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An integrated risk and vulnerability 
assessment framework for climate change 
and malaria transmission in East Africa
Esther Achieng Onyango1*, Oz Sahin2,4, Alex Awiti3, Cordia Chu1 and Brendan Mackey4

Abstract 

Background: Malaria is one of the key research concerns in climate change-health relationships. Numerous risk 
assessments and modelling studies provide evidence that the transmission range of malaria will expand with ris-
ing temperatures, adversely impacting on vulnerable communities in the East African highlands. While there exist 
multiple lines of evidence for the influence of climate change on malaria transmission, there is insufficient under-
standing of the complex and interdependent factors that determine the risk and vulnerability of human populations 
at the community level. Moreover, existing studies have had limited focus on the nature of the impacts on vulnerable 
communities or how well they are prepared to cope. In order to address these gaps, a systems approach was used to 
present an integrated risk and vulnerability assessment framework for studies of community level risk and vulnerabil-
ity to malaria due to climate change.

Results: Drawing upon published literature on existing frameworks, a systems approach was applied to characterize 
the factors influencing the interactions between climate change and malaria transmission. This involved structural 
analysis to determine influential, relay, dependent and autonomous variables in order to construct a detailed causal 
loop conceptual model that illustrates the relationships among key variables. An integrated assessment framework 
that considers indicators of both biophysical and social vulnerability was proposed based on the conceptual model.

Conclusions: A major conclusion was that this integrated assessment framework can be implemented using 
Bayesian Belief Networks, and applied at a community level using both quantitative and qualitative methods with 
stakeholder engagement. The approach enables a robust assessment of community level risk and vulnerability to 
malaria, along with contextually relevant and targeted adaptation strategies for dealing with malaria transmission that 
incorporate both scientific and community perspectives.

Keywords: Integrated risk and vulnerability assessment, Climate change impact on malaria transmission, Systems 
approach, Climate change and malaria risk, East Africa
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Background
It is estimated that at least 3.3 billion people globally are 
at risk of malaria infection. The disease is responsible for 
over half a million deaths each year, mostly (90%) in sub-
Saharan Africa. Current climate change projections esti-
mate an increase in the population at risk of malaria by 
1.6 million by 2030 and 1.8 million by 2050 [1, 2]. This 

risk is significant in East Africa whereby rising temper-
atures and changes in other climate conditions are pro-
jected to expand the transmission range of malaria into 
geographic areas where communities were previously 
unexposed to the disease [3]. Understanding the extent to 
which local communities are vulnerable to this risk and 
how well they cope, is necessary to inform policies and 
interventions for risk management.

Vulnerability is determined in part by changes in land 
use and associated socio-economic and cultural factors 
at the community level, which exacerbate climate change 

Open Access

Malaria Journal

*Correspondence:  esther.onyango@griffithuni.edu.au 
1 Centre for Environment and Population Health, Griffith University, 
School of Environment, 170 Kessels Road, Nathan 4111, Australia
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12936-016-1600-3&domain=pdf


Page 2 of 12Onyango et al. Malar J  (2016) 15:551 

impacts on malaria transmission. Previous vulnerabil-
ity assessments have largely overlooked the influence 
of these socio-economic and cultural factors, instead 
emphasizing the biophysical influences on malaria trans-
mission. While the evidence is abundant on increased 
risk of malaria as a result of changing climate, more 
robust understanding is needed of environmental, cul-
tural and socioeconomic factors that influence malaria 
transmission at the community and household levels. 
This requires an integrated approach, which considers 
climate along with the contribution of socio-economic 
and cultural factors in order to explore current and future 
risks and vulnerabilities to malaria transmission.

While there are general guidelines on conducting inte-
grated risk and vulnerability assessments, there is not 
one accepted method or approach in use that reflects 
specific contexts and the availability of data. This paper 
will provide a review of literature in climate change and 
malaria transmission in East Africa, and use this previous 
research to identify key variables in malaria transmission 
in order to construct a systems conceptual model and an 
integrated risk and vulnerability assessment framework.

The threat of malaria in a warmer world: climate change 
and malaria research in East Africa
Warming over the African continent is faster than the 
global average [4]. Projections for the next century show 
that most areas of the continent will exceed the 2  °C 
threshold by the last two decades of this century under 
medium scenarios and that under high scenarios this will 
happen by mid-century and reach between 3 and 6  °C 
by the end of the century [3]. The malaria mosquito and 
parasite are both sensitive to changes in climate and cli-
mate variability and the projected rising temperatures 
and changes in rainfall patterns will create favourable 
conditions for mosquito breeding in many areas [3, 4]. 
In East Africa, climate scenarios suggest longer malaria 
transmission seasons and geographic expansion of the 
disease into highland areas [5–8]. According to pub-
lished literature, the earliest malaria-climate connection 
in the East African highlands was identified in the 1980s 
when there was a series of malaria epidemics connected 
to increases and anomalies in mean monthly maximum 
temperatures and increase in rainfall in the highlands 
[9–12]. Since then, the frequency and size of epidem-
ics increased with serious outbreaks in 1995, 1998 and 
2002, corresponding to climate variations such as a sig-
nificant increase (≥3 °C) in mean temperatures [9], high 
rainfall [10], drought and El Nino events [9, 13–17]. Con-
currently, increasing human population and intensified 
agricultural activities in the highlands has led to land use 
changes that in turn have enhanced vector production. 
At local scales, these changes in land cover, along with 

differences in topography, result in micro-climatic vari-
ability, raise surface temperatures by up to 2 °C, may have 
more of an impact on malaria transmission than climate 
change alone [18–22] and therefore should be included in 
vulnerability and risk assessments.

Vulnerability assessments in climate change and malaria 
research in East Africa
Vulnerability studies, which have long been affiliated with 
the disaster risk reduction and climate change adapta-
tion communities [23, 24] are now increasingly used to 
map and interpret current and future risks related to 
climate change. Vulnerability is determined in part by 
human activities or interventions at the local level, which 
may, if successful, counteract the negative impacts of cli-
mate change. Furthermore, studies focused on projected 
increases in malaria transmission as a result of changes in 
climate should take into account the global decline of the 
disease by 60% from 2000 to 2015 mainly as a result of 
aggressive human interventions and treatment [25–27]. 
Therefore, a robust vulnerability assessment should not 
only take into account the impact of the climate-induced 
hazard to the population, but also the heterogeneity of 
the population and for malaria transmission, the differ-
ences in topography and hydrological characteristics of 
the landscape and other biological and socio-economic 
influences of transmission [16, 28–36] in a holistic and 
integrated manner [4, 6, 7]. Such an approach can incor-
porate an understanding of how changes in climate will 
impact the current burden of the disease (biophysical 
vulnerability). Moreover, this approach is also critical in 
identifying vulnerable populations and their capacity to 
respond (social vulnerability), taking into account other 
factors that affect the current burden of malaria and the 
effectiveness of current policies and programmes to man-
age the disease [37, 38].

Very few vulnerability assessments on climate change 
and malaria in East Africa are in published literature. A 
conceptual and methodological framework for model-
ling of social vulnerability for the East African region 
in a spatially explicit manner and independent of cur-
rent disease prevalence, in order to provide options for 
targeted interventions was presented by Kienberger and 
Hagenlocher [39]. Risk and vulnerability was framed 
within the recent Inter Governmental Panel on Climate 
Change (IPCC) definition [40] in a dynamic and holis-
tic manner and a number of related factors influencing 
disease risk were considered. Analysis and results estab-
lished links to risk governance, climate change adap-
tation and relevant intervention strategies to several 
water-related vector borne diseases, including malaria. 
In a related study, Bizimana et  al. [41] applied a com-
posite indicator approach to assess social vulnerability 
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to malaria transmission in Rwanda at a district level. An 
adapted vulnerability assessment framework [39] was 
used to identify indicators of different components of 
vulnerability in terms of generic susceptibility (i.e., lack-
ing capacity to anticipate) and biological susceptibility 
(i.e., lacking capacity to cope or recover). Both studies 
mapped the main indicators of social vulnerability to 
malaria at district [41] and East African regional [39] lev-
els. While both of these approaches provide useful tools 
for decision-making, only social vulnerability to malaria 
was considered. Also, there is an assumption of homo-
geneity of the population and landscape, which suggests 
uniformity of indicators while in reality there are differ-
ences in population and factors such as topography that 
will have an impact on the weight of indicators. Both 
papers acknowledge these limitations by suggesting that 
interventions should take into account the relevance of 
specific indicators of malaria vulnerability for different 
regions [39] and that future research should focus on an 
integrated vulnerability assessment that combines both 
environmental and social drivers [41].

Further research by Hagenlocher and Castro [42] 
addressed some of these limitations by modelling multi-
dimensional vulnerability in Tanzania in a holistic and 
spatially explicit manner, using estimates of entomologi-
cal inoculation rate (EIR) i.e. risk of infective bite as a 
proxy for malaria hazard. Causes of malaria risk and vul-
nerability were demonstrated to vary considerably across 
the country and risk, hazard and vulnerability maps that 
allow prioritisation of areas for malaria control were 
produced. By integrating malaria risk, vulnerability, and 
contributing factors in a holistic framework, evidence 
of issues that needed to be addressed locally to reduce 
malaria risk while accounting for variability within dis-
tricts was provided. A useful output was an easily adapt-
able modelling framework however; limitations included 
incompatibility of the model with data that were not 
available in a spatially disaggregated format. This means 
that key vulnerability indicators such as acquired immu-
nity to malaria, availability of malaria drugs, migra-
tion patterns, quality of the healthcare system, personal 
beliefs, behaviours and social networks were not included 
in the final model [42].

More recently, Bizimana et  al. [43] integrated a set of 
weighted vulnerability indicators to define homogenous 
regions of social vulnerability to malaria in Rwanda. 
Although a useful approach in determining targeted 
interventions to specific high-risk areas and focus on fac-
tors that influence vulnerability, the model limitations did 
not allow for inclusion of key vulnerability indicators that 
did not have quantitative measurements such as social 
networks, migration and behavioural change. While these 
studies provide suitable frameworks for assessment of 

social vulnerability to malaria, none of them considered 
climate change/variability and the associated biophysical 
and social vulnerability at the same time. Biophysical and 
socio-economic factors are interdependent and must be 
considered simultaneously within an integrated systems 
framework, which assesses risk and vulnerability of com-
munities to malaria. Therefore, using a systems approach, 
this paper builds on previous research to develop a 
framework for conducting an integrated risk and vul-
nerability assessment of the interplay among biophysical 
(especially climate change) and socio-economic and cul-
tural factors on malaria transmission in East Africa.

Methods
Building the systems model was an iterative process that 
involved problem definition and development of a con-
ceptual model of the system under study. The model is 
then used to suggest the development and calibration of a 
Bayesian Belief Network (BBN) model. While there is not 
a standardized procedure for system’s modelling, there are 
some common steps as described by Sterman and Voinov 
[44, 45], which were adapted for our modelling process 
(Fig.  1). This approach captures contextual and expert 
knowledge of the system and then subjects the informa-
tion to a structural analysis, which is used to formulate a 
conceptual model in the form of an influence diagram. This 
is the first step in developing a BBN model. BBN models 
are a useful method for undertaking scenario simulations 
because they can assimilate different kinds of data and 
information including qualitative social survey results, 
quantitative biophysical response functions, spatial envi-
ronmental data, expert opinion and even missing data [43].

Problem definition
This step involved an extensive literature review and 
expert consultations on the key variables and relation-
ships involved in the climate change and malaria trans-
mission cycle. Three key academics well versed in climate 
change, malaria transmission and climate change-malaria 
research in East Africa were contacted and consulted. 
The experts were provided with contextual information 
regarding the research and were interviewed on their 
knowledge of the connections between climate change 
and malaria transmission. Comprehensive reviews of cli-
mate change and malaria transmission have been covered 
in other papers [21, 46–48]. Some of these studies have 
developed suitable environmental, socio-demographic 
and behavioural indicators of malaria risk at regional, 
community and household levels [15, 21, 33, 48–50]. This 
previous knowledge and expert consultations were used 
to capture relevant knowledge about the system and to 
identify the relationships between key variables influenc-
ing risk of malaria infection in East Africa.
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Structural analysis
The malaria transmission cycle is a complex system with 
multiple non-linear and often interacting variables of 
climate change, environmental, biological and socio-
economic influences thus, conceptualizing such a system 
is challenging. The cross-impact multiplication method 
(CIMM) [51] was used to undertake a structural analysis. 
The structural analysis method revealed key system com-
ponents and interactions from a candidate set identified 
from the literature review and expert consultations and 
followed a four-step iterative process:

a. Compilation of a candidate set of key variables from 
the literature review and expert consultations;

b. Description of the relationships between variables 
based on contextual knowledge and expert opinion. 
The degree of influence between variables was rated 
0 if there was no evidence of direct influence between 
two variables. Otherwise, the strength of the rela-
tionship was rated 1(low), 2 (medium), 3 (high) or 4 
(potential);

c. Identification of key variables using the CIMM 
approach which calculates the intensity of influence 
and dependency between variables; and

d. The CIMM approach was also used to identify the rela-
tionships between the identified variables of the system 
through an analysis of the impact matrix by generat-
ing a map of direct influence, which separates the vari-
ables into four types according to degree of influence: 
(i) influential variables, which influence the system, but 
are not dependent on other variables; (ii) relay variables, 
which influence the system and are dependent on influ-
ential variables; (iii) dependent variables, which repre-
sent the system’s output variables and; (iv) autonomous 
variables, which are neither influential nor depend-
ent and may or may not significantly affect the system 
depending on the strength of their relationships.

Visualization of the systems conceptual model
After the structural analysis phase, an influence diagram 
(also known as a causal loop diagram or CLD) was con-
structed to visualize the key variables and interactions 
of the system). In an influence diagram, variables repre-
sent a stock of something or a quality of some kind that 
can increase or decrease. The variables are connected or 
linked by arrows that indicate a causal relationship; typi-
cally, a flow of information, energy or materials that cause 
a shift in the stock or quality of the affected variable. The 

Fig. 1 A flow chart showing the adapted systems modelling process
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direction of the arrow indicates the direction of causality 
while the polarity sign at the tip of the arrow (+ or −) 
indicates whether the relationship between the two vari-
ables is positive (increasing the effect) or negative (damp-
ening the effect). The influence diagram was visualized 
using the software Vensim DSS for Windows Version 6.3.

Developing the assessment framework
The systems conceptual model, represented by the influ-
ence diagram, complemented with existing risk and vul-
nerability assessment frameworks [21, 40] was used to 
develop an integrated assessment framework that con-
siders both biophysical and social influences on malaria 
transmission. Multiple definitions exist for vulnerability, 
but for the development of our framework the definition 
of vulnerability in the context of vector-borne diseases as 
defined by [21] as “a combination of a change in expo-
sure of humans to pathogens with environmental change 
and the sensitivity of the population to that change” was 
adopted. Also, the [21] definition of adaptive capacity as 
consisting of “…technologies, cultural tools and the pub-
lic health infrastructure and resources that are available 
to implement appropriate management responses” was 
adopted. These definitions are consistent with those of 
IPCC Fifth Assessment Report, which defines vulner-
ability to disease and injury due to climate variability and 
climate change as “the propensity or predisposition to 
be adversely affected” dependent on generic (education, 
income, health status and responsiveness of government) 
and biological susceptibility (age, gender and immune 
status) [40, 52]. Finally, the risk of impacts from climate 
change was understood as “resulting from the overlap of 
hazards from the physical climate and the vulnerability 
and exposure of people, ecosystems, and assets” [40].

Results
Problem definition and identification of variables
The scope of this study was limited to the East African 
(Kenya, Tanzania, Uganda, Rwanda and Burundi) region 
based on researcher experience, existing networks and 
availability of previous extensive studies conducted in the 
region. The problem was therefore focused on determin-
ing how climate influences vulnerability to malaria trans-
mission in East Africa. Based on the literature review and 
key insights from expert interviews, a candidate list of 36 
variables were identified as important for understanding 
climatic impacts and malaria transmission cycle (Table 1) 
and grouped into two broad sets of biophysical and 
socio-economic indicators.

Structural analysis
The direct influence-dependence map generated from 
the structural analysis provided the key influential, relay 

variables, dependent variables and autonomous variables 
as shown in Fig. 2.

Systems conceptual model of climate change and malaria 
transmission
The systems model was simplified by focusing mainly on 
the influential (El Nino, air temperature, average rain-
fall/precipitation, agriculture), dependent (vector biting, 
vector abundance, vector infection rate, health-seeking 
behaviour) and the autonomous variables with strong 
relationships within the system (water temperature, 
micro-habitat, topography, wetlands and water bod-
ies, vector adaptive behaviour, population under five, 
immune status, poverty, education level of household 
head, nutritional status, perception, net use, malaria vec-
tor control, environmental controls, quality of informa-
tion, quality of health systems).

The visualization of the system conceptual model is 
illustrated in Fig. 3: Hexagons represent influential vari-
ables; rectangles are dependent variables; and circles 
are autonomous variables. The colours represent major 
classes of variables: blue =  climate, climate change and 
variability variables; green  =  land use and land use 
change variables; and pink =  malaria vector attributes; 
Additional to these biophysical variables are the socio-
economic variables that are colour coded orange. The 
strength of relationships between variables is represented 
by solid lines (stronger relationships) and dashed lines 
(weaker relationships). The red arrows represent a posi-
tive relationship (+) (i.e., the recipient variable’s state or 
quality increases) between variables while blue arrows 
represent negative relationships (−). Lack of a polarity 
sign or black arrow indicates that the relationship can be 
either positive or negative or that the relationship has not 
been determined.

An integrated risk assessment framework
The risk assessment framework (Fig. 4) was constructed 
based on the conceptual systems model. Risk of malaria 
infection was identified as the climate-related haz-
ard, which is influenced by exposure to changes in cli-
mate, climate variability, land use and land use change 
and malaria vector attributes. Vulnerability to risk of 
malaria infection is determined by biological suscep-
tibility, generic susceptibility and coping strategies at 
community and institutional levels. This assessment 
framework can be operationalised using BBN models 
as these allow for sensitivity analysis and exploration 
of the efficacy of policy recommendations under differ-
ent scenarios. Sensitivity analysis can reveal the relative 
significance or leverage of driving variables, providing 
an objective basis to identify a subset of variables for 
model formulation.



Page 6 of 12Onyango et al. Malar J  (2016) 15:551 

Table 1 Variables in climate change and malaria transmission identified from literature review and expert consultation

No Variables Description Source

Biophysical variables

1 Air temperature Air temperature suitable for malaria transmission i.e. between 16 and 34 °C [17, 32, 48, 57–61]

2 Water temperature Mosquito habitat temperature suitable for breeding [60, 62–64]

3 El-Nino Periods of extreme rainfall [14–16, 48, 65]

4 Average rainfall/precipitation Mean monthly rainfall of at least 150 mm; rainfall season [9, 17, 21, 31, 48, 61, 66, 67]

5 Relative humidity Amount of water vapour present in air [68–71]

6 Altitude Height/distance above sea level [36, 48, 69, 70, 72]

7 Micro-habitat changes Changes in mosquito habitat micro-climate due to loss of forest cover or other 
environmental controls such as clearing of bushes

[63, 68–70, 73–78]

8 Topography Physical land surface including hills and valleys, elevation [33, 48, 79, 80]

9 Topographic wetness index Percentage of ground water saturation of at least 5% for suitable mosquito 
breeding site

[30, 31]

10 Wetlands and water bodies Proximity to swamps and other stagnant water bodies [33, 63, 68, 74, 76, 77, 81]

11 Bare areas Land without forest cover or other vegetation [33, 82, 83]

12 Forest edge Human proximity to forest boundaries and potential exposure to exposed 
mosquito breeding sites due to deforestation

[33, 62]

13 Agriculture Land clearance, planting, livestock and maize farming, swamp drainage and 
farming, and water management i.e. water conservation using shallow wells, 
small-scale irrigation and creation of water drainage channels

[31, 33, 48, 49, 76, 77, 84–87]

14 Vector abundance Increase in numbers of malaria mosquitoes [32, 60, 82, 88]

15 Vector biting Likelihood of an infective bite from a mosquito [48, 70, 82]

16 Vector infection rate Efficiency of transmission and infection with the malaria parasite by the 
mosquito

[48, 73, 82]

17 Vector adaptive behaviour Changes in mosquito vector behaviour such as early biting or indoor resting Expert input

18 Population under 5 years Number of individuals under 5 years old [48, 49, 74]

19 Immune status Lowered immunity to malaria due to pregnancy or inexposure; acquired 
immunity to malaria from long term exposure

[48, 49, 79, 89, 90]

20 Interactions Co-infections with other diseases such as HIV increase likelihood and severity 
of infection

[15, 50]

21 Drug resistance Resistance of the malaria parasite to drugs/parasite evolution [15, 48, 50]

Socio-economic variables

22 Urbanisation Expansion of urban areas and overcrowding in cities [49]

23 Population migration/travel Movement of people from low risk areas to malaria-endemic or epidemic-
prone areas and vice versa

[48, 50]

24 Nutritional status Poor health as a result of undernutrition or malnutrition [48, 49]

25 Gender Gender roles, expectations and cultural customs [48, 49]

26 Poverty Socio-economic conditions; household income, food and household assets [15, 48, 49, 74]

27 Religious beliefs Religion or superstitions in understanding or managing malaria and/or climate 
change impacts

[15, 49]

28 Perception Knowledge and understanding of disease [15, 33, 49]

29 Type of house House with grass-thatched roof and mud walls (semi-permanent) or Bbrick 
house with tiled or aluminium roof (permanent); house with separate 
kitchen, house with ceiling and house with open eaves

[33, 48, 49]

30 Education level of household 
head

Education level of male or female head of household [33]

31 Health-seeking behaviour Willingness to seek treatment for malaria; households with malaria medicine 
in stock, self-medication, tradition/cultural norms and practices in malaria 
management

[48, 49]

32 Net use Use of insecticide-treated bed nets to prevent malaria infection [15, 33, 74]

33 Environmental controls Keeping area around the houses cleared of shrubs and other overgrowth; safe 
disposal of plastics and other water-retaining containers

[15, 33]

34 Quality of health systems Health services and policy; availability of health facilities; access to healthcare; 
quality of healthcare and capacity for malaria treatment

[15, 47, 48, 50]
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Discussion
Conducting integrated vulnerability assessments in cli-
mate change and malaria research is a difficult process 
due to the scarcity of empirical infection data on malaria, 
the multiple interacting determinants, the often indi-
rect and non-linear causal chains, variations in exposure 
within affected populations and the high degree of model 
uncertainty [21, 37]. Previous studies have suggested 
integrated assessment frameworks of climate change and 
malaria. A framework that illustrated the environmental, 
socio-economic and biological factors affecting malaria 
incidence in the African highlands was proposed by 
Lindsay and Martens [47]. They defined this as an eco-
epidemiologic modelling approach and reiterated the 

need for integrated modelling built on systems-oriented 
analyses that consider the interactions and feedback 
mechanisms between different sub-systems rather than 
treating them in isolation.

Another integrated assessment framework for infec-
tious diseases (including malaria) was proposed by Chan 
et al. [46]. This framework presented a means by which 
cross-disciplinary research could be used to integrate 
the biologic, epidemiologic, ecologic and sociologic 
knowledge of climate impact on disease transmission 
in order to provide a reliable estimate of the climate-
induced impact on the disease. Although this framework 
takes into account feedback loops resulting from human 
interventions and disease prevention, it did not consider 

Table 1 continued

No Variables Description Source

35 Malaria vector control Distribution and coverage of insecticide-treated bed nets by the government; 
coverage of households sprayed with malaria insecticide (indoor residual 
spraying)

[15, 48]

36 Quality of information Reliable and easy to understand information systems for communicating 
weather and climate information or early warning systems for malaria 
epidemics

[15, 17, 50]

Fig. 2 Direct influence-dependence map of variables of the climate change and malaria transmission system
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which variables carry more weight in influencing trans-
mission. Further research by Sutherst [21] presented a 
comprehensive review of global change and vector borne 
diseases, highlighting the complexity of malaria trans-
mission and the major challenges involved in vulnerabil-
ity assessments of the same. An integrated assessment 
framework was proposed for the study of these diseases 
and suggestions for future research included more stud-
ies that focused not just on vulnerability, but on design-
ing adaptation options to changes in transmission risk 
using a systems approach.

Application of integrated vulnerability assessments 
have been rare, but are gaining prominence in literature; 
Dickin and Schuster-Wallace [53], modelled vulnerability 
to dengue in North-eastern Brazil using a water associ-
ated disease index (WADI) while Lyth and Holbrook [54], 
utilized systems thinking to undertake a quantitative and 
qualitative assessment of the complex social-ecological 
factors contributing to occurrences of ross river virus and 
impacting human health vulnerability in Tasmania. Stud-
ies in East Africa however, have been limited. A review of 
the literature identified only one study, which attempted 

Fig. 3 A systems conceptual model detailing the causal relationships between variables in the malaria transmission system
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to address both the biophysical and social influences of 
malaria transmission in East Africa within the context of 
climate change.

This study by Wandiga et  al. [15], aimed to assess the 
vulnerability and coping capacity of target populations 
as well as the excess risk to which they are exposed as 
a result of climate change using both quantitative and 
qualitative methods. A positive relationship was demon-
strated between changes in malaria cases and variations 
in monthly minimum and maximum temperatures. Other 
socio-economic factors such as drug misuse, inadequate 
knowledge of disease control, myths and superstitions at 
the household level that could contribute to higher inci-
dences of malaria morbidity and mortality, were also iden-
tified. High poverty levels and weak health-care systems 
were determined as factors that reduce the coping capac-
ity of the community. However, quantitative and quali-
tative data analyses were conducted separately and no 
sensitivity analysis was done thus, there is no determina-
tion of the relative contribution of any of these factors in 
increasing or decreasing the risk of malaria transmission.

More studies using integrated assessments of risk of 
climate-related diseases such as malaria are needed in 
East Africa. In this paper, some of the limitations of 
previous research have been addressed by presenting a 
systems-based conceptual model and assessment frame-
work as the basis for a more integrated analysis of the 
risk of communities to malaria infection. In the suggested 

framework, this risk is influenced by exposure to changes 
in climate, climate variability, land use and land use 
change and malaria vector attributes. The integrated risk 
assessment framework can be used with established indi-
cators of malaria transmission at household and commu-
nity level [48–50].

The framework can be operationalized using BBN 
models, a task for future research. This will require using 
data from a mix of quantitative and qualitative sources 
including community and expert stakeholder surveys. 
Expert stakeholders will provide the necessary contextual 
knowledge while empirical knowledge from local stake-
holders and the general community will be important in 
identifying specific determinants of vulnerability. Fac-
tors that increase exposure such as local geography and 
climate, social, economic and other environmental fac-
tors must also be taken into account. Sensitivity on the 
other hand, requires measures of abundance of the vector 
and pathogen on one hand and intrinsic immunity of the 
population on the other. Specific human behaviours that 
may reduce, increase or generate differential exposure 
should also be considered as part of adaptive capacity.

While BBN models have been widely applied in a range 
of natural resource management and decision support 
contexts [55, 56], there has been limited application of 
the same in climate change and public health assess-
ments. Combining information from a range of quanti-
tative and qualitative sources and integrating them using 

Fig. 4 An integrated assessment framework to guide studies of climate change and malaria risk and vulnerability
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BBNs should result in a more robust model, informed 
by community needs and capabilities, leading to fur-
ther knowledge generation and identification of targeted 
response strategies for decision-making and policy.

The framework presented is novel in the following 
aspects: (a) utilizing systems thinking to frame the problem 
of climate change and malaria transmission; (b) drawing 
upon mixed methods to integrate knowledge from different 
fields with stakeholder participation at different geographi-
cal scales and levels of governance; (c) its applicability in 
data-poor regions as narratives from stakeholders can 
complement quantitative data; and; (d) being sufficiently 
generic so that it can be applied to study impacts of climate 
change on other kinds of transmissible diseases.

A major limitation to the approach used primarily 
relates to the subjective way in which the candidate set 
of variables was identified. However, this process can be 
iterative with the results of the structural analysis being 
used to provide feedback to experts and stakeholders for 
further refinement. Additionally, BBN models have con-
straints including a limited ability to capture feedback 
loops from the response variable back to the drivers [55], 
therefore, the full suite of variables and interactions iden-
tified in our systems conceptual model and operational 
framework cannot be represented within a single BBN 
model. This can be overcome by constructing multiple 
BBN models that capture feedbacks and enable more 
detailed inspection of system subcomponents.

Conclusions
It is important to remember that although climate change 
is the result of aggregate global emissions, climate change 
impacts vary regionally. Therefore, adaptation responses 
must always be tailored to local contexts and will be 
largely dependent on the risk and vulnerability profiles 
of communities. This vulnerability is context-specific and 
determined in part by human activities at the local level, 
which may far outweigh the influence of climate change. 
It follows that the same influencing factors for a devel-
oped country will not represent the same risks as those 
for rural communities in a developing country. Most vul-
nerability studies so far have been at global or regional 
levels and few have incorporated climate change, land 
use change and malaria transmission in an integrated 
manner at the community level.

The assessment framework presented here provides a 
first step approach for setting baselines against which risk 
can be assessed and for estimating the benefits of adapta-
tion options for malaria risk management in East Africa. 
The approach is consistent with the current IPCC recom-
mendations, which recognizes that risk of climate related 
hazards can occur due to many interacting influences 
and that focus should be on solutions for risk reduction. 

The framework can be applied at a community level 
using both quantitative and qualitative methods with 
stakeholder engagement and can be adapted to other 
data-poor regions with similar vulnerability profiles. The 
proposed use of BBN models with the framework would 
facilitate a robust assessment of contextually relevant and 
targeted adaptation strategies for dealing with malaria 
transmission, that incorporate both scientific and com-
munity perspectives.
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