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An Open-Data Approach for Quantifying the 

Potential of Taxi Ridesharing 

1. Introduction 

While the basic idea of sharing is as old as humankind [1,2], recent developments in 

information and communication technology (ICT) have led to the emergence and 

proliferation of new forms of business models based on sharing [1,3]. For example, the 

companies Uber and Lyft have developed mobile applications, which allow consumers with 

smartphones to make trip requests, which are then matched to private drivers who use their 

own cars to fulfill the service requests. These online transportation networks are disrupting 

the taxi industry, which had remained largely unchanged since its inception [1,4].  

The emergence of new sharing-based transportation networks is also in line with the 

rising need for more sustainable consumption [1,5]. In particular, there are political 

ambitions to implement more efficient transportation systems and sustainable mobility [6] to 

counter urban congestion, fuel-wasting, and air-pollution [7,8]. Especially in mega cities, like 

New York City (NYC), the taxi industry is a considerable contributor to these challenges [9]. 

Taxi ridesharing (TRS), which matches at least two separate ride requests with similar 

spatio-temporal characteristics to a joint taxi trip, has been proposed as one means towards 

more sustainable transportation [10,11]. The idea of TRS is not entirely new; in fact, the 

idea to share rides has been used in developing countries for several decades [11,12]. 

However, in recent years several technology-driven approaches have been proposed in 

order to improve the feasibility of TRS in the developed world. The recent literature has 
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particularly focused on dynamic ‘many-to-many’ TRS approaches, which allow trips with 

different start and/or end points to be shared [6,9,11–16]. While these approaches promise 

a large sharing potential, they also make rigid assumptions on the TRS system, including an 

a priori availability of data on all taxi trips and a consent of customers to allow dynamic 

ridesharing. Until now, only a few field tests of dynamic many-to-many ridesharing have 

been conducted and documented in practice (e.g., Uber Pool, Maaxi).  

Against this backdrop, we argue that a less rigid approach towards TRS may actually be 

more promising. Our TRS approach, which requires common, or closely co-located, start 

and end points as the basis for shared rides (one-to-one), was not yet considered in the 

literature. Although a one-to-one TRS approach has a lower ride sharing potential—

compared to many-to-many TRS—we argue that it is easier to implement for transportation 

providers and likely to enjoy higher acceptance by consumers. It could, as will be seen later, 

ideally be implemented at airports to share trips to hotels or other points of interest lying in 

the same area, or, vice versa, to go from points of interest in the city to airports.  

In this paper, we develop an innovative concept for one-to-one taxi ridesharing and 

demonstrate its utility by applying it to an open dataset of more than 5 million historical taxi 

trips in NYC. Our empirical analysis reveals that the proposed approach can match up to 

48.34% of all taxi rides in NYC, saving 2,892,036 kilometers of travel distance, 231,363 

liters of gas, and 532,135 kilograms of CO2 emissions per week. From a decision-support 

perspective, our proposed approach and our empirical results contribute to enhancing the 

decision-making of actors at various levels. First, the proposed approach enables taxi 

operators to estimate the feasibility of one-to-one taxi ridesharing for a given city and 

various scenarios. The conceptual framework presented here can easily be instantiated to 

form the backbone of a decision support system that allows for calculating the overall 
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economic potential of taxi ridesharing as well as for conducting detailed what-if analyses. 

Second, our approach and empirical results can inform policy making related to urban 

transportation. Policy makers with access to taxi trip data, for example, national or local 

transportation authorities, can use the approach presented here and replicate our analyses 

to support decisions regarding sustainable urban transportation (e.g., subsidizing taxi 

ridesharing). Third, our findings may convince individual customers of the potential of taxi 

ridesharing and thereby influence their decision making related to whether to use existing 

taxi ridesharing systems or not. 

The paper unfolds as follows. In Section 2, we discuss the related literature, position 

TRS as a form of collaborative consumption, and compare and contrast alternative TRS 

approaches. In Section 3, we describe our one-to-one TRS approach and our data 

collection and analysis procedures. In Section 4, we present our empirical results regarding 

the sharing potential of a one-to-one TRS system in NYC. In Section 5, we discuss our 

findings and implications for research and practice. Section 6 concludes the paper. 

2. Ridesharing Approaches 

Ridesharing refers to the joint and simultaneous trip of at least one driver and one rider 

by assigning individuals with similar schedules and itineraries to a shared vehicle [1,4,17–

22]. Ridesharing not only reduces travel costs, but by increasing seat occupancy also 

reduces the total distance traveled and the number of cars on the street. Hence, traffic 

congestion and environmental pollution can be reduced through ridesharing 

[8,11,17,19,21,23]. 

While unorganized ridesharing has existed for decades, organized ridesharing became 

increasingly popular in recent years. Approaches range from simple online bulletin boards 
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to complex decision support systems that offer automated matching [11,17,18,20,21,24]. 

Organized ridesharing can be performed through centralized or decentralized asset 

provisioning, meaning that matches can either be provided by matching agencies or by 

ridesharing operators [17].  

When matching is performed by matching agencies (such as Uber), a two-sided market 

emerges that matches riders with drivers of self-owned cars [17,20]. This market can 

involve static carpooling with pre-arranged regular trips, flexible but pre-arranged long-

distance ridesharing, or dynamic ridesharing. Through advances in ICT, the latter allows an 

automatic matching of single, non-recurring, short-notice, on-demand requests. It is also 

known as ad-hoc ridesharing, real-time ridesharing, instant ridesharing, or dynamic 

carpooling [1,17,19,21,23,25]. 

When matching is performed by ridesharing operators, operators use dedicated vehicles 

and drivers to pick-up and drop-off passengers. Several vehicle sharing services, such as 

shuttle services, vanpools, or fixed-route transportation exist [17]. Furthermore, they build 

on other shared vehicle services like traditional taxis, which already have characteristics 

similar to dynamic ridesharing [6,11,17]. 

TRS, also known as shared taxi or collective taxi, is an advanced form of public 

transportation with flexible routing and scheduling that matches at least two separate ride 

requests with similar spatio-temporal characteristics in real-time to a jointly used taxi, driven 

by an employed driver without own destination [6,10,16,18,23,26]. TRS, therefore, differs 

from private ridesharing, which refers to sharing rides among private people [27]. TRS is a 

more restricted dynamic dial-a-ride approach, which considers the requirements of both 

multiple passengers and the service provider [6,11]. Because of the pooled simultaneous 

utilization of a taxi [7], TRS is a form of collaborative consumption. 
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Modern TRS is enabled by ICT, including the Global Positioning System (GPS), 

smartphones, mobile apps, and internet platforms [9,19,25,28]. Using these technologies, 

taxi seekers can submit their desired pick-up and drop-off times and locations. An 

information system then matches the requests considering the transportation network’s 

state and additional predefined, or customer-defined, matching criteria [11,14,16,23]. 

There are several advantages connected to TRS. Customers can profit from the same 

mobility, accessibility, and efficiency as provided by traditional taxis, and from some of the 

advantages of public transportation [6,10,29]. For example, one advantage is the cost 

reduction through split fares [6,9,13,14,16,23,30 p. 409]. Furthermore, the overall waiting 

time in high demand situations can be reduced [6,13,14,30 p. 409]. From a provider’s 

perspective, TRS increases seat occupancy, reduces the number of taxis required, and 

enables cutting the cumulative trip length and travel time. In turn, this results in the 

reduction of operational costs, such as fuel consumption and car depreciation 

[6,8,9,11,14,23]. Shuo Ma et al. [14] and Sun et al. [30 p. 409] argue that even increased 

revenues may be possible by implementing favorable pricing mechanisms and by better 

utilizing delivery capacities [14]. Societal benefits include diminishing the negative impacts 

of taxis on cities by reducing noise and traffic congestion, a reduction of greenhouse 

emission, and less energy consumption [6,9,11,13,14,16,23,30, p. 409]. 

On the downside, TRS can also lead to disadvantages. First, there may be an increase 

in the overall service and waiting time [6,9], leaving passengers concerned about the 

reliability of TRS [26]. Second, there may be problems related to the privacy and security of 

traveling with strangers in the same vehicle [9,30 p. 415]. Third, the potential positive 

environmental effects need to be treated with caution, as the reduced cost of taxi rides 

could also result in increased demand, or other rebound effects [31,32]. 
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While there are already several commercial operators of TRS services, such as 

Bandwagon in NYC, Share the Fare in Australia, or Taxi for Two in the UK [9,26], no 

dominant approach has been established in the field yet [16]. However, researchers have 

studied various TRS methods over the last ten years. Approaches towards TRS [6–

14,16,23,28,29] differ regarding the proposed routing patterns, matching constraints, 

matching dynamics, and matching objectives. However, most approaches are based on the 

idea that passengers can embark and disembark anytime during a trip. While implementing 

such a flexible and dynamic approach has the potential to solve the TRS assignment 

problem optimally, we argue that implementing such a system is impractical, since 

customers maybe reluctant to accept picking-up and dropping-off multiple passengers, 

nearly all of them strangers, during a trip. In addition, a many-to-many approach also comes 

with operational challenges and complex decision problems for taxi operators (e.g., for 

optimally combining and rerouting trips on-the-fly). 

Therefore, we propose an approach that is based on less rigid assumptions. Our one-to-

one approach is focused on sharing rides that start and end at approximately the same 

location and time, such that people can decide whether to collaboratively consume a taxi 

ride when embarking or shortly before (e.g., when requesting a taxi via a mobile app). This 

approach only requires static taxi routing, as the start and endpoints become a bundle of 

unchangeable requests when a matching is established [8,9,13,33]. Even if the returns to 

be generated from this approach are a subset of the total—theoretical—TRS benefits, we 

argue that it would make TRS more feasible to implement. Furthermore, the TRS service 

would be easier to sell to customers because it reduces their perceived inconvenience [13]. 
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3. Research Method 

3.1. Data Collection 

To assess the potential of a one-to-one TRS system for large urban areas, we analyzed 

an open dataset collected by the NYC City Taxi & Limousine Commission (TLC), which 

records data about their taxi fleet operations on a per-trip basis. Taxi trip data from NYC 

was first released and described by Donovan and Work [34]. Later the TLC [35] published a 

more comprehensive dataset, spanning from 2009 to 2015 and covering several hundred 

million trips completed by the yellow and green cab companies (the latter starting from 

August 2013). The volume of this dataset makes our approach a spatial big data analysis. 

Several authors have analyzed the yellow cab dataset before. Donovan and Work [36] used 

this dataset to analyze the resilience of the taxi systems to Hurricane Sandy, Ferreira et al. 

[37] developed a model to visually explore the taxi trips, Zhan et al. [38] develop a model to 

estimate the link travel times of the taxi trips, and Yazici et al. [39] used it to improve pick-up 

decisions at John F. Kennedy (JFK) Airport. Other authors analyzed the potentials of more 

complex TRS methods using this dataset [e.g.: 9,11]. The frequent use of the dataset 

suggests that it is a reliable and well-accepted source of taxi trip data. 

The dataset includes, amongst others, data on taxi license, driver ID, taximeter rate types, 

start and end time of each trip, number of passengers in each trip, trip duration in seconds, 

trip distance in miles, GPS coordinates of the pick-up and drop-off locations, meter fares, 

extras and surcharges, taxes, tips, tolls, and the total amount of money paid [34,40]. 

We subsampled the overall dataset (consisting of more than 160 million records per 

year) to reduce processing time and to increase analysis flexibility [41 p. 10]. We selected 

the first full week of April 2014 (7th to 13th), which was an "ordinary week" without any 
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holidays or special events. In NYC, 3,364,351 trips took place during this week, which is 

close to the average of 3.39 million trips per week, as reported by Bloomberg and Yassky 

[42]. To compare and contrast this week with other time periods, and assess the reliability of 

our results, we also extracted data for an "extraordinary week" [43 p. 24]. We chose the 

Christmas week in 2013, which had significantly fewer trips (2,469,270). 

3.2. Data Cleansing 

Next, the dataset was checked for data quality and cleansed. Following Donovan and 

Work [34,36], the following data cleansing steps were performed. Some trips were 

conducted outside of the city borders. Therefore, all trips outside a given coordinate range 

were dropped. The south-western border was set to [40.477399, -74.25909] and the north-

eastern border was specified as [40.917577, -73.700009]. Further cleansing operations 

were performed to remove unrealistic entries. All trip distances were checked according to 

their great circle distance, which is the direct distance considering the spherical shape of 

the earth. There were a few trips where the actual trip distance was smaller than this 

calculated distance, which is geometrically impossible [36]. Additionally, trips shorter than 

200 meters were discarded. Upon manual investigation, those trips often had unrealistic 

times and/or trip distances. Moreover, all trips with identical start and end points were 

dropped [9]. Trips with unrealistic durations (i.e., trips lasting less than a minute, longer than 

2 hours, and trips with velocities above 144 km/h, which is 40 km/h above the speed limit of 

65mp/h) were dropped. Finally, all trips which had 0 passengers and those which had a 

rate_code equal to 5 (individual negotiation price) or 6 (group fare on fixed route) were 

dropped. These data preparation activities removed around 7.3% of all trips in the ordinary 

week (7.14% in the extraordinary week). 
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Figure 1 shows a hexagonal binning histogram of the remaining pick-up and drop-off 

spots [44 p. 1]. Trips had an average length of 4.8 km (4.9 km in the extraordinary week), 

while 85% of all trips were smaller or equal to 8 km. Yet, we also observed that taxis were 

often (about 30% of the times) used for short trips below or equal to 2 km. The average trip 

duration was 13:27 (12:17 in the extraordinary week) minutes. 46.04% (51.42% in the 

extraordinary week) of all trips were shorter than 10 minutes. The average price paid for a 

trip was $13.46 ($13.47 in the extraordinary week).	

  

Figure 1. Pick-up (left) and drop-off (right) heat maps (ordinary week) 
 

3.3. Matching Constraints 

Recall that our goal is to assess the sharing potential of a one-to-one TRS system, 

where trips are merged if they start at a common origin and end at a common 

destination. Just as in more complex many-to-many TRS systems, our approach is bound 

by several constraints. Most importantly, spatio-temporal overlaps of trips are required to be 

able to merge trips. While in a real-world scenario one might set spatio-temporal constraints 

on an individual basis, in our analysis we treated them as configurable but static values 

(Table 1). 
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First, the distances between the origins (o) and destinations (d) of the individual trips 

need to be checked [18]. Two trips should only be matched if the walking distance between 

their origins is smaller than odist and the walking distance between their destinations is 

smaller than ddist. Also, we ensured that the total trip distance (tdist) is longer than a portion 

of the overall walking distance (wdf*(odist + ddist)). 

Table 1. Constraints of the proposed one-to-one TRS approach 

Constraint Parameter / Formula 

1) Spatial 
Constraints: 
Pick-up Distance  

Drop-off Distance  

Walking Distance 
Factor  

• odist : Maximal walking distance between pick-up locations 
• ddist : Maximal walking distance between drop-off locations 
• tdist : Individual trip riding distance 
• wdf : Walking distance factor, wdf < 1 

 
2) Temportal 
Constraint:  
Time-Window 

• timeWindow : Difference between the trip announcement and the latest possible 
departure time 

• arrivalTime : Time of the main ride announcement plus the walking time the 
sharing participants require to reach the taxi 

• arrivalTime <= latestDepartureTime 

 
3a) Car Capacity  
Constraint 

• carCapacity : Maximum capacity of a taxi, carCapacity is set to 5 for NYC 
• sum(passengerAmount) <= carCapacity 

 
3b) Multi-
Ridesharing 
Constraint 

• maxTripShare : Max amount of trips merged to a shared ride 
• count(trips) <= maxTripShare ϵ 2-4 

 
4) Feasibility  
Constraint 

• Main-rider : individualCosts / 2 + sharingSurcharge <= individualCosts 
• Participants : mainRideCosts / tripAmount+sharingSurcharge <= individualCosts 
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5) Distance 
Deviation 
Constraint 

• dd : Distance deviation that checks the differences between the trip lengths 
• tdist(Main) : Trip distance of the main ride that acts as host of the shared ride 
• tdist(Rider) : Individual trip distance of potential matches 

 

 

Second, matched trips need to start at approximately the same time [21]. We added a 

time-window constraint that specifies the time between the trip announcement and the latest 

possible departure time (timeWindow). To ensure that customers would arrive on time 

(arrivalTime <= latestDepartureTime), the approximate walking time between the pickup 

points was calculated and added to the difference. While other TRS approaches define a 

constraint on the maximum delay in trip duration or the actual drop-off time [6,9,11,13,14], a 

one-to-one approach as presented here does not require this extra constraint, since by 

definition shared trips end at approximately the same destination and time. Since the 

walking time to the drop-off location is already bounded by the distance constraint and a 

constant walking speed is assumed, an additional constraint is not required. 

Third, our approach also considers the capacity of taxis (carCapacity). While the car 

capacity may vary in reality, a fixed car size was assumed. As stated by D’Orey et al. [6] 

and the TLC [45], the maximum taxi capacity in NYC is five, which we used to restrict the 

number of combined passengers in a shared ride (sum(passengerAmount)). Similar to 

Chen et al. [8] and Santi et al. [9], another constraint defines the maximum number of 

individual trips (maxTripShare) that can be shared in a single ride (e.g. pairwise, triple, or 

quadruple matches). We did not consider personal constraints such as smoking attitudes or 
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gender, as suggested by Lalos et al. [23], Santos and Xavier [16] and Tao and Wu [28], 

since our dataset did not provide these attributes. 

Fourth, we designed a simple and easy-to-understand pricing mechanism that evenly 

splits the cost of a shared ride between the participants. To prevent that the reduction of 

individual rides had a negative impact on the operators' and drivers' incomes, we added a 

constant sharing surcharge that needs to be paid by each passenger. Similar to the 

approach of Shuo Ma et al. [14], this simple pricing scheme provides taxi companies and 

drivers with more profit per ride, while reducing the expenses for individual passengers. 

Other TRS approaches either ensure that trips are profitable, that the price paid is smaller 

than the price of the original trip, or that the price is high enough to pay the driver 

[7,11,13,16].  

Similarly, our one-to-one TRS approach ensures that sharing is worthwhile for the 

passengers. Especially on short rides, the additional sharing surcharge might result in 

shared costs higher than the costs of individual trips. For this reason, we assume that a 

rider is only willing to host a shared trip if a single match (tripAmount = 2) is enough to 

reduce his/her individual costs. Comparable to this, a rider would only be willing to join a 

shared ride if the current amount of matched rides (tripAmount) is high enough to reduce 

his/her expenses (individualCosts).  

Fifth, only trips that ended at the same destination without long detours to intermediate 

destinations were matched. Hence, a distance deviation constraint (dd) was added that 

checks the differences between the individual trip lengths. Without this check, unrealistically 

profitable trips would be merged, biasing the analysis results. 
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3.4. Matching Process 

The matching constraints described in the last chapter served as a basis for our 

matching process. Instead of preferring candidates that satisfy a given optimization criterion 

(such as the saved distance or time) with mixed integer programs or maximum matching 

approaches [e.g.: 9,10,14], similar to Shuo Ma et al. [14], all trips were analyzed in 

chronological order, using a greedy first-come-first-served (FCFS) heuristic. Therefore, we 

ordered and numbered the trips according to their pick-up times. This method simulates a 

real-time TRS system and thereby mimics the properties of a real-world system, in which 

trips are merged as quickly as possible and in which future trips are unknown. For each 

incoming ride, our matching algorithm searched for matching candidates within the trips that 

have been announced in the specified time-window. If a candidate was found that satisfied 

all constraints, the rides were shared. Else, the new ride itself was considered as a host for 

a shared ride with trips that were announced later. Overall, our trip matching process can be 

divided into four phases (Figure 2): 

 
Figure 2. The trip matching process modelled with Business Process Model and Notation (BPMN) 

 

1. Initialization: This step ensured that the prerequisites of the algorithm, such as clearing 

old cached results, preparing the input and output data structures, and initializing 

algorithm components—such as a spatial index for the pick-up locations—were met. 
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2. Loop over unmatched riders: We considered each unmatched rider as a potential host 

for a shared trip. Therefore, we processed the trips in ascending order of their pick-up 

times. In this step, we used a spatial index to approximate the pick-up distance constraint 

and thus, optimized the search strategy. This method was inspired by the idea of national 

grid reference systems [46] and can be compared to a simplified version of the “lazy 

shortest path calculation” presented by Shuo Ma et al. [14]. With this approach, we 

restricted the distance calculation and the check of the other constraints to a quickly 

identified narrow set of matching candidates. 

3. Loop over potential matching candidates: For each matching candidate we checked 

the constraints explained before (including the pick-up distance constraint). If all 

constraints were satisfied, we added the matching candidate to the trip of the host. 

4. Return the overall matching results: In the last phase, we evaluated and stored the 

result data structure containing the shared rides for further analyses. 

The properties of our one-to-one TRS approach made the calculation less complex in 

comparison to other approaches that assume different start or destination spots [e.g., 

6,13,36]. Since a one-to-one approach does not have to calculate the actual routes, the 

necessity to calculate the shortest path became redundant. Likewise, the static routing 

characteristic removed the need to track the current status and position of the taxis that 

were already matched [e.g.: 11,14]. This property not only significantly simplified our 

matching algorithm, but it also reduces the runtime complexity of a potential real-world 

system. While the many-to-many approach with dynamic routing suggested by Shuo Ma et 

al. [14] required a spatio-temporal index to find matches quickly, our one-to-one approach 

with static routing just needs a spatial index. In a real-world system, each incoming ride 
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request would be assigned to a fixed pick-up grid cell and already started or fully matched 

trips would not need to be re-considered by the algorithm. 

Our approach is based on a few assumptions. First, we assume that all taxis that can be 

shared are actually shared and that every participant arrives on time. Thus, our results 

calculate an upper bound of the total sharing potential that can be realized with the 

proposed approach. Second, since the distance constraints focus on short walking 

distances (between 200 and 3,000 meters), we assumed that only the straight-line distance 

between the coordinate points needs to be considered. However, as the Earth is a three-

dimensional object with a spherical surface, we could not calculate the distance using the 

Euclidean distance. Instead, we used the “great circle distance” to represent the direct path 

on the earth’s surface called “geodesic” [46, p. 21-23].  

3.5. Scenarios and What-if Analysis 

We specified a reference scenario for the proposed one-to-one TRS service and then 

varied the parameters (Table 1) of this scenario to quantify their influence on the results. 

For this reference scenario, it seemed reasonable to assume a maximum walking distance 

of 500 meters for both the pick-up and the drop-off area to introduce some flexibility, while 

limiting inconvenience for passengers. We assumed that passengers are not willing to 

share a ride if he/she would need to walk more than half of the trip length just to participate 

in TRS. We set the time-window to 10 minutes since it seemed likely that passengers would 

have to wait anyways, either standing in queue at a taxi stand or waiting for a taxi to arrive. 

To reduce the waiting times, passengers were matched pair-wise, as soon as the first fitting 

trip was found. Besides that, the maximum capacity of a taxi was set to 5 passengers. In 
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line with taxi fares in NYC, $2.50 was assumed to be an acceptable sharing surcharge. The 

distance derivation constraint was set to 0.2.  

Starting from this reference scenario, we introduced variations of all input parameters to 

assess their influence on the results. Usually, a sensitivity analysis would be used to 

measure the behavior of a system to small changes of parameters. However, since this 

analysis highly depends on the simulation and modeling of an artificial TRS service, the 

approach utilized for the analysis here can more closely be compared to a what-if analysis. 

In general, a what-if analysis allows the data-intensive simulation of a complex system and 

inspects the results under different scenarios [47]. 

4. Data Analysis and Results 

4.1. Reference Scenario 

First, the reference scenario was evaluated both for the ordinary and the extraordinary 

week (Table 2). The data indicate that a considerable number of trips can be shared (48% 

for the ordinary week and 43% for the extraordinary week), resulting in a substantial ride 

reduction (753,860 rides for the ordinary week and 497,734 rides for the extraordinary 

week). Passenger occupancy is increased, saving almost 3 million kilometers of trip 

distance, 231,363 liters of gas, and 532,135 kg of CO2 emissions in an ordinary week. Taxi 

companies would save 22.42% of travel time at the expense of 12.19% of total fares, while 

the fares for shared trips would increase by 53.24%. The results for both the ordinary and the 

extraordinary week were similar. Even though the April week had 26.49% more individual trips, 

the relative matching results of the extraordinary week were quite similar for both the taxi 

companies and the customers, suggesting that our approach scales well with an increasing 

number of trips. 
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Our TRS approach also benefits customers (Table 3). The average walking distance for 

passengers to the pick-up location and from the drop-off location is 550 meters. In total, this 

results in an average travel time increase of 5:31 minutes. Assuming a sharing surcharge of 

$2.50, those inconveniences are compensated by an average cost saving of 23.77%. 

Table 2. Reference scenario, taxi company metrics 

Metrics Ordinary week Extraordinary week 
Total individual trips 3,119,254 2,292,934 
Total shared rides  1,507,720 995,468 
% shared rides  48.34 43.41 
Total ride reduction  753,860 497,734 
% ride reduction  24.17 21.71 
Ø passenger occupancy (individual) 1.71 1.8 
Ø passenger occupancy (shared) 2.25 2.3 
Total distance saved (km)  2,892,036.11 1,864,658.11 
Ø saved kilometers per shared ride  3.84 3.75 
% distance saved  18.98 16,47 
Saved gas (liters)  231,362.89 149,172.65 
Saved CO2 (kg)  532,134.64 343,097.09 
Saved ride time (h)  156,965 94,628.98 
% saved ride time  22.42 20.14 
% revenue reduction  12.19 10.68 
Ø increase trip fare for shared rides (%) 53.24 53.53 

Table 3. Analysis results for the basic case, customer metrics 

Metrics Ordinary week Extraordinary week 
Total increase travel time (h)  138,741.02 90,689.97 
Ø increase travel time (min)  5.52 5.47 
% increase travel time (min) 2.69 2.8 
Total waiting time (h)  72,007.09 47,751.64 
Ø waiting time (min)  5.73 5.76 
Total walking time (h)  69,445.03 44,700.34 
Ø walking time (min)  5.53 5.39 
Total walking distance (km)  416,670.20 268,202.02 
Ø walking distance (km)  0.55 0.54 
Ø participant cost savings (%) 23.77 23.56 
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4.2. What-if Analysis 

4.2.1. Influence of the Distance Constraint 

Reducing the distance constraint to 200 meters results in a huge reduction of shared 

trips in both the ordinary and the extraordinary week. Instead of a trip reduction of 24.17% 

(reference scenario for the ordinary week), a reduction of only 6.25% can be reached. In 

contrast, when increasing the distance constraint to 2,000 or 3,000 meters, saturation is 

reached quickly. The highest matching rate, with a 34.74% trip reduction and an average 

passenger occupancy of 2.62, is achieved with the distance constraint set to 3,000 meters. 

With a distance constraint of 1,000 meters the amount of saved rides is 32.06%, with an 

average passenger amount of 2.51 per trip. 

The waiting time increased from 5:14 minutes at 200 meters to 6:05 for 1,000 meters and 

then stabilizes at around 6 minutes for greater distances. Also, the walking distance 

including the pick-up and drop-off distance increase with greater distance constraints. 

Overall, the participants’ financial savings increase from 22.21% at 200 meters to 26.31% at 

3,000 meters. The average distance saved increases from 3.54 km to 4.85 km.  

4.2.2. Influence of the Length of the Time Window 

To identify a suitable time window for the TRS service, the pick-up time constraint was 

varied. The reference scenario used a time constraint of 10 minutes and reached a 24.17% 

reduction in rides. In contrast, a 20-minutes time window leads to a 30.80% reduction and a 

30-minutes window results in a reduction of 33.48%. For smaller time windows, the 

matching rate decreased quickly. A window of two minutes leads to a reduction of only 

2.83%, and a five-minute window to a reduction of 13.85%. 
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While the average waiting time is 1:20 for a 2-minutes time window, longer windows lead 

to longer waiting times (10:58 minutes for a 30-minutes window). On average, it takes 3:03 

minutes to find a match. The walking distance is between 340 and 570 meters.  

In the extraordinary week, a lower trip density causes a longer waiting time for a small 

time window of 2 minutes. Yet, a time window of 30 minutes results in a longer waiting time 

of 11:41 minutes. Also, the average distance saved per ride increases with the time window, 

increasing the participants’ cost savings. 

4.2.3. Influence of Car Capacity 

We assumed that car capacity would have a considerable influence on shared trips in a 

densely populated mega-city like NYC. To test this assumption, the reference scenario was 

tested under decreased and increased car capacities. We found that even with increased 

car capacity most shared rides would still have carried only two passengers. But the seat 

capacity had an impact on the matching rate. While the difference between a capacity of 4 

and 5 was quite low (0.8% difference in ride reduction), increasing it to 6 improved the result 

by 1.9%. With a maximum seat capacity of 7, an improvement of 3.3% could be reached 

(with an average passenger occupancy of 2.36 instead of 1.71 without the TRS service). 

Increasing car capacity had no negative impact on waiting time and walking distance. 

4.2.4. Influence of Multi-Ridesharing Approaches 

When allowing triple TRS, 39.26% of all shared trips consist of three trips (Figure 3). 

Allowing quadruple matching results in 12.32% of all shared rides being quadruple rides, 

while reducing the volume of pairwise and triple matches. In sum, allowing multi-ridesharing 

improves the matching rate in the ordinary and extraordinary week. While the reference 

scenario achieves a 24.17% reduction in rides and an average seat occupancy of 2.25, 
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triple matching (28.6% reduction, average seat occupancy 2.39) and quadruple matching 

(29.53% reduction, average seat occupancy 2.42) slightly improve these figures. 

However, multi-ridesharing has a negative impact on waiting times. By allowing 

quadruple matching, the average waiting time increases from 5:44 minutes to 6:54 minutes. 

In contrast, the average walking distance remains stable at around 550 meters. However, 

the inconveniences for passengers are reduced by increasing the savings per passenger 

due to a higher total distance saved per trip. Also, the operator profits from multi-ridesharing 

by increasing the fare of shared trips by 63.74% in the triple case (66.63% in the quadruple 

case), instead of 53.24% in the pairwise case. 

 

Figure 3. Amount of shared rides (left) and capacity usage (right) in multi-ridesharing 
 

4.2.5. Influence of Sharing Surcharges 

By analysing of various surcharge amounts, we found a negative correlation between the 

sharing surcharge and the amount of matched trips, as can be expected. 

By reducing the surcharge to $1.5, a small increase in the amount of reduced rides can 

be reached (0.95% in the ordinary week). This reduction, however, has a positive impact on 

the average cost savings for passengers, increasing them from 23.77% to 33.51%. But, a 

surcharge reduction has an even bigger impact on the average fare of the combined ride. 
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Whereas in the reference scenario the income of a driver from shared rides increased by 

53.24%, a surcharge of $1.5 leads to an increase of only 32.73%. 

The opposite behavior is observed when increasing the surcharge. A surcharge of $3.5 

results in a drop of the ride reduction from 24.17% to 19.42%. It has a negative impact on 

the passengers' savings (18.13%), but a positive impact on the average increase of the 

shared trip fares (65.59%). While the slope of the average passenger's savings slightly 

decreased, a clear saturation could however not be discovered. 

4.2.6. Influence of Week Days and Time of Day 

In the dataset, the number of trips increases from Mondays to Saturdays and reduces 

again on Sundays. Even though weekdays have a slightly better chance for sharing trips, no 

single day has a clearly better matching rate.  

Interestingly, when analyzing the data on an hourly basis, we discovered a correlation 

between trip density and the matching rate (Figure 4), such that there is a huge reduction of 

trips and matches between 4 and 5 a.m. However, the influence of the trip volume on the 

matching rate decreases for higher volumes. For instance, the increase in the amount of 

trips from 5 p.m. to 11 p.m. did not result in a large increase of the matching rate in 

comparison to the time between 7 a.m. and 5 p.m. This could suggest a saturation for larger 

trip volumes. 
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Figure 4. Raw trips vs. relative ride reduction per hour 

Even if the matching rate is smaller during the night, it has to be noted that during this 

time the highest average distance savings can be realized (6.85 km at 4 a.m., 7.24 km at 5 

a.m.). This is probably due to the fact that the average distance is higher during that period. 

4.2.7. Influence of Pick-Up and Drop-Off Locations 

Most taxi trips are located in central Manhattan, but the best ridesharing opportunities 

exist in the southern part of Manhattan, and, to a lesser extent, in Brooklyn and Queens. 

Almost no potential for sharing yellow cabs was found in New Jersey and Newark, although 

it hosts the Newark airport. Outside of the city center, most matches were found at the 

LaGuardia and JFK airports. 

Considering these findings, a TRS service in NYC should mainly focus on the central 

areas and the two main airports. By restricting the TRS service only to the southern part of 

Manhattan, a global ride reduction of 23.48% would have been reached. In fact, 24.93% of 

the trips that start in Manhattan could have been saved, increasing the average passenger 

occupancy from 1.71 to 2.28. This would have meant 2,513,373 saved kilometers and a 

reduction of trip times of 23.42%. The average distance saved by a shared ride would have 

been 3.43 km. Therefore, the average participant savings would have ended up at 23.27% 

with a 54.27% increase of the ride fare for the taxi driver. The participants would have 

needed to wait on average 5:44 minutes or walk 560 meters.  
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Operating the TRS service only at the LaGuardia airport would result in a 19.48% 

reduction of the trips that start at the airport. This would have increased the average 

passenger occupancy from 1.7 to 2.11 and contributed additional 0.39% to the system-wide 

reduction. Shared trips would have saved on average 16.03 km, summing up to a total of 

192,618 km in the ordinary week and reducing the overall distance from the airport by 

19.9% and the travel time by 20.41%. The average waiting time for the passengers would 

have been 5:02 minutes and the average walking distance 450 meters. Participants would 

have saved 42.70% of their money, increasing the total fare of the shared trips by 14.54%. 

 

Figure 5. Cluster map of potentially shared trips from the JFK Airport (hot spots highlighted) 
 

JFK Airport would have achieved lower results. By operating the TRS service only from 

this spot, 12.55% of all trips that started at the airport could have been saved, increasing 

the average occupancy from 1.73 to 1.98. Figure 5 shows the start and endpoints of these 

trips on a cluster map as generated in our data discovery tool. Most of the trips started at 

the JFK main entrance (1366 trips) and most ended at the central of Manhattan (1841 trips). 

This trip reduction would have contributed an additional 0.18% to the overall result. 

Thereby, 13.53% of the trip distance and 13.83% of the trip time could have been saved. 

The average waiting time for the main riders would have been 5:40 minutes and the walking 

distance 520 meters. Overall, the passengers could have saved 45.22% of the individual 

trip fare, and the total fare of the shared ride would have been increased by 9.49%. 
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A taxi company could also consider operating a TRS service for trips that go to certain 

destinations and start at arbitrary locations. In fact, 23.8% of all trips that went to LaGuardia 

Airport could have been saved by such a service, increasing the passenger occupancy to 

the airport from 1.7 to 2.23. This reduction would have meant a 24.11% reduction of the trip 

distance (111184 km in total) and 24.86% less ride time. The hosts would have needed to 

wait for 5:55 minutes or walk 440 meters. The participant savings of this service would have 

been 34.80%, and the total trip fare of the shared ride would have been increased by 

13.13%. In the case of the John F. Kennedy airport, 12.75% of all trips could have been 

saved. Thereby, the average passenger occupancy could have been increased from 1.78 to 

2.04. Also here, 13.34% of the ride time and 12.66% of the trip distance could have been 

saved with an average distance saving of 27.87 km per rideshare. The participants on 

average would have waited for 6:14 minutes, walked 530 meters and saved 45.43% of their 

expenses. The income from a single shared ride would have increased by 9.09%. 

5. Discussion 

5.1. Basic Properties of a One-to-One TRS Service in NYC 

As outlined by Chen et al. [8], our analysis revealed that the number of vehicles in the 

pick-up area is an important factor for the successful matching of rides in our proposed one-

to-one approach. From all constraints, the distance constraint, which directly influences the 

number of trips available for matching, had the strongest impact on the overall matching 

rate. While a maximum walking distance of 200 meters leads to a ride reduction of only 6%, 

increasing the distance constraint to 1000 meters, the maximum distance a customer can 

reasonably walk within 10 minutes, leads to a ride reduction of about 32%. 
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Furthermore, our results showed that a TRS provider needs to tweak both the distance 

and time constraint simultaneously. Naturally, the more patient a passenger is, the more 

matching opportunities arise; an effect that is called densification [9]. Our results show that 

shortening the time window constraint to 5 minutes has a strong negative impact on the 

matching rate. Hence, it could be argued that a 10-minute time window is a good choice for 

a TRS service in NYC. Yet, the time constraint does not only limit the impact of the distance 

constraint, but its configuration also decides upon a fair distribution of the inconveniences of 

the hosts and guests of a shared ride. While the distance constraint increases the walking 

distance for passengers who want to join a ride, the time constraint mainly impacts on the 

waiting time of the host passenger. In the reference scenario, the waiting and walking times 

were almost equal (5:44 and 5:32 minutes). However, increasing the distance constraint to 

1,000 meters created a disadvantage for passengers joining a hosted ride. Hence, 

according to our analysis, taxi service providers should not increase the distance constraint 

any further than 750 meters without simultaneously increasing the time window constraint. 

We also found that multi-ridesharing has a positive impact on TRS. While it only slightly 

increased the amount of matched rides, it also increased the average seat occupancy, the 

saved distance, the average participant savings, and the fare of combined rides. Yet, it also 

caused longer waiting times for customers. For this reason, a one-to-one TRS provider 

could consider using multi-ridesharing in situations where demand exceeds supply, or if the 

customer is willing to wait longer to increase savings. Our results also showed that multi-

ridesharing has higher business potential in dense settings. 

A TRS provider would also have to decide on the right sharing surcharge. In dynamic 

many-to-many ridesharing, increasing the cost-saving threshold impacts more negatively on 

the matching rate than on the saved distances [25]. In our one-to-one TRS approach, 
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increasing the sharing surcharge had a smaller impact on the overall distance saved than 

on the matching rate. In fact, it reduced the amount of matched short distance trips and thus 

improved the average increase of the combined trips’ total fares. Choosing an appropriate 

sharing surcharge is, therefore, an essential part of implementing TRS [26]. 

5.2. Implementing TRS in Scenarios with Low Spatio-Temporal Density 

Santi et al. [9] showed that 25% of the daily taxi trips in NYC (around 100,000 trips) are 

enough to reach a near-maximum matching with a flexible many-to-many TRS approach. 

Hence, they concluded that TRS could also be efficient in cities with low densities. In 

contrast, Stiglic et al. [18] showed that the amount of matched rides in classic ridesharing 

greatly depends on the spatio-temporal distribution density of the announced trips. 

Our results showed that trip density has a considerable impact on one-to-one TRS. A 

lower trip density leads to a reduced matching rate and, thus, decreased most of the metrics 

we tracked. For example, while we reached a matching rate of 52.52% at 8 a.m., at 5 a.m. 

we were only able to match 21.57% of the trips. Yet with an increasing amount of trips, our 

results also showed a decreasing impact of the trip density on the matching rate. 

Related research suggests that ridesharing approaches may fail because of a low 

probability to find other passengers to share a ride with [18,26]. Since passengers have to 

wait for potential matches, this observation especially applies to our proposed one-to-one 

TRS approach. Thus, the approach is based on the assumption that enough route overlaps 

exist [28,30 p. 409,48]. Our analysis showed that the proportion of matched rides in NYC 

can reach up to 48.34%, which provides a strong indication that the proposed approach can 

be implemented successfully. However, as our temporal and spatial analysis showed, taxi 
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companies have to perform thorough robustness checks in order to identify the best 

configuration of a one-to-one TRS system. 

Taxi companies should also consolidate shared rides by considering hotspots like 

transportation hubs or special landmarks as start and end points of their rides [17,21]. In 

theory, it has been shown that carefully selecting meeting points can significantly increase 

the amount of matched rides in classic ridesharing scenarios [18]. Especially at intermodal 

transportation hubs, approaches of resource pooling like ridesharing are good strategies to 

deal with irregular, uncertain, and distributed demand [7]. Also in practice, (manually) 

coordinated taxi sharing at transportation hubs or events is already commonplace [30 p. 

409]. Our results show that intermodal transportation hubs like train stations and airports, 

tourist attractions, and hospitals are good starting points to establish a one-to-one TRS 

service. Also, considering airports as destinations of shared rides could be a good strategy 

to improve the matching success in both dense and less dense situations. Such locations 

must allow people to meet and taxis to wait for their final departure. Another possibility to 

deal with low-density situations could be to use fixed route TRS, as is already done at some 

group ride taxi stands in NYC or by an operator in Iran [49,50]. 

5.3. Generating Business Success with TRS 

The main motivation for a TRS service may be economic benefits [3,26]. These benefits 

not only apply to customers, but also to car owners and taxi drivers. In fact, every 

participant involved in taxi operations can be assumed to strive for profit maximization [6].  

 Our results show that in the reference scenario fares from combined trips would 

increase by 53.43%, due to multiple paying customers in one car and the sharing 

surcharge. At the same time, we have to acknowledge that taxi drivers may resist 
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participating in ridesharing due to an overall reduction of demand for trips (24.17% in the 

reference scenario) [26]. Yet, the decrease in demand for trips may be alleviated by several 

factors. First, a fare reduction may lead to a long-term increase in the demand for trips 

(rebound effect). Flores-Guri [51] estimated the price elasticity of the taxi demand in NYC to 

be between -0.22 and -1.05 [31]. Consequently, while the reference scenario would have 

removed 24.17% of the original rides, it can be assumed that the passengers’ savings of 

23.77% could have increased the long-term demand by 5.23% to 24.95%. Furthermore, the 

demand for taxis in NYC clearly exceeds supply [52]. Hence, it can be assumed that the 

reduction of individual trips is smaller than the number of saved trips. 

In addition, the disruptive nature of the sharing economy can be a strong motivator to 

establish TRS [1,53]. In NYC, the number of taxi licenses is capped, significantly increasing 

their value. In fact, a license in NYC is traded for up to 1 million US dollars. However, the 

emergence of sharing economy business models like Uber pose a risk to the value of those 

licenses [12,52]. Besides that, Uber claims that their drivers earn more [54]. A TRS 

approach could help the traditional taxi companies to stay competitive against such rivals. 

Finally, there maybe further incentives for both customers and taxi companies to 

participate in TRS. For example, the government could subsidize the lost revenue as a 

reward for the reduction in CO2 emissions and traffic congestion. The sharing economy and 

climate change promote practices like sustainable consumption and so-called sharing cities 

[1,3,53]. This is why cities could be interested in subsidizing TRS business models.  

5.4. Comparison of One-to-One and Many-to-Many TRS approaches 

Our proposed one-to-one TRS service can be compared to the more complex approach 

proposed by Santi et al. [9]. Since the approach used different settings and time spans, they 
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are only comparable to a limited extent. First, our results show clearly that a one-to-one 

TRS approach is feasible in NYC. A time window of 10 minutes and a walking distance 

constraint of 500 meters is sufficient to match 48.34% of the trips and thereby save 

2,892,036 km trip distance in just one week. In contrast, the approach of Santi et al. [9] is 

able to match 30% of rides with a one-minute system response time and a maximal travel 

time increase of 2 minutes. By changing the maximal increase in the travel time to 5 

minutes, a matching rate of about 90% was possible, resulting in a saving of 32% of the 

total travel time. In contrast, with considerably less rigid constraints, our one-to-one 

approach was able to save 22.42% of overall travel time and resulted in an average 

increase of individual travel time by 5.52 minutes. Comparing these findings, it is 

questionable whether the efforts of implementing a many-to-many TRS approach, which is 

based on much more rigid assumptions regarding data availability, customer acceptance, 

and computational complexity, are worthwhile in densely populated mega-cities like NYC. 

6. Conclusion 

In this paper, a data-driven approach for quantifying the potential of one-to-one taxi-

ridesharing (TRS) was presented. Our results show that a one-to-one TRS approach can 

generate considerable benefits for passengers, drivers, taxi companies, and society. 

Amongst others, our approach reduced the number of rides by 20-25%. 

To test the applicability of our approach in other cities, we used a publically available taxi 

data from Porto [55]. While the dataset contains data from only one taxi company, the 

results suggest that, due to lower trip density, our one-to-one approach would have 

achieved a ride reduction of 3.39% in an ordinary week. Therefore, we assume that the 

approach could rather be introduced for a limited, yet frequently used set of spots (e.g., 
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intermodal transportation hubs like airports and train stations). These spots can be identified 

with our decision support system, too (see Section 4.2.7). While our approach allows for 

selectively implementing one-to-one TRS, further research is required to identify the 

minimum trip density that is required for fully implementing the proposed approach in a city. 

Our approach is based on a few assumptions. First, while the data-driven approach 

mimics a dynamic matching approach, our approach assumes that all trips that could have 

been shared were matched. This is unlikely to happen in reality since participants may be 

unaware of the possibility to share a taxi, or unwilling to share a ride with strangers. Also, 

the additional inconveniences induced by sharing a ride may impede acceptance. 

Ultimately, the proposed TRS approach needs to be subjected to field tests. A field test 

would allow measuring the actual success of the proposed service under realistic 

circumstances. First, the impact of the approach on the number of satisfied ridesharing 

requests could be measured, to test the assumption that the price elasticity and the excess 

demand do indeed encounter the reduction of individual trips [14,18]. Also, the field test 

could be used to figure out incentives that drive the early acceptance of the approach [6]. 

As an alternative, the presented data-driven implementation could be replaced by 

simulations that mimic the real-world behavior of the different participants more closely. 
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