
eCommons@AKU

Pathology, East Africa Medical College, East Africa

January 2016

Mycobacterium tuberculosis lineage 4 comprises
globally distributed and geographically restricted
sublineages
David Stucki
University of Basel

Daniela Brites
University of Basel

Leïla Jeljeli
Université de Tunis El Manar

Mireia Coscolla
University of Basel

Gunturu Revathi
Aga Khan University, gunturu.revathi@aku.edu

Follow this and additional works at: http://ecommons.aku.edu/eastafrica_fhs_mc_pathol

Part of the Pathology Commons

Recommended Citation
Stucki, D., Brites, D., Jeljeli, L., Coscolla, M., Revathi, G. (2016). Mycobacterium tuberculosis lineage 4 comprises globally distributed
and geographically restricted sublineages. Nature Genetics, 48(12), 1535-1543.
Available at: http://ecommons.aku.edu/eastafrica_fhs_mc_pathol/142

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eCommons@AKU

https://core.ac.uk/display/84854937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.aku.edu/Pages/home.aspx?utm_source=ecommons.aku.edu%2Feastafrica_fhs_mc_pathol%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.aku.edu/Pages/home.aspx?utm_source=ecommons.aku.edu%2Feastafrica_fhs_mc_pathol%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.aku.edu/Pages/home.aspx?utm_source=ecommons.aku.edu%2Feastafrica_fhs_mc_pathol%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.aku.edu?utm_source=ecommons.aku.edu%2Feastafrica_fhs_mc_pathol%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.aku.edu/eastafrica_fhs_mc_pathol?utm_source=ecommons.aku.edu%2Feastafrica_fhs_mc_pathol%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.aku.edu/eastafrica_fhs_mc?utm_source=ecommons.aku.edu%2Feastafrica_fhs_mc_pathol%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.aku.edu/eastafrica_fhs_mc_pathol?utm_source=ecommons.aku.edu%2Feastafrica_fhs_mc_pathol%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/699?utm_source=ecommons.aku.edu%2Feastafrica_fhs_mc_pathol%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.aku.edu/eastafrica_fhs_mc_pathol/142


Mycobacterium tuberculosis Lineage 4 comprises globally 
distributed and geographically restricted sublineages

A full list of authors and affiliations appears at the end of the article.
# These authors contributed equally to this work.

Abstract

Generalist and specialist species differ in the breadth of their ecological niche. Little is known 

about the niche width of obligate human pathogens. Here we analyzed a global collection of 

Mycobacterium tuberculosis Lineage 4 clinical isolates, the most geographically widespread cause 

of human tuberculosis. We show that Lineage 4 comprises globally distributed and geographically 

restricted sublineages, suggesting a distinction between generalists and specialists. Population 

genomic analyses showed that while the majority of human T cell epitopes were conserved in all 

sublineages, the proportion of variable epitopes was higher in generalists. Our data further support 

a European origin for the most common generalist sublineage. Hence, the global success of 

Lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human 

migration.

Introduction

Ecologists distinguish between generalists and specialists depending on the width of an 

organism’s ecological niche1. In infectious diseases, the niche of a given pathogen is 

determined by host range and the agent’s capacity to survive in the environment2. Some 
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microbes are obligate pathogens restricted to one or several host species3,4, others are 

mainly free-living and only occasionally pathogenic5. Little is known on the niche width of 

obligate human pathogens3. The causative agent of tuberculosis, known as the 

Mycobacterium tuberculosis complex (MTBC), is an obligate pathogen that comprises seven 

phylogenetic lineages adapted to humans and two lineages adapted to various wild and 

domestic animal species6. Some human-adapted MTBC lineages have received particular 

attention. For example, Lineage 2, which includes the Beijing family of strains, has 

repeatedly been associated with drug resistance7. Lineage 2 likely originated in East 

Asia8,9, and has recently been expanding in some parts of the world10. By contrast, 

Lineages 5 and 6 (also known as Mycobacterium africanum West Africa I and II), and 

Lineage 7 are largely restricted to West- and East Africa, respectively11,12. The observation 

that the human-adapted MTBC population is phylogeographically structured has led to the 

hypothesis that the different lineages might be adapted to particular human populations13. 

Support for this notion comes from the observation that sympatric host-pathogen 

associations in human tuberculosis remain stable over time, even in metropolitan settings 

where host and pathogen populations intermix14–17. Moreover, sympatric host-pathogen 

associations are perturbed in HIV coinfected patients14, indicating that in the context of 

reduced host immune-competence, the different lineages can successfully infect and cause 

disease irrespective of the host genetic background.

Contrary to the other main human-adapted MTBC lineages, Lineage 4 occurs at significant 

frequencies on all inhabited continents18. It is hence geographically the most widespread 

cause of human tuberculosis19. Yet, the reasons for this global success are unknown. 

Lineage 4 has been shown to exhibit enhanced virulence in macrophage and animal models 

of infection, albeit with much variation between different Lineage 4 strains19,20. Moreover, 

molecular epidemiological studies have reported considerable variation in the transmission 

success of different Lineage 4 strains in clinical settings19. These observations suggest that 

Lineage 4 is genetically and phenotypically diverse, and this diversity might determine the 

epidemiology of different Lineage 4 subtypes in different parts of the world. The purpose of 

this study is to get a better understanding of the global population structure of Lineage 4 and 

the evolutionary forces that have contributed to the success of Lineage 4 across the world. 

For this we combined large-scale single nucleotide polymorphism (SNP)-typing with 

targeted whole-genome sequencing of a global collection of Lineage 4 clinical isolates.

Results

MTBC Lineage 4 comprises 10 separate sublineages

We first analyzed 72 published genome sequences of Lineage 4 clinical strains from global 

sources21,22. These strains harbored 9,455 variable single nucleotide positions which 

divided Lineage 4 into 10 sublineages (L4.1.1 to L4.10 in Fig. 1a and Supplementary Fig. 

1). We used four complementary approaches to validate these sublineages. First, we 

performed a principal component analysis, which showed a clear separation of seven 

sublineages (L4.1.1, L4.1.3, L4.1.2, L4.2, L4.3, L4.4, L4.10; Supplementary Fig. 2). 

Sublineages L4.5, L4.6.1/Uganda and L4.6.2/Cameroon were less clearly separated. Second, 

we found that the mean pairwise genetic distance between pairs within the sublineages was 
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significantly lower than between sublineages (276 SNPs versus 602 SNPs, Wilcoxon rank 

sum test, p < 0.0001, Supplementary Fig. 3). Overall, the mean pairwise SNP distance 

between any two strain pairs was 565 SNPs. Third, we calculated pairwise fixation indexes 

(FST) to evaluate the degree of population differentiation. All FST values between the 

sublineages were larger than 0.33 (Supplementary Table 1), indicating that these populations 

are separated. Fourth, we mapped previously reported phylogenetic markers onto our 

genome-based phylogenetic tree15,23–28. Most of these markers were congruent with our 

sublineage definition (Supplementary Fig. 1).

Sublineages differ in their phylogeographic distribution

Because the MTBC exhibits limited sequence variation and no signficant ongoing horizontal 

gene exchange, SNP homoplasies are extremely rare, making SNPs ideal phylogenetic 

markers29. We further scrutinized the 9,455 variable positions among the 72 MTBC Lineage 

4 genomes, and found 51 to 277 specific for one of each of the 10 sublineages. All of these 

variable positions were mutually exclusive, i.e. they showed no homoplasy. We selected a 

subset of these sublineage-specific SNPs and used these to screen a global collection of 

3,366 Lineage 4 clinical isolates from 100 countries using various genotyping platforms30–

35. First, we developed a novel sublineage-specific multiplexed SNP-typing assay using the 

Luminex platform as previously reported36, and used that method to screen 2,001 isolates 

(Supplementary Table 2). In addition, we screened 741 isolates using the Sequenom 

MassARRAY platform (Supplementary Table 3)37, and 624 isolates by PCR and Sanger 

sequencing (Supplementary Table 4). Overall, 3,181/3,366 (94.5%) Lineage 4 isolates were 

successfully assigned to a sublineage (Supplementary Table 5). An additional 92/3,366 

(2.7%) isolates harbored the reference allele for all sublineages, indicating they belonged to 

one or several additional and unknown sublineages. For the remaining 93/3,366 (2.8%) 

isolates, no classification could be obtained for various technical reasons. Among the 3,181 

Lineage 4 isolates assigned to one of the 10 sublineages, L4.3/LAM was the most frequent, 

accounting for 20.3%, followed by L4.6.1/Uganda (14.2%), L4.10/PGG3 (11.9%), L4.4 

(10.1%), and L4.1.2/Haarlem (9.9%) (Fig. 1b).

Mapping the proportion of each sublineage by country showed that the sublineages differed 

in their geographical distribution (Fig. 2). Specifically, L4.1.2/Haarlem, L4.3/LAM and 

L4.10/PGG3 occurred globally (Fig. 3a, Supplementary Fig. 4). By contrast, L4.1.3/Ghana, 

L4.5, L4.6.1/Uganda and L4.6.2/Cameroon occurred at high frequencies in specific regions 

of Africa or Asia, and were almost completely absent from Europe and the Americas (Fig. 

3b). The geographical spread of the three remaining sublineages was intermediate (Fig. 2, 

Supplementary Figs. 4 and 5). L4.1.1/X mainly occurred in the Americas and in lower 

proportions in few countries of Southern Africa, Asia and Europe. L4.2 and L4.4 occurred in 

high proportions among isolates from particular countries in Asia and Africa, but were 

largely absent from the Americas (Fig. 2, Supplementary Figs. 4 and 5). A similar pattern of 

sublineage distribution was observed when normalizing by TB prevalence38 and country 

surface area (Supplementary Fig. 6).

Populations that occupy a broader variety of environments may exhibit a wider geographic 

distribution. Humans differ in their susceptibility to TB39, and human genetic diversity may 
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thus determine the width of the ecological niche accessible to different MTBC 

genotypes40,41. The geographical restriction of particular MTBC genotypes might reflect 

local adaption of these pathogen variants to the corresponding human host populations13,15. 

Such a sympatric host-pathogen association in human TB is compatible with the “local” 

sublineages observed here, and supports the notion that these sublineages represent 

ecological specialists. By contrast, the three “global” sublineages could represent generalists 

capable of infecting and causing disease in many different human populations. This notion 

was supported by the fact that the three generalist sublineages L4.1.2/Haarlem, L4.3/LAM 

and L4.10/PGG3 were observed in 49, 47 and 47 countries, respectively, whereas the 

specialist sublineages L4.1.3/Ghana, L4.5, L4.6.1/Uganda and L4.6.2/Cameroon were only 

found in few countries each (3, 7, 9 and 10 countries, respectively). The country frequencies 

of the remaining three sublineages L4.1/X, L4.2/Ural and L4.4 were intermediate (27, 14 

and 26 countries, respectively) (Supplementary Fig. 4).

The different geographical distribution of generalist and specialist sublineages could be due 

to intrinsic biological factors, extrinsic factors such as human migration, or both. Hence we 

next performed various population genomic analyses to explore the genomic characteristics 

of these Lineage 4 generalists and specialists, as well as the role of human migration in the 

global spread of the most successful generalist sublineage.

Genomic features of generalist and specialist sublineages

The geographic and niche distribution of populations can be correlated with their genetic 

variability or with that of their ancestors. One possible reason for the restricted host range of 

the specialist sublineages might be historical, i.e. the ancestor populations of the extant 

specialist populations may have harbored more deleterious mutations, restricting their host 

range. To assess this possibility, we characterized the mutations which contributed to the 

divergence of the different sublineages; these mutations are variants that have become fixed 

during the evolution of these sublineages. We focused on the substitutions that occurred in 

all isolates of any of the generalist sublineages (L4.1.2/Haarlem, L4.3/LAM and L4.10/

PGG3) and compared them to the substitutions that occurred in all isolates of any of the 

three specialist sublineages (L4.6.1/Uganda, L4.5 and L4.6.2/Cameroon). We identified 

nonsynonymous SNPs predicted to have a functional effect using SIFT42. We found that 

overall, the specialist and generalist sublineages showed a similar proportion of fixed 

substitutions (among all substitutions) predicted to impact gene function (23.0% versus 

20.6%, χ2 test p=0.62; Supplementary Table 6), suggesting that the mutational load of the 

ancestor populations did not differ significantly between generalists and specialists.

Small populations with restricted geographic ranges are expected to have reduced levels of 

genetic diversity43. Thus, one possible restriction to niche expansion by specialist 

sublineages could be that these sublineages have low genetic diversity precluding adaptation 

to new hosts. We characterized the genetic diversity associated with the process of 

diversification in Lineage 4 generalists and specialists, focusing on L4.3/LAM and L4.6.1/

Uganda, globally the most frequent generalist and specialist sublineages of Lineage 4 in our 

dataset, respectively (Fig. 1b). We analyzed the whole-genome sequences of 293 L4.3/LAM 

clinical strains representing the global diversity of this sublineage. These were selected from 
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a global collection of 2,132 L4.3/LAM isolates based on standard genotyping data 

(Supplementary Table 7, Supplementary Figs. 7-9). For L4.6.1/Uganda, we analyzed whole-

genome sequences of 203 clinical strains from Uganda and several neighboring countries 

(Supplementary Table 7, Supplementary Figs. 10 and 11). This sample included 28 L4.6.1/

Uganda strains identified through screening of 13,067 publically available MTBC whole 

genome sequences (see Online Methods)44–56. Comparing the genetic diversity between 

these two bacterial populations showed that L4.3/LAM was significantly more diverse than 

L4.6.1/Uganda (mean number of 395 SNPs between pairs compared to 215 SNPs, 

respectively; Wilcoxon rank sum test p<0.0001), consistent with the expected difference 

between generalists and specialists43.

Antigenic diversity in Lineage 4 sublineages

We previously reported that in the human-adapted MTBC, experimentally confirmed human 

T cell epitopes were conserved57,58. This is unlike many other pathogens where genomic 

regions encoding antigens tend to be diverse as a result of antigenic variation linked to 

immune escape59. When we assessed the evolutionary conservation of 1,226 experimentally 

confirmed human T cell epitopes60 in L4.6.1/Uganda by calculating their dN/dS, we found 

that these epitopes were significantly more conserved than the non-epitope regions of the 

corresponding T cell antigens (Wilcoxon rank sum test, p<0.0001, Fig. 4). This result was 

consistent with our previous findings for the MTBC overall57,58. However for L4.3/LAM, 

we saw the opposite, i.e. the T cell epitopes showed a significantly higher dN/dS than the 

non-epitope regions (Wilcoxon rank sum test, p<0.0001, Fig. 4). To test whether a high 

dN/dS in T cell epitopes is characteristic of the generalist sublineages, we analyzed the 

genomes of 228 L4.2/Haarlem strains and 301 L4.10/PGG3 strains identified by screening 

of 13,067 publically available genomes (Supplementary Table 7, Supplementary Figs. 12 

and 13). We found that in contrast to L4.3/LAM, the epitope regions in these generalist 

sublineages were more conserved than the corresponding non-epitope regions, i.e. similar to 

L4.6.1/Uganda and the MTBC overall57,58 (Fig. 4). Consistent with previous 

reports57,58,61, essential genes62 were significantly more conserved than nonessential 

genes in all sublineages, except L4.3/LAM in which the dN/dS of essential and nonessential 

genes were not significantly different (Fig. 4)

One of the limitations of our dN/dS analyses was that despite a large number of genomes 

analyzed, within individual sublineages, the mean number of pair-wise differences in regions 

encoding T cell epitopes was very small (Supplementary Table 8), limiting the accuracy of 

dN/dS inferences for epitopes. Hence, we assessed T cell epitope diversity by comparing the 

number of epitopes affected by nonsynonymous variants in the different sublineages (Fig. 5). 

We found that in all four sublineages, the majority of epitopes were completely conserved, 

consistent with our previous findings for the MTBC overall57,58. However, each of the 

three generalist sublineages showed significantly more epitopes harboring at least one amino 

acid change when compared to the specialist sublineages L4.6.1/Uganda (Fig. 5, χ2 tests 

p<0.0001 for all comparisons). It is possible that this comparably higher epitope diversity in 

generalists might reflect interactions with broader host populations.
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The epitopes interrogated in our analysis were encoded by a total of 304 antigens. The 

number of antigens containing nonsynonymous variation in epitopes was 60, 26, 46 and 48 

antigens in L4.3/LAM, L4.6.1/Uganda, L4.2/Haarlem and L4.10/PGG3, respectively. When 

excluding nonsynonymous mutations present only in one strain in each sublineage (which 

likely represent transient mutations), the number of antigens dropped to 20, 11, 12, 24 in 

L4.3/LAM, L4.6.1/Uganda, L4.2/Haarlem and L4.10/PGG3, respectively (Supplementary 

Table 9). Interestingly, 10 of those antigens exhibited independent parallel, nonsynonymous 

variation in epitope regions in the different sublineages (Supplementary Table 9). Of those 

antigens, Pst1, an adhesin promoting phagocytosis63, and FbpB, the precursor of the 

secreted antigen 85-B64, had already been pointed out as encoding diverse epitopes by a 

previous study, in which several MTBC lineages were compared57. (Supplementary Table 

9). Other antigens exhibiting parallel nonsynonymous changes by different sublineages 

include known immunodominant, secreted antigens such as Mpb6464, MPT3265 and 

MPT7066 and three latency-associated antigens (Rv1733c67, Rv3034c, Rv262868, 

Supplementary Table 9).

Origin and global spread of the L4.3/LAM sublineage

Irrespective of the putative biological differences between the Lineage 4 sublineages, human 

migration could also have led to variation in the global distribution of MTBC lineages. 

Because the most successful sublineage of Lineage 4 was also frequently found in Europe, 

we hypothesized that the global success of L4.3/LAM was driven by European migration 

and colonization. To test this hypothesis, we first determined the most likely geographical 

origin of the most recent common ancestor of L4.3/LAM using two methods for 

reconstruction of ancestral states69. By both methods, Europe was predicted as the most 

likely place of origin of L4.3/LAM (100% and 99.6%, respectively) (Fig. 6a, Supplementary 

Fig. 14). Moreover, the ancestral geographical regions reconstructed for subsequent nodes in 

the phylogeny were consistent with the spread of L4.3/LAM from Europe to other parts of 

the world (Fig. 6a). Finally, we found that L4.3/LAM strains from Europe were genetically 

more diverse than L4.3/LAM strains from other continents, which further supports a 

European origin for this sublineage (Fig. 6b, Kruskall-Wallis test p<0.0001; Fig. 6c).

Discussion

Our findings show that the global success of Lineage 4 is a consequence of both biological 

and social phenomena. Specifically, we found that Lineage 4 is genetically diverse, and that 

this diversity is phylogeographically structured. The phylogeography of Lineage 4 supports 

an ecological distinction between globally represented generalists and geographically 

restricted specialists. Our in-depth population genomic analyses of one specialist and three 

generalist sublineages showed that even though the majority of human T cell epitopes were 

completely conserved in all four sublinages, the proportion of epitopes with amino acid 

substitutions was significantly higher in generalists. Finally, we demonstrate a likely 

European origin for L4.1/LAM, the most frequent and globally widespread generalist 

sublineage of Lineage 4.
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Our observation that Lineage 4 is phylogenetically diverse is in line with previous 

findings27,70, and highlights the importance of large and globally representative samples 

when studying the population structure of human pathogens. We found that Lineage 4 

comprises at least 10 sublineages, which differ in their geographical distribution. The 

phylogeography of these sublineages is consistent with an ecological separation into 

specialists and generalists, with some sublineages showing an intermediate geographical 

distribution. Our phylogenetic analyses also showed that the three generalist sublineages 

identified within Lineage 4 were not monophyletic (Fig. 1a), indicating that generalism was 

acquired multiple times independently during the evolution of Lineage 4. Specialist 

sublineages also emerged multiple times, which is consistent with local adaptation to 

separate human populations13.

One could argue that the reason for specialist sublineages being geographically restricted is 

they diverged later than the generalist sublineages during the evolution of Lineage 4, and 

thus had insufficient time to spread globally. However, based on recent findings by Comas et 
al.71, the African specialist sublineages already existed at least several centuries ago, 

perhaps even several millennia ago, depending on the age of the most recent common 

ancestor of the MTBC that has been estimated between 70’000 years9,21 and 6’000 

years72,73. Thus, this timespan should have offered ample opportunity for the specialist 

sublineages to become more geographically widespread.

The genetic diversity of the specialist sublineage L4.6.1/Uganda was significantly lower than 

that of the generalist L4.3/LAM, as expected from populations with restricted geographical 

ranges43. Concomitantly, the diversity of T cell epitopes in the specialist sublineage L4.6.1/

Uganda was also significantly lower than in any other of the three generalist sublineages 

analyzed. Whether the low genetic diversity of the specialist sublineage has hindered the 

adaptation of these strains to other human populations or reflects a restricted niche due to the 

lack of opportunity for spreading will need to be explored in future studies.

In all sublineages analyzed, the large majority of T cell epitopes were completely conserved, 

which is in agreement with previous reports for the MTBC overall57,58. This suggests that 

both these generalists and specialists do not use antigenic variation as a main mechanism of 

immune evasion. Despite this general trend, we found that some antigens have acquired 

nonsynonymous mutations in parallel in the different sublineages, suggesting that variation 

in these particular antigens might be beneficial. For example, acquiring nonsynonymous 

variation may allow particular antigens to be recognized by T cell receptors of different 

human populations, which might be beneficial in the presence of different human HLA 

alleles58. This could also provide an explanation for the differences in the degree of 

variation in T cell epitopes of the generalist and specialist sublineages, as generalist 

sublineages are expected to interact with a broader range of HLA alleles. Alternatively, some 

nonsynonymous mutations in epitopes might reflect escape from human T cell 

recognition58. More work is needed to determine if and how the limited diversity in T cell 

epitopes in the MTBC is linked to adaption to different host populations and/or immune 

escape.
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Two independent phylogeographic analyses predicted Europe as the most likely 

geographical origin for the most recent common ancestor of L4.3/LAM. A European origin 

for L4.3/LAM was further supported by our finding that strains belonging to this sublineage 

were more genetically diverse in Europe compared to Africa, Asia and America. Taken 

together, these results suggest a role for Europeans for the spread of L4.3/LAM across the 

globe. Given the high frequency of L4.3/LAM in Europe (Fig. 2, Fig. 3a), particularly in TB 

patients from the Iberian Peninsula and in Latin America74,75, Portuguese and Spanish 

exploration, trade and conquest over the last centuries may have contributed to the global 

dissemination of this sublineage76.

Of note, the Americas lack specialist sublineages, including the three African specialist 

sublineages, despite centuries of slave trade. Importantly, this also applies to MTBC Lineage 

5 and 6 (i.e. M. africanum) which today are largely limited to parts of West Africa11, the 

source of most of African slaves shipped to the Americas. Even if these lineages did reach 

the Americas at the time, they later might have been replaced by generalist sublineages from 

Europe including L4.3/LAM, following the massive influx of Europeans to the Americas 

during the 19th and early 20th centuries77, a time when the European TB epidemic was at its 

peak73,78. Importantly, these human migrations can be viewed as natural experiments, in 

which diverse human populations came into contact with different MTBC genotypes. As 

mentioned above, there is evidence that the African specialist sublineages of Lineage 4 

already existed in sub-Saharan Africa centuries ago71. Following European contact, 

generalist sublineages were introduced to Africa and today, a significant proportion of 

human tuberculosis in Africa is caused by L4.1/LAM and other generalists (Figs. 2 and 3a). 

By contrast, no significant spill-over of African specialist sublineages has occurred into 

Europe or American populations of European ancestry.

Three of the 10 sublineages showed an intermediate pattern of geographical distribution. 

Independent of the open question as to whether they might represent generalists or 

specialists, it is interesting to note that none of these three sublineages were found at 

significant frequency and proportion in Europe. They might therefore represent generalist of 

a non-European origin. Deeper analyses are needed to shed more light on these sublineages.

Our study is limited in that many of the MTBC isolates analyzed come from convenience 

samples and might therefore not be representative of a particular country. However, for the 

analysis of sublinage distributions by SNP-genotyping, we included more than 3,000 clinical 

isolates from 100 countries, which should reduce any potential selection bias. For the deep 

genomic analyses, we selected strains basesd on a large and diverse collection of classical 

genotyping patterns, and in addition, screened <13,000 MTBC whole genome sequences 

available in public repositories. As a further limitation, some isolates in our collection were 

obtained from patients who recently emigrated from a high tuberculosis incidence region 

into a low-incidence country. However, we excluded cases from ongoing transmission and 

focused on immigrants with reactivation disease, i.e. they were most likely infected in their 

country of origin before moving abroad. Moreover, we used country of birth for all analyses 

as opposed to country of tuberculosis diagnosis.
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In conclusion, our findings indicate that the global success of Lineage 4 partly results from 

the different evolutionary strategies adopted by different sublineages. These strategies reflect 

an ecological distinction between specialists and generalists. The specialist sublineages are 

adapted to their sympatric host populations and geographically restricted. The generalist 

sublineages exhibit a broader ecological niche and are geographically widespread. 

Moreover, Europeans contributed to the global spread of the most successful generalist 

sublineage of Lineage 4. Our results highlight the ecological and epidemiological relevance 

of the deep phylogenetic diversity within the MTBC79. More generally, exploring potential 

differences between specialists and generalists in other pathogens will improve our 

understanding of the biology and epidemiology of infectious diseases.

Data Availability Statement

All data generated or analyzed during this study are included in this published article (and its 

supplementary information files). Sequencing reads have been submitted to the EMBL-EBI 

European Nucleotide Archive (ENA) Sequence Read Archive (SRA) under the study 

accession number PRJEB11460.

Online Methods

Mycobacterial isolates

For the definition of Lineage 4 sublineages, we used 72 whole genome sequences of MTBC 

Lineage 4 and reference sequences of the other MTBC lineages published previously21,22 

(Supplementary Table 7). These represented the largest collection of Lineage 4 whole-

genome sequences available at that time. For the SNP-screening of clinical isolates for 

sublineage-classification, we used a retrospective global collection of 3,366 MTBC Lineage 

4 isolates from 100 countries (Supplementary Table 5)15,30–35. All isolates had previously 

been identified as MTBC Lineage 4 by SNP-typing, genomic deletion analysis or 

spoligotyping. Approximately one third of these isolates were from patients who migrated to 

another country (1,106; 32.9%), and we used country of birth of the patient as a proxy for 

the origin of the MTBC strains. Two thirds of the isolates (2,260; 67.1%) were from 

countries where both country of isolation and country of birth were identical. Isolates of 

L4.6.1/Uganda from Uganda were genotyped in our previous work34. For the in-depth 

population genomic analysis of L4.3/LAM, we included previously published 

genomes21,27,44, and generated whole genome sequences of additional strains selected 

from a large collection of 2,132 MIRU-VNTR-genotyped isolates representing the global 

diversity of L4.3/LAM (Supplementary Fig. 7). Starting from 500 whole genome sequences, 

we excluded sequences with bad quality (sequencing coverage < 15x, proportion of 

homozygous variant calls <85%), isolates in transmission clusters (defined as isolate pairs 

differing by ≤12 SNPs) and strains with unknown country of origin, resulting in whole 

genome sequencing (WGS) data for 293 L4.3/LAM strains, which were included in the final 

analysis (Supplementary Table 7). For the in-depth population genomic analyses of L4.6.1/

Uganda, we generated WGS data from 175 isolates of the L4.6.1/Uganda genotype, selected 

for maximal geographic diversity and from previous studies34. Moreover, to further increase 

geographic coverage and genetic diversity among L4.6.1/Uganda strains, we analyzed all 
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available WGS data from several published studies8,45–56,75 and other whole genome data 

available in the public domain. We used KvarQ80 to screen for the L4.6.1/Uganda-specific 

SNPs described below. Starting from 13,067 genome sequences and excluding all clustered 

isolates except for one representative of each cluster, we identified 28 additional L4.6.1/

Uganda genome sequences which we included in our analysis of a total of 203 genomes 

(Supplementary Table 7). For genomic analysis of L4.1.2/Haarlem and L4.10/PGG3 strains, 

we screened the same 13,067 isolates (plus our own collection) for clade-specific SNPs of 

these two sublineages. We identified 505 genome sequences of strains of L4.1.2/Haarlem 

and 748 sequences of L4.10/PGG3. After excluding problematic sequences and strains in 

transmission clusters (criteria see above), we used 228 strains of L4.1.2/Haarlem and 301 

strains of L4.10/PGG3. H37Rv was used as outgroup for all sublineage phylogenies except 

L4.10/PGG3, for which an isolate of L4.1.2/Haarlem was used (H37Rv belong to L4.10/

PGG3).

Whole genome sequencing, variant calling and filtering

WGS of new MTBC isolates was performed using Illumina chemistry (MiSeq, 

HiSeq2000/2500, NextSeq; paired end or single end). Illumina MiSeq-generated sequencing 

reads were clipped for adapters with Trimmomatic81 before mapping. We used a previously 

described pipeline for the mapping of short sequencing reads to the reference genome (a 

reconstructed hypothetical MTBC ancestor) with BWA 0.6.221. SNPs were called with 

SAMtools 0.1.19, and excluded if the coverage was less than 10% or more than 200% of the 

average coverage of the genome, if not supported by at least two reads on each strand, or if 

the quality was less than 30. All SNPs were then annotated using H37Rv reference 

annotation (AL123456.2) with Annovar82 and customized scripts. SNPs in regions 

annotated as “PE/PPE/PGRS”, “maturase”, “phage”, “insertion sequence” were excluded. 

Additionally, we excluded SNPs in genes with previously identified repetitive regions58. 

Small insertions and deletions called by BWA/SAMtools as “INDEL” were not considered 

for the analyses. The presence of large genomic deletions reported previously15,28,74 was 

assessed by manually inspecting BAM alignment files from BWA mappings in Artemis for 

the presence of reads at the genomic regions with described deletions. Alternatively, we used 

a new testsuite in KvarQ80 to check for reads aligning to 25 bp query sequences of the 

corresponding deletion.

Phylogenetic and population genetic analyses for the definition of sublineages

A phylogenetic tree was generated with all Lineage 4 genomes, plus several reference 

genomes from all other MTBC lineages. Pairwise SNP distances were calculated using 

MEGA583 and the ape-package in R84. Fixation indices (FST; estimation of population 

separation) were calculated using Arlequin 3.5.85. Statistical significance was obtained by 

permutating haplotypes between sublineages. Principal Component Analysis (PCA) was 

done with Jalview86. Naming of Lineage 4 sublineages was adapted to Coll et al.27 

whenever possible. However, in that publication, no criteria for the definition of sublineages 

were given, and not all sublineages were identified as such. We therefore added continuous 

numbers for the clades which were not defined by Coll et al. The new sublineages defined in 

this study are L4.1.3/Ghana and L4.10/PGG3 (the latter including L4.5, L4.8 and L4.9 
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according to nomenclature by Coll et al.). The full phylogenetic tree, including previous 

markers and spoligotyping family names is shown in Supplementary Fig. 1.

Identification of sublineage-specific SNPs

The alignment of all SNPs from the initial 72 MTBC Lineage 4 strains was imported into 

Mesquite87, in parallel with the phylogenetic tree generated from the same data in MEGA5. 

We used the “Trace Character History” module of Mesquite to map polymorphisms to 

clades. The full dataset of reconstructed positions was exported, and sublineage-specific 

SNPs were extracted as nucleotide differences between internal nodes of the phylogeny.

SNP-typing to screen for MTBC Lineage 4 sublineages

We developed a new SNP-typing assay to screen clinical isolates for the defined Lineage 4 

sublineages. For this, we selected one “diagnostic” SNP per sublineage using previously 

defined methods and criteria36. Oligonucleotides were designed for a 10-plex MOL-PCR 

assay based on the Luminex xTag platform (Luminex, Austin, USA) (Supplementary Table 

2)36. DNA extracts from clinical MTBC isolates were then screened with either i) the new 

MOL-PCR assay, ii) standard PCR amplification and subsequent Sanger sequencing of the 

region up- and downstream of the sublineage-specific SNP (see Supplementary Table 4 for 

PCR and sequencing primers), iii) a real-time PCR melting curve assay using the same SNPs 

(Supplementary Table 2), or iv) the MassARRAY platform (Sequenom, San Diego CA, 

USA) using phylogenetically redundant SNPs (Supplementary Table 3). The set of SNPs 

used in the MassARRAY typing scheme covered only six of 10 sublineages. Hence, all 

Lineage 4 isolates without any of the six SNPs with the mutant allele defined by 

MassARRAY typing (n=49) were subjected to the Luminex-assay described above. For all 

isolates, patient place of birth was used as country information. We obtained sublineage-

classification data for 3,273 (97.2%) of a total of 3,366 isolates (Supplementary Table 5).

Spatial analysis and data presentation

For each country with Lineage 4 sublineage data available, sublineage proportions 

(compared to all Lineage 4 isolates from the same country) were calculated and mapped to a 

world map with ArcGIS ArcMap 10.0 (Esri, Redland, USA). A shapefile with country 

boundaries was used from DIVA-GIS, which is freely available. Categories for number of 

countries were defined as 0, 1-3, 4-10 and >10 countries. For individual sublineage „heat 

maps“, countries with less than 3 isolates were not included. For the additional maps shown 

in Supplementary Fig. 6, sublineage proportions were normalized by the TB prevalence in 

the country as estimated by WHO38, and the area of the country. Other figures were 

generated with the ggplot2 library in R and GraphPad Prism 6.02 (GraphPad Software, San 

Diego, USA). Statistical analyses were performed with R or GraphPad Prism.

SIFT-analyses of functional effects of fixed sublineage SNPs

Analysis of SNPs fixed in each of the 10 sublineages were assessed for predicted functional 

consequence with the „Sorting Intolerant From Tolerant“ (SIFT) in the software SIFT4G 

(v2.1)42 and the pre-compiled Mycobacterium tuberculosis database 

„GCA_000195955.2.22“. Conservation levels of SNPs in the pre-compiled database had 
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been obtained by comparing Mycobacterium tuberculosis H37Rv proteins to all proteins in 

the UniRef90 database. We pooled SNPs fixed in the generalist sublineages and the 

specialist sublineages, respectively, and excluded the L4.1.2/Ghana sublineage, as whole 

genome sequences of only two, very closely related isolates were available. Gene categories 

were analyzed based on the classification by Tuberculist88.

Phylogenetic reconstruction and population genetic analyses

The final alignment of polymorphic positions in all strains was used to estimate phylogenies 

with Bayesian methods using MrBayes 3.2.589 for L4.3/LAM and L4.6.1/Uganda 

sublineages (Fig. 6, Supplementary Fig. 10). For the Bayesian analysis we used a gamma 

rate distribution estimated from our dataset and a burn-in equal to 1/10 the number of 

generations; after the burn-in phase every 100th tree was saved. Two parallel Markov chains 

were run in each of two runs. Tree length, log-likelihood score and alpha value of the 

gamma distribution were inspected for stationarity before termination of MrBayes. Trees 

were generated with standard parameters. A consensus tree was used for further analyses. 

Additionally, we used MEGA583 to generate Maximum Likelihood phylogenetic trees 

(Supplementary Figs. 9, 11, 12 and 13). We used the general time reversible (GTR) model of 

evolution, and 500 pseudoreplicates for bootstrapping confidence levels. Positions with gaps 

in more than 50% of taxa were ignored. Tree figures were generated using FigTree version 

1.4.2. Pairwise SNP distances were calculated with the ape-package and the dna.dist 
function in R version 3.2.2, using raw counts of mutations and pairwise deletions for sites 

with gaps. For the comparison of pairwise number of SNP distributions overall (L4.3/LAM 

and L4.6.1/Uganda) and between continents for L4.3/LAM, a mean SNP distance to all 

isolates of the same population was calculated for each isolate, and a distribution of the 

mean pairwise distance plotted. Wilcoxon rank sum and Kruskall-Wallis tests were used to 

test for differences between continents as data were assumed to not be normally distributed. 

Average pairwise nucleotide diversities per site (π) were calculated as the average number of 

pairwise mismatches among a set of sequences divided by the total length of the interrogated 

sequences in base pairs (equation 4.21 in Ref.90). Confidence intervals for π were obtained 

by bootstrapping (1000 replicates) by re-sampling with replacement the nucleotide sites of 

the original alignments of polymorphic positions using the function sample in R. Lower and 

upper levels of confidence were obtained by calculating the 2.5th and the 97.5th quantiles of 

the π distribution obtained by bootstrapping. Code details are available upon request.

Antigenic diversity in human T cell epitopes

Experimentally confirmed human MTBC T cell epitope sequences were retrieved from the 

Immune Epitope Database on the 24th of April 2015. Only linear epitopes from the MTBC 

(ID: 77643) tested in human T cell assays, with no MHC restrictions were selected (1,730 

epitopes). The sequence of each epitope was blasted using blastP91 against the reference 

strain (H37Rv) to obtain genomic coordinates. Epitopes with no coordinates in H37Rv or for 

which no accurate coordinates could be determined (due to multiple hits) and epitopes in 

repetitive regions such as PE/PPE genes, phages-related genes and transposases were 

excluded, rendering a final set of 1,226 epitopes. Those epitopes are distributed across 304 

antigens and have some overlapping sequences. In order to proceed with the sequence 

analysis, alignments were obtained by concatenating all epitope sequences after excluding 
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sequence redundancy. Alignments of non-epitope containing antigens were obtained by 

excluding the regions described as epitopes from each respective antigen. To assess how 

other regions of the genome are evolving, alignments for essential and non-essential genes 

were also obtained62.

Alignments of epitopes and non-epitope containing antigens, essential and nonessential 

genes, were used to calculate pairwise dN/dS ratios for L4.3/LAM, L4.6.1/Uganda, L4.10/

PGG3 and L4.1.2/Haarlem sublineages. The dN/dS measures were calculated using all 

polymorphic sites within each sublineage and reflect therefore both within-sublineage 

substitutions and transient polymorphisms. Pairwise dN and dS values within each 

sublineage were calculated using the R package seqinr using the kaks function. To avoid 

having undetermined pairwise dN/dS values due to dN or dS being zero, a mean dN/dS was 

then calculated per sequenced isolate by dividing its mean pairwise dN by its mean pairwise 

dS with respect to all other sequenced isolates within each sublineage. The statistical 

differences between epitopes and non-epitope regions of antigens within each sublineage 

were accessed by using Wilcoxon rank sum tests with continuity correction implemented in 

R version 3.2.2.

Reconstruction of geographical origin of L4.3/LAM

The software RASP69 was used to reconstruct the hypothetical geographic origin of the 

MTBC L4.3/LAM ancestor genotype. The Bayesian phylogeny of 294 isolates (including 

H37Rv as outgroup) and the corresponding continent of birth of the patient were loaded as 

distribution. We used the S-DIVA (a parsimony based method) as well as the Bayesian 

Binary Method (BBM) implementation in RASP. A set of trees from MrBayes89 was used 

to correct for phylogenetic uncertainty in the S-DIVA analysis. Populations were defined 

according to country of birth of the patients and according to the United Nations definition. 

The isolates from Turkey, Libya, Algeria and Morocco were in the category “Europe and 

Mediterranean”. RASP reconstruction was done without the outgroup (H37Rv). As we 

observed a single strain (from Ukraine) with a distinct, basal position in the phylogeny, we 

also performed a sensitivity analysis by excluding that isolate for the RASP analysis. With 

both methods, BBM as well as S-DIVA, the changes in proportions of continents were 

minor. With BBM, the proportion of “Europe/Mediterranean” for the “L4.3/LAM ancestor” 

decreased to 98.8%, and with S-DIVA, the proportion of “Europe/Mediterranean” decreased 

to 99.0% when excluding this basal isolate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Definition and global frequency of Lineage 4 sublineages.
(a) We defined 10 sublineages based on the analysis of 72 MTBC Lineage 4 genome 

sequences published previously21,22. Sublineages were labeled according to Coll et al.27 

(whenever possible) and previous designations based on spoligotyping (see Supplementary 

Fig. 1). Black triangles indicate sublineages identified as specialists, black circles indicate 

generalists. Filled shapes indicate sublineages, for which we performed deep genomic 

analyses. (b) Global proportion of each sublineage. A total of 3,366 MTBC Lineage 4 

isolates were screened for sublineage-specific SNPs. L4.3/LAM was the most frequent 

sublineage globally.

Stucki et al. Page 21

Nat Genet. Author manuscript; available in PMC 2017 April 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Global distribution of Lineage 4 sublineages.
Pie charts showing proportions of the 10 Lineage 4 sublineages among all MTBC Lineage 4 

isolates in each country. Circle sizes correspond to the number of isolates analyzed per 

country. A total of 3,366 MTBC Lineage 4 isolates were included. Color codes are as in Fig. 

1.
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Figure 3. Country-specific proportions of sublineages reveal generalists and specialists.
(a) The generalist sublineages L4.1.2/Haarlem, L4.3/LAM and L4.10/PGG3 were found 

globally at high proportions. (b) The locally restricted specialist sublineages L4.1.3/Ghana, 

L4.5, L4.6.1/Uganda and L4.6.2/Cameroon occurred at high frequencies in only a few 

countries and were restricted to certain geographical regions. Intensity of red indicates 

proportion of the sublineage among all Lineage 4 isolates in each country. Countries with 

fewer than three isolates in total are shown as “no data” and are filled white. A total of 3,366 

Lineage 4 isolates were included in this analysis. The color scale for all sublineages is as 

indicated in Panel a, except for sublineage L4.1.3/Ghana (separate scale shown).
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Figure 4. Pair-wise ratios of rates of nonsynonymous to synonymous substitutions (dN/dS) in 
generalist and specialist sublineages for different gene categories.
Abbreviations: Epi – experimentally confirmed human T cell epitopes; nEpi – non-epitope 

regions of T-cell antigens, both obtained from the Immune Epitope Database60; Ess – 

essential genes62; nEss – non-essential genes62. Wilcoxon rank sum tests: L4.6.1/Uganda 

(N=203) Epi vs nEpi, W=4952, p<0.001; L4.6.1/Uganda (N=203) Ess vs nEss, W=1415, 

p<0.001; L4.3/LAM (N=293) Epi vs nEpi, W=74540, p<0.001, L4.3/LAM (n=293) Ess vs 
nEss W=45067, p-value=0.29; L4.1.2/Haarlem (N=228) Epi vs nEpi, W=6561, p<0.001, 

L4.1.2/Haarlem (N=228) Ess vs nEss W=13369, p<0.001; L4.10/PGG3 (N=301) Epi vs 
nEpi, W= 27335, p<0.001, L4.10/PGG3 (N=301) Ess vs nEss W= 3103, p<0.001.
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Figure 5. Frequency distribution of the number of epitopes with nonsynonymous variants in 
generalist and specialist sublineages.
A total of 1,226 T cell epitopes were included in the analysis. The number above each bar 

corresponds to epitope counts. Generalist sublineages L4.3/LAM, L4.1.2/Haarlem and 

(L4.10/PGG3. Specialist sublineage L4.6.1/Uganda. Tests: L4.6.1/Uganda vs L4.3/LAM 

Χ2= 27.04, p<0.001; L4.6.1/Uganda vs L4.1.2/Haarlem Χ2=15.75, p<0.001; L4.6.1/Uganda 

vs L4.1.2/PGG3 Χ2= 68.24, p<0.001.
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Figure 6. Genome-based phylogeny and diversity by continent of 293 strains of the L4.3/LAM 
sublineage.
(a) Bayesian phylogeny with label colors indicating continent of strain origin: blue, Europe/

Mediterranean; red, Sub-Saharan Africa; yellow, America; pink, Asia. Numbers on nodes 

indicate posterior probabilities. Pie charts indicate reconstructed ancestral geographical 

regions of the internal nodes. The hypothetical L4.3/LAM-ancestor is labeled and a 

European origin for this ancestor was supported using a Bayesian Method (shown) and a 

Maximum Parsimony method (Supplementary Fig. 14). The pie colors correspond to the 

colors of the taxa labels. (b) Boxplot of pairwise genetic distances (number of 

polymorphisms) of L4.3/LAM strains by continent (p-values from Wilcoxon rank sum test). 

(c) Nucleotide diversity per site (π), measured by continent. Error bars indicate 95% 

confidence intervals. MTBC isolates from countries of the continent group “Oceania“ (UN 

category; including Australia and New Zealand, Melanesia, Micronesia and Polynesia) were 

excluded for the genetic diversity analysis in panels B and C due the low number of samples.
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