. The advantages of the LED’s

stable light output at 540 nm and temperature control are:

• Optimum resolution in transmittance, which is reduced only by the CCD’s

electronic noise fluctuation,

• elimination of the magnification of 1-min RMS error associated with the R-

channel based correction, and

• an extended MTBF for the thermally stable LED.

When compared with the ATIK-16, the ATIK-314E exhibits an electronic noise

fluctuation which is lower by a factor of ∼ 3. Consequently, its incorporation into

the ATMX-IV is expected to improve the instrument’s resolution in measured trans-

mittance and bring it down from its current value of 0.012% to below the industry

standard of 0.005%.

The results from the short-term, middle-term and long-term stability tests of the

ATMX-III configuration together with the preliminary stability results of the latest

ATMX-IV are provided in Table 6.4.

6.14 Conclusions

An innovative transmissometer prototype has been manufactured providing an op-

timum resolution in transmittance of 0.0057% in accordance with the specification

described in 6.2. Different hardware and software solutions have been checked in

order to achieve optimum transmissometer performance. Specifically, while we had
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Instability of the ATMX-III and preliminary results of the ATMX-IV (%)

ATMX-III

Uncorrected R-channel

Corrected

All Data 0.11 NA

1-min average 0.08 NA

Short (3 h)

All Data 0.17 0.11

1-min average 0.14 0.13

Mid (24 h)

All Data 0.17 0.10

1-min average 0.14 0.15

Long (∼ 3 days)

ATMX-IV

Temperature Modulated

1-min average

Resolution 0.012

(20 min)

1-min average 0.05

(2 h)

Table 6.4: Collective results of the short, middle and long stability tests on ATMX-

III and preliminary short test of ATMX-IV performance

.

already designed a system to provide a stable current independent of temperature,

once the measurement resolution had been improved, it became clear that some

temperature control of the transmitter unit’s LED was necessary in order to provide

a stable light output. We have therefore designed our own temperature-controlled

LED, based around a Peltier device, 12-bit temperature sensor and a photodiode

and two feedback loops. The green sensor of the photodiode is utilised in a feedback
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loop in order to drive the white LED towards a steady light output at its peak wave-

length of emission. Moreover, the temperature sensor is used to drive the LED’s

Peltier unit towards a fixed temperature. The combination of the background based

measurement algorithm with the innovative thermally stable device lead to 1-min

signal fluctuation of 0.012%, a value comparable with the ATIK-16 CCD physical

limitation (i.e. 13 e− at 25 ◦C).

The instrument’s specification states the visual range (i.e. MOR) is to be as-

sessed between 50 and 100m with an accuracy of 1% or better. The author has

calculated that a 24 m baseline is required to provide this accuracy on the basis of

the transmittance resolution. Thus, the instruments exemplary resolution in trans-

mittance allows for a single baseline to cover the full visual range, thereby limiting

the transmissometer’s production cost (see requirement specification item 10 in Sec-

tion 6.2).

The linearity of the newly-configured transmissometer has been tested using

neutral density filters (see Fig. 6.23). The non-linearity correction ranges from

0.17% to 0.33%, less than half the value calculated for the earlier prototype. Further

modifications are expected to improve this even more, but in any case at this level of

accuracy the uncertainty introduced by the calibration of the neutral density filters

is likely the limiting factor.

The original transmissometer was driven via a C++ program, and analysis was

performed offline using RooT. In order to comply with industry standards (i.e. item

8 in Section 6.2) , all the control software has been re-written in Visual Basic by

group technician Dave Allan. The author was responsible for improving the trans-

missometer’s measurement algorithms. Specifically, the LED driving current in the

transmitter, together with the CCD exposure time, are both now controlled in or-

der to optimise the signal-to-noise ratio while minimising power consumption and

increasing the life expectancy of the LED. In addition, the algorithm used for the

determination of the brightest pixel in the camera field of view has been greatly

improved in order to provide greater accuracy in a shorter time, and thereby in-

crease the measurement frequency of the instrument to 1 Hz in accordance with the

commercial requirements (item 6 of specification in Section 6.2) .
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The newly-designed transmitter unit incorporates a small telescope to allow for

better concentration of light at the receiver unit and more consistent identification

of the centroid of the light spot. This made the alignment increasingly difficult, such

that alignment time sometimes exceeded the 10 minutes that is normally regarded

as the maximum by the aviation industry. The author implemented geared tripod

heads, which reduce the alignment process to less than 5 minutes meeting the in-

strument’s specification (see item 7 of Section 6.2). An additional benefit of the use

of geared heads has been that the transmissometer also shows improved stability in

high winds. Under wind speeds of over 45 mph, the position of the centroid of the

LED image in the CCD frame was found to vary by just ±3 pixels.

Control of the original transmitter unit was accomplished via a PCB manufac-

tured at Durham’s electronic workshop. This meant that changes to the transmitter

control system often required changes to the PCB that could only be accomplished

by the electronic workshop technicians. Since several design changes to the trans-

mitter unit were required, the author decided to migrate the system to a com-

puter/datalogger solution which permitted the full control over transmitter’s soft-

ware and hardware. This lead to the elimination of unnecessary measurement delays

caused by controlling the LED via the PCB, enhancing the instrument’s frequency.

An additional benefit was the easier implementation of the LED’s light output and

temperature feedback loops leading to a thermally stable LED.

In order to meet the 1% visual range accuracy requirement (see item 2 of Section

6.2), it is imperative that the contamination of the windows of both transmitter

and receiver are monitored. All the obvious designs for accomplishing this task

are subject to current patents, and in any case have deficiencies. The author has

completed an innovative design for the monitoring of window contamination which

addresses many of the problems inherent in the prior art (see Chapter 7). The unit

will be constructed by the engineers at AGI, and will also form part of the final

patent on the device.

Finally, ideas concerning the automatic calibration of the transmissometer, in

accordance with item 10 of the specification, will also be presented in the next

chapter.



Chapter 7

Open ATMX-IV Design Issues

This chapter will focus on three design issues important for the future operation of

the transmissometer. The first is the elimination of potential errors caused by con-

tamination of the transmissometer’s outer optical surfaces. The existing techniques

used for minimising the contamination rate of aviation transmissometer windows and

compensating for it, in systems where the window transparency is being (directly

or indirectly) monitored, will be presented. Different methods for eliminating the

effects of window contamination, without being in conflict with patented techniques,

will be discussed.

Secondly, a method for the automatic calibration of Durham’s transmissometer,

similar to the forward scatter technique used in Vaisala’s LT31 (Vaisala, 2004) ,

will be presented. The transmissometer can be equipped with a secondary CCD

camera for detecting high and stable visibility conditions required for its calibra-

tion. Under these conditions, the secondary camera’s visibility measurement can

be used to automatically calibrate the transmissometer making the need of user

intervention obsolete. An automatic way to check, and if necessary correct for, the

transmissometer’s linearity, will be also presented.

Lastly, the methodology asserting the transmissometer photopic response will be

addressed. The required photopic response can be achieved either by a broadband

photodetector equipped with a specialised filter, to adjust its spectral response to

the photopic function (Vλ), or by multi-channel detectors and software scaling. The

merits and disadvantages of each solution will be discussed in detail.
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The chapter will conclude with a comparison of the ATMX estimated accuracy

to the performance of the most common aviation transmissometers in use today.

7.1 Optical Fouling and ATMX-IV Performance

The fouling caused by the contamination of the transmissometer’s external protec-

tive windows is considered one of the most important sources of error in determining

the atmospheric transmittance (ICAO, 2005). Specifically, the transmittance value

registered by a typical transmissometer possesses an average fractional error (σT /T ),

due to the external transmissometer windows’ fouling alone, of 1%. The optimum

fractional error in transmittance, primarily consisting of electrical noise, has already

been estimated at 0.0057% (see Section 6.6.1). Thus, the combined relative uncer-

tainty in transmittance (i.e. σT /T =
√

12 + 0.00572 ≃ 1%) will be dictated by the

error introduced from the optical contamination. These extreme relative error values

in transmittance can be translated into a relative error in terms of the extinction

coefficient or the MOR via the equation (as proven in Section 5.6.5):

∆σ

σ
=

∆MOR

MOR
= (1/ lnT )

∆σ

σ
(7.1)

In addition, the MOR can be conveniently expressed in terms of baseline (R)

multiples via the transmissometer equation (see Equation 5.6):

MOR

R
=

ln (0.05)

lnT
(7.2)

By using equations 7.1 and 7.2 one can plot the relative error associated with the

MOR measurement as a function of the MOR itself expressed as baseline multiples

(see Fig. 7.1).

Figure 7.1 suggests that the elimination of the errors introduced due to the win-

dow contamination yields a transmissometer operational range, within which the

MOR is determined with accuracy better than 1%, of 10 − 12, 619 m assuming an

optimised baseline of 24 m (see Section 6.6.2). An allowance of 1% uncertainty in

the determination of the window’s transparency corresponds to a degraded trans-

missometer’s operational range of 20 − 643 m, which fails to cover the whole MOR
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Figure 7.1: Relative MOR error due to the transmissometer’s electronic noise

(0.0057%) in comparison with the relevant fractional error introduced by optical

fouling. Allowing 1% relative transmittance error due to fouling (i.e. the typically

accepted value) drastically reduces the transmissometer’s operational range.

range (10−10, 000 m) with the required accuracy. It is imperative, therefore, to min-

imise the uncertainty introduced via the window contamination by both reducing the

contamination rate and determining its effect in the determination of atmospheric

transmittance by constantly monitoring the protective window’s transparency.
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7.2 Prior Art for Window Designs

7.2.1 Reducing Window Contamination

Weather protective enclosures are used in every known transmissometer device and

offer adequate protection from errors caused by the deposition of precipitation on

the external surface windows. In order to avoid forward scatter errors, the receiver’s

field of view is typically set to match the transmitter’s aperture (ICAO, 2005). Thus,

the length of the protective hood is limited by this small field-of-view requirement

and by stability problems introduced with increasing wind-exposed surface.

Even though weather hoods offer adequate protection against precipitation de-

position on a transmissometer’s external windows, they cannot prevent dust, fine

particles and insects from entering the transmissometer’s measuring area, resulting

in misinterpreted measurements. The standard solution to minimise contamination

due to dust and fine particles is to circulate air in front of the outer windows. As

an example, Vaisala’s LT31 (Vaisala, 2004) employs a fan to create an air curtain in

front of the transmissometer’s outer windows, thereby forcing wind-driven particles

towards the ground. An alteration of this technique is to be found in MTECH’s

5000-200 transmissometer, which delivers heated and filtered air to both the inner

and outer surfaces of the transmitter’s window (MTECH, 2008). The manufac-

turer claims that this is enough to eliminate any window contamination, making

the need for compensation obsolete. However, due to eddies in the airflow, a small

proportion of the dust particles will reach the instrument’s windows, affecting the

transmissometer’s measurements (Engel and Heyn, 2005). Thus, the cleaning of

the external windows is a necessity and constant monitoring of the window trans-

parency in between maintenance intervals is the only way to approach the ideal

transmissometer performance (see Fig. 7.1). In the next Section, some techniques

for prolonging the maintenance cycle and monitoring the window’s transparency will

be presented prior to the introduction of the suggested Durham technique.
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7.2.2 Monitoring Window Contamination

The standard method of determining transmissivity consists of alternating the ex-

amined material between a light source and a light detector. A calibration factor is

first determined by measuring the light intensity for the uninterrupted light beam.

Then the selected material is introduced between the light transmitter and receiver

and its transparency is calculated as the ratio of the measured value to the calibra-

tion factor. This straightforward technique cannot be implemented in the case of a

transmissometer, however, as its protective environment should remain permanently

sealed.

European patent specification EP1300671 (Rakoczy and McGuinness, 2004) de-

scribes a double-ended transmissometer, both units of which are equipped with

rotating external windows. The windows are divided in six equal portions, five of

which can be used, in turn, for the visibility measurement while one portion is ob-

scured and used as a reference clean window. The contamination of the operational

windows, on both transmitter and receiver, can be determined by co-instantaneously

replacing them with the reference ones and compare the resulting calibration value

with the values registered with the operational windows prior to the exchange. In

this way the maintenance period of the external window is extended and a contami-

nation factor can be applied to correct the measured light intensity. This technology

is currently applied to TELVENt’s Revolver transmissometer (Telvent, 2008). The

disadvantages of such a solution are summarised below:

1. The visibility measurement must be interrupted,

2. the window contamination correction between calibrations can only be applied

off-line and is based on short measurement in order to avoid contamination of

the reference window,

3. a realignment is needed after each contamination check, and

4. frequently moving parts in front of the light beam may limit the MTBF of the

transmissometer.

Another method of determining the window contamination is by monitoring
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the total internal reflection of the transmissometer’s windows (Saari, 1998). This

method utilises a pair of optotransmitters (5, 6 in Fig. 7.2) and optoreceivers (7,

8 in Fig. 7.2) within each of the transmissometer’s separate enclosures (i.e. trans-

mitter/receiver: 1, 2 in Fig. 7.2). The light produced by the sources 5 and 6 is

Figure 7.2: Schematic representation of contamination monitoring via the ‘total re-

flection’ method, as disclosed in patent U.S. 4794266. See text for a full explanation

of the components

collimated and directed to the relevant prism matrix (11, 12) in order to obtain a

total internal reflection within the windows’ boundary surfaces. In the case of a con-

taminated outer window surface, a portion of the transmitted light will be scattered

off by an amount determined from the readings of the photodiodes( 7, 8) measuring

the remaining intensities of the totally reflected light beams. In this way a con-

tamination factor is deduced that can be used for the on-line correction of the light

transmission measured via the transmissometer’s photodiode (14). This method

offers on-line monitoring of the window’s contamination without the need to inter-

rupt the transmission measurement. However, the determination of the windows’

transparency is measured indirectly and the transmission correction is based on pre-

determined empirical look-up functions relating the intensities of the total reflected

light rays with changes in the transmitted light intensity caused by contamination

of the receiver’s/transmitter’s windows.
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A refined method offering direct on-line monitoring of the transparency of the

transmissometer’s windows is disclosed within the Patent Specification GB 2410795

(see Fig. 7.3). The arrangement presented in Fig. 7.3 enables two light beams,

Figure 7.3: Direct measurement of window transparency based on the V-shaped

window design. Extracted from Patent Specification GB 2410795.

orthogonal to each other, to cross the same part of the window, allowing for the

monitoring of the window transparency while the atmospheric transmittance is being

measured. The blue line in Figure 7.3 represents the light path of the window

transparency measurement, while the light transmitter can be placed behind one of

the windows. The light beam used for the atmospheric transmission measurement

is directed through the window towards the receiver with its optical axis forming

an angle of 45◦ with the window’s surface. While this design seems to eliminate the

disadvantages present in the previous methods, it is based on the crucial assumption

that the contamination is uniformly distributed at both windows as only one is, in

fact, used for the atmospheric transmission determination.

This technique, along with other innovative solutions, such as the automatic

re-calibration of the transmissometer via a forward-scatter device, is implemented
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in Vaisala’s LT31 transmissometer (Vaisala, 2004) that comprises one of the most

complete instruments offered by the aviation industry today.

7.3 Durham Window Monitoring Units (WMU)

The suggested Durham designs for the direct online monitoring of the transparency

of the transmissometer’s outer windows are introduced with the objective of elim-

inating the disadvantages of the prior art without infringing any of the known

patented techniques.

7.3.1 The ‘L-shape’ WMU Design

Working with colleagues from Durham University Advanced Instrumentation Group

(AIG) an initial WMU design was devised; the ‘L-shape’ WMU design, which is

schematically presented in Fig. 7.4. The presented design has been sketched for the

transmissometer’s transmitter unit with the telescope shown as the cylindrical tube

(i.e. 97 mm) being protected by an outer enclosure (see Fig. 5.4 for an example).

According to this design, the telescope and enclosure tubes form an L shape. A

semi-silvered mirror has been attached to the telescope’s exit window forming a 45◦

angle. The main LED beam crosses the telescope’s exiting window and 90% of its

intensity is reflected by the semi-silvered mirror towards the transmissometer’s re-

ceiver unit. The remaining 10% of is transmitted through the semi-silvered mirror

onto a photodiode to determine the combined window and mirror contamination.

The calibration (transmitted) and the main (reflected) beams follow different light

paths but the absorption due to the light transmission through the mirror can be

easily calibrated out. The telescope’s exiting window and mirror will be both pro-

tected by the same hood. In addition both units are utilised for the atmospheric and

window transparency measurements so any contamination effect on each unit will

be taken care of. Thus, the ‘L-shape’ WMU design does not suffer from the ‘equal

window contamination’ of the secondary window’ assumptions present in Vaisala’s

patented ‘V-window’ design.

One should notice, however, that the coating has to be applied on the exterior
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LED

Photodiode

Semi
silvered
mirror

Outer
enclosure

Reflected main beam

Window

97mm
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Figure 7.4: Schematic illustration of Durham’s ‘L-shape’ Design

of the semi-silvered mirror or a ‘double entry’ of the reflected beam onto the semi-

silvered mirror will occur. Indeed, in the case of a interior (i.e. protected) coating

the LED beam will cross the semi-silvered mirror twice whereas the transmissometer

external window will be crossed only once. As the rate of contamination between

mirror and transmissometer’s external window may not be the same, a valid calcu-

lation of the window’s contamination would be hard to perform.

Thus, the coating of the semi-silvered mirror will be exposed to the environment

requiring frequent cleaning that may, in turn, affect the coating efficiency. Moreover,

we need to ensure the stability of the unit (telescope and mirror), which might be

challenging with the mirror directly exposed to the elements. Specifically, the align-

ment of the semi-silvered reflector will be crucial as it is used for both atmospheric

and external window transparency measurements. These concerns led to Durham’s

‘double-mirror’ design that is described in the following Section.



7.3. Durham Window Monitoring Units (WMU) 265

7.3.2 The ‘double-mirror’ WMU Design

The object of the ‘double-mirror’ design is to provide a WMU, based on the op-

timised ‘L-shape’ design, and a method to disentangle the losses suffered due to

contamination on the telescope’s transparent front window from that on the reflec-

tor, thereby eliminating the requirement for the hard-to-justify assumptions which

are found in the prior art. The design is schematically presented in Fig. 7.5.

LED

Photodiode 1

Semi silvered
mirrors

Outer enclosure

Reflected main beam

Window

97mm Optical
Tube

Photodiode 2

 

Figure 7.5: Schematic illustration of Durham’s ‘double-mirror’ WMU design.

This design utilises two semi-silvered mirrors, mounted together at a fixed angle

(θ, see also Fig. 7.6), having inner, and thus protected, reflective coatings. The pri-

mary mirror forms an angle of 45◦ with the telescope’s front window so the emergent

beam, responsible for the atmospheric transmittance measurement, is orthogonal to

the telescope’s axis (see Fig. 7.5). The ‘double-mirror’ design also utilises two

photodiodes, each of which sits behind a protective surface, as shown in Figure 7.5.

Photodiode 1 measures the intensity of the light after crossing the telescope’s window
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and being transmitted consecutively through the two semi-silvered mirrors. Photo-

diode 2 registers the intensity of the light that, after being reflected from the second

semi silvered mirror, is transmitted through the primary mirror into the telescope’s

outer window. (It is also possible to use a fibre optic in order to simplify the design

so only one photodiode may be used). The formation of two distinct optical paths

allows the decoupling of the intensity losses due to the telescope’s outer window

contamination from the losses due to the contamination of the primary reflector.

Thus, the ‘double-mirror’ design allows for the continuous and accurate determina-

tion of the contamination of both units utilised in the atmospheric transmittance

measurement (i.e. telescope’s outer window and primary reflector), thereby provid-

ing a means of immediate correction of the measured transmission values. More

importantly, the suggested design does not require any a priori assumptions, as is

the case in Vaisala’s ‘V-window’ patented design, which assumes uniform fouling

between the two plates forming the V-shape (Engel and Heyn, 2005). In addition,

the operator can be alerted whenever the level of contamination on any of the ex-

posed optical surfaces reaches a predefined level. The details of the method allowing

the determination of the contamination layer of both telescope’s outer window and

primary reflector will be presented in the following Section.

Determination of the contamination layer thickness

Working with Dr. Andrew Kirby of the Durham AIG, an analysis of the system has

been determined. A detailed sketch of the transmissometer’s light beam interaction

with the optical elements utilised in the ‘double-mirror’ design is presented in Fig.

7.6. Dust and other contaminants can be accumulated on both the telescope’s outer

window and primary reflector surfaces, forming contamination layers of thicknesses

d1 and d2 respectively. Assuming that Bouguer’s law is valid for the contamination

medium, the intensity of the attenuated beam (I) after crossing the contamination

layer of thickness (d) can be expressed in terms of the impinging beam as:

I = I0 exp−d/λ (7.3)

where λ relates to the attenuation characteristics of the contaminants and can be

expressed as the mean free path, which is the required layer thickness for the initial
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Figure 7.6: Schematic representation of the beam interaction through the Durham’s

‘double-mirror’ WMU design (Kirby, 2008).

beam intensity to be reduced to 36.8% (i.e. d = λ).

The intensity losses due to the transmission of the LED beam through the trans-

parent optical components (i.e. the telescope’s lens and outer window and primary

and secondary semi-silvered reflectors) are fixed, and therefore can be easily cali-

brated out. Thus, absorption through the fixed optical units can be safely neglected,

and therefore, the energy of the beam is conserved:

R + T = 1 (7.4)

where the reflectance R is the ratio of the reflected over the incident power, and

the transmittance T is the ratio of the transmitted over the incident power.

Equations 7.3 and 7.4 allow the calculation of the beam intensity after its inter-

action with each of the intervening optical components. The intensity of the light

reaching the photodiode sited behind the ‘double-mirror’ configuration (IT3), has

suffered absorption while passing through the contamination layers of telescope’s

front window and the primary reflector with optical path length of d1 and d2

√
2

respectively. In addition, the initial light beam intensity (IT0) emerging from the

telescope is transmitted successively through the primary and secondary mirrors by
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an amount dictated by the mirrors’ respective transmissivities (T1, T2). Thus, one

can trace the light beam’s optical path from the telescope into the first photodiode

and assign the following intensity values at each step:

IT1 = IT0 exp−d1/λ (7.5)

IT2 = IT1(1 − R1) = IT1(1 − R1) exp−
√

2d2/λ (7.6)

IT3 = IT2(1 − R2) (7.7)

where IT1 is the intensity of the light beam emerging from the telescope’s front

window, and IT2 is the intensity of the light beam transmitted from the primary

mirror (see Fig. 7.6).

Thus, the registered intensity (IT3 , Equation 7.7) can be expressed in terms of

contamination layer thicknesses and mirror transmissivities (or reflectivities) as:

IT3 = IT0(1 − R1)(1 − R2) exp− d1+
√

2d2
λ (7.8)

The same procedure can be applied to the optical path of the light reflected

from the secondary semi-silvered mirror (IR1) towards the second photodiode, that

sits behind the telescope’s front window (see Fig. 7.6). Specifically, the light beam

reaching the secondary semi-silvered mirror (see Equation 7.6) will be reflected by

R2 (Equation 7.9). The reflected beam will be transmitted back through the primary

reflector and its contamination layer (Equation 7.10). Finally, the emerging beam

will cross the transparent primary window and its contamination layer before being

registered by the secondary photodiode (Equation 7.11):

IR1 = IT2R2 (7.9)

IR2 = IR1(1 − R1) exp−d2/λ(cos π
4
−2θ) (7.10)

IR3 = IR2 exp−d1/λ cos (2θ) (7.11)

The combination of Equations 7.9, 7.10 and 7.11 yields the following expression

for the second photodiode’s registered intensity:
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IR3 = IT0(1 − R1)
2R2 exp−

d1(1+ 1
cos(2θ))+d2(

√
2+ 1

cos (2θ−π/4))
√

2

λ (7.12)

Equations 7.8 and 7.12 can be conveniently rearranged in terms of the unknown

quantities; namely the thicknesses on the contamination layers KT and KR on the

telescope’s outer window and primary semi-silvered mirror d1 and d2 respectively:

KT = −(d1 + d2

√
2) = λ ln

IT3

IT0(1 − R1)(1 − R2)

KR = −
d1

(

1 + 1
cos(2θ)

)

+ d2

(√
2 + 1

cos (2θ−π/4)

)√
2

λ
= λ ln

IR3

IT0(1 − R1)2R2

This system of linear equations can be solved for d1 and d2:

d1 = α(KT − βγ(KR − αKT ))

d2 = β(KR − αKT ) (7.13)

where:

α =
1√

2 + 1
cos (2θ−π/4)

/
√

2 − 1
1+cos (2θ)

β =
1

1 + 1
cos (2θ)

(7.14)

γ =
√

2 +
1

cos (2θ − π/4)

The constants α, β and γ are determined by the geometry of the window mon-

itoring unit (i.e. θ). Thus, one can use equations 7.13 and 7.14 to determine the

thickness of the contamination layer, on each of the exposed optical components,

from the registered values IR3 and IT3 .

7.4 Automatic Calibration Considerations

A transmissometer measures atmospheric transmittance directly, within the limits

of its baseline. By definition, transmittance ranges between 0− 1, corresponding to

an MOR/RVR range of 0 to ∞ . The intervening values of transmittance can be
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translated to an MOR/RVR value via the relevant equations (e.g. 7.2 ). The depen-

dence of these equations on transmissometer baseline necessitates the adjustment

of the calculated MOR/RVR values to the prevailing visibility on site. Calibration

is usually performed under high visibility (i.e. > 10 km), to approximate ideal

conditions relating to a transparent (T=100%) atmosphere. Thus, the calibration

procedure requires an external input of the independent visual range value (usually

estimated by an airport’s trained personnel).

Patent specification GB 2,410,7955 (Engel and Heyn, 2005) discloses a method

for the automatic calibration of the transmissometer. According to this method, the

transmissometer is equipped with a forward-scatter meter that is used for detecting

the necessary calibration condition (i.e. visual range > 10 km) and for calculating a

calibration factor under this condition. The calibration factor is calculated by trans-

lating the visual range registered by the forward-scatter sensor into a transmittance

value corresponding to the transmissometer’s baseline and subsequently by forming

the ratio between the resulting value and the transmissometer’s measured value.

In addition, the forward-scatter device can detect the presence of precipitation and

therefore can be used to activate the air-fan unit only under these conditions (i.e.

rain, snow), thereby avoiding the deposition of dust and fine particles due to their

recirculation by the air system.

In order to achieve an automatic calibration of the transmissometer, without the

need of the trained observer’s input, one needs to deploy two independent methods

for measuring visibility. In the case of Vaisala’s LT31 this is achieved by the use

of two visibility sensors. One possibility, still in the process of formation, is to

use a secondary camera/video mounted on the side of the receiver unit in order to

extract the atmospheric contrast transmittance between two ‘black objects’ within

the camera’s field of view. That would allow the use of a plurality of objects/targets,

placed at different distances, during the day while during the night the device can

be aimed towards the runway centre/edge line lights.

Specifically, a reliable estimate of the visual range can be extracted by capturing

with the secondary camera two black objects at different distances together with

their background. The black ‘object’ assumption can be used to simplify the cal-
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culation of the contrast transmittance as the object’s variation in illuminance is

considered negligible over its whole surface:

C =
B −D

B
(7.15)

where, B is the observed background illuminance, and D is the observed illuminance

of the black object.

By further assuming that contrast reduction is due to illuminance attenuation

only, the contrast of a black object at a distance l from the camera can be calculated

via the Beer-Bouguer law:

C(l) = C0 exp−σl (7.16)

where σ is the atmospheric extinction coefficient.

The use of two black objects, located at different distances, can be used to

eliminate their common inherent contrast (i.e.C0):

σ =
lnCl2 − lnCl1

l2 − l1
(7.17)

In this way, a value for the atmospheric extinction coefficient, yielding a Koschmieder

visual range, can be retrieved from the camera’s image by extracting the intensities

corresponding to the relevant reference objects and the background. This method

assumes the existence of two ‘black objects’ (i.e. the light reflected by them to-

wards the camera is negligible in comparison with the background radiance) within

the camera’s field of view. This technique has already been tested, yielding visibil-

ity values in close agreement with human observation (Janeiro et al., 2006). The

temporal variability of the measured visual ranges was minimal under high visibil-

ity conditions due to the reduction of the multiple scattering effects. Thus, this

method can be used in parallel with Durham’s transmissometer to identify high vis-

ibility conditions and, when necessary, to calibrate the transmissometer under these

conditions.

This method has already been investigated by (Janeiro et al., 2006), while the

US patent 0270537 provides a similar image-based visibility estimation. However, to

the extent of our knowledge, this method has never been used before in conjunction

with an RVR sensor.
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The following potential problems could limit the applicability of the proposed

method:

• A suitable landscape might not be available,

• fluctuation of the camera positioning over time necessitates the use of compli-

cated and computationally intensive edge detecting algorithms, and

• the accuracy of this method has not been verified even though it has been the

subject of patented research.

Due to the complexity of the suggested method it has been decided that its

development does not consist one of the short-term priorities of the project.

7.4.1 Linearity Calibration

The spectral sensitivity of both the camera (see Fig. 7.12) and the S9706 photodiode

depends on temperature and will be reduced with ageing. As both detectors are

temperature modulated, their response can be safely assumed constant under short

and medium time intervals (i.e. days to a few weeks). In order to take into account

the photodetectors ageing over longer time intervals, the LED output brightness can

be modulated via the LED driving current to provide an automatic re-calibration

of the Durham’s transmissometer. This procedure can be triggered only under very

clear and stable visibility conditions (i.e VIS > 30 km, and RMS cut requesting

long periods of exemplary stability) to minimise the atmospheric absorption and

fluctuation effects. The following analysis was performed under very clear skies (VIS

> 50 Km) using the RGB S9706 photodiode in conjunction with the monochrome

ICX429 sensor, in order to test the concept. The brightness of the LED was altered

to provide 13 different intensity check points ranging from 74-80% and 94-100% of

the LED maximum output with 1% intensity steps. The correlation between the

CCD sensor and the photodiode has been checked by using both the photodiode’s

green and average sensor values (see Figures 7.7, 7.8 respectively).

The evident correlation between the CCD and the photodiode is quantified in

Figures 7.9 and 7.10 where the relevant raw readings (i.e. CCD vs. G photodiode,
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Figure 7.7: ICX429 CCD versus S9706 green

photodiode sensor reading for 13 different in-

tensity levels.

Figure 7.8: ICX429 CCD versus the average

reading of the S9706 photodiode’s RGB sen-

sors for 13 different intensity levels.

Figure 7.9: Correlation between CCD

(ICX429) and the green photodiode (S9706)

sensor signal.

Figure 7.10: Correlation between CCD

(ICX429) and the average photodiode

(S9706) RGB sensor signal.

CCD vs. RGB photodiode) have been directly plotted against each other. In both

cases the slope of the calibration curve is determined with an excellent accuracy

(i.e. 0.022% for RGB and 0.023% for G) while the offset between the CCD and

photodiode signals is determined more accurately when all photodiodes channels are

being considered (i.e. 0.85% RGB and 5% G). Thus, the use of the three available

photodiode channels will give more accurate results.

It is expected that the use the ICX205 colour CCD sensor, allowing the direct
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comparison between the transmitter/receiver photodetectors, will yield even better

correlation with the S9706 photodiode. Thus, re-calibrating Durham’s transmis-

someter, at time-intervals dictated by the good visibility requirement, will yield the

means (i.e. linear coefficients) to compensate for any responsivity change affecting

the transmissometer. As already discussed, a value for the prevailing visibility must

be provided by the operator if the transmissometer cannot detect visibility indepen-

dently. This method can be also used to inform the operator when the replacement

of the photodetectors is necessary, i.e. a predetermined level of efficiency has been

reached.

7.5 Photopic Response

The definition of the MOR is based on a traditional incandescent light source with

a C orrelated C olour T emperature CCT of 2700 K and a light sensor possessing

photopic response (i.e. see Section 5.5.1). LEDs possess higher luminous efficiency,

lower power consumption and an extended life time in comparison with traditional

light sources, and thus constitute the preferred light source for aviation transmis-

someters today. For our application the Lumileds K2 warm-white (i.e. ∼ 3000 CCT)

has been selected (i.e. see Section 6.9.1).

In terms of the light sensor, the ATIK-16 monochrome camera has been used

throughout the development of Durham’s aviation transmissometer (i.e. ATMX-I

to ATMX-IV, Table 6.1). This camera is equipped with the ICX429 CCD sensor,

whose spectral sensitivity is presented in Fig. 7.11. A quick comparison with the

CIE photopic luminosity function (i.e. Vλ see Fig. 5.11) convinces that a photopic

correction filter is necessary for an acceptable matching between the CCD response

and Vλ. As the cost of such a purpose-built photopic correction filter is usually

greater than of the CCD sensor itself, the author decided to establish the ATIK-16

camera’s performance (i.e. linearity, lifetime) and finalise the optical design before

committing the necessary funds to produce a photopic filter for the camera’s sensor

and optics.

Indeed, it was quickly realised that the use of ATIK-16 sensor limited the trans-



7.5. Photopic Response 275

missometer to frequencies lower than the specified value of ∼ 1 Hz (see Section 6.2)

due to the degraded image download speed provided by the USB-1.0 connection.

The transmissometer frequency will be optimised via the recently acquired ATIK-

314E CCD camera offering USB-2.0 connectivity with sub-second download time.

The new camera can be equipped with either monochrome or colour CCD sensor

offering the following choices for achieving the required photopic response:

• Photopic Filter

Although the ATIK-314 camera implements ICX205 CCD sensor, whose spec-

tral sensitivity approximates better the photopic luminosity function (Vλ) than

the old one (see Figures 7.12, 7.11 respectively), a closer match is usually re-

quired for aviation transmissometers. The level of the required accuracy of

matching the CCD sensor response to Vλ is high due to the difference between

the LED and illuminant A emission spectra.

Figure 7.11: Sony ICX429 CCD sensor spec-

tral sensitivity (Sony, 2006).

Figure 7.12: Sony ICX205 CCD sensor spec-

tral sensitivity (Sony, 2007).

The cost of a purpose-built photopic correction filter for the SONY ICX205

sensor is $ 2000 (LUMETRIX, 2005). However, acquiring such a photopic

filter does not guarantee a photopic response for the ATIK camera as the

filter has been manufactured for a different camera lens than we are using.

Thus, buying an ‘off the self’ photopic filter will be in breach of the Durham

transmissometer requirement specification (see Section 6.2)

• RGB CCD and Photodiode Sensors

A spectroradiometer approach can be used by monitoring the LED’s RGB



7.6. Conclusions 276

spectral emission using the Hamamatsu S9706 on the transmitter side and the

colour CCD sensor on the receiver. A photopic response can be achieved by

scaling the raw values of the LED and CCD RGB pixels to the relevant pho-

topic function factors. Although that would produce a photopic response at

the RGB wavelengths the closeness of the photopic approximation to the re-

maining spectrum has to be checked against a photopic standard. It is initially

intended to calibrate Durham’s transmissometer against AGI’s photopic pho-

todiode, in which case the accuracy will be limited to 2%; a value acceptable

by the aviation standards today. It was, therefore, decided to implement the

spectroradiometer solution followed by the acquisition of the coloured CCD

ATIK-314E camera.

7.6 Conclusions

In this chapter considerable effort was dedicated by the author to the development

of an innovative Window Monitoring Unit design that eliminates the disadvantages

of the prior art without infringing any of the currently used patented designs (e.g.

Vaisala’s ‘total-reflection’ and ‘V-window’ designs). After considering numerous

solutions, and consulting colleagues from Durham’s Instrumentation Group, the

‘double-mirror’ design was produced and a method was devised to allow not only

the accurate determination of the losses due to the contamination of the optical com-

ponents (i.e. telescope’s front window and external semi-silvered mirror) but also to

associate a contamination thickness layer with each component. Thus, there is no

need to make any assumptions about the rate of contamination between the optical

parts as is the case for Vaisala’s LT31 transmissometer, which assumes uniform foul-

ing between the WMU V−plates, although only one is utilised for the atmospheric

measurement (Engel and Heyn, 2005). In addition, there is no need to interrupt the

atmospheric measurement in order to allow comparison with calibrated windows or

to risk the instruments MTBF via the frequent use of filter wheels (i.e. TELVENT’s

Revolver transmissometer, see Section 7.2.2).

The WMU for the transmitter unit utilises one LED for both window monitoring
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transparency and atmospheric transmittance measurements. That simplifies the

WMU design in comparison with competing instruments that require a plurality of

light sources (e.g. Vaisala’s LT31). In addition, this solution is cost effective, as lot

of effort has been placed on the stabilisation of the transmitter’s LED (i.e. via light

output and temperature feedback loops).

The advantages of Durham’s ‘double-mirror’ design drew a keen interest from

AGI. The eligibility of the design has initially been checked with positive results.

Moreover, the feasibility of the design has already been evaluated by AGI’s engi-

neers and the construction of Durham’s WMU is underway (i.e. March 2009). The

‘double-mirror’ innovative design is expected to be incorporated into the Durham’s

transmissometer final patent shortly.

Automatic calibration is an attractive option for aviation transmissometer cur-

rently to be found only in Vaisala’s LT31 instrument. The author suggested an

image-based method of measuring visibility via a secondary camera attached to the

transmitter unit. Although this method has already been explored (Janeiro et al.,

2006), it has never been used in conjunction with an aviation transmissometer (e.g.

Vaisala’s LT31 auto-calibration is based on a forward-scatter sensor). Even though

the complexity of the required image recognition algorithms have put the further

exploration of this idea on hold at the present time, it will be explored further at a

later date.

Finally, the transmissometer’s photopic response will be guaranteed via the com-

bined use of a tristimulus (RGB) CCD (i.e. ICX205) and photodiode sensors. The

suggested solution makes the need of a ‘photopic filter’ obsolete thus minimising the

production cost of Durham’s aviation transmissometer.

After the completion of these tasks, Durham’s aviation transmissometer will be

ready for extensive field trials necessary for the instruments validation The trans-

mittance resolution is now 0.0057%, which is very close to the industry standard

of 0.005%. The integration of the the new camera into the system, offering a full

16-bit resolution in exposure time while possessing a much lower noise level than

the current ATIK-16 camera, will increase the resolution in measured transmittance

and bring it down to below the industry standard of 0.005%. Finally, the use of the
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innovative ‘double-mirror’ window monitoring system will guarantee an accuracy of

1% or better for MOR measurements between the range 10−12, 595 m for a baseline

fixed at 24 m.

The performance of common aviation transmissometers in use today is listed

in Table 7.1. The baseline, operational range, stated MOR/RVR accuracy and,

where available, the instrument’s resolution in transmittance have been extracted

from the manufacturers’ manuals. The standard method of reporting accuracy in

the transmissometer aviation market is by stating compliance with the World Me-

teorological Organisation (WMO) and International Civil Aviation Organisation

(ICAO) guidelines. The WMO/ICAO guidelines specify the desirable accuracy of

todays cutting-edge transmissometers and are presented in table 7.2. It is clear that

Durham’s performance exceeds both WMO and ICAO requirements.

Table 7.1: Transmissometer Manufacturer Specification. Double horizontal lines are

used to group transmissometers from the same manufacturer.

Sensor/ Operational Baseline Accuracy Transmittance

Company Range (m) Resolution (%)

AGIVIS 50 m − 100 m ±10 m

2000 400 m − 800 m 20 ±25 m

(AGI, 1990) > 800 m ±10 %

5000-200 25 m − 10 km 50 ICAO/WMO

(MTECH, 2008) 10 m − 10 km 30 ICAO/WMO

REVOLVER 10 m − 10 km 10 − 100 Exceeds 0.005

(Telvent, 2008) ICAO/WMO

LT31 10 m − 10 km 30 ICAO/WMO

(Vaisala, 2004) 25 m − 10 km 50 ICAO/WMO

MITRAS 100 m − 1.5 km 35 ICAO/WMO in 0.02

(Vaisala, 1995) 40 m − 10 km 10 and 200 specific ranges
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All in all, we have built an aviation transmissometer prototype, in accordance

with the newest industrial specifications (see Section 6.2), having compatible perfor-

mance with the most advanced instruments in today’s aviation market at a cost of

£8000; a reduction by a factor of ∼ 5 over the cost of the competitive instruments.

ICAO and WMO desirable resolution for RVR and MOR respectively

ICAO Requirement (RVR) WMO Requirement (MOR)

Operational Range (m) 50 − 2000 25 − 10000

25 m up to 400 m 50 m up to 600 m

Resolution 50 m between 10 % between

400 and 800 m 600 and 1500 m

100 m above 800 m 20 % above 1500 m

Table 7.2: International Civil Aviation Organisation ICAO (2005) and World Mete-

orological Organisation WMO (2008) guidelines for the desirable in RVR and MOR

measurement respectively.



Chapter 8

Future Work

In this final chapter a short account of future working plans regarding the Durham’s

aviation transmissometer will be drawn. In addition, the Cherenkov T elescope

Array (CTA), which holds the future for the ground based γ-ray astronomy will be

briefly presented.

8.1 ATMX Future

We have gone a long way to transform the original DNT, designed to operate only

at night with an 20% resolution in transmittance, to an aviation transmissometer in

agreement with strict accuracy standards (i.e. see Table 7.2). The Durham trans-

missometer is easy to align, uses very little power (indeed it can be solar-powered),

has an adjustable baseline that can be configured in software, and is lightweight and

portable, enabling its use not only in civil airports, at heights exceeding all prior-art

aviation transmissometers, but also in tactical military applications, such as remote

landing strips. AGI have significant experience in this area, having already supplied

systems to the RAF, including RAF Brize Norton, for fixed applications.

At the time of concluding this thesis (May 2009), ATMX is very close to fulfilling

all the requirements of the aviation industry (according to Section 6.2), and it is

anticipated that it will be complete by October 2009 after the refinements already

discussed in Chapter 7. However, in order to satisfy the regulatory requirements for

an instrument to be used in airports and military airfields, further improvements,

280



8.2. CTA: the future of γ-ray based astronomy 281

calibration and testing has to be done jointly with AGI. Most importantly, validation

of the instrument requires thorough field trials at an airport.

Thus, the next step will be to get the completed transmissometer to an airport

and test it thoroughly. Validation of the instrument requires that these tests occur

in the winter conditions between October and April. Field trials are expected to

last for six months and will entail a thorough check of the physical integrity of

the instrument, regular and careful checks of the downloaded data and, inevitably,

refinements to both the hardware and software.

We will also build another device in Durham to help us replicate any problems

encountered in the field trial instrument, which will act as a spare in case of any

mishap to the transmissometer under test at the airport, and build a further ‘cloned’

device with AGI so that the knowledge regarding the detailed hardware specifications

can be transferred to the company.

Finally, we will work closely with the software engineers at AGI to get the soft-

ware ready for final production and integration into the commercial instrument.

Thus, it is anticipated that Durham’s aviation transmissometer to be fully opera-

tional in less than a year.

8.2 CTA: the future of γ-ray based astronomy

The third generation of imaging atmospheric Cherenkov telescopes have proven an

extremely successful tool for γ-ray astronomy between energies of about 100 GeV

to 100 TeV. The Cherenkov T elescope Array (CTA) observatory has been proposed

with the aim of an increased performance by a large-scale deployment of proven

techniques. The CTA observatory will allow for a full sky coverage consisting of two

arrays: a southern hemisphere array, which covers the full energy range from some

10 GeV to about 100 TeV optimised for the investigation of galactic sources and a

northern hemisphere array, consisting of the low energy instrumentation (from some

10 GeV to 1 TeV) dedicated mainly to northern extragalactic objects. The design

of CTA is currently under consideration. CTA is expected to boost the performance

of existing detectors in the following areas:
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• Sensitivity: CTA will boost the sensitivity to an order of magnitude higher

than any existing instrument (see Fig. 8.1).

• Energy range: CTA aims to cover the energy range from 10 GeV to beyond

100 TeV. Together with FERMI, that will provide a coverage of more than

seven orders of magnitude in energy.

• Angular resolution: CTA is expected to have a 5× better angular resolution

than current instruments allowing the morphology of extended sources to be

resolved.

• Detection Area: CTA increased detection area would dramatically increased

detection rates. CTA is expected to boost the number of known γ-ray sources

by a factor of about 20.

• Flexibility: CTA consists of a large number of telescopes allowing for simulta-

neous observation of many objects.

Figure 8.1: Approximate sensitivity for CTA (5 σ, 50 hours). The final sensitivity

will depend on the configuration of the array. Courtesy of W. Hofmann.

Following the definition of the CTA configuration, the design of atmospheric sens-

ing for CTA will mark the future challenges of the VHE γ-ray group in Durham.
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The experience gained by designing instruments for both smaller γ-ray sites and

the industry will contribute in meeting the CTA’s atmospheric monitoring require-

ments. In addition, the flat-fielding of the CTA’s numerous cameras can be based

on Durham’s innovative thermally stable light source. In this way a full circle from

γ-ray experiments, to industry, and back will be drawn.



Appendix A

Mathematical formulation of the

Hillas parameters

The material in this appendix is primarily adapted from (Fegan, 1997). The pixels

of a Cherenkov camera image are parameterised angular co-ordinates xi and yi and

their amplitudes ni. The following moments are then defined as summations over

all pixels in the image.
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Functions of these moments then define the spreads of the Cherenkov image in

various directions.

σx2 = 〈x2〉 − 〈x〉2 σy2 = 〈y2〉 − 〈y〉2 σxy = 〈xy〉 − 〈x〉〈y〉

σx3 = 〈x3〉 − 3〈x〉2〈x〉 + 2〈y2〉 σy3 = 〈y3〉 − 3〈y〉2〈y〉 + 2〈y3〉

σxy2 = 〈xy2〉 − 〈x〉〈y2〉 − 2〈xy〉〈y〉+ 2〈x〉2〈y〉2

σx2y = 〈x2y〉 − 〈x2〉〈y〉 − 2〈xy〉〈x〉 + 2〈x〉2〈y〉
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The Hillas parameters are then defined as specific combinations of the moments and

spreads defined above.

d = σy2 − σx2 s =
√

d2 + 4(σxy)2

u = 1 − d

s
v = 2 − u
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Appendix B

Short Description and Circuit

Diagram for the DHLT &

ATMX-I, II transmitter’s PCB

B.1 Description of the PCB used to control the

DHLT & ATMX-I, II transmitter units

The T ransmissometer’s T ransmitter Unit (TTU) is based around a single chip flash

micro controller from Arizona Microchip (Microchip, 2004). The variant used is the

PIC18F8720. All of the program and data storage is contained within this micro

controller. The firmware within the micro controller is field upgradeable.

The TTU provides output to a Luxeon white light LED which is the light source

for the T ransmissometer Receiver (TR). The output is variable in amplitude by

commands received from the TR via the RS232/RS485 interface.

Power to the unit is provided by a 9V mains operated power supply, which

provides power to U12 a 5V regulator that in turn provides power to most of the

electronics. In addition to this U20 + U11 provide a 5V reference source for the

A/D converters.

U8-B and U8-D in conjunction with VR1 set the current through the LED. U8-

B provides simple feedback to control the current through the LED. U2 is a micro
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current sensor to sample the current and provide feedback to the micro controller,

which in turn modifies the current in the LED. U8-A is a buffer between the micro

sensor and the micro controller.

U8-C monitors the battery voltage which is then sent via the RS232/RS485

interface back to the TR.

U15 and U32 are not used in this configuration.

U34 is a temperature sensor that measures the temperature of the PCB and U4

measure the air temperature around the LED.

U13 is a MAX232 which provides level translation from RS232 to TTL.

U3 is a MAX3086 which provides level translation from RS485/RS422 to TTL

C10, D7, R1 and D8 are the reset circuit for the micro controller.
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B.2 Circuit Diagram of PCB used in DHLT &

ATMX-I, II transmitters

Figure B.1: Circuit diagram of the PCB used to control the DHLT & ATMX-I,II

transmitter units (Moore, 2008)



B.3. Circuit Diagram of the secondary PCB used in ATMX-III, IV
transmitters 289

B.3 Circuit Diagram of the secondary PCB used

in ATMX-III, IV transmitters

Figure B.2: Circuit diagram of the PCB used to read the S9706 photodiode data on

ATMX-III, IV transmitter units (Moore, 2008)
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