
Automating the Incremental Evolution of

Controllers for Physical Robots

Andrés Faíña, Lars Toft Jacobsen, Sebastian Risi

IT University of Copenhagen

Copenhagen, Denmark

anfv@itu.dk, latj@itu.dk, sebr@itu.dk

Abstract

Evolutionary robotics is challenged with some key issues that must be solved,

or at least mitigated extensively, before it can fulfill some of its promises to deliver

highly autonomous and adaptive robots. The reality gap and the ability to trans-

fer phenotypes from simulation to reality is one such problem. Another lies in the

embodiment of the evolutionary processes which links to the first, but focuses on

how evolution can act on real agents and occur independent from simulation i.e.

going from being “the evolution of things, rather than just the evolution of digital

objects...”[9]. The work presented here investigates how fully autonomous evolu-

tion of robot controllers can be realized in hardware using an industrial robot and a

marker-based computer vision system. In particular, this paper presents an approach

to automate the reconfiguration of the test environment and shows that it is possi-

ble, for the first time, to incrementally evolve a neural robot controller for different

obstacle avoidance task with no human intervention. Importantly, the system offers

1

2

a high level of robustness and precision that could potentially open up the range of

problems amendable to embodied evolution.

1 Introduction

In evolutionary robotics (ER; [3, 33]), robot morphologies and control policies are opti-

mized through artificial evolution. Such evolutionary optimizations are often performed

inside a computer using simulations, which allows the fast evolution of large populations

over many generations; only the best evolved individuals are then replicated in the phys-

ical world [10, 26]. Alternatively optimization can be performed in a real-world physical

substrate by evaluating the performance of an actual physical robot in its environment.

While artificial evolution in the physical world is much more time consuming than its

simulation-based counterpart, it has some immediate benefits.

One major issues with simulation-based optimization is the aptly named reality gap [21].

It remains an open question in evolutionary robotics how to effectively address the prob-

lem that reality is notoriously difficult to model in simulations. Inaccurate models of the

environment and the robot can lead to controllers or morphologies that under-performs

in reality, even though they appeared promising in simulation. Effectively, evolution can

and will exploit features of the simulation that will either be different or not be present

in reality.

While running evolution solely on a physical robot does effectively circumvent the re-

ality gap problem [17, 18, 39, 43, 44], it does present a number of challenges that

go beyond the slower evolutionary speed. While it is straightforward in a simulator to

reset a simulated robot back to its starting position or to test its performance in differ-

ent environments, how to automate this process in the physical world is less clear. Many

3

evolutionary experiments in the physical world still require significant support by human

experimenters, such as (1) moving robots by hand to a particular position for evaluation

[6, 17], (2) keeping track of objects in the environment to calculate fitness [17], or (3)

manually re-configuring the environment. These limitations have significantly restricted

the type of behaviors that can be evolved on physical robots.

To further increase automation and to open up the scope of problems amendable to em-

bodied evolution, this paper presents a reality-based evolutionary system in which an

industrial robot arm is able to automatically reconfigure and setup the training environ-

ment (including placing obstacles and moving the robot back to its starting position) for

an obstacle avoidance and navigation task. The system uses computer vision to control

the robot arm, manage the test environment and provide measurements used in fitness

calculations during the evaluation of a controller phenotype. Furthermore, the system

can perform completely autonomous reality-based optimization of a control policy for

a robot: (1) it governs the evolution of the robot’s neural network controller and sets

up the environment for each evaluation and (2) it performs fitness calculations and ad-

vances to the next generation after completing the evaluation of the entire population.

Additionally features built into the system include a complex environment building al-

gorithm, to allow fast and robust operation. A series of experiments was conducted in

order to evaluate the system in terms of robustness, precision, features and ability to

autonomously evolve well-performing control policies.

With this new setup in place it is now possible to run more complex evolutionary exper-

iments, such as incremental evolution [15], autonomously in the physical world. While

incremental evolution has shown to facilitate the evolution of controllers for simulated

[15, 29, 30] and real robots [16], the challenge to automatically reconfigure the domain

environment in the physical world has so far hindered the adoption of such an approach

4

for more complex tasks. Because of this limitation, controllers are often evolved incre-

mentally in simulation and only afterwards transfered and fine-tuned in the real world

[11]. In this paper we show that the developed system is able to fully autonomously

perform incremental evolution of increasingly complex obstacle avoidance tasks. Addi-

tionally, it is able to reconfigure the environments with a high degree of precision and

fault tolerance. The hope is that in the future this system could become an additional

tool to explore the evolution of autonomous robots directly in the physical world. In or-

der to accelerate this process, the code and setup to run the experiments described here

are available at: https://bitbucket.org/afaina/embodiedevolution.

The paper begins in the next section by reviewing related prior work in evolutionary

robotics with an emphasis on embodied evolution (Section 2). Section 3 then details

the hardware design of the approach in this paper, followed by the software components

(Section 4). The experimental setup used to validate the system is explained in Section 5,

followed by the results in Section 6. The paper concludes with discussion and future work

(Section 7).

2 Background

In evolutionary robotics [3, 33], evolutionary algorithms, a class of population-based

metaheuristics, are used to optimize the control policy and/or morphology of an au-

tonomous robot. This is contrary to mainstream robotics where most aspects of the

robot are designed from domain knowledge and machine-learning algorithms are used

to optimize the running system. While mainstream design and optimization techniques

can make a robot perform a task fast and with a certain amount of reliability, it does

not say anything about if a different kind of robot actually would be more suited for the

https://bitbucket.org/afaina/embodiedevolution

5

given application. Evolution on the other hand is not biased when it comes to design

choices or particular approaches (unless we introduce this bias), it simply rewards the

best performers given an appropriate fitness function. Since biological evolution is the

only force known to have created fully autonomous and adaptive systems, this holds

great promises for robotics. Generally speaking the benefits of evolving some or all as-

pects of robots using population-based metaheuristics are, that few assumptions needs

to be made about the problem but it also comes with costs. The developmental process

offers no guarantee as to if or when an optimal morphology or controller is found and

often a large number of evaluations is required before the results become useful [3].

2.1 Neuroevolution

Artificial neural networks (ANNs) have long been the favored approach when modeling

control policies [12, 33, 42]. This is mainly because of its roots in machine learning

where ANNs are used in decision making process and become increasingly proficient at a

task through learning strategies. Evolutionary robotics also embraces neural networks for

robot controllers. But instead of engineering networks and employing machine learning

techniques, like backpropagation, to optimize the network, neural networks are evolved

artificially. This approach has been driving research in neuroevolution, because it calls for

rather rich and complex representations schemes in part due to the very large potential

state space of neural networks. Among some of the more prominent work is Stanley

et al.’s NeuroEvolution of Augmenting Topologies or NEAT [41]. NEAT provides genetic

encoding of networks in a linear fashion where markers make it possible to line up

evolved features from two genomes during crossover - even after many generations. In

combination with speciation, NEAT provides good protection of innovation, that could

otherwise be lost in previously suggested representations. A differentiating feature of

6

NEAT to earlier methods, which often optimized ANNs with fixed topologies [33], is that

it evolves connection weights and structure at the same time. NEAT can both add hidden

nodes and connections and thus explore a large solution space.

2.2 The Reality Gap

A computer simulation has the advantage that large populations can be evaluated over

many generations in a short amount of time. This advantage is what sparked research

in evolutionary algorithms in the first place. It is also the reason that simulation is a

common starting point in evolutionary robotics – the cost of building and optimizing

robots in the real world is high.

However, because both the simulated agent and the environment it interacts with are

only abstract models of the physical world, transferring controllers evolved in a simulator

onto physical robots has its challenges. If the model is inaccurate this can lead to highly

unexpected behavior in the real robot, even though the control policy or other aspect

worked well in simulation. Essentially, evolution will exploit attributes of the simulator

that are different from or not present at all in reality. This discrepancy between what’s

is optimized in simulation and how it actually performs in reality is referred to as the

reality gap.

For example, because of idiosyncrasies in robot sensors, they often correspond slightly

different when exposed to the same stimulus. To alleviate this issue when transferring

controllers to the real world, Miglino et al. [27], sampled robot sensors empirically and

used those results in a simulator to set the activation levels for the simulated sensors.

Controllers evolved through this approach work reasonable well when transferred to the

real world [31, 32], but it is difficult to scale the approach to more complex environ-

ments. Other such as Jakobi et al. [21] further point out the importance of taking great

7

care in modeling the simulator in simulation-based optimization. Not only should the

simulator model be based on large quantities of empirical data [27], but noise must also

be introduced since transducers in reality are noisy. Because simulation is so appealing,

a lot of work has gone into improving the accuracy of simulation-based optimization

in attempt to further close the reality gap. Jakobi [20] also introduced the concept of

minimal simulations as a way to circumvent the reality gap. In this approach only the

characteristics of the interaction between robot and environment are modeled that are

critical for the emergence of a desired behavior. Others such as Lehman et al. [25] have

shown that a more robust transfer to the real world can also be achieved by encouraging

machines to be more reactive to their environmental inputs.

A different approach was introduced by Koos et al. [23], called the transferability ap-

proach, that takes the perspective of how well a solution transfers from simulation to

reality. So this becomes a multi-objective approach where simulators are optimized in

parallel with the actual robot. The fitness of the simulators is derived from their abil-

ity to transfer to reality and this measure in turn comes from evaluating the simulated

controller in a real robot. More recently and building on this work, the authors showed

that an intelligent trial and error algorithm allows physical robots to quickly adjust to

damage by creating a map of promising behaviors in a simulation beforehand [8].

Even with improved methods to perform simulation-based optimization, the reality gap

remains a critical issue. Reality-based optimization will either directly be a part of the

process, or as a minimum, the last step for any experiment that ultimately wants to

produce a real robot.

8

2.3 Evolution of Physical Machines

In its most strict definition [9], embodied artificial evolution requires the embodiment of

self-sustained evolution. That is the controller or the morphology is evolved in-place, in

a running system using resources available to the robot as part of its construction or in

the environment. This is definitely hard to achieve, but more modest approaches that

involves controller evolution in real robots and automation i.e. by using other robots has

proven quite successful as well.

This kind of embodiment, and relating to this project, is also shown in the work of Wat-

son et al. [43], Heinerman et al. [17], Prieto et al. [35], and Bredeche et al. [5], where

controllers are evolved and optimized in groups of real robots. The use of multiple robots

allows parallel evaluation and reproduction among the robots, which speeds up the opti-

mization process and allows the robots to evolve their behavior in the task environment.

Because multiple real robots are involved, the approach also offers the opportunity to

study the evolution of collective behaviors in the real world. Bredeche et al. [4] and

Montanier and Bredeche [28] also showed that robot controllers can be evolved on-line

and on-board of single robots. In their setup each robot maintains a population of con-

trollers inside itself, which are evaluated sequentially. However, none of aforementioned

works include the automatic reconfiguration of the domain environment and often still

require human intervention.

Early and foundational work in evolutionary robotics in the real world was performed by

Nolfi, Floreano and colleagues, for which their seminal textbook gives a good overview

[33]. One of their most complex experiments carried out entirely in the physical world

was the evolution of a robot that performs homing navigation [14]. The experiment

took ten days and required the authors to introduce obstacles manually. In more recent

9

work, Floreano and Keller [13] performed reality-based optimization using one or more

robots in different environments. In this case they environments presented different tasks

and hence different controllers. Again, the environments were static for the purpose of

accomplishing a specific task.

Moving towards more automated approaches, Brodbeck et al. [6] recently presented a

system that allows the automated manufacturing of physical robots. In their setup the

phenotypes of evolved morphologies are created by an industrial robot. The genome is

a set of instructions on how to join a set of only two components – a passive and an

active element. The goal is to evolve speed of locomotion. The entire process is not fully

autonomous though; after the creation of a phenotype it must be manually moved to

the testing area and the task is performed on different surfaces. Likewise the phenotype

must be disassembled and the elements returned to the building area. The interesting

part is the model-free phenotype development that Brodbeck et al. apply. It makes it

possible to evolve morphologies, albeit constrained, that can be built autonomously by

another robot. So this an important step towards autonomous and adaptive systems.

There is a clear incentive to move forward in investigating automation and embodi-

ment. Although simulation for all practical purposes cannot be disregarded, autonomous

reality-based optimization could prove useful in cases where transferability is very low

or simply to completely overcome simulate-and-transfer issues. In this paper we aim to

further increase automation in embodied evolutionary systems, by allowing them to also

reconfigure the robot’s training environment, which is explained next.

10

3 Experimental Design

Since evolutionary robotics often is applied in evolving only the controller for a specific

platform to perform a certain task, or to make an inquiry into certain evolved behav-

iors, it makes sense to ask how automation and/or complete experiment autonomy can

be achieved. In particular if it can improve on previous work by establishing an entire

optimization ecosystem that contains not just a standardized robotic platform but also

encapsulates automation of the most dominant tasks involved. This could be used to cre-

ate environmental variations or reconfigurations; aid in collecting transferability metrics

and speed up the evaluation process in long-running experiments by leaving out the need

for human intervention to set up the physical test environment prior to each evaluation.

Other positive side-effects of letting a robot conduct the tedious set-up tasks involved in

reality-based optimization, can be greater precision and accuracy.

To investigate how automation can be applied to reality-based optimization, a test bed

for conducting such experiments was developed. This is a complete setup that allows

an industrial robot to be used in conjunction with a small evaluation environment and

the necessary hardware and software infrastructure to conduct automated evolution and

evaluation.

The experimental test bed (Figure 1) is based on an industrial robot (UR5), an environ-

ment or arena, in which the optimization of a controller for a small robot is performed

and a computer vision system. The entire arena is well within the reach of the industrial

robot. To track objects, a computer vision system is in place overseeing the primary work

area of the UR5.

11

Figure 1: The main working area of the system including the UR5 robot, the evaluation

environment (arena) to contain robot(s) and objects and the computer vision camera.

3.1 Control Robot

The Universal Robots UR5 industrial robot arm has six independent joints, a spherical

workspace that extends 850mm from the base joint, and can carry a payload of up to

5kg [37]. These attributes naturally poses some restrictions on the design of the experi-

ments in general and on the evaluation area in particular.

The UR5 comes with a control module that powers and controls the six joints. It fea-

tures real-time control software that abstracts away the low-level hardware interfaces

and exposes a high-level interface to movement commands and telemetry. The robot can

be controlled or programmed directly from a pendant terminal or programmed and con-

12

trolled via common communication interfaces like Ethernet and the industry standard

MODBUS.

Communication between the UR5 and the main application is based on the TCP/IP socket

interface over Ethernet because it provides a robust and ubiquitous physical connection

and because it provides access to a rich API that can be programmed using the proprietary

URScript [36] programming language. URScript is a Python-like language that includes

a number of modules that encapsulates different functionalities of the UR5: motion,

math, internals (telemetry) and interfaces (GPIO, tool, etc.).

In the presented setup, the UR5 performs pick-and-place like operations, e.g. move to an

object, pick it up, move to new location in the arena and place the object back on the

floor.

3.2 Robot End Effector

The robot arm end effector, or tool, needs to be compatible with the objects it manipu-

lates. Many industrial effectors are grippers that can hold on to objects of varying width

or, to some degree, shape. Thus, grippers are great universal tools albeit expensive and

complex. Instead of using a generic gripper this system employs a custom designed mag-

netic end effector with matching “mating” shapes to be placed on top of objects and

robots used in the environment.

The end effector that attaches to the UR5 is very simple by design and has no moving

mechanical parts. It connects with a matching shape that includes a ferro-metallic disc

in its center. Both can be seen in Figure 2. The use of a special object to match the tool

is a choice to reduce complexity and improve robustness. This separate component must

be duplicated and attached to the top of every object that is added to the environment.

13

When the effector and object are aligned, the effector can be lowered onto the object

and the disc will mate with an electro-permanent magnet in the center of the effector.

By using an electro-permanent magnet, the actuator needs only to be energized when

releasing an object unlike a traditional electromagnet that must be energized in order

to create the magnetic field. This increases safety, primarily for a robot being picked

up, since it will not get dropped in case of power or interface failure. The magnet is

controlled via the UR5 I/O interface which can sink the nominal current of the electro-

magnet, 0.25A at 24V, directly.

The electromagnet has a holding force of 45N and the end effector has been tested with

a payload of 2.5 kg. This payload is the recommended maximum and will be stable even

at an angle and under vibrations. The end effector weighs 111.0 g and thus leaves ample

space up to the UR5 maximum payload of 5.0 kg.

The center of the tool’s contact point is denoted tool center point or TCP. In this case the

TCP lies on the center of the connecting surface of the electromagnet. It is important to

know the exact location of the TCP relative to the center of the tool mounting flange on

the UR5. The robot controller will then maintain a transformation matrix that ensures

correct positioning according to the TCP configuration.

Tolerances in the end effector and matching shape design allows for both lateral and

angular misalignment. Tapered edges at an angle of 45 degrees on both components

will center the object being picked up as it closes the gap between the electromagnet

and the metal disc. Since the UR5 will lower the tool directly from above onto a given

object, the amount of allowable misalignment depends on the frictional forces between

the object and the surface. A light object with little friction between the bottom and

surface will easily be centered by the tool forcing it towards its center. In this case the

lateral misalignment can be quite large; up to 10 mm. A heavy object or an object with a

14

Figure 2: Robot end effector/tool and connecting object. Top row: CAD renderings of

the gripping component attached to the UR5 including the electromagnet in the middle

(left) and the matching connector object (right). Bottom row: prototype 3D prints of the

same components.

high-friction material in contact with the arena surface cannot be pushed as easily by the

tool however. The worst case allows for approximately 1-2 mm of lateral misalignment.

3.3 Arena

The scope of the experiments in this paper is limited to evolving simple behavioral con-

trollers for a small robot working in a confined area due to the limited reach of the UR5.

The arena measures only 100 cm × 50 cm and is placed directly on the UR5 rig, approx-

15

Figure 3: Arena top-view. The arena is measuring 1m × 0.5m. The UR5 base is located

in the top center right outside the image frame.

imately aligned with the robot base x and y axis. Although its small size makes it easy

for the UR5 to pick up objects in the entire area, it severely limits the size of the robot

and likewise the size of the objects that, for all practical purposes, can be used in the

reality-based optimization experiments. As a proof-of-concept however, it will suffice for

showing that simple task optimizations can be conducted autonomously in a system like

this and hopefully illustrate the promise for this approach.

The arena can be seen in Figure 1 and 3. It has walls on each side to keep the robot and

environmental objects from falling or being pushed outside the arena during evaluations.

Each corner has fiducial maker to aid the computer vision system. Presently the arena

is rectangular, however it could be arbitrarily shaped, as long as the TCP can cover the

entire area. The maximum area could be achieved by laying out the arena as a circle band

around the UR5 base using minimum and maximum operating radius recommendations.

16

4 Software Architecture

The system application, programmed in Python, contains two major sub-systems that

handles computer vision processing and UR5 control respectively. A task model encapsu-

lates the jobs the system can perform and therefore also governs the artificial evolution

if that is part of a job. All modules exposes an interface tailored for easy task generation

and specific to the capabilities of the system.

Computer vision runs in an independent thread and occupies its own module responsible

for image acquisition and processing. It also manages object data used to locate things

in the environment and features calibration routines to ensure high-precision and easy

setup.

Robot control is managed in the UR5 module. Here, the system specific functionality is

implemented in terms of how the UR5 robot can interact with the environment.

4.1 Operational Design

As mentioned the UR5 tool is designed to grip some special objects only. These objects

can in turn be placed onto more unwieldy objects and the combination objects can then

be physically managed by the UR5 in terms of their placement in the arena. This can

either be a robot with a connector on the top or an environmental building block. Even

using simple, identical connectors for all objects, the system must still be able to accu-

rately locate them and align the end effector with the connectors whenever an object

needs to be moved. To minimize requirements for the positioning system, all objects in

the environment are assumed to be of same height and thus located in the same plane.

With all the objects having the same height, the positioning only needs to be expressed

17

in two dimensions. Furthermore the UR5 movements can be constrained to a few planes

above the arena, while the orientation of the tool remains more or less fixed. This type

of robot control is very similar to that of pick-and-place operations.

4.2 Computer Vision (CV) System

Object positioning is key to controlling the UR5 and to track a robot during evaluation.

It goes without saying that positioning must be computerized to obtain the necessary

performance and autonomy. A wealth of location technologies exists[24] but the field

narrows down quickly considering the application domain and the constraints imposed

from using an industrial robot.

The UR5 has limited range and thus limits the size of the environment considerably. The

system must be able to accurately position and orient the end effector in order to pick up

objects and reposition them inside the arena. Furthermore, since the connection point of

all objects will exist in the same plane, we need only to obtain spatial information in that

plane. To this end fixed-camera computer vision is ideal. The environment is stationary

and can easily be captured within a single image. Vision based location can also ex-

tract the necessary spatial features such as position and orientation given the identifiable

objects provide enough visual clues. Other approaches would require extensive instru-

mentation of the environment or not provide adequate accuracy or feature extraction

capabilities, albeit some could provide richer spatial data that would otherwise require

more than one camera. The choice is supported by computer vision being a proven tech-

nology in industrial pick-and-place automation - essentially what the industrial robot will

be doing in this project.

The next problem is solving object identification and feature extraction. The computer

vision (CV) system must be able to take a picture of the environment, identify movable

18

Figure 4: reacTIVision fiducials. An example of three small markers.

objects and extract the necessary spatial features to allow for accurate positioning of the

TCP to perform pick-and-place operations. These requirements, combined with robust

object discrimination, are typically achieved using a marker system[22] using fiducial

markers that applies a special geometry tailored for CV approaches. The marker system

thus consists of a set of patterns and an algorithm to identify them in an image and

extract features that can yield additional spatial information.

4.2.1 Fiducial Tracking

Although devised for multitouch-surface applications, the fiducial tracking used in the

reacTIVision system by Kaltenbrunner et al. [2] is a good match for this experimental

setup. The fiducial makers have individual id’s and their location and orientation can be

obtained from the marker geometry. It is of course designed for strictly two-dimensional

positioning but this complies with the design decision to keep all objects, or at least their

identifiable parts, in one plane and detectable by one camera alone.

The reacTIVision system (fiducial examples shown in Figure 4) uses topology based iden-

tification. This is an approach to marker detection and identification, where a region

adjacency graph is computed from a thresholded image. Each marker produces a unique

left heavy depth sequence1. By searching the entire adjacency graph for matching sub-

1Uniqueness is guaranteed only within the set of generated fiducials. But because this was made for an
image containing little other features than the markers, the likelihood of getting false-positives is very low.
Topological complexity, which results in adequately large subtrees, also increases robustness. However,
there are some checks to validate the detected markers: they should have some maximum and minimum
dimensions and their leaf nodes should be placed inside the external contour of the marker. With these
checks, we avoid false positives.

19

trees, markers can be detected and identified in a single operation. This makes topology

based identification quite fast but also limited in terms of data encoding and very sensi-

tive to occlusion.

After marker detection, the location can be obtained as the average centroid (black and

white leaves). An orientation vector can be computed using the average centroid and

the average centroid of the black leaves.

These features position the reacTIVision system somewhere between simple color mark-

ers or similar and marker systems i.e. for augmented reality that carries more information

and can be used for camera pose estimation. This is ideal for our purpose because it fits

the current operational design.

4.2.2 CV implementation

For tighter integration with the other system components, the reacTIVision fiducial track-

ing has been re-implemented using OpenCV [19] in this project. The original implemen-

tation does not expose a programming interface but instead provides a socket interface

that can send marker data to a server. A new implementation in OpenCV provides the

possibility to expose programming interfaces in multiple languages. Because the com-

mon denominator for this project has been Python, the OpenCV Python API is the one

being used.

The implementation is very faithful to the original [2] and provides identical behavior.

Processing a single frame is composed into the following steps (Figure 5): (1) Image pre-

processing. The image is undistorted and converted to grayscale; (2) Thresholding. A

binary image is produced using an adaptive thresholding with a and an erosion followed

by a dilation to remove the noise; (3) Segmentation. The region adjacency graph is

computed; and (4) Recognition. By searching the adjacency graph for specific subtrees,

20

Figure 5: CV image processing. a) The raw image, b) the undistorted image, c) undis-

torted image after thresholding and d) fiducials has been identified and their ID, location

and orientation (green line) has been overlayed on the thresholding image.

fiducials can be recognized and their location and orientation computed.

Images are captured using a regular HD webcam in 1280×720 pixels. This resolution is

found somewhat empirically as striking a balance between performance, precision and

recognition robustness. Higher resolutions becomes slower to process but will provide

locations with higher precision. Lower resolutions may not capture enough details to

make out all the distinct areas in each marker.

This computer vision system is immune to sudden light changes as the camera automati-

cally controls the white balance and the gain, and it works with natural light or artificial

light. The only problem arises with light reflections caused by direct sunlight or strong

lamps directly pointed towards the arena, but these situations can be easily avoided.

4.2.3 Vision Calibration and Transformation

The system operates on several coordinate systems, with the two most important being

the vision coordinate system or pixel-coordinates and the UR5 base coordinate system.

21

Figure 6: Camera and UR5 base coordinate systems. The Cx and Cy axis represents the

camera perspective and the Bx, By and Bz axis is the coordinate system relative to the

UR5 base.

The UR5 base coordinate system has its origo in the center of the robot base. This makes

it a good reference for locating objects relative to the robot’s position especially since the

arena is bolted to the robot platform. The base x-axis is parallel to the base and cuts

down the middle of the arena. The y-axis also parallel to the base and nearly parallel to

the long sides of the arena. The z-axis runs perpendicular to the base. See Figure 6 for

an illustration.

The vision system operates solely on pixels, so an homography transformation is used

to turn pixel-coordinates into base coordinates that can be used to direct the UR5. The

transformation matrix is obtained during a calibration procedure where the robot arm

is placed on all four corner markers of the arena, and the four points reported through

telemetry are stored. The vision system then grabs a frame and locates all four corner

markers in the image. With the two sets of points from each coordinate system a transfor-

mation matrix can now be calculated by calling the findhomography function in openCV.

The transformation matrix can now easily be stored for later use or recalculated using

22

only the image; the camera is the only thing not attached to the rest of the structure and

hence more susceptible to shift around, while the corner markers are practically fixed

in their position relative to the base. In fact, the system recalculates the transformation

matrix every generation to compensate the small displacements of the arena caused by

the accelerations/decelerations of the UR5.

At run-time the transformation matrix is passed to marker objects that initially only exists

in pixel-space. When the real-world coordinates are requested they can be calculated as

the dot product of the transformation matrix and the position vector.

4.3 Automation Control

Besides the CV implementation, the bulk of the software that makes up the system in

concerned with orchestrating the UR5 movements based on information provided by the

vision module. The UR5 module uses the urx Python library [38], that wraps all the

URScript commands and handles socket communication over TCP/IP. The urx module

will format and send commands to the robot but it also provides a telemetry parser for

real-time feedback.

By having a low-level command module in place, the UR5 system module becomes an

interface for composite commands that describe high-level operations the robot must

be able to perform in order to complete certain tasks. As it turns out, only a small set

of atomic operations is needed to build all other operations per the operational design

described in 4.1:

1. Home. Positions the robot arm in a fixed, known pose. This can be used to ensure

it does not interfere with the camera, but also provides a good starting point for

pose transformations.

23

2. Move to coordinates. Moves the TCP to a coordinate and sets the orientation vector

so that it points directly downwards and ready to pick up an object.

3. Pick up object. From its current pose, the TCP will be lowered to connect with an

object and return to its starting pose again. The robot uses its ability to detect the

exerted force to automatically stop.

4. Place object. Identical to the pick-up operation, but once lowered the electroper-

manent magnet will be energized and release the payload before returning to its

starting pose.

The last three operations are then composed into a single pick-and-place operation, a

function that moves the TCP to an object, picks it up, moves to a target location and

places it again. Organizing the objects in the arena is simply a sequence of pick-and-place

operations. However, performing any given sequence in a reliable and robust manner is

not a simple task.

4.4 Building Environments

Despite the somewhat simple setup and agreed limitations on how environments can

be designed within the arena, plenty of things can still go wrong. Automating reality-

based optimization would not be very useful if it required constant oversight and regular

intervention to recover from fail conditions. To make the automation as robust and

reliable as possible, the sequencing of pick-and-place operations has been encapsulated

by a build function.

Build accepts a list of marker objects and a list of desired positions for the markers as

arguments. The marker objects represents identified fiducials and holds their id, location

and orientation - the latter two for both camera and UR5 base coordinates. The desired

24

Figure 7: Environment building algorithm. The full black or green numbered circles are

current positions and the grey dashed circles are the desired target for that object. The

steps 1-6 depicts how the movement sequence is generated by first moving objects that

has no positional conflicts, then move the objects that has conflicts that were resolved

after the first step and finally resolve the more complex conflicts.

positions are UR5 base coordinates only and may or may not include a desired orienta-

tion. As an optimization feature, relaxation parameters for both location and orientation

can be passed as arguments. The relaxation parameters are thresholds and should a

marker already be at its desired position within these thresholds, there is no need to

perform a physical pick-and-place operation 2.

When called, build, will use a custom algorithm to generate a pick-and-place sequence

that is conflict-free. Because objects may be shuffled around the arena by a small robot

or by hand when placing them the first time, their initial position can potentially conflict

with the desired target position of another object. This means that the sequence ordering

is important, to avoid an attempt to place and object on top of another. The algorithm

that governs the sequence ordering works like this:

2The occurrence of objects that either haven’t moved at all or only shifted ever so slightly after an
evaluation is quite frequent. It could the evaluated robot itself that hasn’t moved or objects that hasn’t
been touched.

25

1. All target positions are checked against all marker positions. A conflict is defined

as another object being within a predefined radius of the target for a given marker.

In this step a conflicts table will be built containing marker id’s associated with a

list of markers that are in conflict, i.e. positioned near the desired target.

2. If no conflicts were found in the first step, all objects can be moved in any order

and the sequence will just follow the list of markers provided as argument.

3. If the conflicts table is non-empty, conflict resolution begins. Initially all mark-

ers with a clear target (no conflicts) will be queued for immediate pick-and-place

(Figure 7.1). The conflicts table is then iteratively processed in an attempt to fur-

ther reduce the conflicting markers. The algorithm repeatedly add markers to the

queue whenever their conflict list is empty and removes them from the lists of oth-

ers (Figure 7.2). This approach solves most issues with objects standing in the

way of others. In an additional step the system checks for any circular conflicts or

dead-locks (e.g. object A is on B’s desired target and vice versa).

4. If a dead-lock has been detected a new operations queue is created. A vacant posi-

tion in the arena is established and this will become the target for an intermediary

move for the first marker still in conflict. Its originally desired target is deferred

and queued. This process continues until all dead-locks have been resolved by

intermediary moves to vacant positions (Figure 7.3-6).

5. Finally the sequence is executed using the pick-and-place function in the order

established by the operations queue. If the deferred moves queue is populated

from dead-lock resolution, this sequence will be executed immediately after.

Vacant positions are found using planar subdivision of the image using the fiducial cen-

ters as vertices. The plane is divided into non-overlapping triangle regions using De-

26

launay’s algorithm. All the regions within the four corner markers will then represent

unoccupied space, and given a large enough space an object can be placed within it. For

the simple objects described later in Section 5.2 it suffices to check if the largest inscribed

circle is larger than the diameter of the object.

5 Experimental Setup

The physical evolution system presented in this paper is evaluated on a simple naviga-

tion and obstacle avoidance task. These experiments test the ability of the system to

run an embodied evolutionary experiments that requires environmental reconfiguration,

in a completely automated fashion. This section first describes the mobile robot that

navigates the arena, followed by the objects that serve as the obstacles for the robot to

avoid.

The neuroevolution system is based on NEAT [41] using the MultiNEAT [7] implementa-

tion - a C++ NEAT/HyperNEAT library with Python bindings. The system is essentially

agnostic of the EA or neuroevolutionary implementation used, as long as at can be inter-

faced within the Python framework.

5.1 Mobile Robot

The evolving neural networks control a customized version of a Pololu Zumo 32U4

robot [34], a small tracked robot of 10×10 cm which makes it suitable for use in the

small arena. It features a number of on-board sensor such as a a 9DOF IMU (Accelerome-

ter, Gyro and Magnetometer), Line-following sensor (down-facing array of IR reflectance

sensors), side and front IR proximity sensors, and Quadrature encoders on the motor

shafts.

27

Figure 8: The Zumo 32U4 robot. A small tracked robot c. 100x100 mm. It has encoders

on the motor shafts, and an array of sensors that includes proximity, reflectance (for line

following) and a 9-DoF IMU. The 360 degrees bumper is 3D printed for this project and

helps it avoid getting caught in walls or other objects. On the top plate, a red connector

is mounted which also houses a Bluetooth module for wireless communication.

An additional Bluetooth module is attached to the onboard microcontroller for wireless

control of the robot and access to sensor data. The module is an RN42-XV Bluetooth

module from Sparkfun[40] attached to an Adafruit Xbee adapter[1] for convenient pin

access and power management, including logic level conversion. The RN-42 module is

connected to the Zumo main-board via the UART and power headers exposed on the top

pin-header for an auxiliary display. The robot is battery powered and the system does not

support autonomous charging at the time being. Notice in Figure 8 that the fiducial is

offset to the back of the connector, while they are put directly over the connector for the

objects. Because of the increased weight of the robot, placing the paper directly on the

robot’s connector would reduce the magnet field to a level too weak to hold the robot.

The total weight of the Zumo including batteries and all attached parts is 340.1 g.

28

Figure 9: Environment objects. Items to be placed in the environment for the robot to

interact with. They are light enough to be pushed yet stable and will not fall over easily.

The tool connector with fiducial is mounted on top.

5.2 Environmental Objects

The experiment in this paper are all performed with only one type of environmental

object, a small circular column about 45mm in diameter with a fiducial connector on the

top (Figure 9). It is light enough to be pushed around by the Zumo but dense enough to

trigger the proximity sensors. Hence the objects can used for both collection or collision

avoidance tasks. A sturdy base ensures they are not knocked over by the Zumo on impact.

5.3 Experiments

A set of four experiments are devised to evaluate the performance and feasibility of the

system:

General Performance Evaluation of the Automation Control Systems. This test will only

make use of a single environment object. The UR5 will move the object around to

random positions and register positional and rotational errors.

29

Building Environments. A series of tests designed to challenge the robustness of the

system’s building algorithm.

Evolution of Basic Navigation Skills. The goal in this simple navigation task is to evolve

a controller that steers the mobile robot towards a given target. The main purpose

of the robot arm is to automatically reset the mobile robot back to its starting posi-

tion after the evaluation is over.

Incremental Evolution of Obstacle Avoidance Skills. This task is similar to the navi-

gation task but it includes objects in the environment that are placed by the robot

arm and must be avoided by the mobile robot. We also compare a non-incremental

vs. an incremental evolutionary setup in which the robot arm reconfigures the en-

vironment after a few generations to make it more complex.

The tests evaluate different aspects of the system, but combined they evaluate all the

individual components. The first two tests are functional, and aim to establishing that

the system operates as intended per design. The other two tasks are application tests, that

evaluate how the system manages to perform actual embodied evolution experiments.

Each test and the results are described in detail in the next section.

6 Results

A video of the system in action can be found at: https://youtu.be/7kzw_cvqTIw.

https://youtu.be/7kzw_cvqTIw

30

6.1 General Performance Evaluation of the Automation Control Sys-

tems

The UR5 can be repeatedly positioned with ±0.1mm precision [37]. However, other

factors can affect the precision and accuracy of the system, such as the resolution of

the camera image (1,280×720 pixels). In the image the pixel-distance between arena

corner markers in the top row is 1,012. The real distance is 0.992 m. A pixel then

represents 0.992m/1012 = 0.00098m or just about 1 mm. Another source of error is the

transformation matrix. If the base coordinates of the corner markers for instance are

not accurate, this will affect the transformation matrix. The transformation matrix must

also yield good results on a large area. Camera lens distortion is however not necessarily

linear in the field-of-view, and even the camera matrix and distortion coefficients used to

undistort the image may contain errors.

Eliminating all these errors is impossible; instead we focus on determining whether the

described setup is adequate for all intended purposes. The system should be able to

repeatedly position objects with a precision close to that of the camera, which in this

case translates to ±1mm. The mechanical design should then deal with the practical

aspects of the achievable precision.

To measure the repeatable precision across the entire arena a task has been developed

to move an object (Figure 9) to random positions with random angles (rotation around

the object z-axis). After each placement the computer vision system takes a picture and

calculates the absolute difference between the CV and TCP coordinate, including the

object’s angle.

The test ran 854 pick-and-place operations. Figure 10 is a visualization of all the visited

positions. The circle diameter is proportional to the lateral displacement sum (positional

31

Figure 10: Positioning plot. The same object was repeatedly moved to a random position

in the arena. Circle diameter is proportional to the positional error (errx+erry). Shading

indicates the orientation error, darker being smaller.

error), |xb−xc|+ |yb− yc|, while the shading indicates the orientation error, darker being

smaller. The main purpose of this plot is to indicate coverage and to see if errors have a

tendency to cluster (i.e. be more or less in certain regions). The plot shows that coverage

from random positions is quite good and that there clearly is a tendency to have larger

errors around the edges, especially in the right side. Angular errors on the other hand

seems to be more or less evenly distributed which is consistent with observations made

during the test.

Table 1 summarizes the results from the positional and angular error measurements. The

mean error for both the x and y axis is ≤ 2mm (sd=1mm). The orientation, denoted

by the angle θ, has a mean of 2.9◦. The actual precision of these measurements is deter-

mined by the camera resolution, and at least 1mm can be achieved. Overall this is quite

acceptable with regards to the many possible error sources. It is worth noting though,

that the maximum positional error is between 5.1mm and 5.5mm. But this is still within

the range that can be mitigated by the mechanical design of the end effector. The orien-

tation with a maximum of 10.34◦ is prone to become a bigger problem because it works

32

against the centering mechanism in the effector and is a potential issue that should not

be overlooked. However, at no point during during the test did the UR5 fail to pick-up

the object though. Whether the precision is acceptable for a given application would be a

matter of requirements, but is definitely satisfactory in terms of robust operation within

the scope of the experiments performed in this paper.

axis max mean std.dev

x (mm) 5 2 1
y (mm) 5 1 1
θ (◦) 10.3 2.9 2.1

Table 1: Positional and angular error summary. Data is obtained from 854 points. The

error is the absolute difference of the coordinate the UR5 reports and the one computed

from vision transformation.

During the random pick-and-place task, time and image errors were reported every 25

operations (Table 2). On average a pick-and-place operation takes 29 seconds and this is

a worst-case scenario because the UR5 starts and ends in its home position. Chained pick-

and-place operations will be faster on average. If the quality of the captured image is not

sufficient to accurately, or at all, detect the markers, the system will retry until it sees all

the markers, and this happened 39 times during the test yielding a re-capture percentage

of 4.5%. The CV system runs separately in another thread, which processes the camera

images and provides the markers to the main thread. Therefore, the performance of the

system is enough to track the Zumo robot. However, a “stop-and-go” approach, where

the robot can only perform a single discreet motion and then stops, has been applied to

make the results more reproducible.

33

mean time/set mean time/op no detection re-cap. %

712 s 29 s 39 4.5%

Table 2: Additional performance data from the system evaluation.

Figure 11: Building feature evaluation. The system must reorganize the objects and

arrange them from an initial state (left) to a target state (right). While the initial object

placement is different for the three test cases, the target state is always the same. The

numbers are the object ID’s.

6.2 Building Environments

A fundamental feature of the system is its ability to manage the placement of multiple

objects in the arena. In this case the system needs to keep track of all objects and control

for objects being placed in the same location or interfering with each other. The build

algorithm (Section 4.4) is evaluated on rearranging objects (four environment objects

and one Zumo robot) from a given start configuration into a desired final configuration

(Figure 11). The system is tested on increasingly complex starting scenarios, in which (1)

objects do not occupy any of the target position, (2) some target positions are occupied,

and (3) target positions are occupied and include deadlock situations.

The evaluation shows that the system is able to successfully deal with all three test sce-

narios. As Figure 12 demonstrates, the rearrange order is highly dependent on conflicts

and deadlocks. The average time to complete building a configuration was 127 s for 25

34

Figure 12: Movement ordering for various problems. The images show three different

test cases and the order of movements, by object ID, chosen by the build algorithm to

solve the problem. From all three different starting configurations, the build algorithm

is able to rearrange the objects into the target configuration shown in Figure 11.

runs. Carrying out a series of such building evaluations without errors is not to say the

system will handle all possible situations gracefully. During the evolutionary experiments

described in the next sections, problems were sometimes observed when the objects are

right next to each other. In some instances an object would touch the one next to it

slightly when picked up due to the protruding edges of the connector. If this happens

the image just used to locate all objects will be invalidated, and the system must back off

and asses the scene once more to accurately obtain object positions. Additionally, a few

times errors do occur due to the system trying to exceed the UR5 joint limits. But it is

rare and if the tasks are programmed properly they can be restarted with minimal loss

of work.

35

Figure 13: Neural network representation for the basic navigation task. Inputs are angle

to target (I1) and bias (B). The single output is mapped to movement commands.

6.3 Evolution of Basic Navigation Skills

The goal of the first embodied evolution experiment is to demonstrate and validate the

system’s capabilities. In this simple navigation tasks, the goal of the mobile robot is to

drive from point A to B (whose locations are fixed during the experiment) in an arena

without any obstacles.

The neural networks controlling the robot are evolved by NEAT [41], and have one

input, a bias, and one output (Figure 13). The MultiNEAT parameters can be found in

the appendix. The ANN receives as input the relative angle between the Zumo robot’s

heading and a virtual target in the arena (in the image coordinate system) mapped to

[0.0, 1.0]. The single output is mapped to three actuation commands that can be sent to

the Zumo robot: A value in the range [0.0, 0.45] will make the robot turn left; [0.45, 0.55]

move forward; [0.55, 1.0] turn right. The motors run in the opposite directions at the same

speed when the robot is turning, and in the same direction at equal speed when the robot

is driving forward. The speed and time for each actuation command are detailed in the

appendix.

A robot is evaluated for a maximum duration 35 steps, which take around 250ms each.

36

50 100 150 200 250 300
Evaluation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fi
tn

e
ss

Figure 14: Fitness over generations in the navigation task. The graph shows the median

and the 25 and 75 percentiles of six independent evolutionary runs. With the exception

of a few dips, fitness generally increases over generations.

The CV system tracks the robot’s position and angle. After running for N steps the fitness

is calculated as the accumulated remaining distance ds to the target over the total number

of steps:

F =
1

N

N∑
s=1

(1− ds)2.

At the beginning of each evaluation, the UR5 places the robot in the center of the arena.

The mobile robot is then allowed to move around and automatically moved back to the

starting position by the UR5 once the evaluation is over. To encourage the evolution of

general navigation skills, each robot is evaluated on its ability to approach two different

targets, which are at fixed position. The final fitness is the average of the two runs. All

the experiments were run with a population size of 15 individuals for 20 generations.

Figure 14 shows the median of the best genome in each generation for 6 independent

runs. On average, each evaluation takes 25 seconds (50 seconds for the two targets).

37

Figure 15: Robot paths from first evolution experiment. Plots of the second evaluation

paths taken by the best genome in each of the 20 generations of the first run. Generations

are shaded light to dark in increasing order.

Thus, a run of the experiment takes around 4 hours and 20 minutes to complete in total.

Fitness is generally improving over generations but some noticeable dips in fitness are

also visible. These results are likely due to that the controller of the best robot from the

previous generation is not robust yet and the noise in the marker orientation can generate

different behaviors for the same controller. However, the neural networks found in the

last generations are more robust and this noise does not cause a drop in fitness.

Figure 15 shows the paths taken by the champion network in each generation. Lines are

colored light-gray to black in order of generations, early to late. The plot only shows

the path taken in the second of the two evaluation rounds. Over time more and more

behaviors converge on a path towards the goal.

To further validate the result, the best network evolved after 20 generations is tried

against five new targets using the same initial position. Figure 16 shows the robot’s

paths for each of the five targets. The results demonstrate that the robot evolved general

navigation skills. While similar embodied evolutionary experiments have been conducted

in the past, also using much simpler mechanisms to manage the environment [33], the

38

Figure 16: Generalization Test. The best network discovered after 20 generations is tried

against five new targets. The Xs mark the targets. Starting position is in the center. The

results demonstrate that evolution discovered a general navigation strategy.

results reported here do showcase a completely unsupervised embodied evolution setup

made possible by a standard industrial robot arm and computer vision algorithm.

6.4 Incremental Evolution of Obstacle Avoidance Skills

Some of the more interesting prospects arises from the system’s ability to work with more

complex environments and alter these automatically during optimization. In the second

experiment, we compare an incremental vs. a non-incremental evolution approach that

critically depends on the systems ability to reconfigure the environment. The domain

is similar to the navigation task (the mobile robot has to approach a given target) but

now the robot must also avoid obstacles that are placed in the direct path from its initial

position to the target. In the incrementally evolution setup, the robot is first evaluated for

three generations in two variations of a simple environment (Fig. 17a,b), before being

evaluated in two variations of a more complex environment (Fig. 17c,d). In the non-

39

incremental version, robots are directly evaluated in the more complex environment.

The robot arm is now responsible for (1) moving the robot to its starting position at the

beginning of each evaluation and (2) setting up the different obstacle layouts for each

of the evaluations. In this setup the CV system is used to calculate the relative angle to

the target, calculate the distance of the robot to the goal, and detect if the robot collided

with any of the obstacles.

The neural networks for this task have three inputs (excluding bias) and a single output

(Figure 18). The three inputs are the relative angle to the target and two proximity

indications based on the front proximity sensor readings while IR light is emitted from

the left and right side of the robot. Similar to the first evolutionary experiment the single

output is mapped to three movement commands, turn left, turn right and move forward.

If the robot collides with an obstacle the evaluation is stopped. The fitness function

rewards getting close to the target and it is calculated as the average fitness for the two

configurations:

F =
1

2

2∑
c=1

(1− dc).

The NEAT settings and movement parameters for the obstacle avoidance tasks are de-

tailed in the appendix. Experiments ran for a total of twenty generations, which took

approximately 6.5 hours in total for each evolutionary run. Six independent evolution-

ary runs were performed.

Figure 19 shows fitness over generations. For both the incremental and non-incremental

approach, fitness generally improves. The results show that the incremental setup evolves

high-performing controllers slightly faster, with a significant difference in generation four

(p< 0.05; two-tailed Mann-Whitney U test). While the advantage is lost as evolution con-

tinues, the setup in this paper does demonstrate, for the first time, that fully-automated

incremental evolution is possible in the real world. The paths taking by the best robot

40

(a) Simple environment, first evaluation. (b) Simple environment, second evaluation.

(c) Complex environment, first evaluation. (d) Complex environment, second evalua-
tion.

Figure 17: Incremental Evolution Setup. Shown are the two setups (a,b) and (c,d) used

for the incremental evolution setup. The goal of the robot is to navigate from its start

location on the right to the target location to the far left without colliding with any of the

obstacles. In the non-incremental setup the agent is directly evolved in two variations of

a complex environment (c,d). In the incremental setup the robot is first evolved in the

simpler environment (a,b) for three generations, before being evaluated in the harder

environment (c,d).

41

Figure 18: Neural network representation for the obstacle avoidance task. Inputs are

angle to target (I1), left, front, and right proximity sensor (I2, I3 and I4) and bias (B).

The single output is mapped to movement commands.

from each generation of one evolutionary run are show in Figure 20. Robots evolve the

ability to navigate to the goal without colliding with any obstacles.

7 Discussion and Future Work

The presented system is capable of performing fully automated reality-based optimiza-

tion of a neural network control policy using a single robot in a controlled environ-

ment. A simple controller can be evolved incrementally and without human intervention

within a reasonable time frame. Additionally the system yields predictable behavior in

managing the environment. Although a successful outcome is highly dependent on the

experimental design and the system limitations, it still provides a robust experimental

platform and demonstrates a novel approach to embodied artificial evolution that over-

comes simulate-and-transfer issues.

A significant part of the work went into the construction of a physical framework and

a software process framework to manage reality-based optimization and robot control

automation. Creating robust robotic automation for a dynamic environment is a difficult

task in itself and the system design will necessarily pose restrictions on the problem

42

50 100 150 200 250 300
Evaluation

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Fi
tn

e
ss

Non-incremental evolution

Incremental evolution

Figure 19: Fitness over generations for the obstacle avoidance task. The graphs show

the median and the 25 and 75 percentiles. All results are based on six independent evo-

lutionary runs. In the incremental approach fitness initially increases faster (significantly

different in generation four), after which the two approaches reach about the same fit-

ness level. The switch from simple to complex environment for the incremental approach

is indicated by the vertical line.

43

0.4 0.2 0.0 0.2 0.4
Real-world Y-axis

0.3

0.4

0.5

0.6

0.7

R
e
a
l-

w
o
rl

d
 X

-a
x
is

StartTarget

(a) First evaluation in a simple environment.

0.4 0.2 0.0 0.2 0.4
Real-world Y-axis

0.3

0.4

0.5

0.6

0.7

R
e
a
l-

w
o
rl

d
 X

-a
x
is

StartTarget

(b) Second evaluation in a simple environment

0.4 0.2 0.0 0.2 0.4
Real-world Y-axis

0.3

0.4

0.5

0.6

0.7

R
e
a
l-

w
o
rl

d
 X

-a
x
is

StartTarget

(c) First evaluation in a complex environment.

0.4 0.2 0.0 0.2 0.4
Real-world Y-axis

0.3

0.4

0.5

0.6

0.7

R
e
a
l-

w
o
rl

d
 X

-a
x
is

StartTarget

(d) Second evaluation in a complex environment.

Figure 20: Incremental Evolution Champions. Shown are the paths of the best robots

found in each of the 20 generation for one evolutionary run. Over generations robots

evolve the ability to approach the target for the two different obstacle layouts. Note that

in the simple environment only three paths are shown, because the robot is only evolved

for three generations in the simple setup.

44

domain one wants to explore with the system. The end effector and matching connector

was an attempt to increase generalization and allow any kind of object to be added as

long as it has a connector mounted on the top and is within the payload limitation. On

the other hand the system was confined to work on a flat surface, and this is further

enforced by the connectors being a hindrance to stacking. Ultimately experiments are

limited by and must be designed around the limiting factors of the physical framework.

One insight from the performed experiments is that automating environment building

and evaluation setups are comparable to automatic phenotype creation in terms of com-

plexity. There are many things that can go wrong, as the automation part operates in the

very same volatile environment that is so hard to model correctly in simulation. This can

potentially lead to conflicts between system abilities and imposing as few constraints on

evolution as possible. In that sense this is no different from the issues facing automatic

phenotype creation, but it could be considered an added limitation if the two approaches

were to be combined.

The results in this paper show that a control policy can be evolved incrementally and

autonomously with no transferability issues. However, it also shows that a priori knowl-

edge about the appropriate evolutionary parameters is needed to successfully conduct

reality-based optimization and achieve a good result. These parameters can be obtained

empirically using the system in a series of “preliminary attempts”. This approach may

work well for very simple tasks where an indication of progress can be observed early

on. For more complex tasks this may not be feasible and simulation could be used to

generate sensible parameters and starting conditions.

If a simulation is used to generate a starting point for reality-based optimization, we are

facing the reality gap once again. But since the aim of the simulation is not to evolve a

good performing controller in reality but to provide approximations of the system param-

45

eters, it could be a feasible approach to cut the total time of the experiments. And time is

likely the most significant downside of a method that completely leaves out simulation-

based optimization. Seeding the population could be another time-reducing approach

to evolve more complex behaviors. The seeding genomes could encode control policies

for sub-tasks that have been evolved previously either using reality-based or simulation-

based optimization. Another promising direction could be to build on the intelligent

trial-and-error approach introduced by Cully et al. [8], which could limit the number of

evaluations that have to be performed in the real world.

It would be interesting to explore how the presented approach or a similar system could

work together with a manufacturing system like the one presented by Brodbeck et. al [6].

Combining the ability to evolve morphologies with the ability to reconfigure the envi-

ronment could be a step towards more complete assisted embodied artificial evolution.

Another potential future direction for this system is automating “robot-in-the-loop” type

optimization where a transferability function is used to evaluate the simulator based on

real robot performance.

In summary, we presented a system that employs a robot control architecture capable

of robust autonomous test environment and robot management, requiring no human

intervention. The system features a generic design that allow flexibility in choice of

objects and robots used in the arena, and could be the starting framework for more

complex embodied evolution experiments in the future. It is important to note that the

system is not limited to evolutionary algorithms; in the future it could also allow robot

controllers to be optimized by reinforcement learning completely in the real world.

46

Acknowledgments

This project was partially funded by the European Unions Horizon 2020 research and in-

novation program under the FET grant agreement, no. 640959 (’flora robotica’ project).

Computation/simulation for the work described in this paper was supported by the DeIC

National HPC Centre, SDU.

References

[1] Adafruit (2015). Xbee adapter v1.1. https://www.adafruit.com/products/126.

[2] Bencina, R., Kaltenbrunner, M., & Jorda, S. (2005). Improved topological fidu-

cial tracking in the reactivision system. In Computer Vision and Pattern Recognition-

Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on, (pp. 99–

99). Piscataway, NJ: IEEE.

[3] Bongard, J. (2013). Evolutionary robotics. Communications of the ACM, 56(8), 74–

83.

[4] Bredeche, N., Haasdijk, E., & Eiben, A. E. (2010). On-line, on-board evolution of

robot controllers. In P. Collet, N. Monmarché, P. Legrand, M. Schoenauer, & E. Lut-

ton (Eds.) Artifical Evolution: 9th International Conference, Evolution Artificielle, EA,

2009, Strasbourg, France, October 26-28, 2009. Revised Selected Papers, (pp. 110–

121). Berlin, Heidelberg: Springer Berlin Heidelberg.

[5] Bredeche, N., Montanier, J.-M., Liu, W., & Winfield, A. F. (2012). Environment-

driven distributed evolutionary adaptation in a population of autonomous robotic

https://www.adafruit.com/products/126

47

agents. Mathematical and Computer Modelling of Dynamical Systems, 18(1), 101–

129.

[6] Brodbeck, L., Hauser, S., & Iida, F. (2015). Morphological evolution of physical

robots through model-free phenotype development. PloS one, 10(6), e0128444.

[7] Chervenski, P. (2015). Multineat. https://github.com/peter-ch/MultiNEAT.

[8] Cully, A., Clune, J., Tarapore, D., & Mouret, J.-B. (2015). Robots that can adapt like

animals. Nature, 521(7553), 503–507.

[9] Eiben, A., Kernbach, S., & Haasdijk, E. (2012). Embodied artificial evolution. Evolu-

tionary intelligence, 5(4), 261–272.

[10] Faíña, A., Bellas, F., López-Peña, F., & Duro, R. J. (2013). Edhmor: Evolution-

ary designer of heterogeneous modular robots. Engineering Applications of Artificial

Intelligence, 26(10), 2408–2423.

[11] Filliat, D., Kodjabachian, J., Meyer, J.-A., et al. (1999). Incremental evolution of

neural controllers for navigation in a 6-legged robot. In M. Sugisaka, & H. Tanaka

(Eds.) Proceedings of the Fourth International Symposium on Artificial Life and Robots,

(pp. 753–760). Oita, Japan: Oita University Press.

[12] Floreano, D., Dürr, P., & Mattiussi, C. (2008). Neuroevolution: from architectures

to learning. Evolutionary Intelligence, 1(1), 47–62.

[13] Floreano, D., & Keller, L. (2010). Evolution of adaptive behaviour in robots by

means of darwinian selection. PLoS Biol, 8(1), e1000292.

[14] Floreano, D., & Mondada, F. (1996). Evolution of homing navigation in a real mo-

bile robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

26(3), 396–407.

https://github.com/peter-ch/MultiNEAT

48

[15] Gomez, F., & Miikkulainen, R. (1997). Incremental evolution of complex general

behavior. Adaptive Behavior, 5(3-4), 317–342.

[16] Harvey, I., Husbands, P., & Cliff, D. (1994). Seeing the light: Artificial evolution, real

vision. School of Cognitive and Computing Sciences, University of Sussex Falmer.

[17] Heinerman, J., Zonta, A., Haasdijk, E., & Eiben, A. (2016). On-line evolution of

foraging behaviour in a population of real robots. In S. G., & B. P. (Eds.) Applications

of Evolutionary Computation, (pp. 198–212). Berlin, Heidelberg: Springer.

[18] Hornby, G., Fujita, M., Takamura, S., Yamamoto, T., & Hanagata, O. (1999). Au-

tonomous evolution of gaits with the Sony quadruped robot. In W. Banzhaf, J. Daida,

A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.) Proceedings of

the Genetic and Evolutionary Computation Conference, vol. 2, (pp. 1297–1304). San

Francisco, CA: Morgan Kaufmann Publishers.

[19] Itseez (2016). Opencv - open source computer vision library. http://opencv.org/.

[20] Jakobi, N. (1998). Minimal simulations for evolutionary robotics. Ph.D. thesis,

University of Sussex.

[21] Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the reality gap: The

use of simulation in evolutionary robotics. In F. Morán, A. Moreno, J. J. Merelo,

& P. Chacón (Eds.) Advances in artificial life, (pp. 704–720). Berlin, Heidelberg:

Springer Berlin Heidelberg.

[22] Kohler, J., Pagani, A., & Stricker, D. (2011). Detection and identification techniques

for markers used in computer vision. Visualization of Large and Unstructured Data

Sets - Applications in Geospatial Planning, Modeling and Engineering, 19, 36–44.

http://opencv.org/

49

[23] Koos, S., Mouret, J.-B., & Doncieux, S. (2013). The transferability approach: Cross-

ing the reality gap in evolutionary robotics. Evolutionary Computation, IEEE Trans-

actions on, 17(1), 122–145.

[24] LaMarca, A., & De Lara, E. (2008). Location systems: An introduction to the tech-

nology behind location awareness. Synthesis Lectures on Mobile and Pervasive Com-

puting, 3(1), 1–122.

[25] Lehman, J., Risi, S., D’Ambrosio, D., & O. Stanley, K. (2013). Encouraging reactivity

to create robust machines. Adaptive Behavior, 21(6), 484–500.

[26] Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic

lifeforms. Nature, 406(6799), 974–978.

[27] Miglino, O., Lund, H. H., & Nolfi, S. (1995). Evolving mobile robots in simulated

and real environments. Artificial life, 2(4), 417–434.

[28] Montanier, J.-M., & Bredeche, N. (2011). Embedded evolutionary robotics: The

(1+ 1)-restart-online adaptation algorithm. In S. Doncieux, N. Bredeche, & J.-B.

Mouret (Eds.) New horizons in evolutionary robotics, (pp. 155–169). Berlin, Heidel-

berg: Springer.

[29] Mouret, J.-B., & Doncieux, S. (2008). Incremental evolution of animats’ behav-

iors as a multi-objective optimization. In A. M., H. J.C.T., M. JA., & T. J. (Eds.)

International Conference on Simulation of Adaptive Behavior, (pp. 210–219). Berlin,

Heidelberg: Springer.

[30] Mouret, J.-B., Doncieux, S., & Meyer, J.-A. (2006). Incremental evolution of target-

following neuro-controllers for flapping-wing animats. In N. S. et al. (Ed.) Interna-

tional Conference on Simulation of Adaptive Behavior, (pp. 606–618). Berlin, Heidel-

berg: Springer.

50

[31] Nolfi, S. (1996). Adaptation as a more powerful tool than decomposition and inte-

gration. In P. K. Simpson (Ed.) Proceedings of the workshop on evolutionary computing

and machine learning, 13th international conference on machine learning, vol. 1, (pp.

141–146). Piscataway, NJ: IEEE.

[32] Nolfi, S. (1997). Evolving non-trivial behaviors on real robots: A garbage collecting

robot. Robotics and Autonomous Systems, 22(3), 187–198.

[33] Nolfi, S., & Floreano, D. (2000). Evolutionary robotics: The biology, intelligence, and

technology of self-organizing machines. MIT press.

[34] Pololu (2016). Pololu zumo 32u4 robot. https://www.pololu.com/category/170/

zumo-32u4-robot.

[35] Prieto, A., Becerra, J., Bellas, F., & Duro, R. J. (2010). Open-ended evolution as a

means to self-organize heterogeneous multi-robot systems in real time. Robotics and

Autonomous Systems, 58(12), 1282–1291.

[36] Robots, U. (2015). The URScript Programming Language. Universal Robots A/S,

version 3.2 ed.

[37] Robots, U. (2015). User Manual, UR5/CB3. Universal Robots A/S, version 3.1 ed.

[38] Roulet-Dubonnet, O. (2015). python-urx. https://github.com/oroulet/

python-urx. PYPI urx 0.93.

[39] Shen, H., Yosinski, J., Kormushev, P., Caldwell, D. G., & Lipson, H. (2012). Learning

fast quadruped robot gaits with the RL power spline parameterization. Cybernetics

and Information Technologies, 12(3), 66–75.

[40] Sparkfun (2015). Rn42-xv bluetooth module - pcb antenna. https://www.

sparkfun.com/products/11601.

https://www.pololu.com/category/170/zumo-32u4-robot
https://www.pololu.com/category/170/zumo-32u4-robot
https://github.com/oroulet/python-urx
https://github.com/oroulet/python-urx
https://www.sparkfun.com/products/11601
https://www.sparkfun.com/products/11601

51

[41] Stanley, K. O., & Miikkulainen, R. (1996). Efficient reinforcement learning through

evolving neural network topologies. Network (Phenotype), 1(2), 3.

[42] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through aug-

menting topologies. Evolutionary Computation, 10(2), 99–127.

[43] Watson, R. A., Ficici, S., & Pollack, J. B. (1999). Embodied evolution: Embodying

an evolutionary algorithm in a population of robots. In Evolutionary Computation,

1999. CEC 99. Proceedings of the 1999 Congress on, vol. 1. Washington, DC: IEEE.

[44] Zykov, V., Bongard, J., & Lipson, H. (2004). Evolving dynamic gaits on a physical

robot. In K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen, D. Dasgupta,

D. Floreano, J. Foster, M. Harman, O. Holland, P. Lanzi, L. Spector, A. Tettamanzi,

D. Thierens, & A. Tyrrell (Eds.) Proceedings of Genetic and Evolutionary Computation

Conference, Late Breaking Paper, GECCO, vol. 4. New York, NY: Springer.

Appendix: Experimental Parameters

Tables 3 and 5 show the NEAT parameters for the navigation and obstacle task, which

were found to work best in these task through prior experimentation. Movement speed

of the mobile robot was slightly reduced from the navigation (Table 4) to the obstacle

avoidance task (Table 6) to facilitate navigating around obstacles.

52

MultiNEAT parameter Value

PopulationSize 15
MinSpecies 0
MaxSpecies 2
YoungAgeThreshold 2
OldAgeThreshold 5
OverAllMutationRate 0.8

Table 3: MultiNEAT parameters for the navigation task.

Movement parameter Value

Forward speed 33%(130)
Forward duration 180ms
Turn speed 25%(100)
Turn duration 100ms

Table 4: Move command parameters for the navigation task.

MultiNEAT parameter Value

PopulationSize 15
MinSpecies 1
MaxSpecies 3
SpeciesDropOffAge 3
YoungAgeThreshold 2
OldAgeThreshold 5
OverAllMutationRate 0.8

Table 5: MultiNEAT parameters for the obstacle avoidance task.

53

Movement parameter Value

Forward speed 130 (32.5% of maximum speed)
Forward duration 120ms
Turn speed 100 (25% of maximum speed)
Turn duration 180ms
IR frequency 300ms
IR power levels (2, 4, 6, 8, 10, 13, 18, 26, 32, 38)

Table 6: Move command parameters for the obstacle avoidance task. The interested

reader is refereed to the Zumo Pololu Zumo 32U4 Robot User’s Guide for more details

about these parameters [34].

54

Figure 1: The main working area of the system including the UR5 robot, the evaluation

environment (arena) to contain robot(s) and objects and the computer vision camera.

55

Figure 2: Robot end effector/tool and connecting object. Top row: CAD renderings of

the gripping component attached to the UR5 including the electromagnet in the middle

(left) and the matching connector object (right). Bottom row: prototype 3D prints of the

same components.

56

Figure 3: Arena top-view. The arena is measuring 1m × 0.5m. The UR5 base is located

in the top center right outside the image frame.

57

Figure 4: reacTIVision fiducials. An example of three small markers.

58

Figure 5: CV image processing. a) The raw image, b) the undistorted image, c) undis-

torted image after thresholding and d) fiducials has been identified and their ID, location

and orientation (green line) has been overlayed on the thresholding image.

59

Figure 6: Camera and UR5 base coordinate systems. The Cx and Cy axis represents the

camera perspective and the Bx, By and Bz axis is the coordinate system relative to the

UR5 base.

60

Figure 7: Environment building algorithm. The full black or green numbered circles are

current positions and the grey dashed circles are the desired target for that object. The

steps 1-6 depicts how the movement sequence is generated by first moving objects that

has no positional conflicts, then move the objects that has conflicts that were resolved

after the first step and finally resolve the more complex conflicts.

61

Figure 8: The Zumo 32U4 robot. A small tracked robot c. 100x100 mm. It has encoders

on the motor shafts, and an array of sensors that includes proximity, reflectance (for line

following) and a 9-DoF IMU. The 360 degrees bumper is 3D printed for this project and

helps it avoid getting caught in walls or other objects. On the top plate, a red connector

is mounted which also houses a Bluetooth module for wireless communication.

62

Figure 9: Environment objects. Items to be placed in the environment for the robot to

interact with. They are light enough to be pushed yet stable and will not fall over easily.

The tool connector with fiducial is mounted on top.

63

Figure 10: Positioning plot. The same object was repeatedly moved to a random position

in the arena. Circle diameter is proportional to the positional error (errx+erry). Shading

indicates the orientation error, darker being smaller.

64

Figure 11: Building feature evaluation. The system must reorganize the objects and

arrange them from an initial state (left) to a target state (right). While the initial object

placement is different for the three test cases, the target state is always the same. The

numbers are the object ID’s.

65

Figure 12: Movement ordering for various problems. The images show three different

test cases and the order of movements, by object ID, chosen by the build algorithm to

solve the problem. From all three different starting configurations, the build algorithm

is able to rearrange the objects into the target configuration shown in Figure 11.

66

Figure 13: Neural network representation for the basic navigation task. Inputs are angle

to target (I1) and bias (B). The single output is mapped to movement commands.

67

50 100 150 200 250 300
Evaluation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fi
tn

e
ss

Figure 14: Fitness over generations in the navigation task. The graph shows the median

and the 25 and 75 percentiles of six independent evolutionary runs. With the exception

of a few dips, fitness generally increases over generations.

68

Figure 15: Robot paths from first evolution experiment. Plots of the second evaluation

paths taken by the best genome in each of the 20 generations of the first run. Generations

are shaded light to dark in increasing order.

69

Figure 16: Generalization Test. The best network discovered after 20 generations is tried

against five new targets. The Xs mark the targets. Starting position is in the center. The

results demonstrate that evolution discovered a general navigation strategy.

70

(a) Simple environment, first evaluation. (b) Simple environment, second evaluation.

(c) Complex environment, first evaluation. (d) Complex environment, second evalua-
tion.

Figure 17: Incremental Evolution Setup. Shown are the two setups (a,b) and (c,d) used

for the incremental evolution setup. The goal of the robot is to navigate from its start

location on the right to the target location to the far left without colliding with any of the

obstacles. In the non-incremental setup the agent is directly evolved in two variations of

a complex environment (c,d). In the incremental setup the robot is first evolved in the

simpler environment (a,b) for three generations, before being evaluated in the harder

environment (c,d).

71

Figure 18: Neural network representation for the obstacle avoidance task. Inputs are

angle to target (I1), left, front, and right proximity sensor (I2, I3 and I4) and bias (B).

The single output is mapped to movement commands.

72

50 100 150 200 250 300
Evaluation

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Fi
tn

e
ss

Non-incremental evolution

Incremental evolution

Figure 19: Fitness over generations for the obstacle avoidance task. The graphs show

the median and the 25 and 75 percentiles. All results are based on six independent evo-

lutionary runs. In the incremental approach fitness initially increases faster (significantly

different in generation four), after which the two approaches reach about the same fit-

ness level. The switch from simple to complex environment for the incremental approach

is indicated by the vertical line.

73

0.4 0.2 0.0 0.2 0.4
Real-world Y-axis

0.3

0.4

0.5

0.6

0.7

R
e
a
l-

w
o
rl

d
 X

-a
x
is

StartTarget

(a) First evaluation in a simple environment.

0.4 0.2 0.0 0.2 0.4
Real-world Y-axis

0.3

0.4

0.5

0.6

0.7

R
e
a
l-

w
o
rl

d
 X

-a
x
is

StartTarget

(b) Second evaluation in a simple environment

0.4 0.2 0.0 0.2 0.4
Real-world Y-axis

0.3

0.4

0.5

0.6

0.7

R
e
a
l-

w
o
rl

d
 X

-a
x
is

StartTarget

(c) First evaluation in a complex environment.

0.4 0.2 0.0 0.2 0.4
Real-world Y-axis

0.3

0.4

0.5

0.6

0.7

R
e
a
l-

w
o
rl

d
 X

-a
x
is

StartTarget

(d) Second evaluation in a complex environment.

Figure 20: Incremental Evolution Champions. Shown are the paths of the best robots

found in each of the 20 generation for one evolutionary run. Over generations robots

evolve the ability to approach the target for the two different obstacle layouts. Note that

in the simple environment only three paths are shown, because the robot is only evolved

for three generations in the simple setup.

74

axis max mean std.dev

x (mm) 5 2 1
y (mm) 5 1 1
θ (◦) 10.3 2.9 2.1

Table 1: Positional and angular error summary. Data is obtained from 854 points. The

error is the absolute difference of the coordinate the UR5 reports and the one computed

from vision transformation.

75

mean time/set mean time/op no detection re-cap. %

712 s 29 s 39 4.5%

Table 2: Additional performance data from the system evaluation.

76

MultiNEAT parameter Value

PopulationSize 15
MinSpecies 0
MaxSpecies 2
YoungAgeThreshold 2
OldAgeThreshold 5
OverAllMutationRate 0.8

Table 3: MultiNEAT parameters for the navigation task.

77

Movement parameter Value

Forward speed 33%(130)
Forward duration 180ms
Turn speed 25%(100)
Turn duration 100ms

Table 4: Move command parameters for the navigation task.

78

MultiNEAT parameter Value

PopulationSize 15
MinSpecies 1
MaxSpecies 3
SpeciesDropOffAge 3
YoungAgeThreshold 2
OldAgeThreshold 5
OverAllMutationRate 0.8

Table 5: MultiNEAT parameters for the obstacle avoidance task.

79

Movement parameter Value

Forward speed 130 (32.5% of maximum speed)
Forward duration 120ms
Turn speed 100 (25% of maximum speed)
Turn duration 180ms
IR frequency 300ms
IR power levels (2, 4, 6, 8, 10, 13, 18, 26, 32, 38)

Table 6: Move command parameters for the obstacle avoidance task. The interested

reader is refereed to the Zumo Pololu Zumo 32U4 Robot User’s Guide for more details

about these parameters [34].

	Introduction
	Background
	Neuroevolution
	The Reality Gap
	Evolution of Physical Machines

	Experimental Design
	Control Robot
	Robot End Effector
	Arena

	Software Architecture
	Operational Design
	Computer Vision (CV) System
	Fiducial Tracking
	CV implementation
	Vision Calibration and Transformation

	Automation Control
	Building Environments

	Experimental Setup
	Mobile Robot
	Environmental Objects
	Experiments

	Results
	General Performance Evaluation of the Automation Control Systems
	Building Environments
	Evolution of Basic Navigation Skills
	Incremental Evolution of Obstacle Avoidance Skills

	Discussion and Future Work

