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CHAPTER I 

INTRODUCTION 

The improved survival rates of premature infants can be attrib­

uted to advances in neonatal respiratory technology. As a result, 

periventricular - intraventricular hemorrhage and its neurologic se­

quelae have emerged as new problems and now surpass respiratory dis­

tress syndrome as the leading cause of neonatal morbidity and mortality 

(Reichert & Fuller, 1980; Tarby & Volpe, 1982; Volpe, 1981). 

An increase in intracranial pressure (ICP) can be associated with 

varying degrees of intraventricular hemorrhage along with other neuro­

logical disorders and, if untreated, may progress to a life threatening 

situation in the neonate. In the monograph by Lundberg (1960) elec­

tronic monitoring of ventricular fluid pressure, using a polyethylene 

catheter connected to a pressure transducer, was first reported. Tech­

nological advances have resulted in an increased acceptance of ICP 

monitoring as a valuable technique for early detection and prompt 

therapeutic management of patients susceptible to increased ICP 

(Vidyasagar, Raju & Chiang, 1978; Bada, 1983; Vidyasagar & Raju, 

1977). Monitoring of ICP is of critical importance in the management of 

infants and children with diseases that affect normal intracranial 

homeostatic mechanisms. The main objective of ICP monitoring is to 

detect variations in ICP pressure. Early identification of the causes 
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of these pressure variations may, in some instances, lead to amelio­

ration of secondary brain changes due to increased ICP. 

Since 1960, the major focus of research related to neurological 

problems has been on identifying characteristics of ICP in various 

disease processes and the underlying physiologic mechanisms responsible 

for the development of increased ICP (Langfitt, 1968; Symon & Dorsch, 

1975; Shapiro, 1975). Only recently have investigators reported 

associations between routine patient care activities, such as: body 

position change (Mitchell & Mauss, 1978; Shalit & Umansky, 1977; 

Lundberg, 1960; Mitchell, Ozuna & Lipe, 1981; Perrin, 1981); head 

rotation (Mitchell et al., 1981; Shalit & Umansky, 1977; Bell, Lorig, 

Martin & Weiss, 1975; Goldberg, Joshi, Moscoso & Castillo, 1983); 

tracheal suctioning (Shapiro, 1975; Shalit & Umansky, 1977; Lundberg, 

1960; Mitchell & Mauss, 1978; Perrin, 1981); painful procedures, for 

example venipuncture (Lundberg, 1960; Mitchell & Mauss, 1978; Perrin, 

1981) and emotional upsets (Lundberg, 1960) with alterations in ICP. 

The relationships between patient care activities and changes in 

ICP are of great interest to the medical and nursing fields in planning 

for patient care. To the author's knowledge, little research has been 

done on the neonatal population. Therefore, the focus of this study 

was to determine the effects of selected procedures on the ICP of 

premature infants as measured by the Ladd Monitor. 

Need for the Study 

Through technological progress ICP monitoring has become an 

acceptable practice for those patients with increased ICP. In the 
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neonate, particularly in the premature infant, increased ICP has been 

associated with intraventricular hemorrhage, post-hemorrhagic hydro­

cephalus, bacterial meningitis and hypoxic-ischemic encephalopathy 

(Volpe, 1981). Detection of alterations in ICP is important in the 

management of premature infants because of the potential for injurious 

effects on maturing neuronal structures secondary to sustained ele­

vations of ICP. The literature provides few guidelines for the nursing 

care of premature infants with increased ICP. In neonatal intensive 

care units (NICU) there are usually routines which may dictate the 

timing of nursing care procedures or how infants are positioned. These 

routines will vary within and among both institutions and nurses. The 

use of such therapeutic appliances such as umbilical catheters, peri­

pheral intravenous lines, intubation tubes may limit repositioning of 

the infant to head turning only. Even when total body repositioning is 

possible proper body alignment may not be maintained. It has been 

documented that relative to compressive forces and tension exerted on 

the internal jugular vein, venous blood flow may be diminished (Watson, 

1974). This alteration of flow may precipitate changes in ICP. 

A common practice utilized in the nursing care of critically ill 

patients, is to condense many of the daily nursing procedures into a 

shortened time frame to allow patients longer rest periods. Mitchell 

et al. (1981) found that the above practice resulted not only in 

increases in ICP, but also in successively higher baseline values of 

ICP. Although their findings were not significant, further inves­

tigation of this widely accepted nursing care practice is warranted. 



4 

Additional research is needed not only to identify various 

factors that may be associated with alterations in ICP, but also to 

test the validity and generalizability of the findings reported in the 

literature. 

Statement of Problem 

The problem addressed in this study was to ascertain the effects 

of six position changes on ICP in premature infants. 

Purpose of Study 

The present investigation was designed to determine the effects 

of head rotation to the right and left on ICP when the premature infant 

was in the supine position, and also to determine the effect on ICP of 

turning to each of four positions (i.e., supine to right lateral, right 

lateral to supine, supine to left lateral, left lateral to supine). 

Hypothesis 

The hypotheses to be tested in this study are: 

1. Head rotation of the premature infant to the right or left 

will not produce a significant change in ICP. 

2. Turning of the premature infant from the supine to right 

lateral position, right lateral to supine position, supine to 

left lateral position, and left lateral to supine position 

will not produce a significant change in ICP. 

Conceptual Framework 

The conceptual framework for this study is based on the 

physiology of increased ICP and adaptation. The normal range of ICP 
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for infants, both term and pre-term, is from 1 mmHg to 7mrnHg (Salmon, 

Hajjar & Bada, 1977; Welch, 1980; Bada, Menke & Khanna, 1980). The 

ventricular system is filled with cerebrospinal fluid (CSF) which is 

secreted by the choriod plexuses. The choriod plexuses are vascular 

networks that project into the lateral, third and fourth ventricles. 

The rate of cerebrospinal fluid production is estimated to be .3 - .4 

ml/hr (Cutler, Page, Galicich & Watters, 1968). There are approxi­

mately 10 ml of cerebrospinal fluid present within the central nervous 

system at any one time, with 400 - 500 ml produced and reabsorbed 

daily. Cerebrospinal fluid flows from the lateral ventricle through 

the foramen of Munro into the third ventricle. From the third ven­

tricle the fluid flows through the aqueduct of Sylvius into the fourth 

ventricle. From the fourth ventricle the fluid enters the central 

canal which extends through the inferior half of the medulla oblongata 

and through the entire length of the spinal cord. Cerebrospinal fluid 

leaves the fourth ventricle through the two foramina of Luschka and the 

foramen of Magendie and enters the subarachnoid space of the spinal 

cord and brain. As cerebrospinal fluid diffuses over the brain con­

vexities it is reabsorbed into the circulatory system through the 

arachnoid villi which are located in the subarachnoid space and project 

into the dural venous sinuses. The major site for cerebrospinal fluid 

reabsorption is the superior sagittal sinus (Guyton, 1981; Snell, 1980; 

Moore, 1983). Normally, the pressure of the cerebrospinal fluid is 

regulated by the rate of cerebrospinal fluid production by the choriod 

plexus, and the resistance to absorption through the arachnoid villi 

(Guyton, 1981). 
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The adaptive mechanisms for pressure changes within the cranio­

spinal compartment are explained on the basis of the Monroe-Kellie 

Doctrine in 1783 with Burrows Modification in 1846 (Langfitt, 1968). 

This modified Monroe-Kellie Doctrine can be explained as follows. 

After the fontanels have closed and the cranial sutures have fused the 

cranium is essentially considered to be a non-distensible structure. 

The skull of the neonate, because of the presence of a fontanel and 

open sutures is considered to be a less rigid structure. In spite of 

the differences between the neonate and adult skull, this structure 

allows for only limited expansion of its contents. 

Intracranial volume is composed of brain tissue, the intravas­

cular system and the cerebrospinal fluid. Volume can be added to any 

of these compartments by a variety of mechanisms. For example, addi­

tional brain volume can result from tumor growth, hematoma or edema 

formation. Hypercapnia, profound hypoxia or acidosis can increase in­

travascular volume through vasodilitation, and cerebrospinal fluid 

volume can be altered by blockage of flow, increased production or 

decreased reabsorption. Any volume change in one of the major compart­

ments, must be accompanied by a reciprocal change in one or more of the 

other compartments if the adaptive physiologic mechanisms are to main­

tain ICP within a normal range. Changes in ICP can be accommodated by 

the brain, under normal conditions, by a redistribution of intracranial 

volume. Another way in which the neonate may compensate for an in­

crease in intracranial volume is by separation of his cranial sutures 

as observed by a progressive increase in head circumference. 
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Langfitt (1968) and Miller (1975) have identified compensatory 

mechanisms which allow for an increase in volume in any of the intra­

cranial compartments before ICP begins to rise. These compensatory 

mechanisms consist of: 1) decreased formation of cerebrospinal fluid, 

2) increased reabsorption of cerebrospinal fluid, 3) displacement of 

brain tissue water, and 4) reduction in cerebral intravascular volume 

by vasoconstriction. The degree of compensation or stretch within the 

system is referred to as compliance. Specifically, compliance express­

es the ratio of change in volume which occurs secondary to change in 

pressure. Elastance, the inverse of compliance, refers to the change 

in pressure secondary to a change in volume (Langfitt, 1968; Miller, 

1975). The ability to compensate for change in ICP is determined by 

the volume and rate of displacement of cerebrospinal fluid, intra­

vascular blood, and/or brain tissue. Elastance is influenced by the 

rate at which volume expands within the intracranial cavity, so that a 

rapid increase of a given volume will produce a greater rise in ICP 

than if the volume change is slow. Because the cerebrospinal and 

intravascular volume compensating mechanisms are finite, any increase 

in volume that exceeds what can be displaced eventually exhausts the 

body's compensatory capacity producing a pronounced rise in ICP. Any 

additional volume at this point would produce a disproportionate and 

further dramatic rise in ICP. 

The major risk of increased ICP is related to decreased cerebral 

perfusion which limits the availability of substrates needed to sustain 

cerebral metabolism and oxygenation resulting in ischemia and impaired 

cerebral function. Cerebral blood flow is primarily influenced by 
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arterial blood pressure (BP), partial pressure of carbon dioxide 

(Paco
2
), and partial pressure of oxygen (Pa0

2
). Cerebral blood flow is 

maintained through the process of autoregulation. Autoregulation re­

fers to the change in the diameter of the resistance vessels in order 

to maintain continuous (relatively constant) cerebral blood flow over a 

broad range of perfusion pressures (Langfitt, 1968; Kuchinsky & Wahl, 

1978). Autoregulation has been shown to be present in the brain of 

fetal and neonatal sheep (Purves & James, 1969) and in neonatal dogs 

(Hernandez, Brennan and Bowman, 1980). The exact mechanisms underlying 

autoregulation in the premature infant are currently not entirely un­

derstood. Lou, Lassen and Friis-Hansen (1979) noted that in premature 

infants cerebral blood flow appears to be passive to pressure such that 

cerebral blood flow does not remain constant between a range of arte­

rial pressures as it does in the older infant or adult, but instead is 

labile in response to changes in systemic blood pressure. A possible 

explanation for the premature infant's lack of autoregulation was 

proposed by Haruda and Blanc (1981). They found that the walls of 

parenchymal cerebral arteries and veins in infants less than 30 weeks 

gestation were composed only of a layer of endothelium and lacked the 

smooth muscle, elastin and collagen necessary to maintain autoregu­

latory control of blood flow through vasoconstriction and vasodil­

itation. Bada, Chua, Salmon and Hajjar (1979) recorded ICP during 

exchange transfusion in eight infants. Seven or eight infants were 

premature weighing less than 2500 grams. One infant was term and 

weighed 4050 grams. Data were reported on five of eight infants who 

had simultaneous mean arterial pressures (MAP) recorded. In all five 
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cases both ICP and MAP decreased during blood withdrawal and increased 

with infusion. A significant positive correlation (P~0.001) was noted 

between ICP and MAP and the duration of blood withdrawal, such that 

when blood was withdrawn over a longer period of time ICP and MAP 

measurements were higher. Also noted was a significant negative cor­

relation (P~0.001) between ICP and MAP and duration of infusion time. 

This indicates with prolonged infusion time the ICP and MAP values are 

lower. Bada and associates state that the changes in MAP and ICP which 

corresponded to withdrawal and infusion of blood during exchange 

transfusion reflect alterations in circulating blood volume. These 

findings suggest a direct relationship between MAP and cerebral blood 

flow, and support Lou and colleagues (1979) hypothesis of impaired 

autoregulation in the preterm infant. 

Cerebral blood flow may also be influenced by local metabolic 

factors that are vasoactive. Variations in arterial Paco
2 

can produce 

changes in cerebral blood flow because elevated Paco
2 

is a potent 

stimulus to vasodilitation. Purves and James (1969) noted that cere­

bral blood flow increased approximately 7% for each mmHg that Paco
2 

was 

raised over 40 mmHg. Rahilly (1980) using jugular venous occlusion 

plethysmography found significant increases in cerebral blood flow in 

seven term infants given 2% co2 and air to breathe. Changes in Pao2 

effects cerebral blood flow but to a lesser extent than alterations in 

Paco
2

• In studies on fetal sheep, Purves and James (1969) demonstrated 

that a reduction of maternal Pao2 by 7 - 14 mmHg at a constant Paco2 

caused significant increases in cerebral blood flow through vaso­

dilitation. Rahilly (1980) noted significant decreases in cerebral 
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blood flow in eight infants breathing a mixture of 100% o
2 

and air. 

The cerebral vessels are also sensitive to alterations in pH. 

Bucciarelli and Eitzman (1979) have shown in perinatal goats that 

acidemia produced an increase in cerebral blood flow. Based on these 

studies regulation of cerebral blood flow appears to be similar in both 

term and preterm animals. In summary, cerebral blood flow varies 

directly with Paco
2 

and pH levels, inversely with Pa0
2 

values, and may 

be passive to changes in arterial blood pressure in the premature 

infant. 

As ICP increases a critical level may be attained at which 

further elevation is associated with decreased cerebral blood flow. 

This may be explained by the loss of autoregulatory mechanisms and 

compression of cerebral veins, thereby, obstructing flow from the 

venous sinuses (Shapiro, Langfitt & Weinstein, 1966; Osterholm, 1970). 

The resultant decrease in venous sinus drainage produces a back 

pressure which is projected to the cerebral arterial system causing a 

further decrease of cerebral blood flow. As blood flow progressively 

slows, cerebral ischemia occurs. Ischemia exacerbates the rise in 

intracranial pressure eventually leading to a total cessation of 

cerebral perfusion. 

Patients with increased ICP demonstrate clinical manifestations 

which reflect dysfunction of the deep brain structures. Alterations in 

cardio-respiratory function are due to axial distortion of the brain 

stem affecting neuronal cell conductivity of the pontomedullary center 

which is responsible for respiratory and cardiovascular control 

(Thompson & Malina, 1959). Alterations in consciousness appear to 
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result from dysfunction of the ascending reticular activating and 

limbic systems (Plum & Posner, 1980). Unfortunately, these are usually 

late signs reflective of a decompensatory state, and if immediate ·ac­

tion is not undertaken to lower and control ICP death will ensue. 

The dynamic changes which occur within the individual, in order 

to maintain intracranial pressure within a normal range of values, can 

be viewed within a nursing framework of adaptation. Adaptation is an 

active and dynamic process which encompasses a range of protective 

adjustments enacted by the individual in an attempt to maintain equi­

librium between oneself and one's internal and external environments. 

These protective adjustments may be physiologic, psychologic and/or 

sociocultural. 

Adaptation theory has been utilized by Roy (1970, 1971, 1973, 

1976) in a systems model as a basis for a conceptual framework for 

nursing. Roy views man holistically and in constant interaction with a 

changing environment. Roy's Adaptation Model recognizes man as a 

biopsychosocial being who must respond to both internal and external 

environmental changes. Adaptation varies from person to person and 

changes over time within the individual. The level of adaptation, 

according to Roy, is determined by the individual's ability to respond 

to changing environmental stimuli. In this framework the environmental 

stimuli are identified as focal stimuli, which is the particular factor 

or situation that has changed; contextual stimuli, which comprises all 

internal and external stimuli of the current situation that the person 

is able to identify and measure; and residual stimuli which consists of 

the inherent characteristics of the individual that are applicable to 
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that particular situation. According to Roy's Model adaptation occurs 

within a certain limit which is designated as the adaptation zone. If 

the focal, contextual and residual stimuli all fall within this zone a 

positive response to that particular situation will occur. If the 

above environmental stimuli fall outside the zone a negative response 

or maladaptation occurs. For Roy, adaptation is a positive response to 

stimuli that maintains or strengthens the integrity of the individual. 

Roy conceptualizes adaptation as occurring in one or more of four 

modes; the physiological mode, the self-concept mode, the role function 

mode and/or the interdependence mode. 

In this study, the premature infant as a biopsychosocial being 

has been observed to determine the effect of selected body position 

changes upon intracranial pressure. According to Roy an adaptive 

response within the physiologic mode would be reflected in the ability 

of the infant to adjust to changing environmental stimuli, such as, 

head rotation and body position change by innate compensatory phys­

iological mechanisms, and maintain homeostasis with minimal changes in 

intracranial pressure. Failure of these compensatory mechanisms 

results in elevated intracranial pressure. Within Roy's nursing 

framework, the goal of nursing practice is to manipulate internal 

and/or external environmental stimuli so as to facilitate the patient's 

adaptation, thereby maintaining ICP within an accepted range of values. 

This study will investigate the effects of nursing care activities 

(i.e., head rotation and body positioning) on the ICP of neonates. 



CHAPTER II 

REVIEW OF THE LITERATURE 

Only since 1975 have medical and nursing clinical studies fo­

cused on the effect of patient care activities on ICP. Mitchell and 

Mauss (1978), in a descriptive pilot study, observed continuously for 

up to twenty-four hours eight patients, ages 21-76, to determine what 

patient-nurse activities were associated with transient or sustained 

rises in ICP. These patients were monitored by a pressure controlled 

external ventricular drainage system. The activities associated with 

the patient which resulted in elevations in ICP were: rapid eye move­

ment (REM), sleep, painful procedures, tracheal suctioning, coughing, 

chewing, use of bedpan, conversation about the patient's condition, 

and position changes in bed. The investigators cited three activities 

that were not associated with changes in the patient's ICP; manipu­

lation of patient tubing, bathing, and passive range of motion ex­

ercises. Cooper and Hulme (1966) observed elevations in ICP asso­

ciated with REM sleep in patients with head trauma. It is believed 

that elevations in ICP are produced as a result of increased cerebral 

blood flow which occurs during REM sleep (Reivich, Isaacs, & Evarts, 

1967). Increased cerebral blood flow is due to vasodilitation which 

is controlled by neuronal and humoral mechanisms, such as variations 

in autonomic tone and alterations in the levels of Pao2 and PaC02 

(Aserinsky, 1965; Meyer, Teraura, & Sakamoto, 1971). 

13 
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Further documentation on the effects of various sleep stages on 

ICP in children was provided by DiRocco, MeLone, Shimoji and Raimondi 

(1975). Using an extra ventricular catheter connected to a pressure 

transducer, ICP was continuously monitored for 24 hours in five hydro­

cephalic children ranging in age from 7 weeks to 8 years. Intra­

cranial pressure values for all five patients were within the normal 

range of 1 - 10 mmHg during quiet wakefulness and rose above baseline 

levels during sleep. In three of five patients, correlations between 

sleep phase and pattern of ICP were obtained using an electroenceph­

alogram. In these patients elevations in ICP were noted during the 

first stage of sleep and became more pronounced during the slow wave 

stage. Greatest increases in pressure were recorded during REM sleep 

at which time ICP rose in excess of five to seven times the baseline 

levels recorded during wakefulness. Although this study is limited, 

due to the small sample size, it clinically documents and supports the 

previous findings of Cooper and Hulme (1966). 

Several investigators have reported that body positions were 

associated with changes in ICP. For instance, Nornes and Magnaes 

(1971) recorded supratentorial epidural pressure in fourteen patients 

ages one to 62 years during posterior fossa surgery. They found that 

neck flexion, extreme hip flexion and the prone position consistently 

produced elevations in epidural pressure readings. In this study 

elevated ICP was significantly reduced by reducing the degree of hip 

or neck flexion, or supporting the shoulders and pelvis with padding 

while in a prone position. Generalization of these findings is 

limited due to the specialized positions used during posterior fossa 
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surgery and the possible effects of anesthetic agents on ICP. Raju, 

Vidyasagar, Torres, Grundy and Bennett (1980) monitored ICP, using a 

Ladd Monitor, during intubation and anesthesia in ten infants from 

seven days to 10 months old. A mixture of halothane, nitrous oxide 

and oxygen was the anesthetic agent used for all infants. Four 

infants were intubated while awake and five infants were intubated 

after administration of curare. The mean pre-anesthetic ICP was 16.5 

cmH2o for both groups with a range of 8 - 25 cmH2o. Infants under­

going intubation while awake had a significant increase in mean ICP to 

89.7 cmH2o. Intracranial pressure in infants intubated after admin­

istration of curare rose to a mean of 33.6 cmH2o which was higher than 

baseline ICP but less than infants intubated in an awake state. The 

mean ICP throughout anesthesia stabilized at 27.1 cmH20 for all in­

fants and decreased to a mean of 14.3 cmH
2
o following termination of 

anesthesia and extubation in six of 10 infants. The authors state 

that the neck extension required for intubation may result in elevated 

ICP through venous obstruction. Another factor responsible for ele­

vated ICP, particularly during awake intubation is the effect of 

valsalva maneuvers encountered in a struggling child. However, the 

primary reason cited for increased ICP during intubation was the 

cerebral vasodilitation caused by the anesthetic agents used. A 

secondary effect was attributed to the depressant myocardial effects 

of the anesthetics resulting in increased venous pressure and possibly 

decreased internal jugular venous outflow. The findings of this study 

suggest that the causes of elevated ICP during intubation and anes­

thesia are multifactorial. 
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Shalit and Umansky (1977) monitored ICP in 21 comatose patients 

with brain edema. Intracranial pressure was measured by both intra­

ventricular catheter and subdural transducer in different patients. 

Their findings demonstrated that routine bedside procedures, (i.e., 

body position change, suctioning, head rotation, flexion or extension) 

often resulted in significant changes in ICP. The effect of changes 

in body position was studied 35 times in 11 of these patients. In 

seven of these 11 patients every change in body position was accom­

panied by either a significant increase or decrease in ICP. In the 

remaining four patients body position changes reportedly did not 

markedly affect ICP. The authors failed to state which specific body 

positions led to either increases or decreases in ICP, or to what 

level ICP was altered by these maneuvers. Intracranial pressure was 

noted to both increase and decrease following 28 observations of 

tracheal suctioning in seven patients. Decreases in pressure were 

noted to occur in those patients who had elevated pC02 levels prior to 

suctioning. Coughing, which followed suctioning in all patients, was 

noted to produce elevations in ICP. Consistency of patient response 

along with magnitude of pressure change were not reported. These 

findings support the early observations of Lundberg (1960) who 

reported that suctioning along with body position changes, precip­

itated increases in ventricular fluid pressure. 

In the Shalit (1977) study, rotation of the head to right or 

left, and head flexion or extension, produced greater elevations in 

ICP than manual compression of both jugular veins in the supine 

position in 13 patients. With head rotation to either side, it was 
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stated that the ICP would return to baseline level if the body was 

rotated in the same direction. Again the authors failed to give 

numerical values for comparison. 

Becht (1920) was the first to show that ligation of the jugular 

veins resulted in an increase in ICP that was proportional to the 

degree of occlusion. This increase in ICP was postulated as occurring 

secondary to the accumulation of venous blood within the cranial 

cavity. He suggested that position changes of the head compressed the 

jugular veins in the neck impairing venous outflow, thereby causing a 

rise in ICP. Watson (1974) studied the effect of head rotation on the 

internal jugular vein using venographic studies in 60 infants and 

children with various cardiac anomalies undergoing cardiac cathe-

terization. His results indicated that rotation of the head to one 

side did not affect flow in the contralateral internal jugular vein. 

0 However, rotation of the head 45 caused narrowing of the middle third 

of the ipsilateral internal jugular vein in all cases. Rotation of 

0 the head 90 resulted in complete ipsilateral internal jugular vein 

occlusion in 41 of 60 children. 0 In 24 of 41 cases, 75 of head rota-

tion completely occluded ipsilateral internal jugular flow, and in 15 

of those 24 cases only 60° of head rotation was required to produce 

the same effect. 

Bell, Lorig and Weiss (1975) in their nursing observations 

reported that if the patient's head was not in line with the rest of 

the body, elevation in ICP would occur. This was hypothesized as the 

result of sternomastoid muscular compression of the internal jugular 

vein with resultant decrease in venous outflow. Hulme and Cooper 
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(1976) investigated changes in ICP associated with neck flexion, head 

rotation to the right and left and bilateral jugular vein compression 

in 18 patients. Intracranial pressure was recorded using both an 

intraventricular fluid pressure and a subdural pressure monitor. In 

the 17 reported cases, maximum increases in pressure were found to be 

associated with neck flexion in six patients, bilateral jugular vein 

compression in seven and with head rotation to the right in four 

patients. Lipe and Mitchell (1980) investigated how body position 

changes and head rotation affect the internal jugular vein. With the 

use of Ultrasound, it was documented in 10 patients that head rotation 

of 90° to the right or left produced partial or total occlusion of the 

ipsilateral internal jugular vein. However, since manual jugular vein 

compression alone did not result in an immediate rise in ICP in the 

Shalit and Umansky (1977) study, the authors suggested a combination 

of venous and CSF cisternal outflow obstruction, and some yet unde­

fined factor which may be responsible for alterations in ICP with head 

rotation. The effect of head position change on ICP has also been 

reported in the pediatric population. Vidyasagar and Raju (1977) 

monitored the effect of head position on ICP using the Ladd Monitor in 

three groups of infants. Group one consisted of 30 healthy term 

infants with a mean gestational age of 39.7 weeks. The second group 

consisted of seven healthy preterm infants with a mean gestational age 

of 32.5 weeks, and the third group consisted of 15 sick preterm 

infants whose mean gestational age was 32.1 weeks. The major clinical 

diagnosis for this last group was respiratory distress syndrome. The 

positions selected for evaluation were horizontal, head up, or head 
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down. The positions were achieved by raising or lowering the head of 

0 the bed 15 • In general, ICP showed rapid increases for all groups in 

the head down position, and decreases following elevation of the head 

of the bed to below baseline values obtained in the horizontal posi-

tion. However, no significant differences were found among the groups 

in the degree of ICP change when the head position was altered. In-

fants in Group III were noted to have higher values of ICP in both 

the horizontal and head up position as compared to infants in Groups I 

and II. Their higher ICP could reflect hypoxic changes which is often 

associated with varying degrees of respiratory distress. 

Goldberg, Joshi, Moscoso and Castillo (1983) also investigated 

the effect of head position in 26 neonates. These infants had a mean 

gestational age of 33 weeks, were less than or equal to 10 days of age 

and weighed less than 2500 grams. Intracranial pressure was measured 

using the Ladd Monitor in the following head positions: head turned 

to the right with bed horizontal, head turned to right with bed ele-

vated 30 degrees, head midline and bed horizontal, head midline and 

bed elevated 30 degrees. The results of this study showed that for 

the entire group the head midline position with either the bed hori-

zontal or elevated to 30 degrees resulted in lower ICP values than the 

position of head right with the bed horizontal or elevated 30 degrees. 

These differences were not statistically significant. It was also 

noted that elevating the head of the bed 30 degrees resulted in lower 

ICP readings when compared to each corresponding flat head position. 

These differences were not statistically significant when ICP values 

were less than 7 cmH2o. However, in infants whose baseline ICP values 
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were greater or equal to 7 cmH2o in either the head right with bed 

horizontal or the head midline with bed horizontal positions, elevating 

the head of the bed 30 degrees resulted in statistically significant 

decreases in ICP. Unfortunately, the authors failed to cite in how 

many instances this particular finding was noted. Higher ICP values in 

the head right position are explained as the result of obstructed 

cranial venous outflow due to neck vein compression and supports 

similar findings by Shalit and Umansky (1977), Hulme and Cooper (1976), 

and Lipe and Mitchell (1980). Elevating the head of the bed also 

promotes hydrostatic venous drainage. The authors cite this as a 

factor responsible for the lower ICP values found in the elevated head 

positions. 

According to Bell et al. (1975) ICP varies dynamically in 

response to respiratory patterns. Furuse, Ikeyama, Mabe, Hashuo, 

Kuchinwaki, Nakaya, Toyama, Tersoka, Nagai and Kageryama (1979) 

investigated the relationship between changes in respiratory pattern 

and ICP variations in seven postoperative brain tumor patients, ages 

27 to 64 years. Intracranial pressure was measured via the epidural 

route. Respiratory pattern was measured by an impedance pneumogram. 

Their findings showed that type A and B variations in ICP waves were 

closely related to changes in the respiratory pattern. Type A 

pressure waves consist of sudden increases in ICP from a slightly 

elevated baseline to pressures of 50 mmHg or greater. Intracranial 

pressure remains at this elevated level for 5 - 20 minutes and then 

suddenly decreases. Type A pressure waves signify decreased cerebral 

elastance. Type B pressure waves consist of steep ascent or descent 



21 

phases, and are often associated with respiratory cycles. Type B 

waves represent alterations in cerebral vasomotor tone. Patients with 

both A or B pressure waves may exhibit signs of neurologic deterio­

ration. In type A waves hypopnea and decreased tidal volume corres­

ponded to ICP rise; whereas, tachypnea and/or hyperpnea resulted in a 

decrease in ICP. In type B waves rhythmic oscillations in ICP were 

closely related to breathing patterns, particularly when respirations 

had clearly defined apneic and hyperpneic cycles. Increases in ICP 

corresponded to the apneic phase while reduction in ICP coincided with 

hyperpnea. These findings indicate that poor ventilation and/or 

inadequate oxygenation with subsequent respiratory acidosis stimulates 

cerebral vasodilitation in an attempt to increase the cerebral blood 

flow. The increased cerebral blood flow adds to the total intra­

cranial volume resulting in a further elevation of ICP. 

Apuzzo, Weiss, Petersons, Small, Kurze and Heiden (1977) studied 

the effect of positive and expiratory pressure (PEEP) ventilation on 

ICP in 25 adult patients with severe head trauma. Ten centimeters of 

PEEP was administered using a Puritan-Bennett Valve and MA-1 venti­

lator while ICP was measured using an intraventricular catheter. In­

tracranial volume pressure response was evaluated in all 25 patients 

to assess cerebral elastance. Twelve patients had normal values 

recorded for both baseline ICP and cerebral elastance. Administration 

of PEEP to these patients caused no change in ICP. Nine patients had 

normal baseline ICP along with increased cerebral elastance. Admin­

istration of PEEP to these patients resulted in a significant rise in 

ICP. The remaining four patients had an elevated baseline ICP along 
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with increased cerebral elastance. With the administration of PEEP 

three of the four patients had ICP that was double or greater than 

their baseline readings. One patient showed an increase in ICP from 

baseline, but this was not considered significant. It was also dem­

onstrated that six of the 12 patients who manifested a significant 

elevation in ICP during PEEP had an associated decrease in cerebral 

perfusion pressure below 60 mmHg. The authors suggest that cardio­

vascular changes such as increased venous pressure, decreased venous 

return and decreased cardiac output, which may occur as a result of 

increased positive intrathoracic pressure following PEEP adminis­

tration, may be partly responsible for elevations in ICP. 

Based on the reports previously noted, Mitchell, Ozuna and Lipe 

(1981), systematically evaluated the effects of eight nursing activ­

ities on 18 patients ages 21 to 72 years. Intracranial pressure was 

monitored using an external ventricular drain connected to a manom­

eter. Intracranial pressure was expressed in terms of ventricular 

fluid pressure. The eight nursing activities studied were flexion and 

extension of the hip and arm, head rotation to the right and left, and 

turning to four positions: supine to right lateral; right lateral to 

supine; supine to left lateral and left lateral to supine. No sig­

nificant change in ventricular fluid pressure was found after passive 

flexion or extension of the hip or arm. This concurs with the find­

ings of Mitchell and Mauss (1978) that passive range of motion (PROM) 

was not by itself associated with increases in ventricular fluid 

pressure. Increases in ventricular fluid pressure were noted only 

when PROM was performed with multiple activities within a short period 
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of time, however, this was not found to be statistically significant. 

Changes in body position produced increases in ventricular pressure 

for all turns except the supine to left lateral position. Ventricular 

fluid pressure values for the left lateral turn were found to be 

related to the patients' diagnostic category. Those patients with a 

subarachnoid hemorrhage had a mean decrease in ventricular fluid 

pressure, whereas, patients with posterior fossa lesions had a mean 

increase in ventricular fluid pressure. In general, changes in body 

position were consistent with the findings of Mitchell and Mauss 

(1978) and Shalit and Umansky (1977). Head rotation to the right was 

noted to produce greater increases in ventricular fluid pressure than 

head rotation to the left (Mitchell et al., 1981). Shalit and Umansky 

(1977) make no mention as to whether head rotation in one direction 

versus another produced a greater effect in ICP. Mitchell and her 

associates' (1981) findings regarding head rotation lend support to 

other investigators' postulations (Lipe & Mitchell, 1980; Watson, 

1974; Shalit & Umansky, 1977; Hulme & Cooper, 1976; Becht, 1920) that 

obstructed venous flow may be a contributing factor to the elevation 

in ICP. 

An interesting finding of the Mitchell et al. (1981) study was 

that the cumulative effect of nursing activities that were spaced 15 

minutes apart (arm extension, hip flexion, supine to right lateral 

turn and head rotation to the right and left) resulted in successively 

higher, although not significant, baseline values of ventricular fluid 

pressure. No cumulative effects were noted with those activities 

spaced one hour apart. In patients whose intracranial compliance is 
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already compromised, the standard nursing protocol of condensing many 

nursing activities into a shortened time frame in order to allow for 

longer rest periods may actually be deleterious to such patients based 

on these findings. More research on this issue is warranted. 

Bruya (1981) studied the effect of planned rest periods on ·rep 

in 20 adult patients ranging in age from 20 - 70 years. The patients 

were equally divided into two groups. In Group I the patients re-

ceived the routine nursing care of vital sign determination, respi-

ratory toilet and bed bath without a rest period between activities. 

Patients in Group II were allowed a 10 minute rest period between each 

activity during which there would be no interruptions from any hos-

pital personnel and extraneous noise would be controlled. Her find-

ings identified increases in ICP in both groups with suctioning, 

respiratory inflation and turning patients to their side to perform 

back hygiene. In Group II the anticipated decrease in ICP following 

planned rest did not occur. For this group ICP values increased 

during the 10 minute rest period from a mean high of 11.8 to 14.7 mmHg 

following determination of vital signs, and from 15 to 18.6 mmHg fol-

lowing the activities of respiratory inflation, suctioning and oral 

care. According to Bruya these findings suggest that a 10 minute rest 

period is an insufficient amount of time to allow ICP to return to 

baseline values and that rest as defined here may not actually rep-

resent rest to the patient. It was also noted in this study that ICP 

decreased during the 10 minute period following the bath. The pro-

posed reason for this decrease in ICP was due to the effect of 

0 returning the patient to a supine position from the 30 - 45 lateral 



position required to perform back care rather than the effect of a 

planned rest period. 
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Parsons and Wilson {1984) investigated the effect of six body 

position changes on the physiologic variables of heart rate {HR), mean 

arterial blood pressure {MABP), mean intracranial pressure {MICP) and 

cerebral perfusion pressure {CPP) in 18 patients ages five - 67 years 

with a diagnosis of severe closed head injury. Intracranial pressure 

was measured using a subarachnoid bolt connected to a pressure trans­

ducer. The MABP and HR were monitored using an arterial catheter and 

electrocardiographic leads respectively. These measuring devices were 

connected to a Hewlett-Packard monitoring system for the recording of 

data. Baseline measurements for the dependent variables of HR, MABP, 

MICP and CPP were recorded prior to position change for each patient. 

Immediately after a position change, the highest value for each vari­

able was recorded. Recovery values for the variables were again 

recorded one minute following the position change. All patients had 

baseline MICP's less than 15 mmHg and MABP's that were sufficient to 

support a CPP of greater than 50 mmHg prior to initiation of the 

study. In six of 18 patients turning from side to back with extension 

of lower extremities produced increases in all dependent variables, 

although significant values {p<.05) were found only for the MABP and 

the CPP. Values for all dependent variables decreased with MICP 

falling below baseline values at 1 minute postintervention. However, 

none of the dependent variables were significantly higher or lower 

than baseline readings. In 11 of 18 patients turning from a supine to 

side position with flexion of upper and lower extremities produced 
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significant increases (p<.05) in the HR, MABP, and MICP. One minute 

after intervention the HR and MABP were not significantly higher than 

baseline, whereas the MICP remained significantly elevated. Range of 

motion exercises to the upper and lower extremities in eight of 18 

patients showed significant increases for HR, MABP and CPP. At one 

minute following intervention only the MABP remained significantly 

higher than baseline values. Rotation of the head to the right or 

left in eight of 18 patients produced significant increases in MABP, 

MICP and CPP. All the dependent variables had returned to baseline 

values at one minute postintervention. In 12 of 18 patients elevating 

0 the head of the bed to 35 resulted in decreases for all dependent 

variables, but significant decreases (p<.05) were noted only for the 

MABP and MICP. One minute postintervention the MABP, MICP and CPP 

were significantly lower than the baseline values. Lowering the head 

0 0 of the bed from 35 - 0 produced significant increases in the HR, 

MABP, and MICP in 14 of 18 patients and remained significantly higher 

than baseline values at one minute postintervention. The CPP was not 

significantly altered by this position change. 

The authors demonstrated that although the specified position 

changes produced both significant increases and decreases in the 

dependent variables, these fluctuations were within a safe range of 

values as determined by the CPP consistently remaining greater than 50 

mmHg. This indicated that throughout the position changes blood flow 

to the brain was adequate. The authors further noted that even with 

wide fluctuations in HR and MABP, the MICP remained stable and did not 

fluctuate with the MABP in the majority of cases. This finding sug-
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gests that cerebrovascular autoregulatory mechanisms were functional 

for this particular group of patients. 

This study clearly supports previous findings on the effects of 

position changes on ICP. However, the authors have provided addi­

tional information on how other physiologic variables can be used to 

accurately assess cerebrovascular status and subsequently plan patient 

care. Perrin (1981) in a descriptive study observed 13 patients ages 

45 - 76 years for one hour, during a period of increased patient ac­

tivity, to identify other conditions or procedures within the pa­

tient's environment that were associated with changes in ICP. A Ladd 

Monitor inserted into the epidural space was used to monitor these 

patients. Significant increases in ICP were found to occur with the 

following conditions: functional touch defined as any physical 

stimuli given to the patient for the purpose of performing nursing 

care; painful touch which consisted of agents other than invasive 

procedures which may be perceived by the patient as pain producing 

(e.g., sternal rub, nail bed pressure); invasive procedures, environ­

mental noise, professional verbal stimuli, passive range of motion, 

spontaneous movement, and oral stimulation. Manual ventilation was 

found to produce the greatest changes in mean ICP readings. It was 

hypothesized that these findings may be secondary to variations in not 

only the amount, but pressure and time over which the oxygen is de­

livered during manual ventilation. Her findings support those of 

Apuzzo (1977). Other activities noted by Perrin (1981) which 

increased ICP included turning which is consistent with Mitchell et 

al. (1981) and Shalit and Umansky (1977); neck hyperextension which 
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supported the findings of Watson (1974), Hulme and Cooper (1976), and 

suctioning and coughing which are consistent with studies by Shalit 

and Umansky (1977), and Mitchell and Mauss (1978). Those activities 

found to result in significant decreases in ICP included personal 

verbal stimuli and elevation of the head of the bed (Perrin, 1981). 

Specific degree of the head of the bed elevation was not identified in 

the Perrin (1981) study. The activity found to produce increases 

and/or decreases in ICP was therapeutic touch (i.e., any non-painful 

stimuli given to the patient by the nurse, family or friend that may 

be perceived by the patient as soothing). According to Perrin (1981) 

therapeutic touch showed the least amount of change in ICP readings as 

compared to the other categories. The studies cited indicate a 

relationship between selected activities within the environment of the 

patient and alterations in ICP. 

Since only a limited number of studies have been done in the 

neonatal population, and fewer with premature infants, data on the 

effect of patient care activities on variations in ICP are scarce. 

Therefore, an investigation into the effect of body position change 

and head rotation and its affect on ICP in premature infants would aid 

in expanding the current data base. As more information is attained 

recommendations for future study of how nurses can facilitate the 

neurologic adaptation of premature infants will be identified. It is 

hoped that the information obtained will provide guidelines for the 

nursing management of these patients and stimulate further research in 

this area. 



CHAPTER III 

METHODOLOGY 

Research Design 

A modified replication of the Mitchell et al. (1981) study which 

investigated the relationship of head rotation, turning and passive 

range of body motion on ICP readings in the adult population was used. 

A quasi-experimental design was used to determine variations in ICP in 

premature infants during head rotation to the right and left, also 

turning the infant from supine to the right lateral position, right 

lateral to the supine position, supine to the left lateral position, 

and left lateral to the supine position. The six activities listed 

above were performed while maintaining the patient in a horizontal 

position. This study was conducted between 1000 and 1600 hours in 

order to guard against circadian variations (Tom & Lanuza, 1976) in 

physiological functions (e.g., heart rate, respirations, and blood 

pressure), which may affect ICP. In order to control for the possible 

effect of infant activity level on ICP, infants were categorized into 

one of six activity states (Appendix A) identified by Wolf (1959). 

Definition of Terms 

1. Premature Infant: Any infant with a gestational age of 28 to 37 

weeks and birth weight of 900 - 2500 grams. The infant must 

be in a Neonatal Intensive Care Unit. 

2. Ladd Monitor: A fiber optic pressure sensitive device applied to 
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the anterior fontanel of the infant for the purpose of 

measuring variations in ICP. 
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3. Turning: A change in the orientation of the patient's body to the 

right, left or supine horizontal position. 

4. Head Rotation: A rotation of the patient's head position to the 

right or left while the patient was in the supine horizontal 

position. 

5. Intracranial Pressure (ICP): Force exerted by the brain tissue, 

cerebrospinal fluid or blood within the skull. The normal 

ICP in the preterm infant is 1 - 7 mmHg. In this study a 

measure of ICP was obtained by means of the Ladd Monitor. 

6. Infant State: Wolf's classification of a group or pattern of 

behaviors regularly occurring together which aid in iden­

tifying the infant's degree of arousal at any given time. 

7. Positive End-Expiratory Pressure (PEEP): A method of controlled 

ventilation that prevents aveolar collapse by providing 

increased end-expiratory transpulmonary pressure. 

8. Fractional Inspired Oxygen (FiO): Refers to the measurable amount 

of oxygen being delivered to a patient. 

Assumptions 

The assumption basic to this study was that the Ladd Monitor is a 

valid and reliable tool for measuring ICP (Von Wild & Porksen, 1980; 

Raju, Vidyasagar & Rapazafiratou, 1980; Meyerberg, York, Chaplin & 

Gregory, 1980; Vidyasagar & Raju, 1977). 
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Limitations 

In this study the lack of randomization was a limiting factor but 

for ethical considerations this was unavoidable. Although a control 

group was not used, each infant served as his/her own control. Random 

sequencing of activities also would have been preferred, but a set 

order of activities was chosen because it was most compatible with the 

Neonatal Intensive Care Unit's routine. Another possible limitation of 

this study involved the interaction between the researchers and subject 

which may have altered the subject's behavior. Characteristics of the 

patient population were dependent on the infants admitted to the Neo­

natal Intensive Care Unit. Consequently, generalizability of the 

findings are limited. 

Setting 

The setting was a Neonatal Intensive Care Unit at a large metro­

politan mid-western medical center. The intensive care unit was a 29 

bed, level III perinatal nursery. Infants were placed in open radiant 

warmers or incubators which were located along the periphery of one 

large room and on either side of a central dividing structure. The 

Nursing Station, Supply Area and Respiratory Therapy Station were 

adjacent to the Neonatal Intensive Care Unit. The Ladd Monitor was 

placed on a portable cart and positioned at the head of the bed. 

Sample Criteria 

A non-probability convenience sample was used for this study. 

Infants who met the following criteria were eligible for participation 

in the study. 
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1. A gestational age of 28 - 37 weeks as determined by standard 

obstetric history and Dubowitz physical assessment as con­

firmed by a physician. 

2. A birth weight of 900 - 2500 grams. 

3. Infants whose head circumference, total body length and 

weight were appropriate for gestational age as determined by 

chart records. 

4. Birth age equal to or greater than 72 hours. 

5. No congenital anomalies of the central nervous system or 

other major organ systems. 

6. No chromosomal abnormalities. 

7. No infants requiring shunting of their cerebral ventricles or 

external ventricular drainage. 

8. No known skin diseases or lesions from adhesives which might 

have interfered with the application of the Ladd Monitor. 

9. No known active infections. 

10. Stable respiratory function as defined by: 

a) Fi02 not greater than 30~. 

b) Breathing spontaneously or requiring no more than 

60 mechanical breaths per minute at a peak pressure 

of no greater than 14 em H2o and a PEEP of no more 

than 4 em H20). 

c) No more than a 20~ change in Fi02 , respiratory 

rate, peak pressure or PEEP within the 24 hours 

preceding the study. 

d) Absence of chest tubes. 



e) Arterial capillary or trancutaneous blood gases 

within accepted normal ranges. 
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f) No more than two apenic episodes associated with 

bradycardia (heart rate less than 100 beats per 

minute) for the eight hours period preceding the 

study. 

11. Stable cardiovascular function as defined by: 

a) Systolic blood pressure not less than 50 mmHg. 

b) Apical pulse rate between 120 and 170 beats per 

minute. 

c) No known congenital heart diseases, congestive 

heart failure, or persistent fetal pulmonary 

hypertension requiring treatment with surgery or 

medications such as: diuretics, Digoxin and 

Indomethacin. 

12. No known metabolic problems as defined by: 

a) Normal temperature for the 12 hours preceding the 

study. 

b) Weight changes not exceeding an increase or 

decrease of 1 - 2% per day over the preceding 48 

hours. 

c) Normal urine output of 1.5- 4 cc I Kg I hr over 

the preceding 24 hours. 

d) If measured, normal serum values for sodium, 

potassium, glucose, calcium, magnesium, creati­

nine, blood urea nitrogen. 
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13. No infants of diabetic mothers. 

14. Infants were excluded if they or their mothers (if infant is 

breast fed or less than 7 days old) were receiving any medi­

cations known to affect ICP, blood pressure, intrathoracic 

pressure, central venous pressure or body fluid compart­

ments, such as anti-hypertensive agents, pressor drugs, 

sedative-hynotics or neuromuscular blockers. If the infants 

received IV fluids, total parenteral nutrition, vitamin 

supplements, electrolytes, antibiotics and theophylline they 

were included in the study. 

15. Infants who were cared for in an isolette, open radiant 

warmer or crib were included in the study. 

16. Consent for inclusion in study by a parent or legal guardian. 

17. The primary physician and/or neonatologist, head nurse or 

clinical nurse specialist and the infant's primary nurse were 

consulted prior to including the infants in the study. 

Discussion of Sample Criteria 

During the initial phase after birth the premature infant under­

goes changes in several physiologic parameters that may produce alter­

ations in ICP which may not be directly related to simultaneous nursing 

care interventions. These physiologic parameters include changes in 

blood pressure, venous pressure, intrathoracic pressure, partial 

pressure of carbon dioxide (PaC02), partial pressure of oxygen (Pa02), 

acid-base balance, temperature, electrolyte balance, fluid compartment 

size, fetal-neonatal circulatory adaptations, blood volume and hemo-
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globin content. The aim of the selection criteria was to identify a 

patient population in which the above mentioned physiologic parameters 

were considered stable. 

Requirements for defined ranges for gestational age, birth 

weight, along with body measurements which were appropriate for 

gestational age were chosen to specifically define a segment of the 

premature infant population under investigation who are at greatest 

risk for developing intraventricular hemorrhage and subsequent ele­

vation of ICP. A birth age of 72 hours or greater was chosen to insure 

that infants had successfully completed their transitional period, had 

adjusted to their environmental surroundings and were in a stable con­

dition. Infants with chromosomal or congenital abnormalities were 

excluded as these infants were not representative of the normal pre­

mature infant. Infants with neurologic disorders requiring shunting of 

their ventricles or external ventricular drainage were excluded as 

these infants had alterations in the normal flow and reabsorption of 

cerebrospinal fluid. Infants with active infections were excluded due 

to their possible unstable condition and to avoid cross contamination. 

Infants with unstable respiratory and metabolic states were excluded 

due to their labile state and the effects of altered Pao2 , Paco2 , and 

acid-base balance on ICP. Infants with heart disease were excluded 

because of abnormal structural and functional alterations in their 

circulatory system which may affect ICP in those infants with deficient 

cerebral autoregulatory control. Infants of diabetic mothers were 

excluded because of the difficulty in assessing gestational age and 

their potentially unstable metabolic state. Infants receiving any 
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medications known to affect intracranial pressure, blood pressure, 

intrathoracic pressure, central venous pressure or body fluid com­

partment size were excluded due to the direct or indirect action these 

agents may have on ICP. 

Protection of Human Subjects 

This proposal was approved by the Institutional Review Board 

(IRB) of the hospital in which this study was performed. The medical 

diagnostic workup, treatment, daily care, monitoring and outcome of the 

infant was not altered, impeded or necessarily improved by partici­

pation in this study. No known pain, discomfort or deleterious ef­

fects, both physically and psychologically, were rendered. Patient 

privacy and confidentiality were ensured by coding the data. All 

patients and their families participating in this study remained anon­

ymous. As required by the IRB, the Parent or Legal Guardian was asked 

to complete the Consent Form (Appendix B). 

Although patients- participating in this study did not benefit 

directly from their participation, information obtained from this study 

may be used to meet future patients' needs. The findings of this study 

may also serve as an additional data base to be utilized for the devel­

opment of guidelines in Nursing Management of premature neonatal pa­

tients. 

Techniques for Data Collection 

Instrument Selection 

The Ladd Fiber Optic Pressure Monitor is an automatic system 

designed for safe and accurate monitoring of ICP. This monitor has 
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been in wide use since receiving Food and Drug Administration approval 

in 1976. The clinical value of this fiber optic method of measuring 

ICP has been documented for both premature and term infants by Von 

Wild and Porksen (1980), Raju et al. (1980), Hill and Volpe (1981), 

Meyerberg et al. (1980), and Bada (1983). 

The Ladd Monitor consists of a sensor, a monitor and a recorder. 

The sensor consists of a mirror mounted on a pressure sensitive dia­

phragm, three fiber optic cables and a pneumatic tube. Light trans­

mitted through the light source fiber is reflected by the mirror to the 

two receptor fibers. When the mirror is in the neutral position each 

receptor fiber receives the same amount of light. A change in pressure 

acting against the diaphragm causes the mirror to move from the neutral 

position. The monitor contains a photoelectric detector that compares 

the amount of light returned by the two receptor fibers. Differences 

in light intensity causes the detector to activate a bellows which in­

creases or decreases the air pressure inside the sensor to match the 

external pressure, thus returning the diaphragm and mirror to the 

neutral position. A pressure transducer in the bellows measures the 

air pressure applied to the sensor and this value is displayed on the 

digital readout of the monitor. The technical specifications for the 

Ladd Monitor are listed in Appendix C. 

The Ladd Monitor used for this study was obtained from Ladd 

Research Industries, Inc. located in Burlington, Vermont. Prior to the 

initiation of the study the Ladd Monitor passed inspection from the 

Biomedical Electrical Engineering Department of the Medical Center in 

which the study was conducted. Insurance coverage for loss, damage, 
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tries, Inc. 

Application of the Monitor 
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The method used to apply the Ladd Monitor required securing a 

small fiber optic sensor to the skin of the anterior fontanel with a 

soft and compliant self-adhesive foam material such as Reston. In 

infants with abundant hair it was necessary to shave a small portion of 

hair over the anterior fontanel prior to application of the monitor. 

To insure uniform application of the Ladd Monitor the principal 

investigator applied the monitor using the two step technique described 

by Hill and Volpe (1981). In step one, half of the self-adhesive foam 

material was applied to the infant's scalp; then, under direct vision 

the fiber optic sensor was gently applied to the skin and manually held 

in place while the ICP reading on the monitor was recorded. In step 

two, the remaining half of the self-adhesive foam material was applied 

to the infant's scalp and another ICP reading was recorded. Correct 

application of the monitor was determined by obtaining identical ICP 

readings with the fiber optic sensor secured by the self-adhesive foam 

material, as in step two, and with the sensor manually applied to the 

anterior fontanel as in step one. 

Procedure 

The same order of activity occurred in all patients: head 

rotation to right and left, turning from the supine to right lateral 

position, right lateral to supine position, supine to left lateral 

position, left lateral to supine position. These procedures were 
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performed with the infant in a horizontal position. One research 

assistant performed all of the activities to decrease the amount of 

variability in the performance of these activities. The data which 

were collected by the principal investigator of this study, were re-

corded from the digital readout of ICP every 15 seconds for 5 minutes 

before and after each activity was performed. The length of time re-

quired to perform each activity was 15 seconds as determined by a stop-

watch. Blood pressure, pulse rate, and respiration rate were obtained 

at the beginning and end of the data collection period for each sub-

ject. The following time sequence for data collection was utilized. 

Rest 

5 Minutes 

Data 
Collection 
5 Minutes 

Activity 
15 Seconds 

Data 
Collection 
5 Minutes 

Rest 

5 Minutes 

The duration of the study was approximately two hours and conducted 

between 1000 and 1600 hours. An example of the data collection form 

utilized for each activity is in Appendix D. An example of the patient 

profile used for recording demographic data is in Appendix E. 

Reliability of Observations 

The principal investigator was the only person who applied the 

monitor and collected the data. The principal investigator was in-

structed by a representative of the Ladd Research Industries, Inc. on 

how to read and calibrate the Ladd Monitor. Reliability coefficients 

of her accuracy in recording were .9. 

Statistical Anaylsis 

Descriptive statistics were utilized to describe the population. 

Frequency tables were used to analyze distribution with regard to age, 
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sex, and medical diagnosis. Inferential statistics were used to ana­

lyze the data. The mean, standard deviation (SD), variance and stan­

dard error of the mean (SEM) were computed for every 15 seconds for 5 

minutes prior to the selected position change (preintervention meas­

urements) and again for 5 minutes following that position change 

(postintervention measurements). An analysis of variance for repeated 

measures (ANOVA) was used to analyze the data with P~.05 indicating 

statistical significance. 



CHAPTER IV 

RESULTS 

Demographic and Physical Characteristics 

As shown in Table 1, thirteen neonates with mean~ SEM gesta-

tional age of 31.4 ~ .5 weeks (range 28- 35 weeks) and a mean birth 

weight of 1521 ~ 97 grams (range 900 - 2100 grams) were included in 

this study. There were eight white male, four white female and one 

black female infants. The mean Apgar scores at 1 and 5 minutes were 

4.9 ~ .6 (range 1 - 8) and 7.6 ~ .3 (range 6- 9) respectively. All 

infants were average for gestational age. All of the neonates were 

premature (Table 2). Other additional clinical diagnosis listed in 

their charts included respiratory distress syndrome (92%) I hyaline 

membrane disease (30%). 

At the time of data collection (Table 2) the corrected mean age 

and weight of the infants were 34.77 ~ .4 weeks (range 33 - 37 weeks) 

and 1755.38 ~ 66.0 grams (range 1420- 2330 grams). The apical pulse 

rate (range 148- 170), respiration rate (range 48- 60), blood 

0 pressure (range 88- 78), and temperature (range 37.0- 37.5 C. rectal) 
62 54 

of each infant were within normal limits. All of the infants were on 

room air and breathing without ventilatory assistance. All infants 

were on 2 to 3 hour feedings with Dextrostix readings of 45 mg/DL to 90 

mg/DL and received daily supplements of multivitamins. Four infants 

received Theophylline as medical management for their respiratory 
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TABLE 1 
DEMOGRAPHIC DATA AT TIME OF GESTATION 

Code Gestational 
Number Sex Race Age Weight Apgar Scores 

(weeks) (grams) min. 5 min. 

1 Male White 32 1180 3 6 

2 Female Black 31 1945 4 7 

3 Male White 30 1300 6 9 

4 Male White 30 1260 4 6 

5 Male White 28 900 1 7 

6 Female White 35 1500 4 8 

7 Male White 33 1760 8 9 

8 Male White 33 1670 8 9 

9 Male White 32 1720 4 8 

10 Male White 32 1740 8 8 

11 Female White 28 1000 3 7 

12 Female White 32 2100 6 8 

13 Female White _E 1700 4 1 
Mean + SEM 31.4.! .5 1521 .! 97 4.9.! .6 7.6.! .3 

-"= 
f\) 



TABLE 2 
DEMOGRAPHIC DATA AT TIME OF DATA COLLECTION 

Code Corrected Age Weight Activity State Clinical Diagnosis 
Number (weeks) (grams) Wolf's Stages 

1 35 1460 2 Prematurity/RDS 

2 33 1760 2 Prematurity/RDS 

3 33 1740 2 Prematurity/RDS/HMD 

4 37 2330 Prematurity /RDS 

5 37 1420 2 Prematurity/RDS 

6 36 1490 2 Prematurity/RDS 

7 34 1640 2 Prematurity/RDS 

8 35 1660 1 Prematurity/RDS/HMD 

9 34 1770 2 Prematurity/RDS/HMD 

10 34 1790 3 Prematurity/RDS/HMD 

11 35 1800 Prematurity/RDS 

12 33 2050 3 Prematurity 

13 36 1910 2 Prematurity/RDS 

Mean + SEM 34.8 + .4 1755 :t 66 

.::: 
w 
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disease. Infants were categorized into three of six activity states 

identified by Wolf (1959) on the basis of observations made during the 

study (Appendix A). Eight infants were in stage two or active sleep, 

three infants were in stage one or quiet sleep, and two infants were in 

stage three or a drowsy state. 

Data Presentation 

Position 1 

Position 1 involved rotation of the infant's head to the right 

while the infant was in the supine, horizontal position. During the 

first 5 minutes of data collection (preintervention), the mean+ SEM 

ICP for the entire group was noted to vary between a high of 4.0 ~ .6 

mmHg to a low of 3.4 ~ .6 mmHg (Figure 1). An ANOVA for repeated 

measures showed no significant (F (19, 240) = .09, p>.05) variation in 

ICP over time within the preintervention period. After the infant's 

head was turned to the right, the mean ICP increased significantly 

(p<.05) from 3.4 ~ .6 mmHg to 5.9 ~ .8 mmHg. This increase in pressure 

represents a change of 75.7%. During the postintervention period the 

mean ICP varied between a high of 1.0 ~ .7 mmHg to a low of 5.9 ~ .8 

mmHg. During the postintervention period there appeared to be a slight 

increase in ICP over time, but an ANOVA for repeated measures showed it 

was not a significant (F (19, 240) = .13, p>.05) variation in ICP over 

time within the postintervention period. However, for the entire 10 

minute data collection period a significant (F (39, 480) = 4.35, p<.05) 

change in ICP occurred between the pre- and postintervention periods. 

A significant (F (1, 24) = 11.95, p<.05) change in ICP was also noted 
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Figure 1. Mean ICP + SEM (vertical line) of 13 premature infants during the pre- (0-5 minutes) 
and postintervention (5.15-10 minutes) periods. Head rotation to the right occurred 
immediately after the preintervention period (5 minutes). The preintervention period 
significantly (p<.05) differed from the postintervention period. 
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between the fifth minute preintervention and the first and fifth minute 

postintervention period. 

Position 2 

Position 2 involved rotation of the infant's head to the left 

while the patient was in a supine, horizontal position. During the 

preintervention data collection period, the ICP for all infants varied 

from a high of 3.9 ~ .6 mmHg to a low of 3.4 ~ .5 mmHg (Figure 2). An 

ANOVA for repeated measures indicated there was no significant (F (19, 

240) = .07, p>.05) variation in ICP over time within the preinterven­

tion period. An immediate increase in ICP from 3.7 ~ .5 mmHg to 7.6 ~ 

1.1 mmHg occurred upon turning the infant's head to the left. This 

significant (p<.05) increase in pressure represents a change of 81.6J. 

During the postintervention phase there appeared to be a general de­

crease in ICP over time with a maximum pressure of 7.6 + 1.1 mmHg 

decreasing to a minimum pressure of 5.6 ~ .6 mmHg. However, the mean 

ICP remained markedly increased as compared to preintervention values. 

Again, during the postintervention period an ANOVA for repeated 

measures showed no significant (F (19, 240) = .45, p>.05) variation in 

ICP over time. However, for the entire 10 minute data collection 

period a significant (F (39, 480) = 4.11, p<.05) change in ICP occurred 

between the pre- and postintervention periods. A significant (F (1, 

24) = 4.89, p>.05) change in ICP was also noted between the fifth 

minute preintervention and the first and fifth minute postintervention 

period. 
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Figure 2. 

Position 2: 
Head Rotation to Left 

2 3 4 5 6 7 8 9 
Time (minutes) 

Mean ICP + SEM (vertical line) of 13 premature infants during the pre- (0-5 minutes) 
and postintervention (5.15-10 minutes) periods. Head rotation to the left occurred 
immediately after the preintervention period (5 minutes). The preintervention period 
significantly (p<.05) differed from the postintervention period. 
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Position 3 

Position 3 involved changing the infant's position from the 

supine to the right lateral position. The ICP for the entire group 

varied from a high of 4.2 ~ .1 mmHg to a low of 3.4 ~ .6 mmHg during 

the preintervention period (Figure 3). 
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The ICP remained relatively constant with almost no variation 

occurring during the first 2 minutes of the preintervention period. An 

ANOVA for repeated measures showed no significant (F (19, 240) = .08, 

p>.05) variation in ICP over time within the preintervention period. 

Immediately upon turning the infant from the supine to right lateral 

position the mean ICP increased from 3.8 ~ .6 mmHg to 5.5 ~ .8 mmHg. 

This increase in pressure was not statistically significant although it 

represents a 35.2% change in mean ICP. During the postintervention 

phase, the ICP varied between a high of 5.8 ~ 1 mmHg to a low of 4.8 + 

.1 mmHg. An ANOVA for repeated measures also showed no significant (F 

(19, 240) = .09, p>.05) variation in ICP over time within the post­

intervention period and no trends were noted. No significant (F (39, 

480) = .76, p>.05) variation in ICP was noted between the pre- and 

postintervention phases during the 10 minute data collection period, 

nor was there a significant (F (1, 24) = 1.88, p>.05) variation in ICP 

between the fifth minute preintervention and the first and fifth minute 

postintervention period. 

Position 4 

In position 4 the infant was turned from the right lateral to the 

supine position. During the preintervention period the mean ICP varied 
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Figure 3. 

Position 3: 
Turning: Supine to Right Lateral 

2 3 4 5 6 
Time (minutes) 

7 8 9 

Mean ICP + SEM (vertical line) of 13 premature infants during the pre- (0-5 minutes) 
and postintervention (5.15-10 minutes) periods. Turning from the supine to the right 
lateral position occurred immediately after the preintervention period (5 minutes). 
No statistically significant differences were found between the pre- and post­
intervention periods. 
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Figure 4. 

Position 4: 
Turning: Right Lateral to Supine 

2 3 4 5 6 7 8 9 
Time (minutes) 

Mean ICP + SEM (vertical line) of 13 premature infants during the pre- (0-5 minutes) 
and postintervention (5.15-10 minutes) periods. Turning from the right lateral to 
the supine position occurred immediately after the preintervention period (5 min­
utes). No statistically significant differences were found between the pre- and 
postintervention periods. 
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from a high of 5.5 ~ 1 mmHg to a low of 4.8 ~ .9 mmHg (Figure 4). An 

ANOVA for repeated measures indicated there was no significant (F (.19, 

240) = .03, p>.05) change in the ICP over time during the preinter­

vention period. After turning the infant to the supine position the 

mean ICP decreased from 5.4 mmHg to 3.9 ~ .7 mmHg. This decrease in 

pressure represents a -29.6~ change in mean ICP. During the post­

intervention phase of measurement, the mean ICP varied between a high 

of 4.1 ~ .7 mmHg to a low of 3.1 ~ .6 mmHg. Again, an ANOVA for 

repeated mesaures showed no significant (F (19, 240) = .13, p>.05) 

variation in ICP during the postintervention period. Also, the ANOVA 

for repeated measures indicated there was no significant (F (39, 480) = 

.go, p>.05) variation between the pre- and posttreatment periods during 

the 10 minutes of data collection nor was there a significant (F (1, 

24) = .96, p>.05) change in ICP between the fifth minute preinter­

vention and the first and fifth minute postintervention period. 

Position 5 

Position 5 involved turning the infant from the supine to the 

left lateral position. During the preintervention period, the ICP 

presented a relatively stable pattern with a minimum and maximum mean 

ICP of 4.1 ~ .6 mmHg and 3.4 ~ .6 mmHg respectively (Figure 5). An 

ANOVA for repeated measures confirmed that there was no significant (F 

(19, 240) = .10, p>.05) variation in ICP over time during the preinter­

vention period. 

Turning the infant from the supine to the left lateral position 

resulted in a nonsignificant increase in ICP from 4.1 + .7 mmHg to 5.6 
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Position 5: 
Turning: Supine to Left Lateral 
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Figure 5. Mean ICP + SEM (vertical line) of 13 premature infants during the pre- (0-5 minutes) 
and postintervention (5.15-10 minutes) periods. Turning from the supine to the left 
lateral position occurred immediately after the preintervention period (5 minutes). 
No statistically significant differences were found between the pre- and postinter­
vention periods. 
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~ .6 mmHg representing a 31.3% change in pressure. During the post­

intervention phase of data collection, there appeared to be a slight 

decreasing trend in mean ICP from a maximum pressure of 5.7 ~ .6 mmHg 

to a minimum pressure of 4.5 ~ .6 mmHg. 

During the postintervention period an ANOVA for repeated measures 

again showed no significant (F (19, 240) = .03, p>.05) variation in ICP 

over time. An ANOVA for repeated measures also confirms that there was 

no significant (F (39, 480) = 1.13, p>.05) variation between the pre­

and postintervention phases during the 10 minute data collection period 

nor was there a significant (F (1, 24) = 1.0, p>.05) change in ICP 

between the fifth minute preintervention and the first and fifth minute 

postintervention period. 

Position 6 

In position 6 the infant was turned from the left lateral to the 

supine position. The mean ICP for the position presented a stable 

pattern from the preintervention through the postintervention phase 

with only a .46% change in ICP between pre- and postintervention 

measurements (Figure 6). An ANOVA for repeated measures showed that no 

significant changes occurred in ICP over time during both the pre­

intervention (F (19, 240) = .15, p>.05) and postintervention (F (19, 

240) = .09, p>.05) time periods. Also, no significant (F (39, 480) = 

.11, p>.05) changes in ICP were noted between the pre- and postinter­

vention phases of the 10 minute data collection period. Similar to the 

previous finding no significant (F (1, 24) = .04, p>.05) variation in 
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Position 6: 
Turning: Left Lateral to Supine 
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Figure 6. Mean ICP ~ SEM (vertical line) of 13 premature infants during the pre- (0-5 minutes) 
and postintervention (5.15-10 minutes) periods. Turning from the left later~l to the 
supine position occurred immediately after the preintervention period (5 minutes). 
No statistically significant differences were found between the pre- and postinter~ 
vention periods. 
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ICP occurred between the fifth minute preintervention, and the first 

and fifth minute postintervention period. 
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The preintervention mean ICP varied from a high of 4.9 ~ .6 mmHg 

to a low of 3.9 ~ .5 mmHg. Measurements of the mean ICP during the 

postintervention phase produced similar findings. The maximum and 

minimum mean ICP values during the postintervention phase were 4.7 + .8 

mmHg and 3.9 + .7 mmHg respectively. 



CHAPTER V 

DISCUSSION 

Head Rotation 

The results of this study indicate that head rotation to either 

the right or left were the only position changes which produced marked 

and significant (p<.05) elevations in ICP. Therefore, the null hypoth­

esis that head rotation to the right or left would not produce a sig­

nificant change in ICP was rejected. Although preintervention values 

for ICP with head rotation to the right and left were similar, head 

rotation to the left resulted in initially higher ICP values than head 

rotation to the right. A possible explanation of why head rotation to 

the left may result in greater elevations of ICP may be derived from 

the anatomical position of the internal jugular vein. 

The internal jugular veins are normally the largest neck veins 

and are considered the primary route for cerebral venous blood outflow. 

The internal jugular veins descend vertically through the neck and 

terminate posterior to the medial part of the clavicle. At this point 

the left internal jugular vein joins the left subclavian vein at a 90° 

angle to form the bracheocephalic vein. However, the angle at which 

the right internal jugular vein joins the right subclavian vein to form 

the bracheocephalic vein is obtuse. In addition, the diameter of the 

right internal jugular vein is usually larger than the left as it re­

ceives a greater blood flow from the cranial cavity due to the ana­

tomical position of the superior sagittal sinus (Romanes, 1964; 1966). 

56 
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As a result of its smaller size and the angle at which it joins the 

subclavian vein the left internal jugular vein may be more sensitive to 

compression with position change. In turn, this sensitivity may be 

reflected in initially higher ICP values with head rotation to the 

left. 

During the entire postintervention phase the ICP remained sig­

nificantly {p<.05) elevated. However, a general decreasing trend in 

ICP was noted with head rotation to the left, whereas there appeared to 

be a slight increase in ICP over time with head rotation to the right. 

The 5 minute postintervention data collection period proved to be too 

short a time frame to allow the ICP to return to the preintervention 

levels and adequately assess whether or not the trends noted during 

this postintervention phase were an asymtotic or periodic phenomena. 

It has been previously documented in adults {Lipe & Mitchell, 

1980) through the use of ultrasound, and in children, {Watson, 1974) 

through the use of venographic studies, that head rotation to the right 

or left side either partially or totally occludes the ipsilateral 

internal jugular vein. It is possible that the combined effect of the 

anatomic position of the internal jugular vein as it traverses next to 

a relatively bony neck and clavicular area, coupled with compression 

from the sternomastoid muscle, results in varying degrees of occlusion 

of the internal jugular vein during head rotation. It has been pos­

tulated that the obstructed venous outflow may be a contributing factor 

to the elevated ICP values associated with head rotation (Becht, 1920; 

Watson, 1974; Hulme & Cooper, 1976; Shalit & Umansky, 1977; Lipe & 

Mitchell, 1980). Becht (1920) conclusively demonstrated that ligating 
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the internal jugular vein produced elevations in ICP secondary to 

accumulation of venous blood in the cranial cavity. Another contrib­

uting factor related to the elevated ICP values associated with head 

rotation could be related to cerebral circulation. Compared to the 

total body volume cerebral circulation is approximately four times 

greater in the infant than the adult (Volpe, 1981). As a result, this 

increased cerebral circulation might exacerbate rises in ICP secondary 

to internal jugular occlusion when the head is rotated to the right or 

left. Because the internal jugular veins are considered the primary 

route for cerebral venous drainage, it is possible that any degree of 

internal jugular occlusion produced through head rotation could result 

in decreased cerebral venous outflow. This decreased cerebral venous 

outflow results in cerebral venous stasis producing an increase in 

intracranial volume which is reflected in elevated ICP values. Al­

though data was not recorded, the ICP was observed to return to pre­

intervention values immediately upon repositioning the infant's head to 

the supine, horizontal position for all 13 subjects in positions 1 and 

2. These findings are similar to those of Shalit & Umansky (1977) who 

reported immediate decreases in ICP with turning the patient's body 

toward the same direction in which the head was turned. Returning the 

infant's head to the supine horizontal position as in the present study 

or repositioning the body as Shalit & Umansky (1977) did, resulted in 

an improved body alignment with regard to the torso and head, and may 

have helped to facilitate cerebral venous drainage by decreasing the 

degree of internal jugular occlusion produced by head rotation. It is 

important to note that although head rotation to the right and left 
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produced statistically significant findings, these elevated ICP values 

remained within what is considered the upper limits of normal for the 

premature infant (Salmon, Hajjar & Bada, 1977; Welch, 1980; Bada, Menke 

& Khanna, 1980). 

As reported by other investigators one of the most striking and 

consistent associations between position change and ICP elevations 

occurred with head rotation. The study supports the findings of Bell 

et al. (1975), Shalit and Umansky (1977) and Parsons and Wilson (1984) 

that head rotation to either the right or left results in significant 

increase in ICP. However, the authors cited above failed to mention 

whether head rotation in one direction versus another produced a great­

er effect on ICP. In the present study head rotation to the left pro­

duced initially greater elevations in ICP than head rotation to the 

right. This finding is in contrast to data reported by Hulme and 

Cooper (1976) and Mitchell et al. (1981) who stated that rotation of 

the head to the right resulted in greater increases in ICP. Mitchell 

et al. (1981) and Hulme and Cooper (1976) do not postulate why head 

rotation to the right resulted in higher ICP values. In this study it 

is suggested that the left internal jugular vein, due to its anatomical 

position and relationship to other structures (Romanes, 1964; 1966), 

may be more susceptible to the varying degrees of occlusion that has 

been documented to occur with head rotation (Watson, 1974; Lipe & 

Mitchell, 1980). This, in turn, could aid in explaining the higher ICP 

values secondary to obstructed cerebral venous outflow that were ob­

served in the present study with head rotation to the left. The find­

ings in the present study were similar to those of Goldberg et al. 
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(1983) in terms of the type of population under investigation. How­

ever, the major focus of their study was to examine only the effect of 

head position to the right and in the midline with the head of bed 

horizontal and elevated 30 degrees. Although Goldberg et al. (1983) 

reported greater elevations in ICP with head rotation to the right with 

the head of bed horizontal and elevated to 30 degrees, their findings 

were not significant which is in contrast to the statistically signif­

icant elevations in ICP encountered in the present investigations with 

head rotation to the right. 

Turning 

In this study turning resulted in both increases and decreases in 

mean ICP. However, none of these findings were statistically signif­

icant. Therefore, the null hypothesis that turning from the supine to 

right lateral, right lateral to supine, supine to left lateral and left 

lateral to supine positions would not produce a significant change in 

ICP was not rejected. 

Nonsignificant increases in ICP occurred with turning the infant 

from the supine to both the right and left lateral position. Prein­

tervention values for ICP were similar for the right and left lateral 

turns. Turning the infant to the left lateral position resulted in 

slightly higher ICP values than turning the infant to the right. Dur­

ing the postintervention phase, values for the ICP were again similar 

for the right and left lateral positions. The left lateral turn, 

however, showed much less variation in ICP than the right lateral turn. 

Also, a slight decreasing trend in ICP was noted with the left lateral 

turn. No discernible trend in ICP was noted with turning the infant to 
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the right lateral position; although the postintervention values for 

the right and left lateral positions were not significant, the ICP 

remained elevated for both positions throughout the data collection 

period. This suggests that the allotted time frame for data collection 

may have been too limited to adequately assess trends in ICP. 

It was unexpectedly noted that the ICP values for two subjects 

decreased with turning to the right or left lateral position from a 

supine position and increased with turning to the supine position from 

the right or left lateral position. Upon inspection, these infants 

were noted to have a more elongated head shape along the anterior­

posterior axis with a prominent occiput which resulted in forward flex­

ion of the neck when the infants were in a supine position. Nornes and 

Magnaes (1971) reported associations between neck flexion and eleva­

tions in epidural pressure readings during routine positioning of 

patients for posterior fossa surgery. Hulme and Cooper (1976) suggest 

that impairment of collateral cerebral venous and CSF outflow is the 

mechanism most likely to result in elevated ICP readings associated 

with neck flexion. The majority of cerebrospinal fluid initially flows 

inferior to the basal cisterns and then upward within the subarachnoid 

space over the cerebral cortex to be reabsorbed by the arachnoid villi. 

It is postulated that neck flexion may partially or completely obstruct 

the basal cisterns resulting in increased cerebrospinal fluid volume 

within the cranial cavity. This, in turn, may lead to increased ICP 

values. It is also suggested that neck flexion may reduce collateral 

venous outflow through compression of the anterior and posterior cere­

bral veins and, thereby, increase the intracranial blood volume with a 
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resultant increase in ICP even in the absence of internal jugular vein 

compression. It is postulated that this neck flexion with possible 

subsequent cerebrospinal fluid and collateral cerebral venous obstruc­

tion may have been responsible for the higher ICP values noted in the 

supine position of these two subjects, and that the lateral position 

provided for better body alignment resulting in lower ICP values. 

There is very little literature that aids in explaining the 

dynamics of the ICP change that occurs with turning the body of the 

adult or infant. With changing the body position from the supine to 

the lateral position there may be some degree of both forward and/or 

lateral neck flexion along with flexion of the knees and hips. The 

most common explanation cited for increases in ICP with turning from 

the supine to the lateral position involves compression of the internal 

jugular vein resulting in pooling of cerebral venous blood and subse­

quent increases in ICP (Shalit & Umansky, 1977; Mitchell & Mauss, 1978; 

Mitchell et al., 1981; Parsons & Wilson, 1984). The mechanism des­

cribed by Hulme and Cooper (1976) of forward neck flexion resulting in 

impaired collateral cerebral venous and cerebrospinal outflow also 

cannot be discounted as a possible factor. Hip flexion which was re­

portedly associated with elevations in ICP in the lateral position in 

the Mitchell and Mauss (1978) study and in the sitting position by 

Nornes and Magnaes (1971) may be another contributing factor. How­

ever, the mechanism relating hip flexion to elevations in ICP is not 

explained. Parsons and Wilson (1984) in attempting to explain the 

elevations noted for heart rate and blood pressure in their study 

remind the reader that turning involves movements of large muscle 
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groups which produces a massage effect upon the vasculature. This 

causes an increase in systemic venous return which results in an in­

crease in the stroke volume of the heart leading to an increased ca­

rdiac output. In premature infants who may have immature autoregu­

latory mechanisms this increase in cardiac output may contribute to a 

rise in ICP. However, due to the lack of muscle mass in the preterm 

infant it is uncertain whether the movements of muscle groups elicited 

through turning produce any effect on the systemic vasculature. Res­

piratory patterns and the use of mechanical ventilation have also been 

implicated as factors which may be responsible for altered ICP values. 

It has been reported by Furuse and associates (1975) that changes in 

respiratory pattern produced alterations in ICP. They found that 

hyperpnea was associated with decreases in ICP secondary to vasocon­

striction due to blowing off co2 , and hypopnea and/or apnea was asso­

ciated with increases in ICP secondary to vasodilitation resulting from 

elevated co2 levels. Apuzzo and associates (1977) postulated that the 

administration of PEEP which results in an increased intrathoracic 

pressure produces cardiovascular changes such as increased venous 

pressure, decreased venous return and decreased cardiac output which 

may result in an increase in ICP by inhibiting cerebral venous drain­

age. Although respiratory patterns and the use of mechanical venti­

lation have been shown to alter ICP, in this study none of the infants 

required ventilatory support nor did they present any abnormal breath­

ing patterns. 

The association of turning the patient in bed with increases or 

decreases in ICP has not been as consistent as findings regarding head 
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rotation. In general, the findings of this study demonstrated that 

turning produced both increases and decreases, although not statis­

tically significant, in ICP. This is consistent with findings by 

Shalit and Umansky (1977). However, Shalit and Umansky (1977) failed 

to state which specific body positions were associated with either 

increases or decreases in ICP and whether or not these findings were 

statistically significant. Therefore, it is difficult to draw further 

comparisons with the Shalit and Umansky (1977) study. 

In the present study increases, although statistically nonsig­

nificant, were noted with the supine to lateral position turning com­

binations. This is consistent with the findings of Bruya (1981) and 

Parsons and Wilson (1984). However, the authors do not make a distinc­

tion between the right and left lateral turn in their studies. The in­

creases in ICP noted during turning in this study also support findings 

of Perrin (1981). Although Perrin (1981) makes a global statement that 

increases in ICP were associated with turning, she does not specif­

ically delineate to what positions subjects in her study were turned. 

The present investigation was similar to the Mitchell et al. (1981) 

study in terms of design, data collection and data analysis. However, 

the findings of Mitchell and associates (1981) varied with regard to 

the supine to lateral turning combinations. In the Mitchell et al. 

(1981) study the supine to right lateral turn consistently produced 

increases in ICP which is supported by the present investigation. The 

supine to left lateral turn in the Mitchell et al. (1981) study, how­

ever, resulted in increases or decreases in ICP depending on the sub­

ject's diagnostic category; whereas, in the present study only increas-
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es in ICP were noted. The nonsignificant increases found only with 

turning from the supine to the lateral positions in this study is in 

contrast to Mitchell and Mauss (1978) who reported that turning in any 

direction was associated with elevations in ICP. Again, specific 

directions of position change were not identified in the Mitchell and 

Mauss (1978) study. 

In the present study nonsignificant decreases occurred with 

turning the infant from the right lateral to the supine position. This 

was similar to findings of Bruya (1981) and Parsons and Wilson (1984), 

who also noted decreases in ICP with turning the patient from a lateral 

to a supine position. Parsons and Wilson (1984) and Bruya (1981) again 

do not differentiate the right from left lateral to supine turning 

combination in their studies. However, the findings of the present 

study along with those of Bruya (1981) and Parsons and Wilson (1984) 

are in contrast with Mitchell and associates (1981) who reported that 

turning from both the right and left lateral position to the supine 

position consistently resulted in increases in ICP. It is postulated 

in this study that the associated decrease in mean ICP, although not 

statistically significant, may have been due to an overall improvement 

in body alignment in the infant which may have led to an improved cere­

bral venous and cerebrospinal fluid outflow from the cranial cavity. 

No change in ICP from the preintervention through the postintervention 

periods occurred in the present study with the left lateral to supine 

turn. Based on findings from previous turning combinations in this 

study and on results from other investigators, Mitchell and associates, 

1981; Parsons and Wilson, 1984; Bruya, 1981, this absence of change in 
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ICP was an unexpected finding and is unsubstantiated in the literature. 

Again this suggests that the five minute data collection period in the 

postintervention phase may have been inadequate to assess trends in 

ICP. Finally, it must be stressed that although in this study turning 

was associated with both increases and decreases in ICP these findings 

were not statistically significant and the range of ICP values remained 

well within the normal limits for all position changes during both the 

preintervention and postinervention time periods. 

Limitations 

The major limitations of this study have previously been ad­

dressed. However, during data analysis it was noted that ICP values 

did not return to baseline values during the postintervention period 

with head rotation to the right and left, and with turning from the 

supine to the right and left lateral positions. This indicates that 

the allotted time frame for data collection in this study was too 

limited to adequately assess temporal trends in ICP in response to a 

given stimulus. In order to provide data that can be generalized a 

much larger and heterogenous population needs to be studied. The 

results of this study add information to the growing data base of 

neuroscience nursing, but cannot be used to establish norms of nursing 

care for these patients. 

Recommendations for Further Studl 

The primary recommendation of this investigator is to have this 

type of study replicated with a larger population. In a larger study 

variables such as gestational age, presence of IVH or other disease 
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states, requirement for assisted ventilation, activity level, feeding 

time, or other factors could be isolated and analyzed in relation to 

ICP with position change. This would greatly enhance generalizability. 

Another recommendation would be to lengthen the time of data collection 

in an attempt to analyze trends in ICP over time with emphasis placed 

on determining the length of time required for ICP to return to base­

line levels following any given activity or stimulus. Because of the 

limited information available on factors affecting intracranial pres­

sure in the neonatal population, another consideration is to conduct a 

descriptive study. This would help to identify other factors impacting 

on intracranial pressure which could then be systematically evaluated. 

Further studies, based on evidence from Parsons and Wilson (1984), 

could also investigate the physiologic variables of heart rate, blood 

pressure, ICP, cerebral blood flow, cerebral perfusion pressure, PC0
2 

and P02 related to specific position changes in premature infants. 

This type of study would enable nursing to more accurately determine, 

by combining a variety of information, which factors have either a 

deleterious, beneficial or neutral effect on intracranial pressure. By 

investigating correlations between variables more information will be 

obtained that will make formulation of nursing care for premature 

infants with altered intracranial pressure status more accurate and 

generalizable. 



SUMMARY 

Intracranial pressure was recorded using the Ladd Monitor on 13 

infants between 33 and 37 weeks of age. The primary clinical diagnosis 

for all infants was prematurity. other clinical diagnosis included 

respiratory distress syndrome in 92% I hyalin membrane disease in 30%. 

Intracranial pressure was recorded on all patients for each of the six 

standardized position changes every 15 seconds for 5 minutes prior to 

the position change and again every 15 seconds for 5 minutes following 

the selected position change. Increases in ICP were noted with the 

following position changes, head rotation to the right and left, and 

turning from the supine to the right and left lateral positions. How­

ever, statistically significant elevations in ICP occurred only with 

head rotation to the right and left. Decreases, although not statis­

tically significant, in ICP were noted in the right lateral to supine 

turn. However, with the left lateral to supine turn no demonstrable 

changes in ICP from baseline through postintervention were noted. With 

all position changes ICP remained within the range of normal values for 

the premature infant. Because both the identification and systematic 

analysis of factors which impact on ICP in the premature infant has had 

only limited investigation to date further study in this area is needed 

and encouraged. 
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APPENDIX A 



State 

State 1: 
Quiet 
sleep 

State 2: 
Active 
sleep 

State 3: 
Drowsy 

State 4: 
Quiet, 
alert 

State 5: 
Active, 
awake 

State 6: 
Crying 
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Infant Activity States 

Characteristic Behaviors 

Lies still with only occasional 
startle, twitch or sucking move­
ment. Breathing regular. 

Rapid eye movement (REM), ir­
regular breathing, brief smiles, 
or crying sounds. 

Occasionally opens eyes, which 
appear dull glazed. Mild star­
tles, smooth movement, minimal 
facial movements. Irregular 
breathing. 

Wide-eyed and focused on envi­
ronment. Regular breathing and 
minimal activity. 

Eyes open, much body and facial 
movement. Low tolerance for 
hunger or fatigue. Breathing 
irregular. 

Much motor activity, clinched 
eyes, irregular breathing. 

Source: Wolff, P. Observations on newborn infants. 
Psychosomatic Medicine, 1959, ~ (2) 110-118. 
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LOYOLA UNIVERSITY MEDICAL CENTER 
MAYWOOD, ILLINOIS 
SCHOOL OF NURSING 

DEPARTMENT OF MATERNAL CHILD HEALTH NURSING 

Patient's Name Date: 
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---------------
Project Title: The Effect of Body Position and Head Rotation on 

Intracranial Pressure Readings in Premature 
Infants with Ladd Monitoring. 

Patient Information: 

Previous studies on adults have shown that various activities 
such as turning from side to side may result in changes in intra­
cranial pressure {i.e., pressure within the head). Since such 
procedures are daily functions of patient care the purpose of 
this study is to determine what effect, if any, procedures such 
as body and head position changes have on the pressure within the 
head of premature infants. 

To study the effect of body and head position changes on the 
pressure within the head requires placing a small monitor on the 
anterior fontanel {soft spot) of your baby's head. This monitor 
is used to detect pressure changes that occur inside the head. 
The monitor is placed on the skin over the anterior fontanel and 
held in place by a soft self-adhesive foam material. In infants 
with abundant hair it is necessary to shave a small portion of 
hair over the anterior fontanel prior to application of the 
monitor. In many cases the hair has already been shaved to allow 
for the administration of IV fluids. 

Once the monitor is in place I will observe the digital readout 
on the monitor and record every 15 seconds for 5 minutes before 
and after your baby's body position is changed by my assistant 

from back to right side, right side 
~t-o-b~a-c~k~,~b-a-c~k~t-o~1-e~ft~-s~i~d-e-, left side to back; and head is 
positioned to the right side and then left side while your baby 
is lying on his/her back. 

The time table for the study is as follows: First, we collect 
our information from the monitor for 5 minutes. Then, one of the 
above activities is done by my assistant. We again collect 
information from the monitor for 5 minutes. After that we wait 
10 minutes before starting the procedure over again with the next 
activity. Using this time table the duration of the study is 
approximately 2 hours. 
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Potential Benefits and Risks 

Taking the reading simply involves recording the digital readout 
on the monitor. There are no known or anticipated risks involved 
in the reading or application of the monitor. No pain or discom­
fort is associated with the reading or application of the mon­
itor. In some cases only a small amount of hair over the soft 
spot will be shaved. 

It is not expected that your baby will directly benefit from par­
ticipation in the study; however, we hope that with the results 
of this study, nursing can gain more knowledge about what 
functions affect patient conditions and use that knowledge to 
improve care for infants in the future with similar problems. 

There will be no cost involved for participating in this study. 

Consent: 

I have fully explained to~~~~--~--~~~----~------~~--­
the nature and purpose of the above-described procedure and the 
risks that are involved in its performance. I have answered and 
will answer all questions to the best of my ability. 

{Signature: Principal Investigator) 

I have been fully informed of the above-described procedure with 
its possible benefits and risks. I give permission for my/my 
child's participation in this study. I know that Martha Barthel, 
R. N. or her associates will be available to answer any question 
I may have. If, at any time, I feel my questions have not been 
adequately answered, I may request to speak with a member of the 
Medical Center Institutional Review Board. I understand that I 
am free to withdraw this consent and discontinue participation in 
this project at any time without prejudice to my/my child's 
medical care. I have received a copy of this informed consent 
document. 

I understand that biomedical or behavioral research such as that 
in which you have agreed to participate, by its nature, involves 
risk of injury. In the event of physical injury resulting from 
these research procedures, emergency medical treatment will be 
provided at no cost, in accordance with the policy of Loyola 
University Medical Center. No additional free medical treatment 
or compensation will be provided except as required by Illinois 
law. 



In the event you believe that you have suffered any physical 
injury as a result of participation in the research program, 
please contact Dr. R. Henkin, Chairman, Institutional Review 
Board for Protection of Human Subjects at the Medical Center, 
telephone (312) 531-3777. 
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I agree to allow my name and medical records to be available to 
other physicians and researchers for the purpose of evaluating 
the results of this study. I consent to the publication of any 
data which may result from these investigations for the purpose 
of advancing medical knowledge, providing my name or my child's 
name or any other identifying information (initials, social 
security number, etc.), is not used in conjunction with such 
publication. All precautions to maintain the confidentiality of 
medical records will be taken. 

(Signature: Patient/Parent/Legal Representative) 

Signature: Witness to Signature 
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Technical Specifications of the Ladd Monitor 

Measurement Range: 

Rate of Response: 

System Sensitivity: 

System Accuracy with 
Digital Readout: 

Zero Point Stability: 

Repeatability: 

-31 to +185 mmHg 
(absolute pressure) 

2.5 mmHg per second 

less than 0.074 mmHg re­
gardless of pressure level. 

1% of reading 

+ 0.37 mmHg 
Tess than 0.74 mmHg shift due 
to patient temperature rise 

0 from 37 - 41 C unaffected by 
changes in ambient pressure • 

.:!:. 0.31 mmHg 

Source: Ladd Research Industries, Inc., Burlington, Vt. 
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Rest 

Data 
Collection 
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5 Minutes 5 Minutes 
Nursing 
Activity 5 Minutes 5 Minutes 

Code Number: ________________________________________ __ 

Procedure: ----------------------------------------
Infant Activity State ______________________________ ___ 

Intracranial Pressure Readings: 

5 Minutes Prior to Procedure 5 Minutes Post Procedure 
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Patient Profile 

Code II ------------------
Date _______________________ _ 

Sex Race -------------------- -------------------------
Date of Birth: ------- Gestational Age: -------

Weight _______ (grams) Length ____ (cm) Head Circumference ______ (cm) 

Apgars ______ (1 min.) _________ (5 min.) 

Primary Diagnosis 

Current Diagnosis 
--------------------------------------------------

Age at time of data collection: weeks. ------
Current Weight ________ (grams) Current Length (em) -----
Current Head Circumference (em) -------
- size of anterior fontanel (em) -------description of fontanel: 

sunken soft firm --- ---flat soft firm --- ---full soft --- firm --- tense/bulging. ______ _ 

Vital signs: T ___ P __ _ R ___ BP __ _ 

Respiratory Status: 

Spontaneous Ventilation: _______ Room air 

Ventilator: 

C-PAP: 

Arterial Blood Gas: 

pH pC0
2 

Nutritional state: 

___ Head Hood % o
2 

apnea mattrace yes ---- ____ no 

yes no parameters ___ __. 

yes no parameters -----· 

p02 Bicarb Base excess ---- -------
NPO 

_______ Hyperalamentation 
IV 

---PO OG/NG 
Type Amount Frequency ------- -------
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