

eCommons@AKU

Department of Pathology and Laboratory Medicine

Medical College, Pakistan

December 2016

Alternate efflux pump mechanism may contribute to drug resistance in extensively drug-resistant isolates of mycobacterium tuberculosis

Akbar Kanji Aga Khan University

Rumina Hasan Agha Khan University, rumina.hasan@aku.edu

Ambreen Zaver Aga Khan University

Asho Ali Aga Khan University

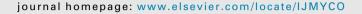
Kehkashan Imtiaz Aga Khan University

See next page for additional authors

Follow this and additional works at: http://ecommons.aku.edu/ pakistan_fhs_mc_pathol_microbiol

Part of the Microbiology Commons, and the Pathology Commons

Recommended Citation


Kanji, A., Hasan, R., Zaver, A., Ali, A., Imtiaz, K., Ashraf, M., Clark, T. G., Nerney, R. M., Shafiq, S., Hasan, Z. (2016). Alternate efflux pump mechanism may contribute to drug resistance in extensively drug-resistant isolates of mycobacterium tuberculosis. Available at: http://ecommons.aku.edu/pakistan_fhs_mc_pathol_microbiol/503

Authors Akbar Kanji, Rumina Hasan, Ambreen Zaver, Asho Ali, Kehkashan Imtiaz, Mussarat Ashraf, Taane G. Clark, Ruth Mc Nerney, Samreen Shafiq, and Zahra Hasan

Available at www.sciencedirect.com

ScienceDirect

Alternate efflux pump mechanism may contribute to drug resistance in extensively drug-resistant isolates of Mycobacterium tuberculosis

Akbar Kanji^a, Rumina Hasan^a, Ambreen Zaver^a, Asho Ali^a, Kehkashan Imtiaz^a, Mussarat Ashraf^a, Taane G. Clark^{b,c}, Ruth McNerney^d, Samreen Shafiq^a, Zahra Hasan^{a,*}

ARTICLE INFO

Article history:
Received 5 September 2016
Accepted 14 September 2016
Available online 22 November 2016

Keywords: Efflux pumps XDR MTB

ABSTRACT

Introduction: Extensively drug-resistant tuberculosis (XDR-TB) has emerged as one of the biggest threats to public health and TB control programs worldwide. XDR-TB is caused by Mycobacterium tuberculosis (MTB) strains resistant to rifampin and isoniazid, as well as to a fluoroquinolone and to at least one injectable aminoglycoside. Drug resistance in MTB has primarily been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, it has also been shown that efflux pumps may play a role in resistance of MTB. Upregulation of drug efflux pumps can decrease the intracellular concentration of drugs and reduce their efficacy.

Methods: Whole genome sequencing was performed on 32 XDR-TB clinical isolates. Sequence data were used to investigate SNPs in efflux pump genes as compared with the H37Rv reference genome.

Results: Of the XDR MTB strains, eight (21.62%) were wild type for *rpsL*, *rrs* (500 region), and *gidB* genes, but had non-synonymous (ns) SNPs (aspartic acid to histidine) in the *drrA* efflux pump gene at position 3273138. Three of eight (37.5%) XDR MTB strains, wild type for *rpsL*, *rrs* (500 region), *gidB*, and *gyrB* genes were phenotypically streptomycin sensitive and five (62.5%) XDR MTB strains were streptomycin resistant, while all XDR MTB strains, wild type for *rpsL*, *rrs*, *gidB*, and *gyrB* genes were resistant to fluoroquinolone (ofloxacin) and ethambutol. In addition, three XDR MTB strains wild type for *rpsL*, *rrs*, *gidB*, and *drrA* genes showed nsSNPs (isoleucine to valine) in the major facilitator superfamily, Rv1634 efflux pump gene at position 1839306.

Conclusion: Our data show an nsSNP in the drrA efflux pump gene that may result in upregulation of drug efflux mechanisms in MTB strains. It is therefore imperative to

^a Department of Pathology and Laboratory Medicine, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan

^b Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK

^c Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK

^dLung Infection and Immunity Unit, Division of Pulmonology, Department of Medicine, University of Cape Town, and UCT Lung Institute, Cape Town, South Africa

^{*} Corresponding author.

understand the mechanism of efflux and its role in drug resistance, which will enable the identification of new drug targets and development of new drug regimens to counteract the drug efflux mechanism of MTB.

Conflict of interest

The authors state that they have no conflict of interest.