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a b s t r a c t 

Association football is a popular sport, but it is also a big business. From a managerial perspective, the 

most important decisions that team managers make concern player transfers, so issues related to player 

valuation, especially the determination of transfer fees and market values, are of major concern. Market 

values can be understood as estimates of transfer fees—that is, prices that could be paid for a player 

on the football market—so they play an important role in transfer negotiations. These values have tradi- 

tionally been estimated by football experts, but crowdsourcing has emerged as an increasingly popular 

approach to estimating market value. While researchers have found high correlations between crowd- 

sourced market values and actual transfer fees, the process behind crowd judgments is not transparent, 

crowd estimates are not replicable, and they are updated infrequently because they require the partici- 

pation of many users. Data analytics may thus provide a sound alternative or a complementary approach 

to crowd-based estimations of market value. Based on a unique data set that is comprised of 4217 play- 

ers from the top five European leagues and a period of six playing seasons, we estimate players’ market 

values using multilevel regression analysis. The regression results suggest that data-driven estimates of 

market value can overcome several of the crowd’s practical limitations while producing comparably accu- 

rate numbers. Our results have important implications for football managers and scouts, as data analytics 

facilitates precise, objective, and reliable estimates of market value that can be updated at any time. 

© 2017 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

With millions of players and billions of fans, association foot-

all (“football” hereafter) is the world’s most popular sport. Be-

ause of its popularity, professional football teams generate enor-

ous revenues; they are no longer just clubs but companies with

hareholders and managers, sales and profits, and customers rather

han fans. From a managerial perspective, the most important de-

isions that these “football companies” ( Amir & Livne, 2005 ) have

o make concern which players to employ. As player transfers have

 tremendous impact on a club’s chances for success ( Pawlowski,

reuer, & Hovemann, 2010 ), researchers from various disciplines

ave long studied the factors that impact transfer fees ( Frick,

007 ). 
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More recently, though, researchers have begun to pay particu-

ar attention to players’ market values. A player’s market value is

n estimate of the amount for which a team can sell the player’s

ontract to another team ( Herm, Callsen-Bracker, & Kreis, 2014 ).

hile transfer fees represent actual prices paid on the market,

arket values provide estimates of transfer fees, so they play

n important role in transfer negotiations. Market values have

ong been estimated by football experts like team managers and

ports journalists, while crowdsourcing websites like Transfermarkt

 www.transfermarkt.com ) have proved their usefulness in estimat-

ng market value during the past few years. However, data-driven

pproaches to estimating market value have not yet caught on in

rofessional football. 

Football has long lagged behind other major sports in the use

f data analytics. In 2010, the New York Times still called football

he “least statistical” of all major sports ( Kaplan, 2010 ), in large

art because the pool of data available at that time was com-

aratively weak. Today, however, sports-data companies like Opta

 www.optasports.com ) collect prodigious amounts of detailed per-

ormance data that could be used for player valuation in profes-
 under the CC BY-NC-ND license. 
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sional football (see, e.g., Brandes & Franck, 2012 ). While some foot-

ball clubs have started to analyze that data for training purposes

and decisions about line-ups, only a few have realized the data’s

economic potential. They still ignore the “Moneyball” idea of using

statistics to guide player scouting and recruitment ( Zhu, Lakhani,

Schmidt, & Herman, 2015 ). 

In this paper, we evaluate the applicability of data analytics for

estimating players’ market values in professional football; in doing

so, we make four primary contributions: 1) we identify the short-

comings of crowd-based estimations of market value, which jus-

tify the exploration of data-driven approaches to estimating market

value; 2) we synthesize the academic literature on player valuation

to identify the factors that determine players’ market values; 3) we

use a large sample of publicly available data on the five biggest

professional football leagues in Europe over a period of six playing

seasons to train a multilevel regression model for data-driven es-

timation of market value; and 4) we evaluate the accuracy of our

model based on a comparison with actual transfer fees and crowd

estimates and define the potential of data analytics in overcoming

the crowd’s limitations. 

2. Background 

2.1. Market values in professional football 

Players are the most important investments in professional

football from both a sporting perspective and a business perspec-

tive. While in the United States (U.S.), professional athletes are

often traded for other athletes or for future draft picks (e.g., in

American football or baseball), European football players are usu-

ally traded for cash settlements, which are referred to as “trans-

fer fees” ( Frick, 2007 ). Players’ market values are estimates of the

transfer fees that are most likely to be paid for them. Although

there are conceptual differences, market values and transfer fees

are comparable ( He, Cachucho, & Knobbe, 2015 ). Accordingly, a

player’s market value can be defined as “an estimate of the amount

of money a club would be willing to pay in order to make [an] ath-

lete sign a contract, independent of an actual transaction” ( Herm

et al., 2014 , p. 484). As such, market values inform selling clubs and

buying clubs about football players’ monetary value—even those

whose contracts have not been sold recently—so they are impor-

tant in transfer negotiations. Market values have traditionally been

estimated by the clubs themselves or by sports journalists, but as

football fans have developed an interest in market values, websites

have emerged that provide estimates of players’ market values. In

particular, crowdsourcing has proved its usefulness in estimating

market values. 

2.2. Crowd-based estimation of market value 

Transfermarkt is the leading website on the football transfer

market. The site offers general football-related data, such as scores

and results, football news, transfer rumors, and estimations of mar-

ket value at the individual and team levels for most professional

football leagues. Once a user has registered at Transfermarkt, he

or she can follow discussion threads about players’ market val-

ues, propose personal estimations based on players’ current value

and performance, and discuss their proposals with other commu-

nity members. The final market values are then determined by ag-

gregating the individual estimates. Launched in Germany in 2001,

where it now ranks among the most frequently visited websites

( Alexa , n.d.), Transfermarkt released an English-language version in

2009, and versions of the site have since been made available in

Austria, Italy, Poland, Portugal, Spain, Switzerland, Turkey, and the

Netherlands. 
Please cite this article as: O. Müller et al., Beyond crowd judgments:
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Transfermarkt’s idea is that users can build an estimate of mar-

et value together as well as or better than a few football experts

an, a style of judgment for which Surowiecki (2005) coined the

erm “wisdom of crowds.” Some of the most influential newspa-

ers and magazines in Europe regularly quote Transfermarkt’s mar-

et values for football players ( Bryson, Frick, & Simmons, 2012;

erm et al., 2014 ), which have been found to correlate closely

ith experts’ estimates and player salaries ( Franck & Nüesch, 2011;

orgler & Schmidt, 2007 ). Accordingly, Transfermarkt’s market val-

es have provided the foundation for several studies of the foot-

all transfer market (e.g., Franck & Nüesch, 2012; He et al . , 2015 ).

ransfermarkt’s accuracy in estimating market value is remarkable,

s crowdsourcing is generally associated with challenges like so-

ial influence, manipulation attempts, and lack of experience and

nowledge (e.g., Lorenz, Rauhut, Schweitzer, & Helbing, 2011 ) that

ay bias estimations of players’ market value. As Herm et al.

2014) explained, Transfermarkt has dealt with these challenges by

mplementing the “judge principle,” a selective approach to infor-

ation aggregation. 

According to Herm et al. (2014) , the judge principle of infor-

ation aggregation works as follows. Transfermarkt does not esti-

ate market values in a democratic way, such that all user esti-

ates have equal value, but uses a hierarchical approach. There-

ore, Transfermarkt does not calculate the final market values as

he mean or median of all individual estimates but gives a few

mpowered community members, whom Herm et al. called the

judges,” the final say. Accordingly, judges review other users’ es-

imates and select and weigh them when making their decisions,

o they can decrease or increase the influence of users they con-

ider to be less or more qualified. Although the final market val-

es are not calculated democratically, there is reason to believe

hat the selective-judge principle works better than purely demo-

ratic approaches to information aggregation would. For example,

hen little-known players receive only a few votes, user estimates

hat are clearly too high or too low would significantly bias the

esults–either because of manipulation attempts (e.g., by oppor-

unistic sports agents) or because of a lack of knowledge (e.g., by

nexperienced fans). Judges can exclude such estimates from the

ggregation, which decreases the risk of bias. (For a more detailed

escription of how Transfermarkt works see Herm et al. (2014) ). 

However, despite its arguable benefits and its demonstrated ac-

uracy, the crowdsourcing approach to estimating market value

omes with several limitations. First, community members base

heir estimates on arbitrary indicators, which may happen even

nconsciously, so they lack objectivity. (Transfermarkt suggests a

ist of evaluation criteria, but these are not mandatory.) Second,

udges can independently determine the final market values based

n personal evaluations of user estimates and other indicators, so

hey are not reproducible. (As Transfermarkt does not calculate

he final values in a formal way, the question arises concerning

ho judges the judges.). Third, as crowd estimations require the

articipation of many users, market values are not updated on a

atch-by-match basis and may no longer be accurate after a few

ames, so crowd estimations are generally not efficient. (Transfer-

arkt usually estimates market values every six to twelve months.)

ourth, crowd estimates tend to be more accurate for players who

re well known to a sufficiently large audience, so they often do

ot support player scouting in minor leagues. (The number of

ransfermarkt’s forum posts is rather low in some countries and

eagues.) Fifth, crowd-estimated market values are public, so they

o not offer a competitive advantage to clubs in transfer negoti-

tions. (Transfermarkt’s market values increasingly affect contract

nd wage negotiations on the football market.) As the next section

xplains, a data-driven approach to estimating market value would

ddress these limitations. 
 Data-driven estimation of market value in association football, 
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Fig. 1. Conceptualization of market-value estimation at Transfermarkt 

(adapted from Herm et al., 2014 , p. 486) 
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.3. Data-driven estimation of market value 

Major League Baseball (MLB) was the first sport to make serious

se of data analytics in player recruitment ( Steinberg, 2015 ). At the

nd of the 1990s, Billy Beane, General Manager of the Oakland Ath-

etics, began using statistical data for player scouting and decisions

bout the team roster, a story probably best known through the

estseller, “Moneyball,” and its film adaptation by the same name

 Lewis, 2004 ). Insights generated from player statistics helped the

eam’s management to identify undervalued but talented players

nd overvalued players who had passed their zenith ( Zhu et al.,

015 ). In the following two decades, the Athletics’ innovative ap-

roach to player recruitment helped the team reach the playoffs

oughly every second season, although they had one of the low-

st budgets of all of the MLB teams, many of which later adopted

eane’s ideas. 

Professional football has long lagged behind sports like baseball

nd basketball in the use of quantitative data, so football clubs es-

hewed the Moneyball idea. For example, in 2010 the U.S.’s Major

eague Soccer (MLS) website displayed only six metrics per player,

hile the MLB website featured twenty-nine batting metrics alone

 Kaplan, 2010 ). “Contrary to the situation in most American team

ports, few individual performance measures are recorded in foot-

all” ( Frick, 2011 , p. 113). However, sports-data companies like

pta have begun collecting exhaustive and detailed data about

ootball players, and some clubs have even begun to collect their

wn data during training and games. For example, during the 2014

IFA world cup in Brazil, the German Football Association (DFB)

sed one of SAP’s big-data solutions to analyze player performance

 SAP, 2014 ). The software company estimated that only ten min-

tes of training with ten players and three balls produced more

han seven million data points (also see Bojanova, 2014 ). 

However, most clubs use the newly available data to adjust

raining plans and support decisions about line-ups, while the

ata’s potential for supporting managerial decisions is ignored.

nly a few clubs are known to use data analytics systematically

or player valuation, but most of them are small or medium-sized

lubs for which buying expensive superstars is not a viable strat-

gy. For example, Danish Superliga club FC Midtjylland has begun

o use statistical models to evaluate teams and players ( Murtagh,

015 ), and Dietmar Hopp, owner of German Bundesliga club TSG

offenheim and co-founder of SAP, has pushed the use of statis-

ical analysis at Hoffenheim. After Hoffenheim received from FC
Please cite this article as: O. Müller et al., Beyond crowd judgments:

European Journal of Operational Research (2017), http://dx.doi.org/10.10
iverpool an all-time-high transfer fee of €41 million in 2015 for

oberto Firmino, who had cost Hoffenheim only €4 million four

ears earlier, Hopp identified two success factors for running the

eam in the future: being an early adopter of innovative technolo-

ies and identifying talented players early in their careers and de-

eloping them so they contributed on both the pitch and the bal-

nce sheet ( Zhu et al., 2015 ). While data analytics is an innovative

echnology, its applicability to estimating market value and recruit-

ng talented young players remains to be assessed. 

Research on judgment and decision-making provides strong

mpirical and theoretical arguments that favor statistical estimates

ver human (heuristic) judgments ( Dawes, Faust, & Meehl, 1989 ),

articularly when it comes to complex decisions ( Evans, 2006;

versky & Kahneman, 1974 ) like estimating a football player’s mar-

et value. A meta-analysis of 136 empirical studies that compared

tatistical predictions and human judgments in fields from clinical

ecision-making to economics showed that statistical techniques

re, on average, 10 percent more accurate than human judgments

re ( Grove, Zald, Lebow, Snitz, & Nelson, 20 0 0 ). The superiority

f statistical methods over human judgments holds for trained,

ntrained, experienced, and inexperienced judges alike ( Grove &

eehl, 1996 ). Therefore, our approach to data-driven estimation of

arket value uses a statistical model. 

Brunswik’s (1952) lens model, which Herm et al. (2014) used

o conceptualize how the Transfermarkt crowd estimates market

alue, can also be used to explain our approach to data-driven es-

imation of market value ( Fig. 1 ). On the Transfermarkt website,

ommunity members j make subjective estimations ˆ y j of a foot-

all player’s true, unobservable market value y based on arbitrary

ndicators x i and subjective weightings a i,j . A Transfermarkt judge

hen creates a final estimation of market value ˆ y based on selected

ser evaluations ˆ y j and other indicators x i , to both of which he or

he assigns subjective weightings b j and a i . Accordingly, the crowd-

ased approach to estimating market values uses divergent indica-

ors and weightings. In contrast, a data-driven approach to estimat-

ng market value uses a statistical model with consistent indicators

 i and empirically derived weightings a i to estimate players’ mar-

et values, so it overcomes the limitations of the crowd: Because

he model uses the same indicators and weightings for all players,

t is transparent and replicable; it is efficient, so market values can

e updated on a match-by-match basis; it produces unbiased esti-

ates for well-known and lesser known players alike, so it can be

sed for player scouting; and its use does not require public an-
 Data-driven estimation of market value in association football, 
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Table 1 

Indicators of market value. 

Indicator Description Selected references 

Player characteristics 

Age Age reflects players’ experience and potential. (1)–(19) 

Height Height reflects heading ability, which can influence the probability of scoring or preventing goals. (2), (4), (11), (18) 

Position Position reflects players’ flexibility on the pitch and their crowd-pulling capacity. (1)–(19) 

Footedness Two-footedness is an advantageous footballing ability that also reflects players’ flexibility. (2), (12), (18) 

Nationality Nationality refers to a player’s country or continent of birth. (2), (6), (8), (9), (14), (16), (17) 

Player performance 

Playing time Playing time refers to the number of games or minutes played at the national and international levels. (1)–(13), (15)–(19) 

Goals Goals refers to the number of goals a player has scored. (2)–(5), (7), (8), (10)–(19) 

Assists Assists refers to the number of a player’s assists that helped other players score goals. (7), (11)–(16) 

Passing Passing refers to the number of passes to other players or the accuracy of passing. (7), (12), (16) 

Dribbling Dribbling refers to the number and success rate of a player’s ball maneuvers. (7), (11), (16) 

Dueling Dueling refers to the number and success rate of a player’s tackles, clearances, blocks, and interceptions. (7), (12), (14), (16) 

Fouls Fouls refers to the number of fouls committed or the number of times a player has been fouled. (7), (11), (13) 

Cards Cards refers to the number of yellow, yellow/red, and red cards received by a player. (7), (8), (13), (18) 

Player popularity 

News A player’s news-worthiness is reflected in press citations. (7), (13), (14) 

Internet links Popularity is reflected in the number of links reported by web search engines like Google. (9), (12), (13) 

References: (1) Brandes and Franck (2012) ; (2) Bryson et al. (2012) ; (3) Carmichael and Thomas (1993) ; (4) Carmichael et al. (1999) ; (5) Dobson et al. (20 0 0) ; (6) Feess 

et al. (2004) ; (7) Franck and Nüesch (2012) ; (8) Frick (2011) ; (9) Garcia-del-Barrio and Pujol (2007) ; (10) Gerrard and Dobson (20 0 0) ; (11) He et al. (2015) ; (12) Herm 

et al. (2014) ; (13) Kiefer (2014) ; (14) Lehmann and Schulze (2008) ; (15) Lucifora and Simmons (2003) ; (16) Medcalfe (2008) ; (17) Reilly and Witt (1995) ; (18) Ruijg and 

van Ophem (2014) ; (19) Speight and Thomas (1997) 
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nouncement, so it can offer the club that uses it an advantage in

transfer negotiations. 

The next section’s literature review identifies indicators of mar-

ket value in order to provide a conceptual background for develop-

ing such a model. 

3. Indicators of market value 

3.1. Overview 

Research has identified several factors that can be used to es-

timate market values and these factors are similar to those the

Transfermarkt crowd uses (see Herm et al., 2014 ). Table 1 or-

ganizes the most common indicators of market value into three

categories—player characteristics , player performance , and player

popularity —and shows selected studies that have used these indi-

cators. 

While researchers have studied indicators of transfer fees (e.g.,

Carmichael & Thomas, 1993; Carmichael, Forrest, & Simmons,

1999; Dobson, Gerrard, & Howe, 20 0 0; Gerrard & Dobson, 20 0 0;

Medcalfe, 2008; Ruijg & van Ophem, 2014; Speight & Thomas,

1997 ) and market values (e.g., Franck & Nüesch, 2012; Garcia-del-

Barrio & Pujol, 2007; He et al., 2015; Herm et al., 2014; Kiefer,

2014 ), studies on players’ remuneration (e.g., Brandes & Franck,

2012; Bryson et al . , 2012; Feess, Frick, & Muehlheusser, 2004;

Frick, 2011; Lehmann & Schulze, 2008; Lucifora & Simmons, 2003 )

can also be used to identify indicators of market value. In fact,

players’ salaries are influenced by the same—or at least similar—

factors as those that influence market values and transfer fees

(see, e.g., Brandes & Franck, 2012; Bryson et al., 2012; Frick, 2007 ).

Therefore, we explain the three indicator categories of market

value by reviewing research on player valuation, payment, and

transfer. (Text references to the indicators listed in Table 1 are 

italicized.) 

3.2. Player characteristics 

We conceptualize player characteristics as players’ physical and

demographic attributes. Age is an important indicator of market

value, as it reflects both experience and potential (e.g., Carmichael
Please cite this article as: O. Müller et al., Beyond crowd judgments:

European Journal of Operational Research (2017), http://dx.doi.org/10.10
 Thomas, 1993 ). Most studies on player valuation have used

uadratic age terms to allow for non-linear relationships, consid-

ring that players’ values usually increase into their mid-twenties

nd decline thereafter (e.g., Bryson et al., 2012 ). Age (age squared)

as frequently been found to influence pay and value positively

negatively) (e.g., Lehmann & Schulze, 2008 ). In addition, a player’s

eight has been found to significantly increase salary returns

 Bryson et al., 2012 ) because it indicates good heading ability that

ay increase the probability of scoring or preventing a goal ( Fry,

alanos, & Posso, 2014 ). 

Another player characteristic that has been studied in player-

aluation research is footedness . For example, Bryson et al.

2012) concluded that two-footed ability raises players’ salaries,

nd Herm et al. (2014) found that it positively impacts their

arket values. Two-footedness is a generally advantageous foot-

all skill, but it also reflects flexibility because players who are

dept with both feet can be used in various positions on the

itch ( Bryson et al., 2012 ). Like the other player characteristics,

ootedness is a talent-related indicator of market value, but re-

earchers have also studied whether players’ nationalities influ-

nce their value and pay because of discrimination ( Frick, 2007 ).

or example, in their study of the Spanish professional football

eague, Garcia-del-Barrio and Pujol (2007) found that non-Spanish

uropean players were systematically overrated, while non-

uropean players were systematically underrated. However, Reilly

nd Witt (1995) found no evidence of discrimination of players

n professional football, which was more recently confirmed by

edcalfe (2008) . 

Finally, a player’s position —goalkeeper, defender, midfielder, or

orward—is important in estimating market value. Several re-

earchers have found that players’ positions impact salaries and

ransfer fees, as they reflect players’ degrees of specialization and

rowd-pulling capacity. For example, Frick (2007) found that goal-

eepers earn significantly less than midfielders because goalkeep-

rs can be used less flexibly on the pitch. Garcia-del-Barrio and

ujol (2007) concluded that attackers receive much higher atten-

ion and rewards than goalkeepers, as attackers are more visible to

he audience and so have higher crowd-pulling power ( He et al.,

015 ). 
 Data-driven estimation of market value in association football, 
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.3. Player performance 

Player performance reflects how well players function on the

itch. Playing time has consistently been used in player-valuation

esearch. For example, appearances in domestic leagues, in the Eu-

opean leagues, and on the national team have a positive impact

n transfer fees and market values (e.g., Carmichael & Thomas,

993; Garcia-del-Barrio & Pujol, 2007; Gerrard & Dobson, 20 0 0 ).

esearchers have distinguished between appearances during play-

ng seasons and appearances during players’ careers (e.g., Franck

 Nüesch, 2012 ), and they have considered substitute appearances

e.g., Bryson et al., 2012 ) and minutes played (e.g., Ruijg & van

phem, 2014 ) to account for the actual time spent on the field. 

Several other performance measures can be used to estimate

arket values. Goals , including field goals, headers, and penal-

ies, indicate players’ scoring ability, so they are a largely unam-

iguous performance measure ( Carmichael et al., 1999 ). Accord-

ngly, the total and average number of goals, each across play-

ng seasons and players’ careers, have often been used in player-

aluation research (e.g., Bryson et al., 2012; Carmichael & Thomas,

993; Frick, 2011; Gerrard & Dobson, 20 0 0 ). Assists refer to players’

ontributions that help others score goals, so they are also com-

on indicators of player value. For example, Lucifora and Simmons

2003) provided evidence from Italian football that forwards’ as-

ist rates can increase their salaries, a finding that Lehmann and

chulze (2008) and Franck and Nüesch (2012) reinforced for Ger-

an Bundesliga players. 

Because of the protracted unavailability of detailed performance

ata in professional football, only a few researchers have used per-

ormance measures other than goals and assists to explain value

nd pay. Infrequently used are passing (e.g., Herm et al., 2014 );

ueling in the form of clearances, blocks, and interceptions (e.g.,

ranck & Nüesch, 2012 ); dribbles (e.g., Medcalfe, 2008 ); commit-

ed fouls (e.g., He et al., 2015 ); and yellow and red cards (e.g.,

iefer, 2014 ). Because the significance of performance indicators

aries by position, researchers have also included interaction ef-

ects in their models of player value (e.g., Dobson et al., 20 0 0;

errard & Dobson, 20 0 0 ). For example, while forwards are sup-

osed to score goals, defenders should win tackles, and midfield-

rs are expected to defend and attack equally well. To account for

he variety of performance indicators, some researchers have also

eplaced them with aggregated indices and expert estimations as

roxies for player performance (e.g., Brandes & Franck, 2012; Feess

t al., 2004; Garcia-del-Barrio & Pujol, 2007 ). 

.4. Player popularity 

Theories on the emergence of “superstars” like actors and

ingers suggest that not only talent ( Rosen, 1981 ) but also the ex-

ernalities of popularity ( Adler, 1985 ) can explain demand for foot-

all players ( Franck & Nüesch, 2012 ). Therefore, players’ market

alues also depend on their crowd-pulling power, independent of

hat they show on the pitch, as this power can sell their clubs’

erseys and seats. Accordingly, studies of the football transfer mar-

et have investigated popularity-related factors. While early studies

eft popularity to the error term (e.g., Carmichael & Thomas, 1993 ),

he Internet has provided new ways to measure player popularity

y, for example, analyzing online news and web links . For exam-

le, Lehmann and Schulze (2008) concluded that media presence,

easured as the number of times a player’s name is mentioned

n the online version of the German sports magazine Kicker, re-

ates to salary. Likewise, Franck and Nüesch (2012) found that non-

erformance-related press citations in the LexisNexis database are

ositively related to market value, and Brandes, Franck, and Nüesch

2008) counted how often German Bundesliga players’ names were

entioned in newspapers and magazines to determine whether
Please cite this article as: O. Müller et al., Beyond crowd judgments:
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uperstars boost attendance at home and away matches. Herm

t al. (2014) and Garcia-del-Barrio and Pujol (2007) measured

ublic attention as the total number of Google search hits and

ound it to be a significant factor in player valuation, while Kiefer

2014) measured popularity using Facebook “likes” and mentions

n the UEFA website. 

In summary, research has identified several indicators of market

alue, including player characteristics, performance, and popularity,

ith most of the extant studies relying on similar factors. The next

ection explains how we operationalized these factors and how we

ollected and analyzed data to train a statistical market-value esti-

ation model. 

. Data collection and description 

We gathered season-level data about players’ characteristics,

erformance, and popularity from several Internet sources, in-

luding Google, Reddit, Transfermarkt, WhoScored, Wikipedia, and

ouTube. We collected data for six playing seasons, from the

009/10 season to the 2014/15 season, for players from the five

op European leagues, that is, England’s Premier League, Spain’s La

iga, Germany’s Bundesliga, Italy’s Serie A, and France’s Ligue 1.

o increase the reliability of the performance data, and in line

ith previous research, we considered only those players who ap-

eared on the pitch for at least ninety minutes in a given season

 Brandes & Franck, 2012 ) and excluded goalkeepers from our sam-

le ( Bryson et al., 2012; Lucifora & Simmons, 2003 ), as their per-

ormance is measured in a considerably different way than that

f outfield players. The resulting data set consisted of 10,350 ob-

ervations from 4217 players on 146 teams. Table 2 provides an

verview. 

Our data-driven approach to estimating market value is concep-

ually similar to how the crowd estimates market values. To es-

imate a player’s market value after a given season, we use his

stimation of market value from the end of the previous sea-

on as a baseline and add data about his characteristics, perfor-

ance, and popularity from that season. As the accuracy of Trans-

ermarkt’s estimations of market value has been repeatedly con-

rmed by researchers, and because of the unavailability of other

redible sources that provide historical data, we used Transfer-

arkt’s estimations of market value to train our model. We first

ollected the estimations that were made at the end of the six sea-

ons (as per June 30) for all players in our sample. The average

layer across all leagues and seasons was worth around €5.6 mil-

ion at Transfermarkt; players’ market values ranged from €50,0 0 0

o €120 million with a standard deviation of around €8.2 million.

 Appendix A provides a more detailed overview of the transfer

arket.) 

To conduct our own estimation of players’ market values, we

ollected data about their characteristics, performance, and popu-

arity. We operationalized the player characteristics by means of

 player’s Age (years), Height (centimeters), Footedness (two-footed

bility or not), Nationality (continent of origin), and Position on

he pitch (defender, midfielder, forward). The average player in our

ata set was 26.5 years old and 181.5 centimeters (nearly six feet)

all. Eight percent of all players were adept with both feet, 41 per-

ent of them were midfielders (21% forwards, 38% defenders), and

6 percent were from Europe (12% from South America, 10% from

frica, 2% from other continents). (Categorical variables are not dis-

layed in Table 2 .) 

We measured player performance by means of the number of

inutes played , Goals , Assists , and Yellow or Red cards per season;

he number and success ratio of Passes , Dribbles , Aerial duels , and

ackles per game; and the number of Interceptions , Clearances , and

ommitted Fouls per game. The average player in our sample was

n the pitch for 1612 minutes per season, during which he scored
 Data-driven estimation of market value in association football, 

16/j.ejor.2017.05.005 

http://dx.doi.org/10.1016/j.ejor.2017.05.005


6 O. Müller et al. / European Journal of Operational Research 0 0 0 (2017) 1–14 

ARTICLE IN PRESS 

JID: EOR [m5G; May 29, 2017;20:9 ] 

Table 2 

Descriptive statistics. 

Variable Measurement Mean Median St. Dev. Min. Max. 

Player valuation 

Transfermarkt’s market value EUR 5588,529 30 0 0,0 0 0 8208,470 50,0 0 0 120,0 0 0,0 0 0 

Player characteristics 

Age Years 26.51 26.00 4.08 17.00 40.00 

Height Centimeters 181.49 182.00 6.15 161.00 203.00 

Player performance 

Minutes played total p.s. 1612.39 1612.00 884.85 90.00 3420.00 

Goals total p.s. 2.39 1.00 3.85 .00 50.00 

Assists total p.s. 1.64 1.00 2.25 .00 20.00 

Passes total p.g. 29.45 28.48 13.36 1.55 110.03 

Successful passes percent p.g. .78 .78 .07 .43 1.00 

Dribbles total p.g. 1.21 .90 1.12 .00 9.58 

Successful dribbles percent p.g. .51 .50 .24 .00 1.00 

Aerial duels total p.g. 2.22 1.79 1.71 .00 15.50 

Successful aerial duels percent p.g. .47 .48 .18 .00 1.00 

Tackles total p.g. 2.21 2.09 1.21 .00 9.00 

Successful tackles percent p.g. .71 .72 .14 .00 1.00 

Interceptions total p.g. 1.35 1.25 .92 .00 7.13 

Clearances total p.g. 2.09 1.07 2.35 .00 13.44 

Fouls total p.g. 1.10 1.03 .53 .00 4.27 

Yellow cards total p.s. 3.48 3.00 2.89 .00 18.00 

Red cards total p.s. .20 .00 .46 .00 3.00 

Player popularity 

Wikipedia page views total p.s. 104,509.30 23,944.00 319,022.80 .00 8786,701.00 

Google Trends search index average index p.s. 13.36 13.21 12.38 .00 91.83 

Reddit posts total p.s. 15.42 2.00 38.79 .00 789.00 

YouTube videos total p.s. 36,075.46 918.50 141,882.30 .00 10 0 0,0 0 0.0 0 

Notes: p.s. = per season; p.g. = per game; N = 10,350 
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2.4 goals, gave 1.6 assists, and received 3.5 yellow and .2 red cards.

In an average game, he made 29 passes (at a success rate of 78%),

did 1.2 dribbles (51% successfully), and committed 1.1 fouls. He

conducted 2.2 aerial duels (47% won) and made 2.2 tackles (71%

successfully), 1.4 interceptions, and 2.1 clearances per game. 

We used four Internet metrics to measure player popularity: the

number of times a player’s Wikipedia page was viewed, how often

a player’s name was searched on Google , the number of times a

player’s name appeared in the “soccer” forum on Reddit , and how

many videos about a player were shared on YouTube . The average

player had more than 10 0,0 0 0 Wikipedia page views and more

than 35,0 0 0 YouTube videos. His name appeared in 15.4 forum

posts on Reddit, and his average Google Trends search index was

13.4. (The data Google provides is scaled from 0 to 100 for a given

time frame, so it refers to total searches for a term relative to the

total number of searches over time.) 

None of the independent variables were highly correlated, but

an exploratory data analysis revealed that the distributions of the

players’ market values were highly right-skewed, which was also

the case for the popularity variables. ( Appendix B shows how the

market values were distributed across seasons, leagues, and po-

sitions, and how the independent variables were correlated.) We

log-transformed these variables to avoid violating the linearity as-

sumption of linear regression. “Eyeballing” the associations be-

tween the players’ market values that we collected from Transfer-

markt and the numerical independent variables with scatterplots

showed that all variables except age had reasonably linear relation-

ships with market value. Therefore, we squared the age variable to

get a more linear relationship with market value. 

5. Results 

5.1. Model specification 

In order to build a statistical model with which to estimate

players’ market values, we fitted a series of regression models,
Please cite this article as: O. Müller et al., Beyond crowd judgments:
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hich included as predictors the players’ previous market values,

nd the players’ characteristics, performance measures, and pop-

larity metrics. As our data structure is hierarchical (players are

ested within teams, and teams are nested within leagues) and

ongitudinal (players played multiple seasons), the model’s resid-

als are likely not independent, which would violate a central as-

umption of linear regression. Therefore, we used multilevel mod-

ls that we specified to include player, team, league, position, con-

inent of origin, and season as random factors, and for which

e allowed the intercepts to vary (notation adapted from Lee,

975 ): 

arket value i(t(l) ∗p ∗c)[s] 

= αi(t(l) ∗p ∗c)[s] + β · Market value i(t(l) ∗p ∗c)[s-1] 

+ χ ’ · Player characteristics i(t(l) ∗p ∗c)[s] 

+δ’ · Player performance i(t(l) ∗p ∗c)[ s ] 

+ γ ’ · Player popularity i(t(l) ∗p ∗c)[ s ] 

+ u i(t(l) ∗p ∗c)[s] + u t(l) + u l + u p + u c + u s + εi(t(l) ∗p ∗c)[ s ] , 

here i(t(l) ∗p ∗c)[s] indexes a player i , who is nested within each

f three factors that are crossed with each other—a team t (which

s further nested in a league l ), a position p , and the conti-

ent of origin c —corresponding to season observations s . Market

alue i(t(l) ∗p ∗c)[s] is the market value to be estimated; αi(t(l) ∗p ∗c)[s] rep-

esents an individual intercept; Market value i(t(l) ∗p ∗c)[s-1] is the mar-

et value from the preceding season; Player characteristics i(t(l) ∗p ∗c)[s] 

onsists of the predictors Age 2 , Height , and Footedness ; Player

erformance i(t(l) ∗p ∗c)[s] consists of the predictors Minutes played ,

oals , Assists , (Successful) Passes , (Successful) Dribbles , (Successful)

erial duels , (Successful) Tackles , Interceptions , Clearances , Fouls , Yel-

ow cards , and Red cards ; and, Player popularity i(t(l) ∗p ∗c)[s] consists

f the predictors Wikipedia page views , Google Trends search in-

ex , Reddit posts , and YouTube videos . u i(t(l) ∗p ∗c)[s] , u t(l) , u l , u p , u c ,

nd u s are random effects that are designed to capture the non-

ndependence between 1) market values observed for the same
 Data-driven estimation of market value in association football, 
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Table 3 

Multilevel regression models. 

Dependent variable: Log of market value 

Model 1 Model 2 Model 3 Model 4 

Fixed effects 

Intercept 6.789 ∗∗∗ 6.492 ∗∗∗ 7.432 ∗∗∗ 7.272 ∗∗∗

(.132) (.219) (.203) (.200) 

Log of previous market value .543 ∗∗∗ .610 ∗∗∗ .495 ∗∗∗ .486 ∗∗∗

(.006) (.005) (.005) (.005) 

Age 2 −.002 ∗∗∗ −.002 ∗∗∗ −.002 ∗∗∗

(.0 0 0) (.0 0 0) (.0 0 0) 

Height .002 .001 .001 

(.001) (.001) (.001) 

Footedness −.003 −.006 −.007 

(.022) (.017) (.017) 

Minutes played .0 0 0 ∗∗∗ .0 0 0 ∗∗∗

(.0 0 0) (.0 0 0) 

Goals .026 ∗∗∗ .024 ∗∗∗

(.002) (.002) 

Assists .016 ∗∗∗ .015 ∗∗∗

(.002) (.002) 

Passes .006 ∗∗∗ .005 ∗∗∗

(.001) (.001) 

Successful passes .301 ∗∗∗ .286 ∗∗∗

(.083) (.083) 

Dribbles .030 ∗∗∗ .028 ∗∗∗

(.005) (.005) 

Successful dribbles .035 .034 

(.019) (.018) 

Aerial duels .013 ∗∗∗ .014 ∗∗∗

(.004) (.004) 

Successful aerial duels −.005 −.006 

(.028) (.027) 

Tackles −.021 ∗∗∗ −.018 ∗∗∗

(.005) (.005) 

Successful tackles .049 .050 

(.030) (.030) 

Interceptions −.013 −.010 

(.008) (.008) 

Clearances .003 .003 

(.003) (.003) 

Fouls .002 .004 

(.010) (.010) 

Yellow cards −.004 ∗ −.004 ∗

(.002) (.002) 

Red cards .007 .007 

(.009) (.008) 

Log of Wikipedia page views .016 ∗∗∗

(.002) 

Log of Google Trends search index .006 

(.004) 

Log of Reddit posts .026 ∗∗∗

(.005) 

Log of YouTube videos .007 ∗∗

(.002) 

Random effects 

σ 1 (Player/Team/League) .4 4 4 .298 .179 .185 

σ 2 (Team/League) .280 .217 .237 .219 

σ 3 (League) .138 .137 .150 .120 

σ 4 (Position) .083 .052 .056 .050 

σ 5 (Continent of origin) .057 .053 .034 .029 

σ 6 (Season) .107 .089 .089 .098 

σ 7 (Residual) .409 .411 .347 .343 

Log Likelihood −8699.1 −7479.6 −5058.0 −4986.0 

AIC 17,416.2 14,983.2 10,172.0 10,035.9 

BIC 17,481.4 15,070.1 10,374.9 10,267.8 

Notes: ∗ p < .05 ∗∗ p < .01 ∗∗∗ p < .001; standard errors are in parentheses. 

Number of observations: 10,350. Number of groups: Players, 4217; Teams, 146; Con- 

tinents of origin, 6; Seasons, 6; Leagues, 5; Positions, 3. 

fi  

w  

e  

m  

o

layer i over time s ( u i(t(l) ∗p ∗c)[s] ), 2) market values observed for

layers on the same team ( u t(l) ), 3) market values observed for

eams in the same league ( u l ), 4) market values observed for play-

rs who play the same position ( u p ), 5) market values observed

or players from the same continent of origin ( u c ), and 6) market

alues observed for players in the same season ( u s ), respectively.

i(t(l) ∗p ∗c)[s] captures the remaining error. The random effects and

he error term are assumed to be independently and identically

istributed and follow a normal distribution with mean zero and

tandard deviation σμ. 

.2. Regression results 

Table 3 shows the estimated coefficients, standard errors, and

 -values of the fixed effects as well as the standard deviations of

he random effects. Model 1 serves as a baseline model and con-

ains only an intercept and the Previous market value . Model 2 adds

layer characteristics, Model 3 adds the player-performance vari-

bles, and Model 4 adds the player-popularity metrics. The good-

ess of fit, measured by the Akaike Information Criterion (AIC) and

he Bayesian Information Criterion (BIC), improves with each block

f variables added; likelihood ratio tests confirm that these im-

rovements are significant (from Model 1 to 2: χ2 (3) = 2439.00,

 = .0 0 0; from Model 2 to 3: χ2 (16) = 4843.20, p = .0 0 0; from

odel 3 to 4: χ2 (4) = 144.12, p = .0 0 0). 

As our dependent variable is measured on the logarithmic scale,

he models’ coefficients can be interpreted roughly as percent

hanges. The coefficients of the log-transformed independent vari-

bles have to be interpreted as elasticities. For example, an addi-

ional Goal (Assist) per season increases a player’s Market value by

.4 (1.5) percent in Model 4, holding all other variables constant,

nd a 1 percent increase in the number of Wikipedia page views is

ssociated with a .02 percent increase in Market value . 

In Model 1, the baseline model, the Previous market value (.543;

 < .001) is significant. The significant variables in Model 2 are

revious market value (.610; p < .001) and Age 2 ( −.002; p < .001).

IC drops from 17,416.2 to 14,983.2, indicating an improvement in

oodness of fit. In Model 3, the significant variables from Model

—that is, Previous market value (.495; p < .001) and Age 2 ( −.002;

 < .001)—are still significant, and from the set of performance

ariables, Minutes played , Goals , Assists , Passes , Successful passes ,

ribbles , Aerial duels , Tackles , and Yellow cards are also significant.

ith every minute a footballer plays, his market value increases

y .03 percent ( p < .001), each goal increases it by 2.60 percent

 p < .001), and each assist increases it by 1.58 percent ( p < .001).

asses (0.57%; p < .001), the ratio of Successful passes (30.05%; p <

001), Dribbles (3.02%; p < .001), and Aerial duels (1.33%; p < .001)

urther increase a player’s market value, whereas Tackles ( −2.08%;

 < .001) and Yellow cards ( −0.41%; p < .05) decrease it. The

odel’s goodness of fit increases compared to Model 2, as AIC

rops from 14,983.2 to 10,172.0. 

Model 4 adds popularity data. The variables from Model 3

emain largely stable when Wikipedia page views , Google Trends

earch index , Reddit posts , and YouTube videos are added. Three of

he four popularity variables are significantly related to a player’s

arket value, with a .02 percent increase for each 1 percent in-

rease in Wikipedia page views ( p < .001), a .03 percent increase for

ach 1 percent increase in Reddit posts ( p < .001), and a .01 per-

ent increase for each 1 percent increase in YouTube videos ( p <

01). The model’s goodness of fit increases compared to the previ-

us models, as AIC drops from 10,172.0 to 10,035.9. 

The parameter estimates for the random effects (i.e., the stan-

ard deviations) remain largely stable across models ( σ 2 to σ 6 ).

owever, unexplained player-specific variability ( σ 1 , the standard

eviation for Players nested in Teams nested in Leagues ) is com-

aratively large in Model 1 (.4 4 4) but decreases when additional
Please cite this article as: O. Müller et al., Beyond crowd judgments:
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xed factors and covariates are added (Model 4: .185). In other

ords, these variables explain additional variability between play-

rs. In what follows, we evaluate the accuracy of Model 4 in esti-

ating market value, as it is the model with the highest goodness

f fit. 
 Data-driven estimation of market value in association football, 
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5.3. Model evaluation 

Market values are unobservable, which made it difficult to eval-

uate the accuracy of our statistical model. Still, market values are

proxies for transfer fees ( He et al . , 2015 ), so we compared the

model estimates with actual transfer fees. However, market val-

ues and transfer fees are not necessarily the same. For example,

players can switch clubs after their contracts have expired with-

out any transfer fee, but that does not mean that their market

value is zero, and clubs sometimes pay unreasonably high fees

for players, especially if they have to find replacements for in-

jured players quickly or want to weaken competitors ( Herm et al.,

2014 ). Against this background, we also compared our model esti-

mates with the crowd estimates, which provided another bench-

mark for evaluating our model’s accuracy. We collected data on

publically announced transfer fees for all six playing seasons, ex-

cluding players from the evaluation sample whose transfer fees

were zero (because their contracts had expired or they were on

loan) and players other than those who had been sold by one of

the 146 clubs in our data set (because players they had bought

may have come from leagues other than the European top five,

so we would not have had their data). From this process we col-

lected 845 transfer fees with which we could evaluate our model’s

accuracy. 

Because our sample spanned several playing seasons, we could

not use standard evaluation strategies for predictive models, such

as k-fold cross-validation (see, e.g., Hastie, Tibshirani, & Fried-

man, 2017 ), as these strategies would have introduced the risk of

leakage–that is, the use of data from the future to train a model in

the past ( Kaufman, Rosset, & Perlich, 2011 ). Therefore, we applied

a time-series-based evaluation approach to ensure that a player’s

market value after a given season was estimated based only on

data that was known at that point in time. For example, to esti-

mate players’ market values after the 2009/10 season, we trained

the model on data from the 2009/10 season, and to estimate play-

ers’ market values after the 2010/11 season, we trained the model

on data from the 2009/10 and 2010/11 seasons. After we had ob-

tained statistical estimates of market value for all 845 players in

our evaluation sample, we calculated the differences between the

model estimates and the transfer fees for each of them and, on

that basis, the Root Mean Squared Error (RMSE) and the Mean

Absolute Error (MAE) as aggregated measures. We calculated the

same two measures for the crowd’s estimates. 

As Table 4 shows, the evaluation results indicate that the

crowd’s estimates are slightly more accurate in that they are closer

to actual transfer fees than the model’s estimates, with an RMSE

that is 3.4% lower and an MAE that is 3.6% lower. However, a

Diebold-Mariano test that compared the MAEs of the crowd’s es-

timates and the model’s estimates showed no statistically signifi-

cant difference ( p < .340) ( Diebold & Mariano, 1995 ). On average,

the crowd estimates deviate by €3241,733 from the players’ trans-

fer fees and the model estimates by €3359,743. 

However, as the exploratory data analysis revealed, the distri-

bution of players’ market values was highly skewed and character-

ized by extreme outliers ( Appendix B ), as was the case with their
Table 4 

Model evaluation. 

RMSE MAE 

Crowd estimates 5793,474 3241,733 

Model estimates 5996,341 3359,743 

Relative difference + 3.4% + 3.6% 

Notes: A positive value for relative difference in- 

dicates superiority of crowd. Actual transfer fees 

were used as ground truth. N = 845 
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ransfer fees. Therefore, we evaluated the accuracy of both the

odel estimates and the crowd estimates for various price ranges.

ig. 2 shows the development of the difference in RMSE between

he model’s estimates and the crowd’s estimates when the data

et is filtered at various cut-off points. While the differences be-

ween the two estimation approaches are generally not large, the

odel tends to be more accurate for low- to medium-priced play-

rs, whereas the crowd tends to be more accurate for high-priced

layers. 

The crossover between the model’s estimates and the crowd’s

stimates occurs at a transfer fee of approximately €18 million,

hich is at the 90th percentile of the distribution. ( Fig. 3 pro-

ides a transfer-fee histogram.) In other words, the model pro-

uced more accurate estimates on average than the crowd did for

he lower 90 percent of all transfers (i.e., for 769 out of 845 trans-

erred players). 

In contrast, the crowd produced more accurate estimates on

verage for players with high transfer fees, such as superstars

ike David Luiz and Edinson Cavani, who were both bought by

aris Saint-Germain F.C. for fees of €49.5 million and €64.5 mil-

ion, respectively. ( Appendix C provides more detailed evaluation

esults.) 

. Discussion 

Overall, the results from the evaluation of our statistical model

onfirm the applicability of data analytics to estimating market

alue, as the estimated market values did not deviate consider-

bly from actual transfer fees. The average deviation was around

3.4 million, which is not much considering the high transfer

ees in today’s football. (The players’ transfer fees ranged from

10 0 0 to €101,0 0 0,0 0 0 in our sample, with a standard devia-

ion of €9414,575.) Still, it is difficult to draw conclusions from

 comparison with transfer fees alone, because they are concep-

ually different from market values. To have another benchmark,

e also compared our model estimates with Transfermarkt’s es-

imates of market value, which we found to be more closely re-

ated to actual transfer fees. However, the difference was relatively

mall, with an RMSE that was only 3.4 percent lower and not

tatistically significant, so our evaluation results do not necessar-

ly indicate that crowds are more accurate in estimating market

alue. 

In fact, we found that the model tends to provide more ac-

urate estimations for low- to medium-priced players, while the

rowd tends to be more accurate for high-priced players. Specif-

cally, the model produced more accurate market-value estimates

n average for the lower 90 percent of the transfers we con-

idered, even though the differences between crowd estimations

nd model estimations were often not large. However, especially

or the smaller share of expensive players, the model estimations

ere disproportionally inaccurate, which skewed the average so

he crowd was more accurate for the overall sample. There are at

east two possible explanations for this finding. First, the model

ay not be able to value expensive players, especially superstars,

ccurately because it may lack important intangible indicators (e.g.,

layers’ potential to boost ticket or jersey sales). While the crowd

an consider such factors, which can range widely from player

o player, the statistical model uses the same set of predefined

actors for all players. In other words, the crowd has more free-

om in selecting relevant information for player valuation, which

ay be an advantage when it comes to setting a value on a su-

erstar. Second, professional football clubs sometimes pay very

igh transfer fees for players, which may not reflect their “true”

alue, so the model has difficulty in estimating their prices. In that

ase, the crowd would be severely biased by these players’ tal-

nt and popularity, while the statistical model would allow to de-
 Data-driven estimation of market value in association football, 
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Fig. 2. Comparison of the model’s and the crowd’s estimates 

Notes: The x -axis is log-transformed and it represents the upper limits of transfer fees. The y -axis shows the difference in RMSE between the model and the crowd, calculated 

based on a comparison with transfer fees. The dotted line separates the lower 90% of all transfers from the higher 10% of all transfers. 
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ect disproportionate and unreasonable payments on the transfer

arket. 

Our findings have several implications for the practice of esti-

ating market value in professional football. We argued that data-

riven estimation of market value can overcome several limitations

hat are associated with crowd-based estimates of market value.

he use of data analytics is arguably more transparent and re-

roducible than crowd judgments are, as the estimated regression

oefficients directly quantify the impact of several variables on a

layer’s market value. Transparency about the relationships of mar-

et values with player characteristics, performance, and popularity

an help managers to make predictions about future market-value

evelopments that can be repeated at minimal cost and with a

igh level of reliability. Because data analytics is efficient, it may

ven allow players’ market values to be estimated on a match-

y-match basis, while the crowd can update market values only

nfrequently. Based on a comparison with actual transfer fees, we
Please cite this article as: O. Müller et al., Beyond crowd judgments:
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howed that formal models can provide accurate estimates of mar-

et value that do not deviate much from crowd-based estimates,

ven though the crowd’s estimates require considerably more time

nd effort. Theref ore, our st atistical result s can f orm the basis f or

uilding real-time information systems that estimate and predict

layers’ market values. In addition, our results may also be in-

eresting for operators of fantasy-football websites, where partic-

pants slip into the role of club managers and choose their team

osters by buying and selling players, as such games likewise use

erformance data to determine players’ value, yet in a much sim-

ler way. 

Furthermore, while crowdsourcing platforms like Transfermarkt 

roduce public numbers, data analytics allows football clubs to

valuate players internally, so they can provide a competitive ad-

antage to football clubs in transfer negotiations. In particular, data

nalytics can support clubs in player scouting, while the crowd of-

en has difficulty evaluating lesser-known players (e.g., from less
 Data-driven estimation of market value in association football, 
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Fig. 3. Distribution of transfer fees 

Note: The dotted line separates the lower 90% of all transfers from the higher 10% of all transfers. 
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popular leagues). Players who are largely unknown tend to receive

only a few votes from the crowd, which increases the risk of bi-

ased estimations. Formal models have the potential to identify tal-

ented young players early in their careers, when their value is still

unknown to the broader public. Against this background, our study

demonstrates the applicability of the “Moneyball” idea in associa-

tion football. 

To the best of our knowledge, this study is grounded in the

largest data set in terms of both coverage (five leagues, six years)

and level of detail (more than twenty indicators) that has been

used for research on estimating market value in professional foot-

ball. Accordingly, our study can also inform future research in the

field. In particular, we determined the significance of various in-

dicators of market value that have guided related work, by which

we proposed a multilevel model for estimating market value. How-

ever, although our model incorporated a large number of market-

value indicators, commercial providers of sports data capture more

than two hundreds metrics per player per game to which we did

not have access. Therefore, future research is challenged to test the

applicability of alternative model specifications and to determine

the significance of additional indicators of market value. For exam-

ple, it is likely that market values are a function of several other

variables at the league level (e.g., UEFA coefficients), at the club

level (e.g., team popularity), and at the individual level (e.g., ap-

pearances and performance on the national team or in the Cham-

pions League or Europa League), which we did not include in our

model. Moreover, future research could investigate the added value

of not only considering the volume of news shared on Reddit or

keywords used on Google as indicators of market value, but also
Please cite this article as: O. Müller et al., Beyond crowd judgments:

European Journal of Operational Research (2017), http://dx.doi.org/10.10
heir sentiment ( Pang & Lee, 2008 ). For example, research on the

pplicability of social-media data to predict politicians’ popularity

as shown that combining information on volume and sentiment

an enhance the accuracy of predictive models (see, e.g., Gayo-

vello, 2013 ). 

Against this background, our study has several limitations. First,

e could not confirm empirically the potential of data analyt-

cs in scouting young and/or unknown players. Because we used

ata from the five largest European leagues, most of the play-

rs in our sample were already well known to the public and

rowd. Therefore, future research should conduct similar analy-

es using minor-league data, which may be a challenge because

ess data are available for the minor leagues. Second, we argued

hat data analytics can make estimating changes in players’ mar-

et value possible on a match-by-match basis, while crowd es-

imations require much more time and effort. However, this po-

ential also remains to be empirically confirmed. Our model used

easonal data, so future research is challenged to conduct simi-

ar analyses with match-day data. Third, because of the unavail-

bility of other credible sources that provide historical estima-

ions of market value, we trained our model based on Transfer-

arkt’s estimates of market value–another reason why our eval-

ation results are difficult to interpret. Therefore, data analytics

hould not be viewed at this stage as an alternative but as a com-

lementary approach to crowd-based estimation. As our model in-

orporated human judgment, it can be considered a “model of

he judge” ( Baron, 2008 , pp. 366ff.)–that is, we used the subjec-

ive estimations by the Transfermarkt judges to train a statisti-

al model based on objective market-value indicators. To evalu-
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Fig. A.2. Development of market value across leagues 

Note: The figure displays estimations of market value at the end of the six playing 

seasons, as estimated on the Transfermarkt website. 

t  

s  
te the superiority of purely formal models over crowd estimates,

r vice versa, future research should develop time-series based

pproaches to data-driven estimation of market value that pre-

ict market values in the future based on their own past estima-

ions. 

. Conclusions 

Based on an analysis of a unique data set of 4217 players on

46 teams from the top five European leagues and a period of six

laying seasons, we demonstrated the value of using multilevel re-

ression models to estimate players’ market values. Comparing our

esults with crowd estimates shows that a data-driven approach to

stimating market value can overcome several of crowdsourcing’s

ractical limitations while producing comparatively accurate esti-

ates. Given the increasing availability of data about football play-

rs in the form of data sets from commercial data providers and

ser-generated content from the web, we expect that the football

ndustry will increasingly adopt data analytics to support player re-

ruitment and transfer negotiations. 
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ppendix A. Descriptive Overview of the European transfer 

arket 

We collected Transfermarkt’s estimations of market value at the

nd of the six seasons (as per June 30) for all players in our sam-

le. Fig. A.1 shows how the players’ market values changed dur-

ng the six-year period for the various playing positions, and Fig.

.2 shows how they changed during that time for the top five Eu-

opean leagues. For each of the five leagues, Fig. A.3 shows the
ig. A.1. Development of market value across positions 

ote: The figure displays estimations of market value at the end of the six playing 

easons, as estimated on the Transfermarkt website. 
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wo teams with the highest average player values across all sea-

ons. Across all leagues, the average player was worth €5.4 mil-

ion in 2009/10 and €6.0 million by 2014/15, an 11 percent increase

n only six years, which illustrates how important player valuation

as become in recent years. 

Market values have generally increased for all positions, but

he amount of the increase has differed considerably among them.

ith an average market value of €4.4 million across all seasons,

efenders had the lowest market values, while midfielders’ and

orwards’ average market values were €5.9 million and €7.2 mil-

ion, respectively. From 2009/10 to 2014/15, forwards’ market val-

es increased from €6.8 million to €7.6 million (11.8%), midfielders’

arket values increased from €5.7 million to €6.5 million (14.0%),

nd defenders’ market values increased from €4.4 million to €4.6

illion (4.5%). 

England’s Premier League had the highest average market value

n every season. In 2009/10, its average market value was €7.3 mil-

ion, and it increased to €8.5 million in 2014/15 (16.4%). The two

ost valuable teams were Chelsea F.C. (with an average player

alue of €19.3 million) and Manchester City (with an average

layer value of €18.8 million). Both of these teams were much less

aluable than the two top teams from Spain, FC Barcelona (with

n average player value of €29.4 million) and Real Madrid (with

n average player value of €26.4 million), even though players in

he Spanish league overall had considerably lower average market

alues (average of €6.8 million) across the six seasons. 

German Bundesliga players’ average market values increased

rom €4.3 million in 2009/10 to €5.8 million in 2014/15 (34.9%).

he two most valuable clubs were FC Bayern Munich (with an
 Data-driven estimation of market value in association football, 
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Fig. A.3. Teams with the highest average player market values 

Notes: The figure displays the average player values, not the total team values, at the end of the six playing seasons, as estimated on the Transfermarkt website. The two 

teams with the highest average player values are shown for each of the five leagues. 
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average player value of €17.8 million) and Borussia Dortmund

(with an average player value of €11.3 million). In contrast, Italy’s

Serie A players lost value, with average market values decreasing

from €5.5 million in 2009/10 to €5.0 million in 2014/15, so the Se-

rie A lost its place among the top three most valuable European

leagues to Germany. The two most valuable teams were Juventus

Turin (with an average player value of €12.6 million) and Inter Mi-

lan (with an average player value of €10.2 million). 

Finally, players’ market values in France’s Ligue 1 remained

largely stable over the six years under consideration, with an

average market value of €3.5 million in 2009/10 and €3.4 mil-

lion in 2014/15. The two most valuable teams were Paris Saint-

Germain F.C. (with an average player value of €12.0 million) and

Olympique de Marseille (with an average player value of €6.6

million). 

Appendix B. Distribution and correlation of dependent and 

independent variables 

As we used Transfermarkt’s estimates of market value to train

our model, we investigated the distributions of the players’ market

values. Fig. B.1 provides box plots that show how the market values

were distributed across seasons, leagues, and positions. The distri-

bution of the players’ market values was highly right-skewed, with

means that were above the medians for all seasons, leagues, and

positions, which indicates that our sample contained a few players

with exceptionally high market values, as well as a large number
Please cite this article as: O. Müller et al., Beyond crowd judgments:
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f players whose market values were below the average of around

5.6 million. 

We also investigated how the indicators of market value that

e used as independent variables in our regression model were

orrelated ( Table B.1 ). All correlations were below the critical

hreshold of 0.7; in addition, all variance inflation factors (VIF)

ere below 4, well below the critical threshold of 10, so multi-

ollinearity presented no problems. 

ppendix C. Evaluation results 

We used the sample of players who had transfer fees below €18

illion to investigate our model’s accuracy by evaluating how the

stimates of market value differed from actual transfer fees across

easons, positions, and leagues. Table C.1 shows the evaluation re-

ults. 

In the first four seasons, the crowd’s estimates were closer

o the actual transfer fees, especially in season 2012/13 (relative

ifference in RMSE of + 20.0%), but in 2013/14 and 2014/15, the

odel’s estimates were more accurate ( −13.2% and −3.1%, respec-

ively). While the model produced more accurate numbers for Ger-

any’s Bundesliga ( −6.4%) and England’s Premier League ( −5.2%),

he crowd provided more accurate estimates for Spain’s La Liga

 + 0.9%), France’s Ligue 1 ( + 2.1%), and Italy’s Serie A ( + 9.4%). Fi-

ally, the crowd’s estimates were closer to the actual transfer fees

or defenders ( + 4.6%) and forwards ( + 7.3%), while the model was

ore accurate for midfielders ( −8.4%). 
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Fig. B.1. Distribution of market value across seasons, leagues, and positions 

Notes: The figure displays box plots of market-value estimations at the end of the six playing seasons, as estimated on the Transfermarkt website. The y-axes are log- 

transformed. The whiskers (i.e., the lines at the bottom and top of each box) show the minimum and maximum values within 1.5 times the interquartile range; the bands 

in the boxes represent the 25th, 50th (median), and 75th percentiles. The dotted lines that cross the box plots show the mean market value. 

Table B.1 

Correlation matrix. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) 

(1) Age 1 

(2) Height 0.01 1 

(3) Minutes played 0.10 0.02 1 

(4) Goals 0.00 −0.01 0.37 1 

(5) Assists −0.02 −0.20 0.42 0.51 1 

(6) Passes 0.13 0.02 0.52 −0.03 0.20 1 

(7) Successful passes 0.01 −0.13 0.07 −0.12 0.01 0.49 1 

(8) Dribbles −0.22 −0.28 0.19 0.41 0.48 −0.02 −0.04 1 

(9) Successful dribbles 0.03 0.10 0.18 −0.09 −0.04 0.32 0.21 −0.06 1 

(10) Aerial duels 0.10 0.40 0.22 0.19 −0.04 0.06 −0.29 −0.09 0.07 1 

(11) Successful aerial duels 0.14 0.41 0.13 −0.21 −0.23 0.29 0.04 −0.34 0.19 0.25 1 

(12) Tackles −0.02 −0.05 0.33 −0.24 0.00 0.56 0.18 −0.02 0.22 0.00 0.24 1 

(13) Successful tackles 0.00 0.09 0.10 −0.12 −0.11 0.13 0.09 −0.15 0.04 0.00 0.22 0.10 1 

(14) Interceptions 0.07 0.12 0.33 −0.31 −0.16 0.53 0.17 −0.26 0.25 0.06 0.44 0.62 0.25 1 

(15) Clearances 0.13 0.39 0.23 −0.27 −0.29 0.28 0.08 −0.42 0.25 0.29 0.53 0.22 0.28 0.55 1 

(16) Fouls −0.02 0.10 0.26 0.10 0.05 0.21 −0.11 0.08 0.04 0.24 0.12 0.41 0.04 0.24 0.00 1 

(17) Yellow cards 0.11 0.03 0.58 0.09 0.15 0.38 0.05 0.01 0.12 0.13 0.17 0.40 0.09 0.37 0.19 0.49 1 

(18) Red cards 0.03 0.07 0.17 0.00 −0.01 0.11 0.00 −0.04 0.06 0.08 0.13 0.12 0.07 0.17 0.16 0.18 0.20 1 

(19) Wikipedia page views 0.02 −0.01 0.13 0.27 0.24 0.15 0.16 0.16 0.03 0.01 −0.06 −0.07 −0.01 −0.13 −0.09 −0.08 −0.02 −0.03 1 

(20) Google Trends search index −0.03 −0.02 0.03 0.10 0.08 0.04 0.08 0.04 −0.03 −0.03 −0.03 −0.03 0.04 −0.03 0.00 −0.04 −0.03 0.00 0.15 1 

(21) Reddit posts 0.09 −0.03 0.13 0.17 0.17 0.18 0.18 0.11 0.09 0.18 −0.02 −0.02 −0.10 −0.11 −0.02 −0.14 0.04 −0.02 0.33 0.04 1 

(22) YouTube videos 0.07 −0.06 0.14 0.21 0.20 0.15 0.12 0.15 0.03 0.08 −0.05 −0.05 −0.05 −0.08 −0.06 −0.09 0.08 0.00 0.26 0.08 0.63 1 
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Table C.1 

Model evaluation across seasons, positions, and leagues. 

RMSE RMSE Relative N 

Model’s estimates Crowd’s estimates difference 

Seasons 2009/10 34 4 4,749 3382,450 + 1.8% 101 

2010/11 3242,258 3217,317 + 0.8% 147 

2011/12 4006,372 3808,920 + 5.1% 120 

2012/13 3221,275 2635,404 + 20.0% 130 

2013/14 3101,502 3541,482 −13.2% 129 

2014/15 4241,699 4374,319 −3.1% 141 

Positions Defender 3723,296 3556,600 + 4.6% 240 

Midfielder 3175,083 3453,751 −8.4% 315 

Forward 3932,515 3653,805 + 7.3% 213 

Leagues Bundesliga 2743,188 2923,510 −6.4% 164 

La Liga 3642,176 3610,105 + 0.9% 102 

Ligue 1 3855,753 3775,886 + 2.1% 128 

Premier League 4113,338 4332,412 −5.2% 144 

Serie A 3532,511 3215,505 + 9.4% 230 

Notes: The table shows RMSEs for transfer fees below €18 million. A positive value 

for relative difference indicates superiority of crowd. N = 768. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G  

G  

 

G  

 

 

G  

 

H  

 

H  

 

 

 

H  

 

 

 

K  

 

K  

 

L  

 

L  

L  

 

L  

M  

M  

 

 

P  

P  

 

R  

R  

R  

 

 

S  

 

 

S  

S  

 

S
T  

T  

Z  

 

References 

Adler, M. (1985). Stardom and talent. The American Economic Review, 75 (1), 208–212 .

Alexa. (n.d.). How popular is transfermarkt.de? Retrieved March 14, 2017, from http:
//www.alexa.com/siteinfo/www.transfermarkt.de . 

Amir, E. , & Livne, G. (2005). Accounting, valuation and duration of football player
contracts. Journal of Business Finance & Accounting, 32 (3–4), 549–586 . 

Baron, J. (2008). Thinking and deciding (4th edition). New York, NY, USA: Cambridge
University Press . 

Bojanova, I. (2014). IT enhances football at World Cup 2014. IT Professional, 16 (4),

12–17 . 
Brandes, L. , & Franck, E. (2012). Social preferences or personal career concerns? Field

evidence on positive and negative reciprocity in the workplace. Journal of Eco-
nomic Psychology, 33 (5), 925–939 . 

Brandes, L. , Franck, E. , & Nüesch, S. (2008). Local heroes and superstars: an empiri-
cal analysis of star attraction in German soccer. Journal of Sports Economics, 9 (3),

266–286 . 

Brunswik, E. (1952). The conceptual framework of psychology . Chicago, IL, USA: The
University of Chicago Press . 

Bryson, A. , Frick, B. , & Simmons, R. (2012). The returns to scarce talent: footedness
and player remuneration in European soccer. Journal of Sports Economics, 14 (6),

606–628 . 
Carmichael, F. , & Thomas, D. (1993). Bargaining in the transfer market: theory and

evidence. Applied Economics, 25 (12), 1467–1476 . 

Carmichael, F. , Forrest, D. , & Simmons, R. (1999). The labour market in association
football: who gets transferred and for how much? Bulletin of Economic Research,

51 (2), 125–150 . 
Dawes, R. M. , Faust, D. , & Meehl, P. E. (1989). Clinical versus actuarial judgment.

Science, 243 (4899), 1668–1674 . 
Diebold, F. X. , & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of

Business & Economic Statistics, 13 (3), 253–263 . 

Dobson, S. , Gerrard, B. , & Howe, S. (20 0 0). The determination of transfer fees in
English nonleague football. Applied Economics, 32 (9), 1145–1152 . 

Evans, J. S. B. T. (2006). The heuristic-analytic theory of reasoning: extension and
evaluation. Psychonomic Bulletin & Review, 13 (3), 378–395 . 

Feess, E., Frick, B., & Muehlheusser, G. (2004). Legal restrictions on buyout fees: the-
ory and evidence from German soccer. IZA Discussion Paper No. 1180. Retrieved

March 14, 2017, from http://ssrn.com/abstract=562445 . 

Franck, E. , & Nüesch, S. (2011). The effect of wage dispersion on team outcome and
the way team outcome is produced. Applied Economics, 43 (23), 3037–3049 . 

Franck, E. , & Nüesch, S. (2012). Talent and/or popularity: what does it take to be a
superstar? Economic Inquiry, 50 (1), 202–216 . 

Frick, B. (2007). The football players’ labor market: empirical evidence from the ma-
jor European leagues. Scottish Journal of Political Economy, 54 (3), 422–446 . 

Frick, B. (2011). Performance, salaries, and contract length: empirical evidence from
German soccer. International Journal of Sport Finance, 6 (2), 87–118 . 

Fry, T. R. L. , Galanos, G. , & Posso, A. (2014). Let’s get Messi? Top-scorer productivity

in the European Champions League. Scottish Journal of Political Economy, 61 (3),
261–279 . 

Garcia-del-Barrio, P. , & Pujol, F. (2007). Hidden monopsony rents in winner-take-all
markets–Sport and economic contribution of Spanish soccer players. Managerial

and Decision Economics, 28 (1), 57–70 . 
Please cite this article as: O. Müller et al., Beyond crowd judgments:

European Journal of Operational Research (2017), http://dx.doi.org/10.10
ayo-Avello, D. (2013). A meta-analysis of state-of-the-art electoral prediction from
Twitter data. Social Science Computer Review, 31 (6), 649–679 . 

errard, B. , & Dobson, S. (20 0 0). Testing for monopoly rents in the market for play-
ing talent–Evidence from English professional football. Journal of Economic Stud-

ies, 27 (3), 142–164 . 
rove, W. M. , & Meehl, P. E. (1996). Comparative efficiency of informal (subjec-

tive, impressionistic) and formal (mechanical, algorithmic) prediction proce-
dures: the clinical-statistical controversy. Psychology, Public Policy, and Law, 2 (2),

293–323 . 

rove, W. M. , Zald, D. H. , Lebow, B. S. , Snitz, B. E. , & Nelson, C. (20 0 0). Clinical
versus mechanical prediction: a meta-analysis. Psychological Assessment, 12 (1),

19–30 . 
astie, T. , Tibshirani, R. , & Friedman, J. (2017). The elements of statistical learning:

data mining, inference, and prediction (2nd edition). New York, NY, USA: Springer .
e, M., Cachucho, R., & Knobbe, A. (2015). Football player’s performance and mar-

ket value. In Proceedings of the 2nd workshop of sports analytics, European Con-

ference on Machine Learning and Principles and Practice of Knowledge Discov-
ery in Databases (ECML PKDD) . Retrieved March 14, 2017, from https://dtai.cs.

kuleuven.be/events/MLSA15/papers/mlsa15 _ submission _ 8.pdf . 
erm, S. , Callsen-Bracker, H.-M. , & Kreis, H. (2014). When the crowd evaluates soc-

cer players’ market values: accuracy and evaluation attributes of an online com-
munity. Sport Management Review, 17 (4), 4 84–4 92 . 

Kaplan, T. (2010, July 8). When it comes to stats, soccer seldom counts . The New York

Times . Retrieved March 14, 2017, from https:// mobile.nytimes.com/ 2010/ 07/ 09/
sports/ soccer/ 09soccerstats.html . 

aufman, S. , Rosset, S. , & Perlich, C. (2011). Leakage in data mining: formulation,
detection, and avoidance. In Proceedings of the 17th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (pp. 556–563). San Diego, CA, USA . 
iefer, S. (2014). The impact of the Euro 2012 on popularity and market value of

football players. International Journal of Sport Finance, 9 (2), 95–110 . 

Lee, W. (1975). Experimental design and analysis . San Francisco, CA, USA: Freeman &
Co Ltd . 

ehmann, E. E. , & Schulze, G. G. (2008). What does it take to be a star? The role
of performance and the media for German soccer players. Applied Economics

Quarterly, 54 (1), 59–70 . 
ewis, M. (2004). Moneyball: the art of winning an unfair game . New York, NY, USA:

W. W. Norton & Company, Inc . 

orenz, J. , Rauhut, H. , Schweitzer, F. , & Helbing, D. (2011). How social influence can
undermine the wisdom of crowd effect. Proceedings of the National Academy of

Sciences of the United States of America, 108 (22), 9020–9025 . 
ucifora, C. , & Simmons, R. (2003). Superstar effects in sport: evidence from Italian

soccer. Journal of Sports Economics, 4 (1), 35–55 . 
edcalfe, S. (2008). English league transfer prices: is there a racial dimension? A

re-examination with new data. Applied Economics Letters, 15 (11), 865–867 . 

urtagh, J. (2015, August 20). Moneyball FC: how Midtjylland harnessed the
power of stats to set up Euro showdown with Southampton . Mirror. Re-

trieved March 14, 2017, from http://www.mirror.co.uk/sport/football/news/
moneyball- fc- how- midtjylland- harnessed- 6282271 . 

ang, B. , & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and
Trends in Information Retrieval, 2 (1–2), 1–90 . 

awlowski, T. , Breuer, C. , & Hovemann, A. (2010). Top clubs’ performance and the
competitive situation in European domestic football competitions. Journal of

Sports Economics, 11 (2), 186–202 . 

eilly, B. , & Witt, R. (1995). English league transfer prices: is there a racial dimen-
sion? Applied Economics Letters, 2 (7), 220–222 . 

osen, S. (1981). The economics of superstars. The American Economic Review, 71 (5),
845–858 . 

uijg, J., & van Ophem, H. (2014). Determinants of football transfers. Dis-
cussion Paper 2014/01, Department of Economics & Econometrics, Am-

sterdam School of Economics. Retrieved March 14, 2017, from http:

//ase.uva.nl/binaries/content/assets/subsites/amsterdam- school- of- economics/ 
research/uva- econometrics/dp- 2014/1401.pdf . 

AP. (2014, June 11). SAP and the German Football Association turn big data into
smart decisions to improve player performance at the World Cup in Brazil.

SAP News Center. Retrieved March 14, 2017, from http://www.news-sap.com/
sap- dfb- turn- big- data- smart- data- world- cup- brazil . 

peight, A. , & Thomas, D. (1997). Football league transfers: a comparison of negoti-

ated fees with arbitration settlements. Applied Economics Letters, 4 (1), 41–44 . 
teinberg, L. (2015, August 18). Changing the game: the rise of sports analytics . Forbes.

Retrieved March 14, 2017, from http://www.forbes.com/sites/leighsteinberg/
2015/08/18/changing- the- game- the- rise- of- sports- analytics/#1f21bfdc31b2 . 

urowiecki, J. (2005). The wisdom of crowds . New York, NY, USA: Random House . 
orgler, B. , & Schmidt, S. L. (2007). What shapes player performance in soccer? Em-

pirical findings from a panel analysis. Applied Economics, 39 (18), 2355–2369 . 

versky, A. , & Kahneman, D. (1974). Judgment under uncertainty: heuristics and bi-
ases. Science, 185 (4157), 1124–1131 . 

hu, F., Lakhani, K. R., Schmidt, S. L., & Herman, K. (2015). TSG Hoffenheim: football
in the age of analytics . Harvard Business School Case 616–010. Retrieved March

14, 2017, from http:// www.hbs.edu/ faculty/ Pages/ item.aspx?num=49569 . 
 Data-driven estimation of market value in association football, 

16/j.ejor.2017.05.005 

http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0001
http://www.alexa.com/siteinfo/www.transfermarkt.de
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0014
http://ssrn.com/abstract=562445
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0025
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0025
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0025
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0025
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0025
https://dtai.cs.kuleuven.be/events/MLSA15/papers/mlsa15_submission_8.pdf
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0027
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0027
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0027
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0027
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0027
https://mobile.nytimes.com/2010/07/09/sports/soccer/09soccerstats.html
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0029
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0029
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0029
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0029
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0029
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0030
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0030
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0031
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0031
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0930
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0930
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0930
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0930
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0032
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0032
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0034
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0034
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0034
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0034
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0035
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0035
http://www.mirror.co.uk/sport/football/news/moneyball-fc-how-midtjylland-harnessed-6282271
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0036
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0036
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0036
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0036
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0037
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0037
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0037
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0037
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0037
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0038
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0038
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0038
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0038
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0039
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0039
http://ase.uva.nl/binaries/content/assets/subsites/amsterdam-school-of-economics/research/uva-econometrics/dp-2014/1401.pdf
http://www.news-sap.com/sap-dfb-turn-big-data-smart-data-world-cup-brazil
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0040
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0040
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0040
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0040
http://www.forbes.com/sites/leighsteinberg/2015/08/18/changing-the-game-the-rise-of-sports-analytics/#1f21bfdc31b2
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0042
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0042
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0043
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0043
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0043
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0043
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0044
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0044
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0044
http://refhub.elsevier.com/S0377-2217(17)30433-2/sbref0044
http://www.hbs.edu/faculty/Pages/item.aspx?num=49569
http://dx.doi.org/10.1016/j.ejor.2017.05.005

	Beyond crowd judgments: Data-driven estimation of market value in association football
	1 Introduction
	2 Background
	2.1 Market values in professional football
	2.2 Crowd-based estimation of market value
	2.3 Data-driven estimation of market value

	3 Indicators of market value
	3.1 Overview
	3.2 Player characteristics
	3.3 Player performance
	3.4 Player popularity

	4 Data collection and description
	5 Results
	5.1 Model specification
	5.2 Regression results
	5.3 Model evaluation

	6 Discussion
	7 Conclusions
	 Acknowledgments
	Appendix A Descriptive Overview of the European transfer market
	Appendix B Distribution and correlation of dependent and independent variables
	Appendix C Evaluation results
	 References


