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Abstract

Computer simulations can be used in parallel with experimental techniques to gain

valuable insights into physical systems, test theoretical models or predict new be-

haviour of molecular materials. Long time and large length scales, in combination

with problems of phase space sampling, present a grand challenge for simulations

of self-organising molecular materials. In the work presented in this thesis, the aim

has been to develop and apply new or recent simulation models and methods to

address these issues, with the aim of producing improved simulations of molecular

materials.

A new anisotropic model for simulating mesogenic systems has been developed,

based on a soft core spherocylinder potential. This model is tested for single site

systems and a multipedal liquid crystalline molecule, using conventional molecular

dynamics simulations. It is used also to map out an approximate phase diagram

for a main chain liquid crystalline polymer as a function of the volume fraction of

the mesogenic unit; and to study the effects of a chiral medium on flexible achiral

dopant molecules. Results here, show a preferential selection of conformations of

similar chirality to the solvent. Later in the thesis, this new soft core spherocylinder

model, is combined with a recently developed simulation methdology, Statistical

Temperature Molecular Dynamics, to study the isotropic-nematic phase transition



iv

of a single site mesogen and the isotropic-lamellar phase transition of a model rod-

coil diblock copolymer, using a single simulation to span the temperature window

corresponding to the phase transition.

Additional simulations combine a mesoscopic simulation method, Stochastic Ro-

tational Dynamics, with a coarse grained surfactant model. This allows a computa-

tionally efficient solvent description while maintaining correct hydrodynamics. Re-

sults presented here include the formation of a bilayer, via spontaneous self-assembly

of surfactant molecules, and information on the pathways of micelle formation.

In the final result chapter of this thesis, Hamiltonian replica exchange simulations

are performed employing soft-core replicas for a Gay-Berne system. The simulation

results show an order of magnitude increase in equilibration speed of the ordered

phase when compared to conventional simulations of a Gay-Berne fluid.
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Chapter 1

Introduction to self-ordering

In his book, The Physics of Liquid Crystals, [7] de Gennes gives the following de-

scription for a fourth state of the matter termed a liquid crystal: “Certain organic

materials do not show a single transition from solid to liquid, but rather a cascade

of transitions involving new phases; the mechanical properties and the symmetry

properties of these phases are intermediate between those of a liquid and those of a

crystal.“

One key difference arises between the structure of a crystal and a liquid. In solid

crystal, the molecules sit on a three dimensional lattice with long range periodic

order. This can be observed experimentally by x-ray diffraction experiments where

Bragg diffraction peaks occur when [8]

lim
|x−x′|→∞

〈ρ(x)ρ(x′)〉 = F (x − x′). (1.1)

Here 〈ρ(x)ρ(x′)〉 is a pair correlation function and F (x − x′) is a periodic function

of the lattice vectors corresponding to the crystal structure. In a liquid such long

range order is missing. In an isotropic liquid the only way to describe the probability

of finding similar molecules or structures at long separation is through the average

particle density, ρ̄ [8].

With the aid of these definitions, liquid crystals (LC) can be defined as systems

where liquid like ordering exists at least in one dimension, and where the particle

density pair correlation function is not only dependent on the distance |x− x0| but

1
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also on the orientation of the vector x − x0 [8]. In addition to being intermediate

states, LC mesophases have physical properties inherited from both isotropic liquids

and solid crystal materials. For example, LC systems might have the ability to flow

and the inability to resist stress (like an isotropic liquid) but also have the ability

to transmit a torque (like a solid) [9].

Liquid crystalline systems can be roughly divided into two categories based on

what acts as the driving force for phase transitions. In thermotropic liquid crystals

the driving force for phase changes is provided by changes in temperature. For

example, on cooling a system can move from an isotropic liquid to a nematic liquid

crystal mesophase with orientational order. In lyotropic liquid crystals the changes

between different mesophases are driven by a change in the concentration in addition

to temperature changes.

In nature self-organisation is not only limited to liquid crystals, but is present in

a wide variety of soft condensed matter systems [10, 11]. For example in a diblock

copolymer system, which is the simplest case of a general block copolymer, the

incompatibility of the two building blocks leads to phase segregation and to a wide

cascade of different self-organised mesophases [12].

An other example of self organisation is provided by amphiphilic molecules in

solution. Amphiphilic molecules (also known as surfactants) consists of hydrophobic

and hydrophilic parts [11]. In aqueous solution, with favourable concentration and

temperature, surfactant molecules can self-assemble to form micelles and a range

of lyotropic liquid crystalline mesophases. Another example of systems exhibiting

lyotropic liquid crystalline behaviour are rod like colloidal particles. For example

colloidal suspension of Tobacco Mosaic virus will form liquid crystal phases at high

concentration of particles.

1.1 Liquid crystalline phases

Liquid crystal particles, such as organic molecules which are able to form ordered

LC mesophases, are called mesogens. Mesogens can be, very roughly, divided into

two categories by their shape: calamitic (rod-like) and discotic (disc-like). Both
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of these classes have a strong anisotropy in molecular shape, normally thought of

as a sufficient requirement for forming mesophases [9]. G. Friedel was the first to

carry out a classification of different liquid crystal mesophases [13]. Liquid crystal

molecules come with various chemical structures and a range of physical properties.

This leads to a large number of different mesophases, some of which are very com-

plex. Some of the most common mesophases will be discussed in more detail, in the

next sections.

1.1.1 Nematic phases

The main characteristic of the nematic phase (N) is long range orientational order

with a lack of long range translational order. In the uniaxial nematic phase parti-

cles are orientated such that, on average, their unique axis (long axis for calamitic

mesogens figure 1.1 (b)) and short axis for discotic mesogens (figure 1.3) points in

the same direction. This common direction can be identified as the director of the

phase, n̂.

Normal nematics are uniaxial with one dimensional orientational symmetry.

There exists also a type of nematic, which has orientational order for two unique

axes, characterised as a short axis and a long axis. This type of nematic is called a

biaxial nematic. It has been observed most often in lyotropic or polymeric systems,

but recently it has been observed also in thermotropic systems [14–16].

1.1.2 Chiral nematic phase

A schematic representation of the chiral nematic (N∗) phase is presented in figure

1.2. In a chiral nematic phase, molecules exhibit a twist around a helical axis (dotted

line in figure 1.2) perpendicular to the nematic director n̂. The twist arises from the

molecules possessing a molecular chirality (normally conformational or electrostatic)

inducing neighbouring molecules (on average) to align at a slight angle with respect

to each other [7]. However, the existence of molecular chirality does not guarantee

the formation of a chiral nematic phase. For example, for chiral tobacco mosaic

virus particles [17] only a normal nematic phase is found [18].
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Figure 1.1: Schematic representation of phases formed by calamitic mesogens:
isotropic liquid (a), nematic liquid crystal (b), smectic A liquid crystal (c) and
smectic C liquid crystal (d).

The helical pitch of a chiral nematic phase can be defined as the length over

which the director has completed a full 3600 rotation. Figure 1.2 shows a 1800

rotation, i.e. the length separating the top layer from bottom is a half pitch p/2.

1.1.3 Smectic phases

In smectic mesophases mesogens exhibit both rotational and translational order. A

distinct structural feature of the smectic phase is a layered structure, with meso-

gens organised in layers with well-defined interlayer spacing. This can be observed

with experimental techniques, for example x-ray diffraction. Compared to nematic

phases, smectics have more order. This leads to them appearing at lower tempera-
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Figure 1.2: A Schematic representation of the chiral nematic (N∗) phase.

tures than nematic phases for most thermotropic mesogens [7].

The simplest type of smectic, a smectic A (SmA) phase, is presented in figure

1.1 (c). In a SmA, molecules are oriented along the director, n̂, of the phase. The

molecules are organised into layers perpendicular to the director, but there is no long

range ordering inside layers or between layers. Therefore each layer approximates

to a two dimensional liquid [19]. The smectic B (SmB) phase has similar ordering

to the SmA, but in addition it has hexagonal ordering within the layers. There is

no long range inter layer ordering, so this phase still has some liquid characteristics.

The smectic C (SmC) phase, (figure 1.1 (d)), is a tilted analogue of the SmA phase.

In the SmC phase a tilt angle exists between the director and the layer normal. The

molecules do not possess long range intra-layer nor inter-layer order. In addition to

these smectic phases, there exists a cascade of other smectics, including the hexatic

mesophases smectic F (SmF) and smectic I (SmI) [19].

1.1.4 Discotic phases

The most common discotic phases are nematic and columnar (figure 1.3). In dis-

cotic nematic molecules are arranged such that their unique axis (short axis in this

case) points on average along the phase director. As in its calamitic counterpart

no long range translational order exists. The columnar phase is a discotic analogy
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Figure 1.3: Liquid crystal phases formed by discotic mesogens: nematic (left) and
columnar (right). Snapshots are taken from Monte Carlo simulations of hard cut
spheres, courtesy of Dr Peter Duncan, Durham University.

of the calamitic smectic A phase. In the columnar phase the mesogens are packed

in columns, with the columns arranged parallel to the director and packed on a

two dimensional lattice. According to the arrangement of columns in a two dimen-

sions, columnar phases can be classified into three different categories: hexagonal,

rectangular and oblique [19].

1.2 Liquid crystal macromolecules

Alongside the progress made in experimental and computational techniques of simple

organic liquid crystals, more complex systems exhibiting liquid crystal behaviour

have also been studied. One area of interest are large macromolecular systems

containing mesogenic groups. These can be divided into two categories, liquid crystal

polymers and liquid crystal dendrimers.

Liquid crystal polymers (LCPs) are characterised by a polymer back bone with

anisotropic mesogens attached to it. LCPs can generally be divided into two groups:

main chain LCPs (MCLCPs) with mesogenic groups coupled linearly, or side chain

LCPs (SCLCPs) with mesogenic groups attached terminally or laterally to a flexible

spacer chain grafted to the polymeric back bone. Schematic representations are given

in figure 1.4.

The building blocks of main chain LCPs are the flexible parts of the polymeric
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Figure 1.4: Schematic representation of Liquid Crystal Polymers (LCPs): Main
chain LCP (top), side chain LCPs (bottom); laterally (left) and terminally (right)
connected mesogenic groups.

backbone and mesogenic groups. Side chain LCPs have three main building blocks:

mesogenic groups, flexible spacers and the polymeric backbone. The driving force

for formation of liquid crystal mesophases are the anisotropic interactions between

mesogenic groups. The flexible spacer works as a separator allowing mesogens to

order, while the polymeric backbone adopts its random coil conformation [20]. Side

chain LCPs are thought to have interesting applications, for example optical switch-

ing in electro optical applications [21].

Different types of dendritic and hyperbranched polymer systems have been of

great interest for researchers and have been widely studied (for example [22–29]).

Despite the breadth of the topic several common types can be identified [30]. These

include dendrimers and hyperbranched polymers which are constructed in genera-

tions of branches in which the mesogenic units form part of each branching unit [30].

The branching structure can be seen in figure 1.5 for first and second generation den-

drimers.

Dendrimers offer a nice spherical scaffold for supermolecule design. For example,
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Figure 1.5: A stick model for dendrimers; first generation (a) and second generation
(b).

by attaching mesogens to the end of each dendritic branch by means of flexible

spacers (figure 1.6). Saez and Goodby [24] have studied a supermolecular Liquid

Crystal Dendrimer (LCDr) with an octasilsesquioxane core. Eight separate branches

were attached to the core, thus it can be considered as a first generation dendrimer

with mesogenic units terminally attached. It was found to exhibit smectic A and

tilted smectic C phases. With a similar core but laterally attached mesogens, the

supermolecules were found to form a chiral nematic phase [31].

Liquid crystal polymers and dendrimers have also been objects of computational

studies. A recent molecular dynamics study [32] of a polysiloxane side chain LCP

demonstrated growth of a smectic A phase from an isotropic liquid with the help

of small aligning field. Dendritic systems have also been studied previously by

molecular simulations (for example [33–35]). These include the development of a

3-dimensional molecular structure builder for molecular simulation of dendrimers

which uses Continuous Configuration Biased direct Monte Carlo Method [34]. De-

spite efforts, no molecular simulation have been able to produce the spontaneous

self assembly of a bulk LCDr to ordered liquid crystalline phases, as observed in

experiments. A recent coarse grained study of a third generation LCDr showed

spontaneous microphase separation, but a small aligning field was needed to form
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Figure 1.6: Cartoon representation of a supermolecule with a dendritic scaffold
containing mesogens attached terminally (a) and laterally (b).

an ordered smectic A phase [36].

1.3 Surfactants in solution

Amphiphilic solute molecules consist of two parts: one which would be insoluble and

another which would be highly soluble in a chosen solvent [11]. It is favourable for

the insoluble parts to be separated from the solvent. In the presence of a surface or

a boundary the amphiphilic molecules tend to concentrate to the solvent boundary

thus they are also called surfactants.

For low concentrations in a water like solvent, surfactant molecules (composed of

a hydrophilic head group and a hydrophobic tail group) can exist as free monomers.

When the concentration of the surfactants is increased above threshold known as

the critical micelle concentration, the surfactants aggregate to form micelles. The

surfactants self-assemble in such way that the hydrophilic head groups form a shield-

ing core around the hydrophobic tail groups. Examples of these aggregates include

spherical micelles, worm like micelles, bilayers and vesicles [11]. In figure 1.7 car-

toon representations of surfactant molecules composed of a spherical hydrophilic

head group connected to a hydrophobic coil, are presented as free monomers 1.7(a),
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Figure 1.7: Examples of assemblies of surfactant molecules consisting of a hy-
drophilic head group represented by a sphere and a hydrophobic tail group rep-
resented by a coil: Free monomers (a), spherical micelle (b) and bilayer (c).

a spherical micelle 1.7(b) and as a bilayer 1.7(c).

1.4 Molecular simulations

At equilibrium, in a given thermodynamic state, the free energy is at a minimum.

When the system goes through a phase transition, induced by a change in tempera-

ture, pressure or concentration, the structure of the state corresponding to the free

energy minimum can change dramatically [10]. An example of this is the orienta-

tional order change at the isotropic-nematic phase transition.

In a system where volume, V , is constant, the relevant free energy is the Helmholtz

free energy [37]

A = U − TS, (1.2)

where U is the internal energy of the system and S is the entropy. Correspondingly,

for a system where the volume is allowed to fluctuate, the relevant free energy is

provided by the Gibbs free energy

G = U − TS + PV, (1.3)

where the product, PV , of pressure, P , and volume, V , is added to the Helmholtz

free energy.

Entropy changes play an important role in phase transitions. Entropy is a maxi-



1.4. Molecular simulations 11

mum when a system is totally disordered. Therefore at relatively high temperatures

equation (1.2) has a minimum for the disordered liquid structure. When temper-

ature is lowered the relative contribution of the entropy is reduced. If there exists

a state where the reduction of internal energy outweighs the reduction of entropy,

when moving from a less ordered structure to a more ordered one, the system will

undergo a phase transition.

Computer simulations can be used to gain extra information for systems of exper-

imental interest. They can also be used to test new theories, or even simulate totally

new systems out of reach for current experimental techniques and too complex for

theoretical studies. There is a wide cascade of different computational techniques for

studying complex systems ranging from ab initio electronic structure calculations

for individual molecules and nanostructures [38] to continuum models for fluids [39].

Between these two extremes there are molecular simulation techniques [40] in which

the sampling of phase space is carried out by random number techniques (Monte

Carlo simulations) or solving equations of motions (molecular dynamics) in a chosen

thermodynamic ensemble [41]. These methods can be used to find the equilibrium

structures minimising the free energies of equations (1.2) and (1.3). Interactions

between particles are normally derived in pairwise additive fashion using effective

pair potentials.

Figure 1.8 shows an example of morphologies obtained via molecular simulation

of model diblock copolymer based on poly(styrene-b-isoprene) (PS-b-PI) diblock

copolymer [1]. Here the simulation results demonstrate the formation of lamellar,

gyroid, hexagonal packed cylinder and body-centred cubic phases for different com-

positions, fs = NPS/(NPS +NPI).

As mentioned earlier, the aim of molecular simulations is to find the structure

minimising the corresponding free energy, for given control parameters such as the

temperature and/or pressure. However, for the self-assembly of complex molecules,

this has two distinct, but somewhat connected problems: firstly, the structures

may be separated by considerable free energy barriers, leading to poor sampling

of phase space and secondly, a time scale problem for moving between structures.

Self-assembling complex systems typically consists of millions of atoms with self-
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Figure 1.8: Examples of simulated morphologies for PS-b-PI diblock copolymer
systems obtained from the molecular simulations (from middle; lamellar, gyroid,
hexagonal and body-centred cubic) and their composition, fs = NPS/(NPS + NPI),
domains. Reprinted with permission from [1]. Copyright [2009], American Institute
of Physics.
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assembly times of milliseconds and beyond [42]. To a certain extent, the problem

of large numbers of atoms has been and can be solved with the aid of modern

high-performance computers by distributing the calculations over many thousands

of processors. However, typically these large scale simulations are restricted to time

scales of less than 100 ns [42]. Clearly, the time scale problem still exists. The aim

of this work is to test and developed new and recent models and methods to aid

in bridging the time and length scales associated with the self-assembly of complex

materials and improve the sampling of the phase space.

In chapter 2, models i.e. effective pair potentials for the simulation of complex

self-organising fluids relevant for this thesis will be discussed. Also relevant simu-

lation methods, namely Monte Carlo (MC) and Molecular Dynamics (MD) will be

introduced. Further, advanced (mesoscopic) simulation techniques such as Dissipa-

tive Particle Dynamics (DPD) and Stochastic Rotational Dynamics (SRD) will be

discussed in some detail.

In chapter 3, a new anisotropic soft-core model is developed. This new model is

by construction continuous and goes smoothly to zero making it usable in dynamics

simulations. It also has a tunable attractive interaction and its soft-core nature

eases problems of equilibration. It is used for simulation of single site systems and

for simulation of a multipedal liquid crystalline supermolecule. The latter result

demonstrate that the new anisotropic model can be used to probe phenomena oc-

curring on fairly long time scales. Chapter 4, describes how the model developed in

chapter 3, can be used to map out the phase diagram of a model main chain liquid

crystalline polymer as a function of the length of the mesogenic unit. The chapter

also presents a study of chiral induction effects seen in flexible achiral molecules

within a chiral solvent.

In chapter 5 SRD is combined with a surfactant model to study the formation

of micelles and pathways of micelle formation in a water-like solvent.1 This scheme

allows for a computationally efficient treatment of the solvent while still maintain-

ing correct hydrodynamics, thus allowing the study of non equilibrium phenomena.

1Collaborative work with Prof. David J. Earl and Dr Christopher Adam Hixson, Department
of Chemistry University of Pittsburgh, USA.
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Chapter 6 introduces the recently developed Statistical Temperature Molecular Dy-

namics (STMD) simulation method. In chapter 6 STMD is combined with the soft-

core model developed in chapter 3, to study isotropic-nematic and isotropic-lamellar

phase transitions in greater detail. The STMD method allows the simulation of a

fairly large temperature window by a single simulation and the thermodynamic

quantities such as entropy and free energy are readily available.

In the final results chapter, chapter 7, the Hamiltonian Replica Exchange Molec-

ular Dynamics (HREMD) method and another new anisotropic soft-core model de-

veloped Dr. Roberto Berardi in University of Bologna2, will be introduced. This

soft-core model will be used in connection with HREMD, to simulate the isotropic-

nematic phase transition. The HREMD approach provides up to an order of mag-

nitude speed up in equilibration, compared to a conventional model. Finally, the

thesis results are concluded in chapter 8.

2Collaborative project with Prof. Claudio Zannoni and Dr Roberto Berardi, Department of
Industrial Chemistry, University of Bologna, Italy.



Chapter 2

Computer simulations of

self-organising soft matter

In order to effectively study ordered mesophases in soft-matter systems some level

of simplification i.e. coarse graining (CG) is required. In CG models some details

present in a “real” atomistic picture of a molecule are coarse grained away and only

key features, such as shape or size, are preserved in the coarse grained representation.

CG models can be roughly divided into two categories: single-site models or multi-

site models. In a single-site CG system the whole molecule is described by a simple

single-site potential. Popular choices for anisotropic molecules are the Gay-Berne

potential [43] and spherocylinder potentials [44].

In this chapter, two common anisotropic models, the Gay-Berne and sphero-

cylinder potentials, used in this work, will be introduced in sections 2.1.1 and 2.1.2,

respectively. The relevant simulation methods for this thesis, Monte Carlo, molec-

ular dynamics and Stochastic Rotational Dynamics will be discussed in sections,

2.2.1, 2.2.2 and 2.2.5, respectively. In section 2.3, it is explained how the formation

of different mesophases can be identified from the data generated by molecular simu-

lation, by means of order parameters and pair correlation functions. Finally, section

2.4 discusses how coarse grained molecules can be related to atomistic models of

real molecules.

15
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2.1 Types of anisotropic models for soft matter

At the heart of molecular simulation is the interaction between particles. For a

simple system consisting of N particles the potential energy can be expressed as a

summation over individual particles, pairs of particles, particle triplets and higher

terms [45],

U =
∑

i

u1 (ri) +
∑

i

∑

j>i

u2 (ri, rj) +
∑

i

∑

j>i

∑

k>j>i

u3 (ri, rj, rk) + . . . , (2.1)

where the summation
∑

j>i implies that every pair interaction is calculated only

once. The first term in eq. (2.1) describes the effect of an external field, the second

term is a pair potential and the third describes three body interactions. The three

body terms are computationally very demanding, scaling as N3, but (especially at

fluid densities) have a considerable effect [45]. Four-body and higher order terms

can be assumed to be considerable smaller than pair or three body interactions [45].

It has been discovered that three-body interactions can be partially included into

a pair potential by defining an effective pair potential, which then can be used in

simulations. Now the potential energy can be written [45]

U ≈
∑

i

u1 (ri) +
∑

i

∑

j>i

ueff
2 (ri, rj) . (2.2)

The simplest kind of LC models are lattice models where particles are confined

to a two or three dimensional lattice. Particles interact with nearest neighbours

through a simple anisotropic potential [46]. The lattice model for simulation of liq-

uid crystals was originally developed by Lebwohl and Lasher [47]. In the method

of Lebwohl and Lasher, sites interact through simple orientation dependent poten-

tial with head-to-tail symmetry. Since then many more lattice models have been

developed. For a review see reference [44].

The next development in modelling liquid crystals involved the use of off-lattice

single site models. In these, individual mesogens are modelled by continuous po-

tentials with anisotropic terms. The most common choices include the Gay-Berne

(GB) [43] potential, an anisotropic form of the Lennard-Jones potential with an
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anisotropic attractive well and short range repulsion, and other non-spherical poten-

tials such as the spherocylinder model. These will be introduced in sections 2.1.1 and

2.1.2, respectively. The Gay-Berne potential [43] has four parameters, (κ, κ′, µ, ν),

for describing the anisotropy of attractive and repulsive interactions. Due to the

(in principle) infinite number of parametrisations available and the rich phase se-

quences exhibited, the Gay-Berne potential is probably the single most studied LC

model. It has been used, for example, to model calamitic molecules [48–51] exhibit-

ing isotropic, nematic, smectic A and smectic B phases. In the search for a tilted

smectic C phase an internally rotated Gay-Berne model has been developed [52].

The versatility of the GB model has further been demonstrated by simulation of

discotic GB particles [53, 54].

In contrast to the GB model, the spherocylinder potential is parametrised by a

single parameter: the length to breadth ratio, L/D. The first computer simulations

for hard spherocylinders were done by Vieillard-Baron in 1974 with elongations

L/D = 1 and 2 [55]. No ordered phases were found. Since then, the model has

been found to exhibit isotropic (I), nematic (N), smectic A (SmA) and solid (K)

phases [56, 57], and the phase stability has been has been established as [57]: k =

1 + L/D ≥ 4.7 for nematic and k = 1 + L/D ≥ 4.1 for smectic A. A soft repulsive

spherocylinder (SRS) model with Lennard-Jones type of potential has been also

studied extensively, (for example [58,59]) and it has been found to exhibit isotropic,

nematic, smectic A and smectic B phases. Recently very soft potentials for SRSs

have been developed [60]. For some of these new potential models phase formation

was considerably faster than with conventional SRS potentials, while still preserving

the rich phase behaviour.

Studies of ellipsoidal particles have also been carried out using hard ellipsoids

[61]. These systems are found to exhibit a nematic phase, but no smectic phase was

found for hard ellipsoids. There have also been attempts to adopt a continuous model

for ellipsoidal shape [62, 63] between two mesogens. Paramonov and Yaliraki [63]

developed a model to obtain the distance of closest approach between two arbitrary

ellipsoids. Their method is valid for any orientation and separation along the vector

between their centres.
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To obtain more control of structural quantities and allow for more realistic de-

scription, multi-site models have been developed. In these, the LC molecule is

typically described as a combination of isotropic (spheres) and anisotropic (for ex-

ample GB or spherocylinder) sites. This kind of model allows a better description

of complex LC molecules and still keeps computational costs reasonably low. Multi-

site models have been applied recently to the simulation of a side chain liquid crystal

polymer [32] and a third generation LC dendrimer [36].

2.1.1 The Gay-Berne potential

In the Gay-Berne (GB) model, liquid crystal molecules are considered to be rigid par-

ticles with axial symmetry [43]. In addition to the anisotropy parameters, (κ, κ′, µ, ν),

the GB potential has two parameters (σ0, ǫ0), which are used to define length and

energy scales. Molecule i is described by a centre of mass vector ri and a unit vector

along the long axis ûi. The interaction energy between two GB particles, i and j,

can be written as [50]

UGB
ij (rij , ûi, ûj) = 4ǫ (r̂ijûi, ûj)

(
R−12 − R−6

)
, (2.3)

where the anisotropic distance parameter is defined as

R = (rij − σ (r̂ij, ûi, ûj) + σ0) /σ0. (2.4)

The anisotropic contact distance σ (r̂ij, ûi, ûj) depends of the orientation of the

inter-molecular vector rij = ri − rj and individual molecular orientations:

σ (r̂ij , ûi, ûj) = σ0

[
1 − χ

(
(ûi · r̂ij)

2 + (ûj · r̂ij)
2 − 2χ (ûi · r̂ij) (ûj · r̂ij) (ûi · ûj)

1 − χ2 (ûi · ûj)
2

)]−1/2

,

(2.5)

where σ0 is the contact distance when particles are in the cross configuration when

r̂ij · ûi = r̂ij · ûj = ûi · ûj = 0. The parameter χ is function of the ratio κ ≡ σe/σs,

χ =
κ2 − 1

κ2 + 1
. (2.6)
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Here, σs is the contact distance when molecules are side by side and σe is the contact

distance for the end to end configuration. The lower limit of the parameter χ is minus

one when the shape of the particle is an infinitely large disk, it vanishes for spheres

and the corresponding upper limit is one which corresponds to an infinitely long

rod [50].

The orientational dependence of the potential well depth can be expressed as a

product of two functions

ǫ (r̂ij , ûi, ûj) = ǫ0ǫ
ν (ûi, ûj) ǫ

′µ (r̂ij , ûi, ûj) , (2.7)

where ǫ0 is the well depth at side by side configuration. The first of these functions

can be written as

ǫ (ûi, ûj) =
[
1 − χ2 (ûi · ûj)

]−1/2
. (2.8)

This has a maximum value when (ûi · ûj)
2 = 1, corresponding to a parallel orien-

tation for the particles. The second function has a similar form to the anisotropic

contact distance (2.5), so it has more effect on the anisotropy of the well depth

ǫ′ (r̂ij, ûi, ûj) = 1 − χ′

(
(ûi · r̂ij)

2 + (ûj · r̂ij)
2 − 2χ′ (ûi · r̂ij) (ûj · r̂ij) (ûi · ûj)

1 − χ′2 (ûi · ûj)
2

)

,

(2.9)

where parameter χ′ is defined as a function of the well depths κ′ ≡ ǫs/ǫe as

χ′ =
κ′1/µ − 1

κ′1/µ + 1
. (2.10)

It should be noted that when choosing κ = κ′ = 1, the GB potential form will

reduce into a normal Lennard-Jones potential with σ = σ0 and ǫ = ǫ0 for all choices

of exponents µ, ν [51].

For the potential between two GB particles four basic configurations can be

defined [5]. In the side by side configuration (s), the symmetry axes of both molecules

are parallel and the vector joining the centre of masses is perpendicular to both

symmetry axes. In the end to end configuration (e), both the symmetry axes and

the vector between the two centre of masses are parallel. In the T-configuration
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Figure 2.1: The distance dependence of the Gay-Berne potential in reduced units,
U∗ (r∗) = (r∗) /ǫ0 and r∗ = r/σ0, for four different configurations: end to end (e),
T-configuration (T ), cross configuration (X) and side by side (s), with parameteri-
sation κ = 4.4, κ′ = 20.0 and µ = ν = 1 ie. GB(4.4, 20.0, 1, 1).

(T ), one symmetry axis is parallel to the vector joining the centre of masses while

the other symmetry axis is perpendicular to both. The final configuration is the

cross-configuration (X) where the symmetry axes and the vector between centre of

masses are perpendicular. For these four configurations the distance dependence

of a GB-potential with parameterisation GB(κ, κ′, µ, ν) = GB(4.4, 20.0, 1, 1) is

presented in figure 2.1.

Chapter 7 of this thesis, discusses a replica exchange method, which provides an

efficient way of improving the speed of equilibration of simulations using Gay-Berne

potentials.

2.1.2 Spherocylinder potentials

A spherocylindrical particle can be realised as a cylindrical rod of length L and

diameter D, with each end of the cylinder capped by a hemisphere of diameter D

(figure 2.2) [64]. The total length of spherocylinder can be written as a function

of the diameter D as k = 1 + L/D. The limits for the aspect ratio L/D = 0
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Table 2.1: The well depth ǫ (r̂ij, ûi, ûj) and the contact distance between particles
σ (r̂ij , ûi, ûj) for the Gay-Berne potential in four different configurations [5].

Configuration σ (r̂ij, ûi, ûj) ǫ (r̂ij , ûi, ûj)

e σ0σe/σs (≡ σe) ǫ0 (ǫe/ǫs) (1 − χ2)
−ν/2

s σ0 (≡ σs) ǫ0 (1 − χ2)
−ν/2

X σ0 (≡ σs) ǫ0

T σ0

[{
(σe/σs)

2 + 1
}
/2
]1/2

ǫ0

[
2/
{

(ǫs/ǫe)
1/µ + 1

}]ν

and L/D = ∞ corresponds to a sphere of diameter D and to infinitely long rod

respectively. A pair potential between spherocylinders is calculated as a function of

the shortest distance between line segments, dij , of particles i and j. As a function

of dij the interaction takes the same form as two spheres of diameter D at separation

dij. This gives the spherocylinder an advantage over, for example GB-potentials, by

allowing a choice of an effective pair potential.

The first spherocylinder model studied was a hard spherocylinder (HRS) [65].

In the HRS model the particles are considered as hard particles and the potential

energy can be written as

U(dij) =





∞ , dij ≤ D

0 , dij > D.
(2.11)

In this case the factor influencing phase formation is the elongation, L/D, as the

phase formation is dependent on excluded volume interactions and the competition

between translational and rotational entropy [46].

In order to achieve a model with a continuous potential energy surface, a soft re-

pulsive spherocylinder (SRS) can be considered. In the SRS model the pair potential

is a cut and shifted Lennard-Jones potential [66],

U(dij) =






4ǫ

[(
σ0

dij

)12

−
(

σ0

dij

)6

+ 1
4

]
, dij ≤ dcut

0 , dij > dcut,

(2.12)

where σ0 = D and dcut is the cutoff radius with value dcut = 21/6σ0. This system with

elongation L/D = 4 was observed in MD simulations to exhibit mesophase behaviour
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Figure 2.2: Spherocylinders i and j characterised by the cylinder length L, width
D and orientations ûi , ûj . rij is vector between the centre of masses and dij is the
shortest vector between line segments.

including the phases: Isotropic, nematic, smectic A and solid [66]. The SRS model

has a strong advantage over the HRS model in its usability in conventional MD

simulations, namely it is smooth and continuous and it goes smoothly to zero at the

cutoff. So it could be employed as an effective potential for coarse grained mesogenic

groups in a multi-site model as presented in recent simulations of a dendrimer system

[36].

Despite some success with the SRS model in molecular simulations the (12, 6)

Lennard-Jones shape makes its curvature very steep and therefore a limiting factor

in terms of bigger timesteps (MD) or bigger trial moves (MC). To improve this, a

recent study [60] considered some “ultrasoft “ repulsive models for spherocylinders.

Collectively each pair potential had a finite value at zero separation, Umax, and thus

allowed particles, at least in theory, to fully overlap and move through each other.

The most promising results were obtained from a repulsive quadratic potential

U(dij) =





Umax

(
1 − dij

σ0

)2

, dij ≤ dcut

0 , dij > dcut.
(2.13)

where dcut = σ0 = D. This potential produces a linear force, so it could be consid-

ered the softest possible potential with sensible equations of motion. For choice of

elongations of L/D = 5 and 7, MD simulations yielded the formation of isotropic,

nematic and smectic A phases. With a reasonable choice of energy at zero separa-
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tion, Umax/kBT = U∗
max ∈ [10, 35], a considerably longer time step was successfully

employed compared to the SRS model [60]. The results presented in [60] showed a

speed-up of approximately 20-30 times for a growing nematic phase from an isotropic

liquid were possible, when a model of equation (2.13) with Umax = 35kBT was com-

pared to a standard SRS potential.

Making potentials softer does have drawbacks. The finite value of the potential

energy at full overlap, Umax, does, in theory, allow particles to go through each other.

Therefore Umax must chosen to be sufficiently high. In a study of nematic phase

with L/D = 5 spherocylinders modelled with equation (2.13), showed that realistic

structural features could only be achieved by choosing Umax ≥ 35kBT [60]. Because

of the complete lack of anisotropic forces, phase formation is driven by excluded

volume interactions and competition between rotational and translational entropy.

Making potentials very soft effectively removes the excluded volume interaction.

Moreover, at very high densities particles will be driven to overlap, to reduce the

excluded volume rather than to align with each other via the usual excluded volume

mechanism.

There also exists a spherocylinder model with anisotropic attractive forces, namely

a Kihara potential with GB-type epsilon [67]. This potential has the same disad-

vantage as the SRS potential; the curvature is too steep to allow the long time steps

used with ultrasoft potentials. Therefore a very soft spherocylinder potential, with

anisotropic attractive interactions, could prove to be very useful model for use in

effective coarse graining of complex systems. Chapter 3 describes the development

of such a model based on the quadratic form of equation (2.13) and its uses in range

of simulation problems are described in chapters 3 and 4.

2.2 Simulation techniques

The previous section introduced models for coarse grained anisotropic particles used

in the course of this thesis. In order to study the phase behaviour of bulk systems

consisting of these particles i.e. finding the structure corresponding to a free energy

minimum for a set value of external control parameters such as the temperature
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Table 2.2: Some differences between Monte Carlo (MC) and Molecular Dynamics
(MD) methods, taken form reference [6].

Property MC MD

Basic information needed Energy Gradient (forces)
Particles moved in each step One All
Coordinates Any Cartesian
Constraints Easy Difficult
Atomic velocities No Yes
Time dimension No Yes
Deterministic No (Yes)
Sampling Non-physical Physical
Natural ensemble NVT NVE

or pressure, molecular simulations need to be performed. Molecular simulations

for soft matter systems are normally carried out by using either Monte Carlo tech-

niques (trial configurations are created using random numbers) or molecular dynam-

ics (MD) methods (Newton’s equations of motion are solved for particle trajectories.)

2.2.1 Monte Carlo methods

The ensemble average of a function f(r) can be calculated as a weighted integral [68]

〈f〉 =

∫
drN exp

[
−βU

(
rN
)]
f
(
rN
)

∫
drN exp [−βU (rN)]

, (2.14)

where f(r) is the value of the function f at configuration r and U(r) is the potential

energy of a system of N particles at the same configuration. Apart from a few

very simple cases, integrals cannot be calculated analytically. The simplest way of

calculating the integral by a Monte Carlo (MC) method would be to generate random

configurations for all particles and then calculate the total energy for the whole

system. After that the configuration could be weighted by the Boltzmann factor

exp [−βU ]. This procedure would then be repeated until satisfactory sampling had

been reached. Unfortunately this method is very inefficient. At liquid densities most

of the random configurations generated would have Boltzmann factors that would be

really small. In 1953 Metropolis et al. [69] showed that choosing configurations with

a probability exp [−βU ] and giving them equal weights speeds up the integration
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significantly. This, the Metropolis method, proceeds as follows: Calculate the energy,

Eo, of the old state, rN . Generate a new (random) state, r′N = rN + ∆rN and

calculate the new energy En. If the energy difference is negative, ∆E = En − Eo,

the new state is accepted, otherwise the new state is accepted with a probability

e−∆E/kBT . This results in configurations being chosen according to a Boltzmann

distribution. Now the average in equation (2.14) can be approximated as,

〈f〉 ≈ 1

L

L∑

i=1

f
(
rN
i

)
, (2.15)

where L is the total number of sampled configurations [68].

The natural ensemble for MC simulations is the canonical ensemble, this corre-

sponds to fixed number of particles, N , with the volume of the simulation box, V ,

and temperature, T , as constants. Hence the acronym, NV T . At equilibrium in the

NV T ensemble the Helmholtz free energy, equation (1.2) has a minimum. It is pos-

sible to generate other ensembles also. One very popular ensemble is the isothermal-

isobaric (NPT ) ensemble, in which the number of particles, pressure P and tempera-

ture are kept constant. The requirement of pressure being constant leads to the need

for the volume to fluctuate. This can be achieved by introducing a new type of trial

move in addition to normal particle trial moves. In a volume move the energy term is

accompanied by two additional terms [6] ∆E → ∆E+P∆V −NkBT ln(1+∆V/V ),

where ∆V is the difference between old and new volumes. Equilibrium corresponds

to a minimum in the Gibbs free energy, described by equation (1.3).

In addition to taking place in a chosen ensemble, the MC trial moves have to

fulfil important additional criterion: they should follow detailed balance [6]. This

means that the random chain known as a Markov chain must arise from a symmetric

acceptance decision. Further this means each step must be reversible, that is that

the probability of undoing the step at the next move is same as taking the step

in the first place. This said one popular MC scheme is one where trial moves are

done sequentially to particles running from 1 to N . It is clear that this does not

strictly obey the detailed balance. In fact it has been shown recently [70] that the

detailed balance condition is overly strict and a weaker balance condition is sufficient.



2.2. Simulation techniques 26

Moreover, it has been shown that sequential updating schemes are correct and they

leave the Boltzmann distribution unaffected [70].

In the work presented in this thesis, MC is not used on its own, but has been

combined with molecular dynamics to allow sampling of volume space. This is

explained in more detail in section 2.2.2.

2.2.2 Molecular dynamics

In molecular dynamics particle trajectories are followed which arise from interactions

between particles. The force due to a potential U(r) is f(r) = −∇rU(r). Now the

equation of motion for particle i arises from Newton’s second law [71]

m
d2

dr2
ri = Fi =

N∑

j=1

fij (2.16)

where the sum is taken over all N particles excluding the self interaction j = i. Due

to the Newton’s third law, f ij = −f ji every particle pair needs to be evaluated only

once. Integration of these equations gives rise to particle trajectories as a function

of time, t.

Making a Taylor expansion for positions r(t+ δt) and r(t − δt) at times t + δt

and t− δt respectively about position r(t) [72],

r(t+ δt) = r(t) + δtv(t) + 1/2δt2a(t) + . . .

r(t− δt) = r(t) − δtv(t) + 1/2δt2a(t) − . . .
(2.17)

if truncating at δt2, adding these two equations together and solving for r(t + δt)

one arrives with an integration scheme known as the Verlet algorithm [73]

r(t+ δt) = 2r(t) − r(t− δt) + δt2a(t). (2.18)

As seen above, velocities do not appear in the equation (2.18) explicitly, but they

can be solved for the midpoint,

v(t) =
r(t+ δt) − r(t− δt)

2δt
. (2.19)
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The basic problem of the Verlet algorithm is now apparent. Solving of positions,

equation (2.18), have errors of order δt4, while the velocities, equation (2.19), have

error of order δt2. As velocities are used to estimate the kinetic energy, and as this

contributes to the total energy, the errors may lead to considerable drift in the total

energy.

More accurate integrators have been developed, for example the leap-frog algo-

rithm [72] and velocity Verlet algorithm [74]. The essence of the leap-frog algorithm

is to use half step, t ± 1/2δt, velocities in integrating the positions. This leads to

accelerations, velocities and positions not being stored at the same time t. Even

though the leap-frog algorithm has better (smaller) errors than the original Verlet

algorithm, the problem with velocities does not make it completely satisfactory. The

velocity Verlet algorithm uses the same idea as the leap-frog algorithm but it has

been developed such that positions, velocities and accelerations are all stored at the

same time t, making it time reversible [72].

Anisotropic particles introduce new challenges for handling forces and for in-

tegrating the equations of motion. Solving the equations of motion for rotational

degrees of freedom give rise to a new constraint between the direction of the rota-

tional velocity and orientation of the particle, namely they must be constrained to

be perpendicular to each other [75]. Leap-frog and Velocity Verlet algorithms for

non-spherical sites are presented in reference [75].

MD is used throughout this thesis work. In chapters 3 and 4, it is used as a stand

alone method. In chapter 5 it is combined with Stochastic Rotational dynamics. The

basis for this will be introduced in this chapter in section 2.2.5. Chapter 6 presents

simulations with relatively new advanced sampling technique Statistical Tempera-

ture MD [76], where standard molecular dynamics is the underlying method. Finally

in chapter 7, MD is combined with replica exchange method [77,78]. The next sec-

tion describes how MD can be realised in different ensembles, corresponding to

fluctuations in desired thermodynamic variables.
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MD in different ensembles

The natural ensemble for MD is the micro-canonical, NV E, in which the number

of particles, N , volume, V and the total energy E are conserved [6]. If different

ensembles are desired, for example the const-NV T or const-NPT , a thermostat or

thermo- and barostat respectively, needs to be applied to keep the temperature, T ,

and the pressure,P , constant thus allowing the sampling of energy or energy and

volume V phase space, respectively. Popular choices for thermostats include the

Berendsen [79], Andersen [80] and Nosè-Hoover thermostats [81]. In the Berendsen

method the old velocities are scaled to new velocities, vnew = χvold, by a scaling

parameter given by,

χ =

[
1 +

δt

τ

(
T

T0
− 1

)] 1

2

, (2.20)

where T is the current temperature, T0 is desired temperature, δt is timestep and τ is

a time constant. The Berendsen thermostat is very efficient in reaching the desired

temperature. However, at equilibrium the temperature is expected to fluctuate

around the correct value, and therefore the damping by thermostat might lead to

incorrect sampling of the canonical ensemble.

In the other two methods, due to Andersen and Nosè-Hoover, the temperature is

kept constant by collisions with a heat bath. In the Andersen method, the collision

with a heat bath is achieved by giving to a particle (or particles) a new velocity

randomly sampled from a Maxwell-Boltzmann distribution corresponding to the

desired temperature. The Nosè-Hoover algorithm works in a similar fashion. The

main difference is that instead of just replacing the old velocities, energy is allowed

to flow between the heat bath and the system.

For keeping the pressure constant, there exists a Berendsen barostat [79], which

works on same principle as his thermostat. The box volume, V , and therefore

particle centre of mass coordinates, r, are scaled according to a scaling factor derived

from the rate of pressure change. The scaling factor takes the form

µ = 1 − βδt

3τp
(P0 − P ) , (2.21)
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where β is the isothermal compressibility, P0 is the desired pressure and P is the

current pressure calculated for example through virial equation. Toxvaerd [82] de-

veloped a barostat which works in a similar fashion to the Nosè-Hoover thermostat.

Here a friction coefficient is introduced so that the analogue to the heat bath would

be a piston which interacts with the system to keep the pressure constant.

Pressure can also be kept constant by using a simple Monte Carlo move per-

formed periodically after a certain number of MD steps. Here a new volume would be

generated by adding a small (random) volume perturbation term, ∆V ∈ [−∆Vmax, ∆Vmax],

to the old volume as, Vnew = Vold + ∆V . Centre of mass vectors would be scaled

as rnew = (Vnew/Vold)
1/3

rold. After evaluating the potential energy change, the new

volume could be accepted by a MC volume acceptance criteria as presented in section

(2.2.1).

2.2.3 Dissipative particle dynamics

Dissipative particle dynamics (DPD) was originally formulated by Hoogerbrugge and

Koelman in 1992 [83]. It can be understood to be a type of MD with additional forces

to work as a thermostat. DPD was originally developed to model solvents using soft

repulsive pair potentials between individual solvent particles. The thermostat is local

and conserves momentum. This leads to the correct hydrodynamics at sufficiently

long time and length scales. In the DPD framework the equations of motion are

given by a set of stochastic differential equations [84]

dri = vidt,

dvi =
1

mi

([
∑

i6=j

(
F C

ij(rij) + F D
ij(rij ,vij)

)
]
dt+

[
∑

i6=j

F R
ij(rij)

]
√
dt

)
,

(2.22)

where rij is the vector between the centre of mass of particles i and j, rij ≡ ri − rj

and for the centre of mass velocities respectively, vij ≡ vi−vj . The first of the three

forces, F C
ij , is the conservative force normally present in MD simulations, between

particles j and i. It can be chosen independently of any other forces. The two other
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forces, dissipative F D
ij(rij,vij) and random F R

ij(rij) take the form

F D
ij ≡ −γωD(rij)(vij · r̂ij)r̂ij

F R
ij ≡ σωR(rij)r̂ijξij,

(2.23)

where r̂ij ≡ rij/rij and ξij is a gaussian-distributed random variable around zero

with unit variance. In order to achieve momentum conservation, a condition ξij = ξji

is imposed [85]. In order to ensure the desired equilibrium distribution the dissipative

and random forces must obey the fluctuation-dissipation relation. It has been shown

[86] that the relation ωD(r) =
[
ωR(r)

]2
for the weight functions and σ2 = 2γkBT

∗

for the strengths of the random and dissipative forces, leads to correct sampling of

the canonical ensemble. The latter relation also connects the system temperature

T ∗ = kBT/ǫ (with kB being Boltzmann constant), to the amplitudes σ and γ of the

random and dissipative forces. In the most common form of DPD, forces are chosen

to be soft and repulsive,

ω(rij) =





1 − rij

rcut
, rij < rcut

0 , rij ≥ rcut

(2.24)

where rcut is a cut off distance and weight functions are defined as ωD(rij) =
[
ωR(rij)

]2
= [ω(rij)]

2. The conservative force is taken to be FC(rij) = Aω(rij)

with the amplitude of the force typically taken to be A = 25 [87]. The force of

the type described by equation (2.24) corresponds to a potential with quadratic

repulsions described by equation (2.13) in section 2.1.2.

Probably the biggest challenge in the practical use of DPD is integrating the

equations of motion. There are two main difficulties to be considered [84]; the

nature of the dissipative force, i.e. it is dependent on pairwise velocities of all

the pairs of particles. The second difficulty is related to the stochastic nature of

the pair interactions, which then leads to the problem that time reversibility is not

guaranteed anymore. A lot of work has been done on developing different integration

routines and also comparing different suggestions [84, 87, 88].

DPD is not used in the work presented in this thesis. However, the potential
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developed in chapter 3, employes a quadratic repulsion typically used in DPD sim-

ulations. The next section, 2.2.4, describes an alternative method for momentum

conserving thermostat, which can be directly implemented into the conventional MD

framework described in section 2.2.2, thus allowing the simulation of non equilibrium

phenomena where correct hydrodynamics plays an important role.

2.2.4 Lowe-Andersen thermostat

The dissipative particle dynamics method can be thought of as momentum conserv-

ing MD with correct hydrodynamics where the thermostat is coupled to equations

of motion with random and dissipative forces. The method allows for the study, of

a system in the NV T ensemble. Lowe [85] describes a thermostat which preserves

the nice points of DPD (conserving momentum and locality) but which would also

be, by construction, a valid Monte Carlo scheme. The Lowe approach does not use

any dissipative nor random forces. Newton’s equations of motion arising from the

conservative pair force, F C(rij) are integrated using a time step ∆t as in normal

MD. The thermalisation is carried out for pairwise velocities using the Andersen

thermostat [80]: hence the name Lowe-Andersen thermostat.

The Lowe-Andersen thermostat acts on pairs of particles located within an inter-

action radius RT. The bath collision follows Andersen’s idea giving the new relative

velocities from a Maxwell Boltzmann distribution for the relative velocities [89].

This is done in such a way that linear momentum is conserved. Further, the heat

bath collision is performed only for the relative velocity component parallel to the

vector between centres of the two particles. This ensures the conservation of an-

gular momentum [89]. Now for a single pair of particles i and j with velocities vi,

vj, masses mi, mj and unit separation r̂ij ≡ rij/rij with rij ≡ ri − rj, heat bath

collisions can be written [89]

v∗
i (t) =





vi(t) , Γ∆t < ζ1

vi(t) +
(

µij

mi

)
(λ− (vi − vj) · r̂ij) r̂ij , Γ∆t ≥ ζ1

v∗
j (t) =





vj(t) , Γ∆t < ζ1

vj(t) −
(

µij

mj

)
(λ− (vi − vj) · r̂ij) r̂ij , Γ∆t ≥ ζ1,

(2.25)
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where µij ≡ mimj/(mi + mj) is the reduced mass and λ = ζ2
√

(kBT/µij) is a

stochastic variable with kB Boltzmann constant and T the desired temperature. ζ1

and ζ2 are random numbers where ζ1 is uniformly distributed, ζ1 ∈ [0, 1] and ζ2

gaussian distributed with unit variance and zero mean. This procedure is carried

out sequentially for all pairs of particles. It is important to notice that the velocity

appearing in right hand side of (2.25) is always the current value. This means that

it can itself be a post collisional value from some previous pair [89].

Even though the Lowe-Andersen thermostat was originally introduced as an

alternative approach to dissipative particle dynamics it can also be useful in normal

MD. It has been showed to perturb systems considerably less at high thermostating

rates than the Andersen approach [89]. The Lowe-Andersen thermostat works only

at liquid densities. For a gas-like system a different thermostat needs to be chosen.

One possibility is the thermostat developed by Stoyanov and Groot [90]. In their

method the system is thermostatted either (with probability P ) with the pairwise

Lowe-Andersen method, or (with probability 1−P ) with the pairwise “Nosé-Hoover”

like method described in [90]. Another suggestion has come from Allen and Schmid

[91] who derived a true pairwise Nosé-Hoover thermostat. These methods provide

the possibility to simulate a wide variety of systems where hydrodynamics plays an

important role.

The Lowe-Andersen thermostat is applied, to provide a stochastic element, in

some of the state points for the main chain liquid crystalline polymer simulations,

presented in chapter 4. In the next section, 2.2.5, another momentum conserving

method, Stochastic Rotational Dynamics (SRD), will be introduced. SRD is es-

sentially a mesoscopic method, but it can be combined with a microscopic picture

(including conservative forces) as will be described below.

2.2.5 Stochastic rotational dynamics

Stochastic rotational dynamics (SRD) algorithm (also known as multi-particle col-

lision dynamics) introduced by Malevanets and Kapral [92] is a mesoscopic method

to the simulation of fluids that correctly incorporates hydrodynamics [93–95]. Con-

sidering a fluid composed of particles, i, with mass m, position ri(t) and velocity
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vi(t) at time t, the SRD algorithm can be realised in two steps, streaming and colli-

sion. During the streaming step the particle positions are updated at discrete time

intervals, δt, similar to molecular dynamics

ri(t+ δt) = ri(t) + vi(t)δt. (2.26)

At the collision step the SRD particles interact through multiparticle collisions.

These collisions locally conserve energy, mass and momentum and are performed

by dividing the simulation box into a grid of cubic cells with sides of length a.

The velocity for particle i relative to the mean velocity of the cell vc.m. is rotated,

according to

vi(t) = vc.m.(t) + R [vi(t) − vc.m(t)] , (2.27)

where R is a rotation matrix through a fixed angle α, about an axis that is ran-

domly generated at each collision step. The cubic grid can be randomly shifted each

collision step to improve the Galilean invariance of the algorithm [93].

Now considering the case where the solute particles are introduced into the SRD

bath, a question arises of how to treat the solvent-solute interactions. One choice

is to treat the solute particles in the same way as the SRD solvent. Thus, the ve-

locities of the solute are mixed with the solvent through the streaming and collision

scheme described above. This approach is valid when the details of the interaction

between the solute and the solvent are not important, but maintaining the proper

hydrodynamics is the primary concern. This method has been used successfully in

variety of applications [96–98]. Another possibility is to allow the SRD solvent to

directly interact with the solute particles via a non-bonded interaction such as a

Lennard-Jones or Weeks-Chandler-Andersen (WCA) potential. This hybrid molec-

ular dynamics scheme was originally suggested by the original authors of SRD in a

follow up paper [99]. Later the description was expanded and applied to colloidal

suspension by Padding and Louis [100].

In chapter 5, simulations of model coarse grained surfactants coupled to a SRD

solvent will be presented. The results demonstrate the formation of bilayers and

micelles at different solvent qualities with a direct observation of the merger of two
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micelles.

2.3 Analysis of the simulation data

2.3.1 Order parameters

In order to identify different mesophases and phase change state points from com-

puter simulations, tools are needed to measure different kinds of molecular ordering.

Order parameters S2, τ1 and ψ6 can be used to measure orientational order, one

dimensional translational order and intralayer ordering respectively.

The orientational order parameter, S2, is the largest eigenvalue of an orientational

order tensor [51]

Qαβ =
1

2NGB

i=NGB∑

i=1

(3uiαuiβ − δαβ) , (2.28)

where ûi is the unit vector along the long axis of ith particle, α and β are the

cartesian axis x, y, z and NGB is the number of anisotropic sites. The orientational

order parameter, S2, can be used to differentiate between an isotropic phase, which

has no orientational order and therefore S2 ≈ 0, and a nematic phase for which

S2 6= 0. The director of the phase, n̂, can be identified as being the eigenvector

corresponding to the largest eigenvalue of the orientational order tensor (2.28). The

vector representing the long axis (unique axis) of the molecule can be found by

diagonalising the moment of inertia tensor for the corresponding molecule [101]

Iαβ =
∑

i

mi

(
s2

i δαβ − siαsiβ

)
(2.29)

where mi is the mass of the atom i, si is the atomic distance vector from the

molecules centre of mass and α, β are the cartesian axis. The long axis can be

identified as being the eigenvector corresponding to the smallest eigenvalue of the

moment of inertia tensor [101].

One dimensional translational order of the centre of masses along the director of
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the phase can be measured with the parameter [50]

τ1 =
∣∣〈exp

(
2πir‖/d

)〉∣∣ , (2.30)

where r‖ is the projection of centre of mass coordinate along the director n̂ and d is

a yet unknown layer spacing. τ1 can be obtained by calculating it for a series of layer

spacings, d = dmin . . . dmax, and then taking the maximum value of
∣∣〈exp

(
2πir‖/d

)〉∣∣

as the translational order parameter τ1 [50]. The order parameter can be used to

distinguish between a nematic phase with no translational order, τ1 ≈ 0 and a

smectic phases with layer structure and τ1 6= 0.

Hexagonal intralayer ordering can be measured by using the parameter [50]

ψ6 (ri) =

∑
j w (rij) exp (6iθij)∑

j w (rij)
(2.31)

where the summation runs over the neighbouring particles j of particle i. θij is

the angle between the projection of the vector, ri − rj, to a plane normal to the

director n̂ and a fixed reference axis [50]. To overcome the difficulty of choosing

nearest neighbours a cutoff function, w(rij), can be used. Typically it is chosen

to be unity for separations smaller than the chosen rmin and zero for separations

greater than the chosen rmax with linear interpolation between these values [50].

A bulk bond orientational order parameter can be calculated by averaging the the

local parameters (2.31) over all anisotropic particles [51]

ψ6 = Re

(
1

NGB

∑

i

ψ6 (ri)

)
. (2.32)

With the aid of ψ6 one can distinguish between a smectic A, with no hexagonal

order and therefore ψ6 ≈ 0, from phases with intralayer hexagonal order, ψ6 6= 0,

for example a smectic B or a crystal B phase.

2.3.2 Pair correlation functions

Calculation of pair correlation functions allows for the characterisation of the struc-

ture of a bulk phase. The pair distribution function, g(r), gives the probability of
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Figure 2.3: An example of a typical pair distribution function, g(r), for an isotropic
liquid.

finding a pair of particles at a distance, r, apart, compared to an ideal gas of the

same density. Any deviations of g(r) from unity means that there exists correlation

between particles, typically arising from the potential energy interactions [68]. Thus

it does provide information of the local structure of the liquid. The pair distribution

function is defined as [102]

g(r) = V/N2〈
∑

i

∑

j 6=i

δ(r − rij)〉, (2.33)

where, V and N , are the volume and total number of particles, respectively. In

computer simulations g(r) can be calculated by replacing the δ(r − rij) function

in equation (2.33) by a small distance ∆r and accumulating histogram bins with a

distance r = int(rij/∆r) [102]. For an isotropic liquid it is typical that g(r) shows

only a peak at separations corresponding to nearest neighbour interactions as shown

in figure 2.3.

For characterisation of mesophases with orientational or translational order, it

is useful to define pair distribution functions as functions of these quantities. A

distribution function, g‖(r) [103,104] can be realised by considering distances r pro-

jected along the system director n̂, defined in the previous section 2.3.1. In a layered

mesophase, such as a smectic or lamellar, an intra-layer pair distribution function

gl(r⊥) can be defined, where only particles inside the same layer are considered with

a distance perpendicular to the system director.
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2.4 Coarse Graining of complex molecules

In coarse grained (CG) multi-site models the underlying “real molecule” is coarse-

grained into smaller sub-units, super atoms, which then are connected with simple

springs to represent bonds, bond angles and dihedral angles in a similar fashion to

atomistic models [105]. The idea is to coarsen the picture, i.e. get rid of details which

are less important for the system under study, but still preserve enough chemical and

physical characteristics to provide a correct description of the behaviour occurring on

the length scale of interest. With effective coarse graining time and length scales can

be bridged, in the best cases by several orders of magnitude, and still preserve the

key features of the molecular system. This then provides the possibility to study,

for example, self assembly of supramolecular systems or to simulate spontaneous

mesophase formation of complex supermolecules. For liquid crystal simulations there

has been very little development in a systematic coarse-graining scheme to map

between the atomistic and CG world. This is now starting to change with recent

studies by Peter and co-workers [106]. However, in the field of polymer simulations,

as discussed in references [107–111], there exists a number of coarse graining schemes,

which should be applicable to liquid crystals [46].

The first step of coarse graining is to define the level of coarsening. This means

defining how many real atoms are coarse grained into one super atom. In polymer

systems it is typical to use a 10 to 1 coarse grained mapping, which means ten real

atoms are coarse grained into one super atom [112]. Other important considerations

include the position of the super atoms, for example at the centre of mass of the un-

derlying real atoms or at the geometrical centre. The latter requires a careful choice

of the correct regions and therefore the shape of the CG super atom. For simple

liquid crystals and polymers choosing the regions might be a fairly simple task but

when desiring to coarse grain large molecules with complex structures this becomes

a less trivial task. Gohlke and Thorpe [113] present a “natural” way of coarse grain-

ing large biomolecules using rigid regions identified within the molecule as coarse

grained elements. This gives the possibility of concentrating computational efforts

to simulation of flexible connections between rigid units, which can be assumed to

dominate the biomolecular motion [113].
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The next, most important, step is to parametrise the intra- and intermolecular

interactions. This problem is far from trivial and some level of compromise is al-

most always needed. There exist multiple methods for defining the parameters for

the coarse grained force field, ranging from simple potentials of mean force or a sim-

plex method to fit Lennard-Jones parameters while comparing the system density

(as a function of these parameters) to experimentally observed density, to dynamic

mapping, for example comparing a chain diffusion between CG and atomistic simu-

lation [107] (and references therein). The choice of method depends on the system

under study and what properties are desired to be reproduced. For example, study-

ing the formation of equilibrium structures, i.e. mesophase formation, in a complex

thermotropic liquid crystal most likely requires a different approach to studying the

centre of mass diffusion of a polymer system at constant temperature.

A fairly simple, but still effective method for coarse graining includes the use of a

potential of mean force. The idea is to consider a Boltzmann probability distribution

[114]

P (ǫi(r)) = q−1e−ǫi(r)/kT (2.34)

where q =
∑∞

i e−ǫi(r)/kT is a partition function involving all possible states. Now

considering a distribution function, P (x), with degrees of freedom, x, obtained from

atomistic simulation of a bulk system or from experiments, one can see that the

underlying “potential of mean force” can be solved by Boltzmann inversion. This

gives [112]

A(x) = −kT ln [qP (x)] = −kT ln [P (x)] + constant. (2.35)

The resulting quantity, A(x), is not a true potential energy but a free energy [112].

It can be used as a coarse grained potential but it has two main problems. Firstly,

it includes effects from other (neglected) degrees of freedom. Secondly, (a problem

that is common to all effective coarse graining schemes) it is not independent of

temperature nor density. It still can be very good approximation for the potential

energy of stiff interactions where the entropic contribution of the free energy is small.

A good example of this is bond stretching between two adjacent superatoms [112].

For intermolecular pair interactions the use of a potential of mean force is partic-
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ularly problematic. It is correct only for the theoretical case of zero density ρ = 0.

In the intermolecular case the distribution function in question is the pair correla-

tion function, g(r), between particles. In order to find an effective CG pair potential

which would reproduce, for very high precision, an atomistic g(r), an iterative Boltz-

mann inversion method has been developed [109]. The idea is to iteratively alter the

pair potential by using the difference between the current pair correlation function,

gi(r), and the target function gtarget(r). It has been shown to converge in just a few

iterations and reproduce the target function within the line width [109]. The main

problem in this method is that gtarget(r) is state point dependent. In other words, if,

for example, a simulation was carried out at a different temperature or a different

density, then (strictly speaking) a new potential has to be defined.

Despite the short comings of the potential of mean force method to define the

intermolecular interactions it can still be used to find out features of the underlying

true pair potential. It has been used to study the mapping of self-avoiding walk

polymers onto a fluid of soft particles [115]. The effective pair potential between the

centre of mass was achieved by inverting the pair distribution function between the

centres of mass of the original polymer chains. The key observation was that the

resulting effective potential was ultra soft in nature, meaning it had a finite energy at

zero separation, similar to the quadratic equation (2.13) in section 2.1.2. Guerrault

et al. [116] did DPD simulations on coarse grained polymer melts. They coarse

grained polyethylene (PE) and cis-polybutadene (cis-PB) by using the potential of

mean force directly as the potential. Their coarse graining procedure showed that

for the coarse graining level of eight monomers per super atom, λ = 8, for PE or

four monomers per super atom, λ = 4, for cis-PB, the pair distribution functions

shows a non-zero value at zero separation i.e. the coarse grained beads can overlap.

Both of these results imply that the use of potentials of an ultrasoft nature might

be useful also in liquid crystal simulations.

It should be stressed also that in some cases valuable insight can also be provided

by rather cruder coarse grained models. Here, rather than attempting to directly

derive CG potential from an atomistic description, it is possible instead to use coarse

grained models which regenerate key features of a complex molecule. Examples
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include MD and DPD simulations of AB diblock copolymers, where it has proved

possible to predict key phases formed by the use of a very simple model, with

favourable interaction between like beads and repulsion between unlike beads [117–

119]. For mesogenic systems useful insight has been provided by the work of Glotzer

and co-workers [120–125] who studied mesophase behaviour of models consisting of

rigid and flexible segments in various topologies, including end and laterally tethered

nanorods and V-shaped particles.

In the next chapter a new coarse grained model for mesogenic system is devel-

oped. It is shown to work for single site systems producing phase diagram for model

liquid crystals at low computational cost and qualitatively compared to Gay-Berne

systems. It is then used as a part of multi-site model to simulate the self-assembly

of a multipedal liquid crystalline molecule.



Chapter 3

An orientation-dependent potential

model for a soft spherocylinder

3.1 Introduction

Single site models for pair interactions in molecular fluids have been very successful

in describing the behaviour of mesogens and in studying liquid crystal phases [126].

They are comparably cheap to simulate but still manage to capture the essential

physics of underlying real mesogens including, for example, excluded volume effects.

Especially interesting models are rigid anisotropic models for modelling elongated or

rodlike mesogens. These mesogens are of great interest due to their applicability in

a wide range of biological and technological applications. Therefore different models

have been introduced to explore their properties via computer simulations [127,128].

One interesting and widely studied model is to use a single site rigid potential

with ellipsoidal symmetry. The most popular choice of model in this category is the

Gay-Berne (GB) model [43], which has been described in more detail in section 2.1.1.

It has been extensively studied, can be used with various parametrisations to model

different single site mesogens and has been summarised in a recent review [126]

and a book chapter [129]). It has been found to exhibit isotropic (I), nematic (N),

smectic A (SmA) and smectic B (SmB) or crystal phases (Cr) [50, 51] for certain

parametrisations.

There have also been studies of chain models composed of spherical sites bonded

41
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to each other to form a rod-like molecules. Here intermolecular pair interactions can

be modelled by hard spheres [130] or soft spheres [131]. For many cases calamitic

mesogens, or especially the rigid core of calamitic mesogen might be better modelled

by spherocylinder model [67] which has been described in more detail in section

2.1.2. Spherocylinder potentials include hard particle models, hard spherocylinder

(HSR) [57,61,64,132] and square-well [133,134] models. Soft particle models include

a repulsive Kihara model i.e. soft repulsive (SRS) models [66, 132, 135] and the

Kihara fluid itself [136]. There is also a model of the Gay-Berne-Kihara (GBK)

fluid which employs the functional form of the Gay-Berne attractive well, giving the

potential an anisotropic well depth [67]. A recent study [60] considered very soft

repulsive spherocylinder model with finite energy at zero separation. The potential

used was a repulsive quadratic potential, similar to those typically used in dissipative

particle dynamics simulations. This very soft potential provides the possibility of

using longer time step and therefore allowed more efficient sampling of the time-

and lengths scales.

Despite the success of GB and spherocylinder models they possess some slightly

unphysical characteristics. Namely the density changes associated with mesophase

formation are, in worst cases, orders of magnitude greater than in real small organic

molecules. The large density change at a transition is true for colloidal systems but

usually not for thermotropic mesogens. Incidently, as shown in simulation studies of

flexible molecules, real molecules can change conformation at the phase transition

[137], which partly explain the smaller density change.

Another possible problem could be caused by the relatively large aspect ratios

of single site anisotropic particles, due to the lack of anisotropic attractive forces.

Fairly large elongations, L/D, must be used to achieve ordering of mesophases as

mesophase formation relies on excluded volume effects and the competition between

translational and rotational entropy. The former, has a maximum when the centre

of mass movement is not restricted and the latter has a maximum when molecules

rotate freely [46]. This can be especially a problem for ultra soft potentials, as

making the potential very soft reduces the excluded volume effects.

The work presented in the remaining part of this chapter presents a new type



3.2. A new soft-core potential model for anisotropic sites 43

of soft-core potential model for a spherocylinder. This new model has some nice

features: it has adjustable attractive interactions. Further, it reduces the barriers

in the free energy landscape and allows the use of considerably larger time step,

thus leading to considerably faster sampling of phase space when compared with

conventional models. This is especially convenient when modelling the bulk melt of

complex multi-site molecules. It goes smoothly to zero at a cut-off distance, which

is an essential requirement for a potential used in MD framework. The adjustable

attractive interactions allow the parametrisation to favour different configurations

between pairs of particles.

The potential and the adjustable parameters are introduced in section 3.2. Deriva-

tion of forces and torques needed for molecular dynamics simulations (MD) are pre-

sented in section 3.3 and results of MD simulations for two single site systems are

reported in section 3.4. Variants of the potential can also be linked together to pro-

duce more complicated molecular structures. In section 3.5, as an example, results

are provided for a model multipedal liquid crystal, which has eight liquid crystalline

groups linked to a central core via semiflexible chains.1

3.2 A new soft-core potential model for anisotropic

sites

The simple idea behind the new potential model is to use the typical quadratic form

used in DPD simulations (section 2.2.3), U∗
max(1− d∗)2, for the repulsive part of the

potential and add a fourth order term, U∗
attr(1−d∗)4, to control the attractive inter-

action. By making the magnitude of the attractive part, U∗
attr, angle dependent, an

anisotropic well depth can be realised. Now a piecewise potential between particles

1Results of this chapter has been published as: A new anisotropic soft-core model for the
simulation of liquid crystal mesophases. J. S. Lintuvuori and M. R. Wilson J. Chem. Phys. 128,
044906 (2008).
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i and j can be constructed

U∗(d) =






U∗
max (1 − d∗)2 + ǫ∗ , d∗ < 1

U∗
max (1 − d∗)2 − U∗

attr (r̂ij , êi, êj) (1 − d∗)4 + ǫ∗ , 1 ≤ d∗ < d∗cut

0 , d∗ ≥ d∗cut

(3.1)

where the notations U∗ and d∗ imply the the scaling of the energy and the line

segment distance, U∗ ≡ U/ǫ0, and d∗ ≡ d/σ0, respectively with σ0 = D. ǫ∗ is the

associated well depth for the configuration. The magnitude of the attractive part,

U∗
attr (r̂ij, êi, êj), as a function of the orientation of the vector between the centre of

masses, r̂ij, and the orientations of particles i and j, êi, êj can be written as

U∗
attr (r̂ij , êi, êj) = U∗

attr − Ψ (r̂ij, êi, êj) , (3.2)

where Ψ (r̂ij, êi, êj) is given by [138]

Ψ (r̂ij, êi, êj) = 5ǫ1P2 (êi · êj) + 5ǫ2 [P2 (r̂ij · êi) + P2 (r̂ij · êj)] . (3.3)

Here P2(x) = (3x2 − 1)/2 is the second order Legendre polynomial. It can also

be noted that this form satisfies head to tail, êi = −êi, symmetry [138], typical of

spherocylinders and most nematogens.

The well depth for a particular configuration, ǫ∗, and cut off distance, d∗cut, can

be solved from the requirements that the potential and its first derivative must go

to zero at a cut-off, U∗ (d∗ = d∗cut) = 0 and U ′∗ (d∗ = d∗cut) = 0. From these the

expressions follow:

ǫ∗ ≡ ǫ∗ (r̂ij, êi, êj) = − U∗2

max

4U∗
attr (r̂ij , êi, êj)

, (3.4)

and

d∗cut ≡ d∗cut (r̂ij, êi, êj) = 1 +

√
1

2

U∗
max

U∗
attr (r̂ij, êi, êj)

. (3.5)

This resulting potential has the nice features of being continuous and having a

continuous first derivative which are required for a force calculation in MD. More-
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over, it can be tuned to model different type of interactions by altering its four

parameters (U∗
max, U

∗
attr, ǫ1 and ǫ2). The parameter U∗

max gives the interaction en-

ergy when particles are fully overlapping. The ratio U∗
max/U

∗
attr controls the well

depth and ǫ1 and ǫ2 can be used to control the well depth anisotropy.

3.3 Force calculation

Equations of motion

For a linear rigid molecule the torque of the rotation can be written [72]

τ i = êi × gi (3.6)

where êi is the orientation of the long axis and gi is the so called “gorque” on

particle i due to the intermolecular forces from other particles acting on particle

i, gi = −∇êi
Uij [139]. gi can be replaced by its component perpendicular to the

molecular symmetry axis, without affecting the torque (3.6). So now the torque can

be rewritten [72]

τ i = êi × g⊥
i , (3.7)

where the perpendicular component g⊥
i is defined as

g⊥
i = gi − (gi · êi) êi. (3.8)

Now the rotational equations of motion can be written as functions of the orientation

êi and rotational velocity ui as [72]

d
dt
ê

i
= ui,

d
dt
ui = g⊥

i /Ii + λêi,
(3.9)

where Ii is the moment of inertia and λ is Lagrange multiplier which is used to

constrain the bond length and therefore molecule length to be a constant of the

motion. The translational motion for this linear molecule straight-forwardly obeys
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Newton’s 2nd law

mi
d2

dt2
ri = fi. (3.10)

Equations (3.9) and (3.10) define the dynamics of a linear molecule [139] and can be

solved by, for example, using leap-frog or velocity Verlet algorithms for anisotropic

particles [75] to obtain the particle trajectories as function of time, t. To be able to

do that, the pairwise additive forces and torques/gorques must be derived from the

underlying anisotropic pair potential.

Forces and Torques

Considering an anisotropic pair potential, Uij ≡ Uij (rij , êi, êj), of particles i and j,

with orientations êi and êj and vector rij connecting the centres of mass, the force

on molecule i due to the molecule j can be written

fij = −∇rij
Uij (rij, êi, êj) . (3.11)

With help of the chain rule, the following expression can be obtained [139]

fij = −
(
∂Uij

∂rij

)
∇rij

rij −
∑

α=i,j

(
∂Uij

∂ (r̂ij · êα)

)
∇rij

(r̂ij · êα) . (3.12)

Using the relation [139]

∇rij
(r̂ij · êα) = − (r̂ij · êα)

rij

r2
ij

+
êα

rij

, (3.13)

the force, fij can be written

fij = −
(
∂Uij

∂rij

)
r̂ij −

∑

α=i,j

(
∂Uij

∂ (r̂ij · êα)

)(
êα

rij
− rij

(r̂ij · êα)

r2
ij

)
. (3.14)

Similarly the gorque can be solved from gij = −∇êi
Uij , to obtain [139]

gij = −
[(

∂ (r̂ij · êi)

∂êi

)(
∂Uij

∂ (r̂ij · êi)

)
+

(
∂ (êi · êj)

∂êi

)(
∂Uij

∂ (êi · êj)

)]

= −
[
r̂ij

(
∂Uij

∂ (r̂ij · êi)

)
+ êj

(
∂Uij

∂ (êi · êj)

)]
. (3.15)
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It should be noticed that Newton’s third law, fij = −fji, does not apply to gorques,

i.e. gij 6= −gji. Now equations (3.14) and (3.15) can be used to solve the forces and

gorques arising from the anisotropic pair potential (3.1).

For spherocylinders the potential, Uij , is written in the terms of the shortest

distance between the line segments, dij. The latter can be efficiently calculated

using the algorithm of Vega and Lago [140]. Consequently, the first part of the force

equation (3.14) with the partial derivative, − (∂Uij/∂rij) r̂ij, will now be written

in terms of dij and the unit vector along the direction of the minimum distance

of between the line segments, d̂ij . Now the force acting on the centre of mass to

particle i due to particle j can be written

f
dij

ij (dij) =






2U ∗
max

(
1 − d∗ij

)
d̂ij , d∗ij < 1

2U ∗
max

(
1 − d∗ij

)
d̂ij − 4U∗

attr (r̂ij , êi, êj) (1 − d∗ij)
3d̂ij , 1 ≤ d∗ij < d∗cut

0 , d∗ij ≥ d∗cut.

(3.16)

The gorques can be evaluated through the cross product using the relation τ = l× f

for torque, where l is the vector between the centre of mass and the point where

the force f
dij

ij is acting on the line segment and equation (3.6). By definition, [140]

l, for particles, i and j is given by li = τ êi and lj = µêj, with τ, µ ∈
[
−1

2
L
D
, 1

2
L
D

]
.

Now comparing with equation (3.6) we can see that gorques arising from f
dij

ij , can

be calculated as

g
dij

ij = τ f
dij

ij

g
dij

ji = −µfdij

ij . (3.17)

The second part of equation (3.14) can be calculated with help of the following

results, remembering ∂/∂x [P2(x)] = 3x,

∂

∂(r̂ij · êi)
Ψ(r̂ij, êi, êj) =

∂

∂(r̂ij · êi)
[5ǫ2P2(r̂ij · êi)] = 15ǫ2(r̂ij · êi), (3.18)
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and

∂

∂(r̂ij · êi)
ǫ∗(r̂ij, êi, êj) =

∂

∂(r̂ij · êi)

[
− U∗2

max

4 (U∗
attr − Ψ(r̂ij , êi, êj))

]

= − U∗2
max (4 × 15ǫ2(r̂ij · êi))

[4 (U∗
attr − Ψ(r̂ij, êi, êj))]

2 . (3.19)

Now the force due to the second part of the equation (3.14) can be written

f
rij

ij =






−∑α=i,j

(
− U∗2

max(4×15ǫ2(br·beα))

[4(U∗

attr
−Ψ(r̂ij ,êi,êj))]

2

)(
beα

rij
− rij

(brij ·beα)

r2

ij

)
, d∗ij < 1





−
∑

α=i,j

(
15ǫ2 (r̂ · êα)

(
1 − d∗ij

)4

− U∗2
max(4×15ǫ2(br·beα))

[4(U∗

attr
−Ψ(r̂ij ,êi,êj))]

2

)(
beα

rij
− rij

(brij ·beα)

r2

ij

) , 1 ≤ d∗ij < d∗cut

0 , d∗ij ≥ d∗cut

(3.20)

The total force on particle i due to particle j can now be solved as fij = f
dij

ij +

f
rij

ij , where components, f
dij

ij and f
dij

ij , are defined by equations (3.16) and (3.20),

respectively.

Similarly the gorque (3.15) acting on particle i due to particle j can be solved

with help of equations (3.18) and (3.19) to give

g
rij

ij =










−r̂ij

(
− U∗2

max(4×15ǫ2(brij ·bei))

[4(U∗

attr
−Ψ(r̂ij ,êi,êj))]

2

)

−êj

(
− U∗2

max(4×15ǫ1(bei·bej))

[4(U∗

attr
−Ψ(r̂ij ,êi,êj))]

2

) , d∗ij < 1





−r̂ij

(
15ǫ2 (r̂ij · êi)

(
1 − d∗ij

)4 − U∗2
max(4×15ǫ2(brij ·bei))

[4(U∗

attr
−Ψ(r̂ij ,êi,êj))]

2

)

−êj

(
15ǫ1 (êi · êj)

(
1 − d∗ij

)4 − U∗2
max(4×15ǫ1(bei·bej))

[4(U∗

attr
−Ψ(r̂ij ,êi,êj))]

2

) , 1 ≤ d∗ij < d∗cut

0 , d∗ij ≥ d∗cut.

(3.21)

The total gorque acting on the particle i due the particle j can now be solved as

gij = g
dij

ij + g
rij

ij using the definitions (3.17) and (3.21).

The dynamics of the system is now described by equations (3.16), (3.20), (3.17)

and (3.21). It should be noted that in practical use in computer simulations the

force labelled f
dij

ij arising from the interactions between line segments (3.16) should

be evaluated first or separately from (3.20). This is due to the fact that (3.16) gives

rise to gorques through (3.17), but equation (3.20) works directly on centres of mass
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and therefore does not contribute to the torque.

Further, a comment on the energy at zero separation is appropriate, as it is equal

to U∗
max only for the special case when the well depth ǫ∗ = 0, then the potential

would reduce to a traditional DPD potential, otherwise, as clear from the top line of

equation (3.1) the energy at full overlap is U∗
max +ǫ∗. It follows from the definition of

the well depth equation (3.4) that magnitude of the repulsive interaction, U∗
max for

d∗ < 1 (top line of equation (3.1)) can be altered without effecting the well depth,

for example U∗
max → U∗

max−ǫ∗, giving now U∗(d∗ = 0) = U∗
max. This would obviously

affect the forces and gorque, but the calculation of new quantities should be straight

forward within the framework given here.

3.4 Molecular dynamics simulations of the new soft-

core spherocylinder model

3.4.1 Model A

A series of molecular dynamics (MD) runs were carried out on a bulk system of

spherocylinders modelled with the new anisotropic potential given by equation (3.1).

The chosen parametrisation was U∗
max = 70.0, U∗

attr = 1500.0, ǫ1 = 120.0 and

ǫ2 = −120.0. This parametrisation strongly favours the side-by-side configuration

with the next favourable configuration being the cross configuration. End to end

and T-configurations are energetically equal and least favourable. The potential

with chosen parametrisation and elongation L/D = 3.0 is presented in figures 3.1

and 3.2 as a function of the centre of mass distance, r∗ = r/σ, and distance between

line segments, d∗ = d/σ, respectively, in four different configurations.

The simulations were carried out for a bulk system consisting of N = 1000 sphe-

rocylinders with length to breadth ratio L/D = 3.0 and therefore of an effective

length of k∗ = 3.0 + 1.0. Simulations were carried out in the isobaric-isothermal,

const-NPT , ensemble as cooling runs starting from an isotropic melt, for an iso-

bar, P ∗ = 2.0. Results are presented in reduced units, where lengths and energies

are scaled as σ = D = 1 and ǫ = 1: providing reduced density, temperature and
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Figure 3.1: Anisotropic spherocylinder potential for elongation L/D = 3 with
parametrisation U∗

max = 70.0, U∗
attr = 1500.0, ǫ1 = 120.0 and ǫ2 = −120.0 in

four different configurations; side-by-side (dashed line), cross configuration (solid
line), T-configuration (dotted line) and end-to-end (dot-dashed line)
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Figure 3.2: Anisotropic spherocylinder potential as a function of line segment dis-
tance d∗ with parametrisation U∗

max = 70.0, U∗
attr = 1500.0, ǫ1 = 120.0 and

ǫ2 = −120.0 in four different configurations; side-by-side (dashed line), cross config-
uration (solid line), T-configuration (dotted line) and end-to-end (dot-dashed line).
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pressures as [141], ρ∗ = ρσ3, T ∗ = kBT/ǫ and P ∗ = Pσ3/kBT , respectively. The

temperature was kept constant, thermostatting the translational and rotational ve-

locities with the Andersen thermostat every 100 MD steps. The volume of the

simulation box was varied every 20 MD steps by a Monte Carlo box move as de-

scribed in 2.2.1. Simulation runs were organised as a cooling series for both pressures

such that the end configuration of a previous temperature was used as the start-

ing configuration for a new temperature. The system was equilibrated for 200 000

MD steps in each temperature followed by 50 000 MD steps of production run for

calculating desired equilibrium quantities. All state points were simulated with a

time step ∆t(ǫ/σ2m)1/2 = ∆t∗ = 0.01 which is an order of magnitude larger than

typically used in GB simulations. The equations of motion were integrated using the

velocity Verlet algorithm for non-spherical sites [142]. The total energy was found to

be well conserved, with fluctuations and drift under 0.2 %, over the course of 1000

MD steps in const-NV E ensemble. The moment of inertia of a spherocylinder, I,

was approximated as a moment of inertia of a cylinder I = 1
12
m(3r2 + h2), of mass

m, radius r and height h. Here the values of r = D/2, h = L and m = 3, were used.

3.4.1.1 Simulation results

The temperature dependence of the reduced number density, ρ∗ ≡ N/V ∗, and the

orientational order parameter, 〈S2〉, for the cooling series is shown in figure 3.3.

The figure shows a discontinuity between the temperatures T ∗ = 1.7 . . . 1.6. This

corresponds to a phase change between a higher temperature isotropic and lower

temperature ordered phase, given a change of the orientation order parameter from

S2(T
∗ = 1.7) ≈ 0.070 ± 0.004 to S2(T

∗ = 1.6) ≈ 0.9189 ± 0.0006. The identity

of the low temperature phase was considered by evaluation of the pair correlation

functions (introduced in section 2.3.2 of chapter 2) g(r∗), g‖(r
∗) and the in-layer

pair correlation function gl(r
∗
⊥) (figure 3.4). The lower temperature phase shows

smectic behaviour, with oscillations in g‖(r
∗) demonstrating layer structure with a

layer spacing just under the molecular length of 4D. The rapid decay in gl(r
∗
⊥) for

order perpendicular to the director within a layer, demonstrates liquid-like order

within the layer. Together with a lack of layer tilt, the phase can be identified as a
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Figure 3.3: Particle number density ρ∗ ≡ N/V ∗ (filled symbols) and orientational
order parameter 〈S2〉 as a function of temperature, T ∗, for a cooling series with
pressure P ∗ = 2.0. The statistical uncertainties are at the order of 10−3.

smectic-A.

3.4.2 Model B

A second considerable softer model was considered with parametrisation; U∗
max =

25.0, U∗
attr = 150.0, ǫ1 = 12.0 and ǫ2 = 0.0. This parametrisation gives equal

well depth for the T and cross configurations as well as side-by-side and end-to-end

configurations, with the latter being more attractive. This should de-stabilise the T

and cross configurations and enhance particles, on average, aligning along common

director. For a similar type of anisotropy, Gay-Berne particles have been observed

to exhibit fairly large nematic region [143]. The spherocylinders have an aspect ratio

L/D = 3 i.e. considerably shorter than the minimum, L/D = 3.7 needed for a HRS

potential to form a nematic phase (see section 2.1.2). The simulation details are the

same as with model A (section 3.4.1).

3.4.2.1 Simulation results

In figure 3.5 the particle number density, ρ∗, and orientational order parameter, S2,

are presented as a function of temperature, T ∗, for cooling along the isobar P ∗ = 2.0.
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⊥) for ordered

phase, T ∗ = 1.6, (bottom), for model A at the pressure P ∗ = 2.0.
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Figure 3.5: Top: particle number density, ρ∗ = N/V ∗ (filled symbols), and orienta-
tional order parameter, 〈S2〉 (open symbols), as a function of temperature, T ∗, for
model B along the isobar P ∗ = 2.0. Bottom: particle number density for model B
as a function of temperature for a series of isobars. In the presence of hysteresis and
the absence of good quality free energy calculations, the lines joining points to mark
the boundaries between smectic-nematic and nematic-isotropic phases are meant as
approximate guides only.
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∗
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tom) for isotropic (T ∗ = 2.3), nematic (T ∗ = 1.8) and smectic/crystal (T ∗ = 1.5)
phases along the isobar P ∗ = 2.0.
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There can be observed two discontinuities at T ∗ = 2.1 . . . 2.0 and T ∗ = 1.6 . . . 1.5

corresponding to isotropic-nematic and nematic-smectic/crystal phase changes. The

isotropic-nematic phase transition is also apparent from the plot of orientational

order parameter, S2, as a function of temperature, T ∗. The order parameter jumps

from S2 ≈ 0.084±0.003 at T ∗ = 2.1 to S2 ≈ 0.725±0.004 at T ∗ = 2.0 and continues

to increase fairly linearly inside the nematic region, T ∗ = 2.0 . . . 1.6 to a value of

S2 ≈ 0.896 ± 0.001 at T ∗ = 1.6.

The structure of the phases can be studied further with the aid of the pair

correlation functions, g(r∗), g‖(r∗) and gl(r
∗
⊥) presented in figure 3.6 for the three

phases observed. The three dimensional pair correlation function, g(r∗) (top panel

in figure 3.6) shows typical soft fluid behaviour for isotropic fluid (T ∗ = 2.3) and

nematic phase (T ∗ = 1.8) with monotonic growth until a separation of r∗ ≈ 2.0

and then settling into straight line along unity, suggesting that there is no three

dimensional long range translational order. For the phase with highest order (T ∗ =

1.5) the correlation function shows a considerable amount of structure with nearest

neighbour peaks at r∗ ≈ 0.6 and r∗ ≈ 1.5. There is also a strong overlap at very

closed distances and also a nonzero value for zero separation, g(r∗ = 0) 6= 0, implying

that the potential is too soft for the state point. The pair correlation function parallel

to the director of the phase, g‖(r
∗) (middle fig. 3.6), shows no order in either the

isotropic nor nematic phases, but in the low temperature phase an oscillation can

be observed with peaks at separations r∗ ≈ 0.0, r∗ ≈ 3.7 and r∗ ≈ 7.3 implying a

layered structure with the layer spacing approximately 3.65 which is just under one

molecular length (4.0σ). The intra-layer pair correlation function perpendicular to

the phase director, gl(r
∗
⊥), can be used to establish correlations perpendicular to the

director. The liquid like order of gl(r
∗
⊥) (bottom graph in figure 3.6), implies the

formation of a smectic A phase.

3.4.3 Discussion

The phase behaviour of both models A and B are consistent with that expected

from previous studies of the Gay-Berne potential, which have been observe to exhibit

nematic and smectic phase regions depending on chosen parametrisation [9,143,144].
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Moreover, changing the parametrisation from model A to model B, leads to changes

in phase stability. To provide a comparison with the GB potential and the recent

Gay-Berne-Kihara (GBK) potential [67,145], calculations were performed for a series

of isobars across the phase diagram for the model B. These are presented in the

bottom panel of figure 3.5, where a widening of the nematic region as the pressure

increases can be observed.

For model B, with a similar well-depth for side-to-side and end-to-end config-

urations, the most comparable Gay-Berne diagram is provided by the work of de

Miguel et al. [146] where the authors look at a 3:1 Gay-Berne with a similar ratio

of well depths. As with model B, this Gay-Berne potential exhibits an extensive

nematic range, which gives nematic-vapour coexistence at low pressures.

As expected from previous studies for anisotropic soft core potentials [60], the

equilibration times are fairly rapid and in comparison to GB and GBK models,

benefit from a long-time step. However it must be stressed that the soft-core nature

of the potentials considered here means that they are not as useful as either the GB

or GBK models for studying high density state points, simply because of particle

overlaps at very high density.

This new model should, however, provide very useful computationally efficient

reference models for liquid crystal phases that can be used for large system sizes,

or as a solvent in combination with more complex models. In the next section, the

model of equation (3.1) is used as part of a multi-site model for a multi-pedal liquid

crystalline molecule. The simulation results presented in section 3.5, demonstrate,

that despite the caveats of soft core models as discussed above, they can provide

meaningful results and considerably bridge the time and length scales associated in

self-assembly and growth of complex phases.
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3.5 A simulation study of coarse grained dendritic

supermolecule

3.5.1 Introduction

Supermolecules with dendritic scaffolds exhibiting liquid crystal behaviour or supra-

molecular assembly to nanostructures, are intriguing systems. Liquid crystal den-

drimers (LCDrs) have qualities which leads to formation of anisotropic liquid crystal

phases despite the seemingly isotropic shape of the supermolecule. The core of a

LCDr is a dendritic scaffold with spherical symmetry as shown schematically in fig-

ure 1.5. There are many possible architectures for LCDr design depending on the

generation of the dendrimer and how the mesogenic groups are attached [147]. It is

possible to attach mesogenic groups to the dendrimer core in such a way that the

supermolecule itself becomes anisotropic in shape. This sort of thermotropic LDRs

have been seen to exhibit nematic, smectic and crystalline phases [148]. In another

type, mesogenic groups are attached in such a way that the equilibrium structure

forms an isotropic conformation. An experimental study of a fifth generation carbosi-

lane dendrimer where mesogenic groups, terminally attached with flexible spacers

to the dendritic scaffold, showed the formation of liquid crystal phases by the su-

permolecule, which originally was in isotropic shape [149]. For this type of system,

changes in the conformation of the supermolecule will allow the mesogenic groups

to organise into liquid crystal phases. Further, another experimental study of a first

generation dendrimer with an octasilsesquioxane core with eight mesogenic units

terminally attached, showed a formation of smectic A (SmA) and smectic C (SmC)

phases [24].

Recent simulations of a hybrid model for a third generation carbosilane den-

drimer in a liquid crystal solvent indeed showed for the first time, how the super-

molecule is able to change shape in response to different solvent phases [150]. In

this study the heavy atoms within the dendrimer scaffold were represented by united

atom Lennard-Jones sites and terminally attached mesogenic groups were modelled

by the Gay-Berne potential. The solvent was modelled with the same Gay-Berne
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particles as the mesogenic groups, with a parametrisation suitable for the forma-

tion of nematic and smectic-A phases. Results showed the dendrimer adopting a

rod-like shape in the nematic phase with mesogenic units arranged along the direc-

tor of the phase. Moreover, in a SmA phase, it was observed that the dendrimer

tried to lie commensurate with the smectic layering of the solvent by placing meso-

genic groups in five different smectic layers [150]. A follow up simulation study,

using a more coarse grained model for the same carbosilane dendrimer, showed a

spontaneous microphase separation with individuals dendrimers preferring a rodlike

conformation in smectic phase [36].

In this section a new, computationally efficient model for a first generation LCDr

(also called a multipedal LC molecule) is presented, using the new orientationally-

dependent spherocylinder model for the mesogenic groups developed in section 3.2.

The model is introduced in section 3.5.2 and the simulation results, showing a spon-

taneous self-assembly into an ordered structure with strong coupling between the

order of the phase and the structure of the individual molecule, will be reported in

section 3.5.3.

3.5.2 Coarse grained model and computational details

The coarse grained dendritic supermolecule was constructed with spherical and non-

spherical (soft core spherocylinder) sites bonded together. The total potential energy

can be expressed with the force field

U =
∑

pairs

Upair +
∑

bonds

Ubond +
∑

angles

Uangle. (3.22)

Here, there are three different types of intermolecular interactions: sphere-sphere

(sp-sp), sphere-spherocylinder (sp-sc) and spherocylinder-spherocylinder (sc-sc). For

the sp-sp and sp-sc interactions a purely repulsive quadratic (equation 2.13) form

is used for the pair potential, Upair, with U∗
max = 70.0. For modelling the mesogenic

groups, an interaction potential between two spherocylinders with the orientational-

dependent potential (equation 3.1) with parameters U∗
max = 70.0, U∗

attr = 1500.0, ǫ1 =

120.0 and ǫ2 = −120.0 was employed. This is the same as model A, described in
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Figure 3.7: Structure of the multipedal liquid crystalline supermolecule studied in
section 3.5. Left: a space-filling representation of the molecular structure of an
octasilsesquioxane octamer from reference [2]. Right: the structure of the coarse-
grained octamer studied in this work.

section 3.4.1. Adjacent sites, i, j, were bonded together with harmonic bonds

Ubond(rij) =
1

2
kbond(rij − l0)

2, (3.23)

where kbond is the force constant for the bond, rij , is the distance between centres of

mass and l0 is the equilibrium bond length. For angles, a similar type of harmonic

potential was used

Uangle(θijk) =
1

2
kangle(θijk − θ0)

2, (3.24)

where kangle is the corresponding force constant, θijk is the angle corresponding to the

centre of mass positions of three adjacent particles, i, j, k and θ0 is the equilibrium

angle.

The model consisted of a spherical core (sp1) and eight arms each having the

same topology; a chain of three spheres (sp2) connecting a spherocylinder (SCS)

to the spherical core. These arms were uniformly distributed on the shell of the

spherical core. An example of the equilibrium structure of the molecule can be seen

in figure 3.7. To model the excluded volume effect of the dendritic scaffold, the size

of the core sphere was taken to be twice as large as the chain spheres connecting
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Table 3.1: The bonded parameters used to model the multipedal liquid crystal
supermolecule.

Quantity Value

kbond 50/ǫ σ−2

l0(sp1-sp2) 1.5/σ
l0(sp2-sp2) 1.0/σ
l0(sp2-SCS)a 1.0/σ
kangle 5/ǫ rad−2

θijk(sp2-sp1-sp2) 180◦, 70.5◦ or 109.5◦b

θijk(sp1-sp2-sp2) 180◦

θijk(sp2-sp2-sp2) 180◦

θijk(sp2-sp2-SCS) 180◦c

aThe soft core spherocylinder is bonded via the end of the spherocylinder line segment.
bThree forms of angle are used depending on the connectivity of the chains about the central

core.
cAn additional angle term is also used to confine the angle between spherocylinder long axis

and the spherocylinder bond to approximately 180°. This avoids free rotation of the spherocylinder

the mesogen, σsp1
= 2σsp2

= σ. The elongation for the spherocylinders was chosen

to be L/D = 3.0, with D = σ. The elongation is similar to L/D = 2.84 found from

coarse graining a third generation carbosilane dendrimer [36]. The bond length

between the core sphere and the neighbouring sphere was set to lcore-sp = 1.5σ. The

neighbouring sphere was bonded to the end of the spherocylinder line segment giving

a bond length between spherocylinder and sphere, and between sphere and sphere,

equal to lsp-sc = lsp-sp = σ, with force constant kbond = 50.0/ǫσ−2.

In order to ensure a uniform distribution of the arms on the shell of the core all

the spheres adjacent to the core sphere were bonded with angle terms through the

centre sphere, i.e. for the angle θijk the j particle was the core particle and i, k

were spheres adjacent to the core sphere. The equilibrium angles were defined in

such a way that all connection combinations through the central core were taken

care of, ensuring a uniform distribution. In the arms, the angle terms were taken

to start from the core sphere and going all the way to the spherocylinder with

equilibrium angle θ0 = 180.0o, resulting to a equilibrium structure of straight arms.

The angle terms were desired to be weaker than the bonds so force constant of

kangle = 5.0/ǫrad−2 was applied. The bonded parameters are summarised in table

3.1.
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Figure 3.8: The particle number density , ρ∗ = Nsc/V
∗, (closed symbols) and orien-

tational order parameter, 〈S2〉, (open symbols) for spherocylinders along the isobar
P ∗ = 2.0. Results from a cooling run, started initially from an isotropic phase.

The simulations were run for a bulk system consisting of N = 125 molecules,

resulting inNsphere = 125+125×8×3 = 3125 spherical sites andNsc = 125×8 = 1000

spherocylinders giving a total number of 4125 interaction sites. Simulations were run

as a cooling series along the isobar P ∗ = 2.0 in the const-NPT ensemble. Equations

of motion were integrated using the velocity Verlet algorithm, with a time step

of ∆t∗ = 0.01. Initially, the conservation of total energy was checked with short

simulation in the const-NV E ensemble. The system was equilibrated for 1−2 million

MD steps depending on the state point. To ensure constant temperature, the system

was allowed to collide with an Andersen heat bath every 100 MD steps, constant

pressure was achieved using attempted MC volume moves, using the Metropolis

method introduced in section 2.2.2, every 20 MD steps. Translational and rotational

temperatures as well as pressure (calculated through the pair virial) were monitored

through the course of the simulation, ensuring that system had equilibrated properly.

3.5.3 Simulation results

In figure 3.8, particle number density, ρ∗ = Nsc/V
∗, and orientational order param-

eter, S2, are presented for a cooling series for temperatures between T ∗ = 3.0 . . . 1.4
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Figure 3.9: Pair correlation functions g(r∗) for temperature T ∗ = 2.6, T ∗ = 1.8 (left)
and g‖(r

∗) and gl(r
∗
⊥) (right) for temperature T ∗ = 1.8.

along the isobar P ∗ = 2.0. From these results, there can be observed a discontinuity

between ρ∗ = 0.089 to ρ∗ = 0.10 and S2 = 0.05 to S2 = 0.59, with errors of mag-

nitude 10−5 and 10−3 respectively, between temperatures T ∗ = 2.2 and T ∗ = 2.0,

corresponding to a phase change between a higher temperature isotropic phase and

a lower temperature ordered phase.

To study the phase structure further, as previously in section 3.4, three different

pair correlation functions, measuring three dimensional order, g(r∗), order along the

director of the phase, g‖(r
∗) and order perpendicular to the director gl(r

∗
⊥) were

calculated. These are presented in figure 3.9. The growth of an ordered mesophase

can be observed with the growth of the nearest neighbour peak at r∗ ≈ 1.0 between

temperatures T ∗ = 2.6 and T ∗ = 1.8 and the formation of a second nearest peak at

r∗ ≈ 2.0 at lower temperature. Further, a growth of peaks in g‖(r
∗) can be observed.

This corresponds to smectic layering with layer spacing (distance between peaks) of

d∗ ≈ 9.5. Together with the liquid like order in gl(r
∗
⊥), these suggests the formation

of a smectic A phase.

The internal structure of the liquid crystal dendrimer was studied by calculating

a radial distribution function for the different parts of the molecule with respect

to the molecule core, ρ(r∗). From ρ(r∗) graphs (figure 3.10) it can be seen that

the radially averaged structure of the individual chain does not change dramatically

between phases, this is in agreement with observations in [36]. The third peak in

ρ(r∗) for spheres becomes more visible at lower temperatures compared to the higher
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Figure 3.10: The radial distribution functions, ρ(r∗) and ρ‖(r∗), for separate parts of
the dendrimer, relative to the core sphere: isotropic phase (top) and ordered phase
(bottom).

temperature isotropic phase. The biggest difference between the radially averaged

structure, can be seen in sharpening of the spherocylinder peak with maximum ap-

proximately at r∗ = 5.5, in the ordered phase. Both of these observations imply,

given the consideration that the equilibrium distance from the middle of sphero-

cylinder to the middle of the core sphere for a fully flexed arm is 6σ, that the arms

are more flexed in the ordered smectic-phase. This can be observed in more de-

tail from the radial distribution function calculated parallel to the system director

ρ‖(r
∗), shown in bottom panel of figure 3.10. Figure 3.11 shows two snapshots of

bulk phases taken from the simulations. From these, the change of structure from

the isotropic to the layered smectic-like phase can clearly be observed. From the

snapshots of the single molecule, a clear change in structure can be observed. The

simulations therefore demonstrate that there exists strong coupling between the

structure of the molecule and the structure of the phase itself, with the molecule

undergoing a transition to a rod-shaped structure at transition to the smectic phase.
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Figure 3.11: (Top) Snapshots of bulk phases from two different state points: isotropic
phase, T ∗ = 2.6 (left) and smectic phase, T ∗ = 1.8 (right). (Bottom) Snapshots of
a single molecule taken from each state point.
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3.6 Conclusions

A new orientational-dependent model for ultra soft spherocylinders has been pre-

sented. Explicit expressions for the potential, forces and gorques are given, which

should enable reasonably easy implementation of the potential into existing molec-

ular dynamics programs.

The very soft nature of the potential allowed a long time step, ∆t = 0.01, to be

used in molecular dynamics simulations, which is an order of magnitude larger than

typically employed in GB models. The potential has four parameters controlling

the repulsive and attractive interactions, U∗
max , U∗

attr, and ǫ1, ǫ2 controlling the

anisotropy. This flexibility allows a wide cascade of different system to be modelled.

Moreover, the soft nature of the potential in combination with the long time step

means it is much quicker to simulate model liquid crystal systems with this potential,

than with conventional single site coarse grained models, such as the Gay-Berne or

the SRS potentials. This means that the model provides an ideal “reference model”

for use with other potentials (for example as a generic liquid crystal solvent for

atomistic models) or for use with very large system sizes (for example to look at

liquid crystal-surface interactions or defects in a liquid). The potential can also

be used as part of a multi-site coarse grained supermolecule, allowing longer time

steps and therefore increasing the length and time scales such that phenomena such

as spontaneous self assembly can take place, as demonstrated in section 3.5. It is

also useful to note that in the simulation of the N = 125 multipedal LC molecules,

self-assembly took place for simulation runs between 1 to 2 million MD steps. The

computational cost of 1 million MD steps with a single processor, was approximately

30 hours.

In chapter 4 this new anisotropic soft-core potential will be used to study the

phase behaviour of a model main chain liquid crystalline polymer by mapping out

a phase diagram as a function of the rod length and to study chiral induction. In

chapter 6 the model will be combined with a relatively new simulation methodol-

ogy, Statistical Temperature Molecular Dynamics, to study isotropic-nematic and

isotropic-lamellar phase transitions in const-NVE and const-NVT ensembles.



Chapter 4

Applications of the anisotropic

soft-core potential

Chapter 3 introduced a new soft-core model for the simulation of mesogenic systems.

Key features of the new model were its speed of equilibration compared to conven-

tional models for mesogens and the relative ease of using it in multisite models to

study complex mesogenic systems. This chapter investigates the use of this new

model for two systems where it would have been difficult to use conventional LC

models because of equilibration and sampling difficulties.

Section 4.1 presents results for the phase diagram of a model main chain liquid

crystalline polymer, as a function of length of the mesogenic unit. This included

equilibration of approximately 100 different phase points, so relatively quick equi-

libration times were essential.1 In the second case, presented in section 4.2, chiral

induction was studied by solvating flexible achiral solute molecules within chiral

solvents. For this system, very good sampling of different conformations was an

essential requirement for reliable results.

1These results have been published as: A coarse-grained simulation study of mesophase forma-
tion in a series of rod-coil multiblock copolymers. J. S. Lintuvuori and M. R. Wilson, Phys. Chem.
Chem. Phys. 11, 2116 (2009).

68
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4.1 Main chain liquid crystal polymer simulations

4.1.1 Introduction

The phase behaviour of simple block copolymers (BCPs) has been extensively stud-

ied experimentally [151], theoretically [152] and by means of computer simulation

for flexible models [117] and for rod-coil models [121, 153]. In the simplest case of

flexible diblocks composed of two different components A and B, one expects the

well-known classical morphologies: lamellar (L) with alternating layers of A and B

components, cylindrical (C) where the minority component forms cylinders packed

on a hexagonal lattice, and spherical (S) where the minority blocks form spheres

arranged on a bcc lattice. Also, formed is the more complex bicontinuous gyroid

structure (G) where the minority component forms the tubes (connectors) and nodes

of a three-fold coordinated lattice. The formation of the G phase in diblock copoly-

mer systems has been extensively studied by means of computer simulations by

Martinez-Veracoechea and Escobedo [118, 119, 154, 155].

BCPs provide a means of changing long-range order in a continuous way simply

by varying the degree of polymerisation. The ability to use molecular interactions

to tune self-assembly and hence control morphology in this way is particularly at-

tractive from the point of view of potential applications [151].

Mesophase formation in simple block copolymers arises due to microphase sep-

aration of incompatible A and B components. However, small modifications of the

basic structural blocks, by (for example) the introduction of rigidity [156] provides

a second competing physical effect, i.e. in this case the presence of anisotropic in-

teractions. In fact, in practice, many polymers (both natural and synthetic) can

have rod-like components. These can arise due to extended π-conjugation or aro-

matic groups along the backbone, or alternatively can arise from common secondary

structure (for example alpha helices or beta sheets), which also impart rigidity. In

general, rod-coil systems are found in three main categories of polymers covering

organic electronics of synthetic polymers [157–160], biological molecules (e.g. pro-

teins and also synthetic-peptides [161,162]). In all these systems, interplay between

microphase separation of unlike blocks and the liquid crystalline order expected for
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rod-like units can potentially lead to rich phase behaviour. Such effects provide for

the possibility of more exotic phase morphologies. For example, studies of rod-coil

diblocks have reported the formation of honeycombs, arrowheads, zigzag lamellae,

wavy lamellae, hollow spherical micelles, cylindrical micelles, smectic-C phases as

well as more conventional phases [121, 156, 163–167].

A more complicated example of a rod-coil system is provided by typical multi-

block copolymers, where the single rod-coil building block is repeated many times.

Such materials are sometimes used in thermoplastic elastomers, blend compatibi-

lizers and barrier materials [156]. Many main chain liquid crystalline polymers

(MCLCPs) also fall into this category. Multiblock systems with flexible and rigid

constituent parts are normally extremely difficult to study by simulation methods

because of the problems of equilibrating structures in which there is often con-

siderable coupling between the tertiary structure of the chain and the microphase

separated structure of the mesophase.

4.1.2 Polymer model

The new anisotropic soft-core spherocylinder model, equation (3.1), has been used

to study mesophase formation of multiblock copolymer systems. The coarse grained

rod-coil multiblock copolymer is schematically represented in figure (4.1). The model

polymer chain is composed of four repeat units, each of which consists of a flexi-

ble polymer chain and a rigid mesogenic rod. The combination of spherical and

anisotropic sites (as shown in figure 4.1) mimics the structure of a typical rod-coil

multiblock copolymer, which would typically exhibit preferential interactions be-

tween similar types of interaction centre within the main chain. This model allows

(by altering the spherocylinder elongation L/D) the study of mesophase formation,

as a function of rod volume fraction.

In all systems studied, a semi-flexible chain of five beads of diameter σ0 = D = 1

was used. However, the length to breadth ratio of the spherocylindrical mesogenic

unit was varied over a wide range of values, characterised by the spherocylinder L/D

ratio (figure 4.1). In this work values of L/D between 0.1 and 11.0, corresponding

to a total length to breadth ratio of between 1.1 and 12.0 for the rigid part of the
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Figure 4.1: A schematic representation showing the molecular structure of the model
liquid crystal block copolymer studied in this work. Values of L/D range between
0.1 and 11.

polymer, were used.

Non-bonded interactions were modelled as a sum of site-site pairwise interac-

tions. The spherocylinder-spherocylinder interaction is based on a typical quadratic

form (as used in dissipative particle dynamics (DPD) simulations) for the repulsive

part with a fourth order angle dependent term to model attractive interactions as

described by equation (3.1). As in chapter 3, reduced units are used, such that

U∗ ≡ U/ǫ and d∗ ≡ d/σ0, with ǫ = σ0 = 1.

For the spherocylinder-spherocylinder pair interaction a parameterisation of U∗
max =

100.0, U∗
attr = 1200.0, ǫ1 = 60.0 and ǫ2 = −60.0, was used. This results in maximum

well depths of ǫ∗ ≈ 4.15, ǫ∗ ≈ 2.37, ǫ∗ ≈ 1.65 and ǫ∗ ≈ 1.65 for the side-by-side,

cross, T and end-to-end configurations respectively (figure 4.2). The sphere-sphere

interaction was parametrised with U∗
max = 100.0 and U∗

attr = 2000.0 resulting in

a maximum well depth of ǫ∗ ≡ U∗2/4U∗
attr ≈ 1.25. For the sphere-spherocylinder

interaction a purely repulsive form of the potential, equation (3.1), was used with

maximum energy at zero separation U∗
max = 100.0.

Simple harmonic potentials of the form described by equation (3.23) were used

to link interaction sites together into a main polymer chain. Here, rij and r0 are

the distance between consecutive sites i and j in the chain and the equilibrium

bond length respectively, with kbond/(ǫσ
−2
0 ) = 50.0 as the bond force constant.

The spherocylinders were bonded from the midpoint of the hemisphere capping the

cylinder, therefore all the bonds had an equilibrium bond length of r0 = σ0. No

angle or torsional terms were used for chain beads. However, all beads in a chain

interacted through the same non bonded potential, meaning that excluded volume

for chain beads was fully taken into account. Hence the chains are semi-flexible,
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Figure 4.2: The anisotropic soft core spherocylinder potential used for this work.
Here, the interaction potential is plotted as a function of separation of particle
centres, r∗, for four different arrangements of two molecules: side-to-side, end-to-
end, T-shape (side-to-end) and crossed.

rather than ideal.

4.1.3 Computational details

Phase behaviour was studied for a melt consisting of Nm = 125 polymer chains at

an occupied volume fraction φ ≡ Ntotπσ3

0

6Vbox

≈ 0.384, where Ntot is the total number of

spheres (with a spherocylinder approximated as L/D + 1 spheres). A rectangular

simulation box, L = Lx = Ly = Lz was used with volume V = L3. The simulations

were done as cooling runs in the canonical (const-NV T ) ensemble starting from

isotropic configurations. For each temperature simulated the system was initially

equilibrated for 2.0×106−5.0×106 MD steps depending on the state point simulated

with a MD time step of ∆t∗ = 0.01. The equations of motion were integrated using a

velocity Verlet integrator using the GBMOL molecular dynamics program [142,168]

and the temperature was kept constant by applying an Andersen thermostat every

100 MD steps. A Lowe-Andersen thermostat was also used for some runs, equation

(2.25), to provide a stochastic element to the dynamics, though in practice both

methodologies yielded similar results in similar time. Assessment of equilibration

was carried out by measuring the change in a series of energetic and structural

quantities, as indicated below. For well-equilibrated systems, configurations were

written to disk every 1000 MD steps for further analysis and averaged quantities
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were computed over the final 50 000 MD steps. Also, a few additional calculations

were carried out for systems, which were 8× larger than above (i.e. 1000 molecules).

As for the smaller system, these larger simulations used a cubic box, and runs were

started by cooling from an isotropic polymer melt.

4.1.4 Results

The self-assembly behaviour of a model MCLCP was studied in a constant occupied

volume fraction of 0.384. The temperature and elongation, L/D, of the rod sections,

were varied. In the results presented below, elongations of L/D =0.1, 1.0, 2.0, 3.0,

4.0, 5.0, 6.0, 7.0, 9.0 and 11.0, were considered. This covers a range of rod lengths

either side of L/D = 4.0, which would correspond to a similar volume fraction

of rods and spheres. In each case the simulations were carried out as a sequence

of cooling runs starting from an isotropic melt, thus allowing the self-assembly to

happen spontaneously.

Initially, mesophase formation was observed by visualising snapshots from differ-

ent state points using the QMGA [3] molecular graphics package. The orientational

order within the polymer system was characterised by means of the nematic order

parameter for the rods, S2, which was obtained by diagonalising the orientational

order tensor Qαβ , equation (2.28). To obtain structural information, the radial

distribution function, g(r), for the rods in each system along with its components

parallel, g||(r), and perpendicular g
l
(r⊥) to the director (introduced in section 2.3.2)

were calculated. In addition to the pair correlation functions, the structure factor,

S(k), was calculated, as a secondary means of identifying layers (or other structure)

in the system. For a lamellar system the highest value of S(k) occurs at a wave vec-

tor kmax, corresponding to a direction normal to the layering. As noted by Hughes

et al. [36], from the direction of kmax, it is possible to define a layer normal vector,

p; and to calculate the mean tilt angle, 〈ψ〉=〈p · n〉, for the system. This allows a

crude measure of tilt in the system and thus helped to identify if a tilted smectic C

phase was formed.

Examples of typical radial distribution functions for rods are shown in figure 4.3

for the L/D = 2 system. g(r∗) is plotted for reduced temperatures, T ∗ = kT/ǫ, cor-



4.1. Main chain liquid crystal polymer simulations 74

Figure 4.3: Radial distribution functions, g(r∗), g||(r
∗) and gl(r

∗
⊥) for the L/D = 2

polymer at selected temperatures T ∗ = 0.8 and T ∗ = 1.4.

responding to the lamellar and isotropic phases (T ∗ = 0.8) and (T ∗ = 1.4), together

with plots g||(r
∗) and gl(r

∗
⊥) for the lamellar system. The order-disorder transition

(ODT) is characterised by a significant growth in the first peak of the spherocylin-

der radial distribution function. The layer structure of the lamellar is seen in the

strong peaks in g||(r
∗), which signify the distance of separation of the centres of

the spherocylinder layers. In the case of the L/D = 2 system a layer spacing of

δlayer ≈ 5.6σ0 relates to the approximate length of the spherocylinders (3σ0) with a

further 2.6σ0 representing the sublayer of coils separating each spherocylinder layer

(see below). In contrast g||(r
∗) provides a simple straight line (g||(r

∗) = 1, curves

not shown) for a nematic phase or for an isotropic melt [169]. The form taken by

gl(r
∗
⊥) for the lamellar layer is very similar to that of a normal radial distribution

of a dense liquid. An initial peak at the contact distance is followed by two further

peaks of weakening intensity corresponding to second and third neighbours in the

plane. Thereafter, gl(r
∗
⊥) decays to a value of 1, indicating liquid-like order within

each lamellar layer.

Using the information obtained from S2, g(r
∗), g‖(r

∗), gl(r
∗
⊥) and S(k), a ap-

proximate phase diagram for the polymer was identified. This is presented in figure

(4.4) as inverse temperature, 1/T ∗, vs the rod elongation, L/D, where the temper-

ature, T ∗ = kT/ǫ, is expressed in reduced units.

The phase diagram is dominated by the presence of lamellar phase for temper-

atures below the order disorder transition (ODT). Snapshots of the phases formed

are presented in figure 4.5. For quite large rod volume fractions a small area of
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Figure 4.4: The phase diagram for the multiblock copolymer generated from the
molecular dynamics simulations of N = 125 molecules at an occupied volume frac-
tion φ ≈ 0.384. The following phases were observed: isotropic (closed circles),
nematic (open squares), lamellar (closed squares), gyroid (closed downward trian-
gles) and micellar phase (closed upward triangles). Lines marking phase boundaries
are meant as a guide to the eye only and do not represent exact boundaries.

nematic stability was observed. For short rods evidence exists for the formation of

elongated micelles. In the middle of the phase diagram, with rod aspect ratios L/D

= 6 and 7, a gyroid phase was stabilised. As a general trend the ODT moves to

higher temperatures as the rod elongation is increased. This is, as expected, due to

increased mesophase stability caused by the rods when L/D is increased.

From previous theoretical studies of rod-coil diblocks [122,170] and triblocks [171]

it comes as no surprise that there exists a large range of lamellar stability. The pref-

erential A-A and B-B, interactions favour phase separation. The alignment of rods

is favoured through energetic and entropic reasons. The rod-rod pair interaction,

figure 4.2, favours the side-by-side configuration over the end-to-end configuration.

These factors lead to the predominate ODT being from isotropic to lamellar.

For rod-coil-rod (and other multi block copolymers) at temperatures below the

ODT there exists two possible coil configurations; bridging and looping [165]. To

estimate the relative proportions of bridging and looping coils, a distribution func-
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tion

fij = 〈cos θij〉 = 〈ui � uj 〉 , (4.1)

for the orientations ui and uj for the rods i and j within the same polymer chain was

calculated. For a fully elongated chain, all rods are taken as pointing in the same

direction. Figure 4.6 plots the functions f12, f23, f34, f13, f14, for a typical state point

corresponding to the L/D = 5 polymer in the lamellar phase. To minimise system

size effects here, results are given for a system of 1000 molecules (corresponding to

5 full layers of spherocylinders). The functions all show two peaks corresponding to

anti-parallel fij ≈ −1 and parallel fij ≈ 1 alignment of rods. The linear connectivity

of the polymer guarantees that anti-parallel alignment between adjacent sites is a

signature of the rods lying in the same lamellar layer, the flexible coil forms a

loop between the two rods in same lamellar layer. Parallel alignment of adjacent

rods means that the linking coil forms a bridge between two lamellar layers. The

graphs of f12, f23, f34, all show the same result, a slight preference for looping

chains over bridges. Integrating the areas under the curves for cos(θ) ∈ [−1, 0], and

cos(θ) ∈ [0, 1] an estimate of looping and bridging chains can be obtained. The

statistics are only slightly in favour of the former: respectively 64%, 59% and 62%

(with error bars of ≈ 2-3%) for 1-2, 2-3 and 3-4 spherocylinders. For the correlation

functions, f13 and f14, for rods separated by two and three coils, a slight growth

of the +1 peak can be observed (top left in figure 4.6). For rods separated by two

coils, f13, the cos(θ) = 1 means that all the rods are in same lamellar layer or that

all the rods are in different layers i.e. no bridging chains or two bridging chains.

cos(θ) = −1 means that there exists one bridging chain. Similar behaviour was also

obtained for system of N = 125 shorter rods with L/D = 2, although the preference

for looping was reduced slightly by ≈ 1-3%.

In the bottom diagram of figure 4.6 the correlation function for the head and tail

rods, f14, is shown for a system ofN = 125 polymers with long rods of L/D = 11. As

expected, for the isotropic phase at temperature T ∗ = 20.0 there exists virtually no

correlation between the head and tail rods due to the flexibility of the coil sections.

However, in the nematic phase at temperature, T ∗ = 12.0, alignment of the rods

along a common director, leads to a growth of two peaks in f14 corresponding to
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parallel and anti-parallel alignment, while the orientational order parameter remains

relatively high S2 ≈ 0.66. This suggests the presence of hairpin conformations. The

presence of such “defects” has also been noted in two previous simulation studies of

MCLCPs [172, 173]. It must be noted that a system size of N = 125 for polymers

with large rod elongations, such as L/D = 11, is too small to fit more than two

fully grown lamellar layers into the simulation box (top part in figure 4.5), therefore

rigorous statistical analysis was not carried out for the system with L/D = 11.

In the simulated lamellar systems, the orientational order parameter, S2, was

typically around 0.7-0.8. The order parameter was generally slightly higher for

the longer rods, with the lowest calculated order parameter for the lamellar phase

(S2 ≈ 0.69) was seen for the L/D = 2 system. Although the order parameters are

relatively high, they still indicate that there exists a noticeable distribution of rod

orientations.

Self-consistent field theory (SCFT) studies of rod-coil diblock copolymers have

suggested formation of bilayers in a lamellar (smectic-A) phases [12] and formation

of a tilted smectic-C phase when coil volume fraction is increased [12, 174]. The

latter would be due to rods relieving the stress in the layers by tilting. Neither

bilayer formation nor strong evidence for smectic-C formation was observed in the

current study. The maximum tilt averaged over molecules was less than 5 degrees

in all cases. It might be useful to note that in this model case coil chains are very

flexible and rods are happy to adopt order parameters as low as S2 = 0.69 (near

the ODT) for the L/D = 2 case. Consequently the amount of strain caused by the

lamellar structures is not overly high.

Chen and coworkers [163, 164] have demonstrated the formation of wavy lamel-

lar-chevron-like structures in systems of polyhexyl isocyanate-polystyrene diblock

copolymers. Recent SCFT work also suggests that chevron-like structures may

be metastable with respect to a possible defect free smectic-C structure [174]. In

quenching from the isotropic melt into the lamellar region, the simulations demon-

strated some initial evidence for tilting of rods occurring in layers in different direc-

tions, creating chevron-like structures. However, this behaviour was only transient

in the simulations, and tilted domains disappeared in favour of smectic-A layering



4.1. Main chain liquid crystal polymer simulations 78

Figure 4.5: Snapshots from bulk simulations of N = 125 main chain liquid crystal
polymers. Nematic phase from the system with elongation L/D = 11 at temperature
T ∗ = 12.0 (top left), lamellar phase for L/D = 11 at T ∗ = 4.0 (top right), gyroid
phase for L/D = 7 at T ∗ = 3.0 (middle left), lamellar phase for L/D = 2 at
T ∗ = 0.8 (middle right), micellar phase for L/D = 1 at T ∗ = 0.6 with spheres
(bottom left) and spheres removed (bottom right). The snapshots were produced
with the QMGA [3] molecular graphics program.
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Figure 4.6: Plots of the angular distribution function fij = 〈cos θij〉 in the lamellar
phase for the L/D = 5 polymer at T ∗ = 1.3 (top graphs) and for the L/D =
11 polymer in three phases (bottom graphs). The top graphs show distribution
functions for the three cases where spherocylinders are separated by one chain f12,
f23, f34, and by two and three chains f13, f24.
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over long annealing runs.

In the model used in this work, as in the extended SCFT work of Pryamitsyn

and Ganesan [174], when rods are aligned the anisotropic attractive interaction

means that there is a strong tendency for rod-rod attraction. This greatly reduces

the range of stability for a nematic region. However, increasing the length of the

rods eventually leads to a situation in which excluded volume effects stabilise the

nematic phase. A nematic thus occurs when the competition between translational

and rotational entropy is won by the former, at comparatively high temperatures,

in the situation where there is very weak segregation. In the case considered here,

at an occupied volume fraction of 0.384, an isotropic-nematic phase transition starts

to occur at L/D = 11. At the opposite side of the phase diagram, when the coil

volume fraction is high and curvature effects are too great for the formation of

lamellae, we see evidence for micellar ordering below the ODT. Here, as expected,

we do not get spherical micelles (figure 4.5) but instead the relatively strong side-

to-side interactions of the rods lead to elongated micelles.

In the middle of the phase diagram, for L/D = 7 and L/D = 9 systems, cooling

below the ODT leads to microphase separation into structures which appear to

represent a bicontinuous gyroid phase. To look in more detail at the phase segregated

structures we mapped the distribution of spheres and spherocylinders as surfaces.

This was carried out by first dividing the simulation box into a 10×10×10 grid and

calculating the local number density for each small cube. This was then plotted as an

isosurface in figure 4.7. The isosurfaces show the presence of three tubes intersecting

at each node, which would correspond to a gyroid bicontinuous structure (G), as

opposed to a double diamond (DD) with four tubes intersecting at a node, or the

plumber’s nightmare phase (P) with six tubes intersecting at a node. To check on

the stability of this phase, simulations were carried out for the L/D = 7 system with

1000 molecules. As with the smaller system the gyroid phase formed spontaneously

on cooling from the isotropic melt and remained stable over simulations in excess

of 1 × 106 MD steps. However, it must be noted, that this is still a relatively

small system and for the “off-lattice” simulations, the model is relatively expensive,

compared to an “on-lattice” model or compared to studies of diblocks.
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Figure 4.7: Isosurface plots for the density of spherocylinders (red) and spheres
(blue) within the gyroid phase for a L/D = 9 system. [Top] 9 periodic boxes shown.
[Middle] sphere surface from one period box. [Bottom] spherocylinder surface from
one periodic box.
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In a series of dissipative particle dynamics, Monte Carlo and free energy calcu-

lations of off-lattice diblock copolymer melts, Martinez-Veracoechea and Escobedo

[118] have shown that the formation of a gyroid phase is remarkably sensitive to

simulation conditions. It can be artificially induced by inappropriate size of the

simulation box, thus the interactions with periodic images over the box sides could

stabilise the phase [118]. To prove the phase stability, free energy calculations with

possible competing phases, such as lamellar, should be carried out and free energies

compared. Recent work shows that such calculations are indeed possible for simpler

systems [118] but these would be very challenging for the multiple block copolymer

molecules used in this work.

In a recent, theoretical study of coil-rod-coil and rod-coil-rod triblock copoly-

mers, Chen et al. [171, 175] found that the gyroid phase was stable at a fairly high

rod volume fraction of f = 0.7. This is in contrast to rod-coil diblocks where no

gyroid phase, to my knowledge, has been reported. For the system considered here,

despite the presence of multiple rod-coil blocks, the comparative flexibility of the

chains means that separation of spheres from rods in a gyroid structure, does not

cause excessive strain in the flexible chains leading to “packing frustration” at the

connection points i.e. nodes [118, 119]. In theory, stability of this phase is possi-

ble for the system, up to the point where the nematic phase becomes the favoured

mesophase at the ODT for longer rods.

Finally, few simulations were carried out at smaller occupied volume factions

of 0.029 and 0.0072. Here, in some of the simulations a momentum conserving

Lowe-Andersen thermostat was employed to provide a stochastic element to the

dynamics in addition to calculations with the Andersen thermostat. The former

both helps with equilibration of the system and also simulates the effect of solvent

collisions. For a coarse-grained model, such as this, small occupancy volume frac-

tions correspond to the polymer in solution with an implicit solvent. A snapshot

from one of these simulations appears in figure 4.8, showing the presence of a self-

assembled ordered nanowire in which we see lamellar domains with the layer normal

running parallel to the direction of the wire. Such structures are seen in several

independent simulations at low volume fractions. There has been considerable re-
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Figure 4.8: A snapshot showing simulation results for a L/D = 1 polymer with an
occupied volume faction of 0.0072 at a temperature of T ∗ = 0.6.

cent interest in self-assembled block copolymer nanowires. This is particularly the

case for conjugated polymer systems, which may offer possibly future applications

in photoelectrical devices [176].

4.1.5 Conclusions

The new anisotropic soft core coarse-grained potential model, developed in chap-

ter 3 (equation 3.1), was used successfully to study the phase behaviour of a rod-

coil multiblock copolymer in constant occupied volume fraction. The simulations

demonstrate the formation of micellar, nematic, lamellar and gyroid phases, which

spontaneously form as the simulation is cooled through the ODT from an isotropic

polymer melt. Increases in the length of the rod component stabilise mesophases,

increasing the order-disorder transition temperature. Increases in rod length also

stabilise the formation of a nematic phase. In the lamellar phase both looping and

bridging coils occur between layers of rods, with a small preference seen for the

former. At very low occupied volume fraction, corresponding to the solution phase

for the coarse-grained model, self-assembly of the polymer chains into an ordered

nanowire was observed.
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4.2 Chiral induction

4.2.1 Introduction

Molecular chirality, resulting in a very small net twist between adjacent molecules,

leads to a rich variety of liquid crystalline phases [7]. These include high twisting blue

phases with cubic symmetry [177] (lying between isotropic liquid and conventional

chiral nematic (cholesteric) phase), smectic blue phases [178] and twist grain bound-

ary phases [179]. The formation of a chiral nematic phase has also been reported

in biological systems such as an aqueous solution of DNA [180] and a suspension of

rod-like viruses [181, 182] including the fd-viruses [18, 183].

Chiral nematic phases have been studied by the means of computer simula-

tions using standard periodic boundary conditions [184], twisted periodic boundary

conditions [185–188] and in the vicinity of a chiral wall [189]. Varga and Jack-

son studied the temperature dependence of a macroscopic pitch in a chiral nematic

phase composed of hard spherocylinders with a chiral dispersion potential by con-

fining the system between two structureless parallel hard walls [190]. Very recent

reports include a molecular level simulation study of a twisted nematic cell consist-

ing of approximately 1 million Gay-Berne particles [191] and a generalised van der

Waals theory for the twist elastic modulus and the helical pitch of a chiral nematic

phase [192].

Chiral nematic and normal uniform nematic can be considered as two branches

of the same family with a molecular level difference [7]: racemic systems or systems

consisting of only achiral molecules would lead to the formation of a nematic phase

while systems with molecules different from their mirror image would lead to the

formation of a chiral nematic phase. Generally, if a nematic phase is doped with

chiral molecules the phase itself would become chiral. Likewise, when a chiral ne-

matic is doped with achiral dopant molecules the helical twist of the chiral phase

is reduced. However, in a recent experiment [193] a chiral nematic phase formed

by a cholesterol derivative was doped with three different achiral banana shaped

molecules. In each case the helical twist was observed to increase instead of de-

crease. Earl et al. studied one of these bent core molecules atomistically in a gas
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Figure 4.9: Schematic representation of the molecule.

phase [194]. It was found that the molecule is on average achiral, but it possesses

conformations with extremely high helical twisting power. It was postulated that

in a chiral field these highly twisting conformations would be preferentially selected

over their mirror image, leading to an increase of the overall twist.

In the remaining part of this chapter a simple coarse grained model with control

of conformational chirality is developed. The simulation results show the connection

between conformational chirality of individual molecules and the helical pitch of

the bulk phase. Further, the simulations show how an achiral molecule (which

normally possesses equal and opposite chiral conformations with high twist) shows

chiral selectivity when placed in a chiral environment. Conformations which twist

in the same direction as the host phase are preferentially selected leading to an

enhancement of the twist of the bulk phase.

4.2.2 Molecule model

The molecule used in this study was composed of three rod like units, represented by

soft core spherocylinders joined together. The molecular model is presented schemat-

ically in figure 4.9. The spherocylinder elongation was chosen as L/D = 4 with D =

σ0 = 1. Adjacent spherocylinders were bonded together using a simple harmonic

potential (equation (3.23) in chapter 3) using a force constant kbond/(ǫσ
−2
0 ) = 50.0.

The equilibrium bond length was set to r0 = 0.0σ0 to form a continuous “tube”

molecule with flexible joints. The flexibility of the joints was controlled by introduc-

ing a harmonic angle potential; equation (3.24) in chapter 3. Now, the interactions
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sites i, j and k defining the bond angle θijk were chosen from adjacent spherocylin-

ders in following fashion; i was chosen to be the centre of mass of the spherocylinder

1. j was chosen to be that end of the line segment of spherocylinder 1, which was

bonded to the spherocylinder 2. k was chosen to be the centre of mass of the sphe-

rocylinder 2. The equilibrium bond angle was chosen as θ0 = 450 and the force

constant was chosen to kangle/(ǫrad−2) = 200.0. This is a considerably higher force

constant than for bonds, and it was chosen to avoid the bond angles reaching (even

instantaneously) a linear configuration during the simulations runs, thus this would

cause a problem in the calculation of the dihedral angle.

In order to control the conformational chirality of the model molecule a “dihe-

dral” potential was employed for rotation around the middle spherocylinder. The

four interaction sites needed to calculate the “dihedral” angle, γijkl, were chosen (as

presented in figure 4.9) as follows: i the centre of mass of the first spherocylinder,

j and k both ends of line segment of the middle spherocylinder and l the centre

of mass of the third spherocylinder. During the course of the study two different

dihedral potentials were considered

Udihedral(γijkl) = A [1 + cos (nγijkl − γ0)] (4.2)

and

Udihedral(γijkl) = −A
[
cos

(
1

2
γijkl − γ0

)n

+ cos

(
1

2
γijkl + γ0

)n]
+ A. (4.3)

The parameter A controls the height of the barrier between the consecutive wells and

γ0 can be used to change the equilibrium dihedral angle. In the potential of equation

(4.2) the integer, n, sets the number of wells and in the potential of equation (4.3)

it controls the width of each of the two wells.

By employing the dihedral potentials, equations (4.2) and (4.3), a desired equi-

librium conformation or conformations can be set. Setting the equilibrium dihedral

to, γeq = 1800, a linear, non chiral, conformation is favoured (left in figure 4.10).

Changing the equilibrium dihedral angle away from 1800, conformational chirality

can be induced in the molecule. An example of a chiral conformation is presented
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Figure 4.10: Two snapshots of individual molecules used in this study. An achiral
planar molecule with γijkl = 1800 (left). A Chiral, “cork screw’, molecule with
γijkl = 1200 (right).

in the right hand panel of figure 4.10. Further, the equal but opposite dihedral

angles around the achiral value of 1800, can be used to distinguish between “left”

and “right-handed” conformations with equal twist.

The calculations (energies, forces and torques) of the bonds between the end

of a line segment between the two consecutive spherocylinders, bond angles and

dihedrals as described above were implemented in the existing parallel MD program

GBMOL, by the author of this thesis.

4.2.3 Computational details

To study a chiral nematic phase doped with achiral molecules a simulation sys-

tem of N = 4000 molecules, totalling 12 000 interactions sites, as described in

the section 4.2.2, was constructed. The non bonded interactions were described

with the new anisotropic soft core spherocylinder model, equation (3.1), intro-

duced in chapter 3. For the spherocylinder pair interaction, a parametrisation of

U∗
max = 100.0, U∗

attr = 2000.0, ǫ1 = 220.0 and ǫ2 = 0.0, was used (left panel in figure

4.11). This parametrisation favours side-by-side and end-to-end configurations, de-

stabilising the T and cross configurations. As with the model B single site system

(studied in chapter 3, section 3.4.2) this parametrisation favours nematics. However,
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Figure 4.11: The soft-core potentials used in this study. The pair potential be-
tween two spherocylinders of elongation L/D = 4 (left). The potential between a
spherocylinder and a soft wall positioned in the xy-plane (right).

the parametrisation used here is far more repulsive than model B of chapter 3.

The molecules were placed into a slightly elongated rectangular simulation box,

V = LxLyLz , with box lengths Lx = Ly ≈ 41.35σ0 and Lz ≈ 58.48σ0. Throughout

the simulations length scales were fixed as D = σ0 = 1.

Simulations of a chiral nematic phase using standard periodic boundary condi-

tions (PBCs), in which the molecules (or parts of molecule) interact with periodic

images on the opposite side of the box, pose a severe challenge. The dimension of the

simulation box along the helical axis (figure 1.2 in chapter 1) should be a multiple

of the helical pitch p. Otherwise the top and bottom layers perpendicular to the

helical axis are not commensurate and the system is not able to relax, causing an

artificial stress and defects [190]. In theory, it would, of course, be possible to define

an ensemble where the box dimension along the helical axis could be varied while

keeping the total volume constant by reducing/increasing the area perpendicular to

the helical axis. For true molecular scales, the helical pitch of a chiral nematic sys-

tem is in the order of some hundreds of nanometers [193], and millions of molecules

would be needed to accommodate the pitch. The effect of PBCs can be removed

by confining the system between two structureless walls perpendicular to the helical

axis. Providing that the system is large enough that the confinement effect on the

nematic ordering is small, a simulation of fraction of the pitch length can be carried

out [190].
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To achieve this in this work, a soft repulsive wall of quadratic form

U∗
wall(rz) = U∗

wall(1 − rz/σwall−SCS)
2 (4.4)

was placed at both ends of the simulation box in the xy-plane. Similar to equation

(3.1) the parameter, U∗
wall, sets the maximum energy at full overlap and σwall−SCS

sets the interaction range of the wall (if rz ≥ σwall−SCS, U
∗
wall(rz) = 0). The walls

were placed in the xy-plane, perpendicular to the z − axis. Therefore the shortest

distance, rz, between the wall and spherocylinder is always the distance between

the nearest end of line segment of the corresponding spherocylinder along z-axis

and the z-coordinate of the wall (right panel, figure 4.11). The resulting force,

−∇U∗
wall(r

∗
z), has only a z-component, fwall = (0, 0,±fwall). This gives rise to a

gorque gwall = (±1
2
L/D)fwall. Calculation of these was incorporated into GBMOL

md program by the thesis author.

Ideally, there would exist no anchoring at the wall. Initially parametrisations

of U∗
max = 1000 and U∗

max = 100 with σwall−SCS = σ0 were tried. These lead to

two chiral domains, with opposite twist, growing from each wall at the opposite

side of the simulation box, along the z-axis. The domains met in the middle of

the simulation box where a defect was formed. This was largely due to strong

anchoring at the surface combined with the nature of conformational chirality of

the molecules. If the molecules align the same “edge” to the wall on the opposite

sides of the simulation box, they induce an equal but opposite twist. One possible

solution, could be to let only the middle SCS interact with the wall. However, this

led to homeotropic anchoring at the wall. To minimise the anchoring at the wall, a

longer interaction range between the wall and SCSs was introduced. As apparent,

from the right hand panel of figure 4.11, the parametrisation of U∗
wall = 100 and

σwall−SCS = 3σ0 allows a penetration of 1σ0 for an approximate energy penalty of

10kBT , thus reducing the anchoring.

The equations of motion were integrated using the velocity verlet algorithm using

the GBMOL program [142,168], with timestep ∆t∗ = 0.01. The energy conservation

was checked for small number of these molecules by simulations in the const-NVE
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ensemble. Temperature was kept constant at T ∗ = 3.0 by applying an Andersen

thermostat every 100 MD steps. The simulations were carried out for 2 − 3 × 106

MD steps followed by 50 000 MD steps of production run when configurations were

written on disk every 1000 steps for analysis.

4.2.4 Results

4.2.4.1 Pure melts

The effect of the dihedral angle, γijkl, for the formation of twisted nematic phase was

studied for six pure melt systems using the dihedral potential of function equation

(4.2) with parameters A = 20.0, n = 1 and γ0 = 0, 100, 300, 450, 600, 700. These re-

sulted in equilibrium dihedral angles of γeq = 1800, −1700, −1500, −1350, −1200, −1100,

where γeq = 1800 corresponds to an achiral (planar) equilibrium conformation, and

the other extreme, γeq = −1100, to a highly twisted conformation with 700 differ-

ence to the planar conformation. Examples of the observed phases are presented

in figure (4.12). As expected, when a planar conformation is favoured, a normal,

non-twisting, nematic phase is formed, top left in figure (4.12), with an orientational

order parameter S2 ≈ 0.67±0.02, considering all the three rods in the molecule and

averaged over all the molecules. From the snapshot of the nematic phase looking

down along z-axis (perpendicular to the wall), top right panel of the figure (4.12), a

planar alignment at the wall can be observed. When the equilibrium dihedral angle

differs from the planar case, the molecule adopts a chiral shape. Now a formation

of a twisted nematic phase with a uniform twist around the helical axis (z-axis in

this case) is expected instead of a uniform nematic. A snapshot, with z-axis running

along the page, of a twisted nematic is presented in the bottom left panel of figure

(4.12) for the system with γeq = −1500. Comparing this to the snapshot of the

system with higher twisting molecules, γeq = −1200, in the bottom right panel, an

increase of the twist of the bulk phase can be observed upon increasing the twist of

the individual molecule.

To quantify the effect of molecular twist on the twist of the bulk phase, the

simulation box was divided into layers with thickness of 1.7σ0 along the z-axis. A
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Figure 4.12: Snapshots obtained from, N = 4000, simulations of model bent-core
molecules. Achiral nematic phase with the molecular equilibrium dihedral angle of
γeq = 1800, side view (top left) and top view showing planar alignment at the surface
(top right). Chiral nematic phase with γeq = 1500 (bottom left) and γeq = 1200

(bottom right).
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Figure 4.13: The angle between a reference nematic director, nref , at the bottom the
simulation box and a local nematic director, nlayer, for a corresponding layer. The
results are presented for the six systems considered with equilibrium dihedral angle
in the range γeq = 1800 . . . 1100.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-30 -20 -10  0  10  20  30

S
2

z/σ

γeq = 180
γeq = 170
γeq = 150
γeq = 135
γeq = 120
γeq = 110

Figure 4.14: Orientational order parameter, S2, for the layers along the helical, z,
axis for the six systems considered, with equilibrium dihedral angle in the range of
γeq = 1800 . . . 1100.

local nematic director was used for each layer, nlayer. This allowed the calculation

of the twist angle, φ(z/σ0), between a reference director close to the bottom of

the box and a local director of the layer along the z-axis (Figure 4.13). The effect

of conformational (molecular) chirality on the bulk twist is clearly present. The

overall twist is seen to increase from, φ ≈ 0, for the planar (achiral) molecules with

γeq = 1800 to φ ≈ 2780 for the highest chiral strength with γeq = −1100. The linear

nature of the twist angle, φ(z/σ0), between the local directors allows the bulk pitch,

p, to be obtained from a linear fit, φ(z∗) = az∗ + b, as p = 2π/a.

The local nematic order parameter, S2, for the layers is presented in figure 4.14.

All the systems considered are well in the nematic region. When averaged over all

the layers, a limiting values can be identified as S2 ≈ 0.67 ± 0.02 for the achiral

system and S2 ≈ 0.604 ± 0.004 for the the most twisting system with γeq = −1100.
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Figure 4.15: Examples of dihedral potentials used in simulations. Achiral model
with γeq = 1800, equation (4.2) with A = 20.0, n = 1, γ0 = 0 (solid line); chiral
model with γeq = −1100, equation (4.2) with A = 20.0, n = 1, γ0 = 70.0 (dashed
line); achiral dopant with 12 wells, equation (4.2) with A = 10.0, n = 12, γ0 = 0.

A small effect due to the aligning wall can be seen from the extreme values, zmin

and zmax, of S2, where a small increase (a maximum) of approximately 0.1 occurs.

This increase disappears rapidly with S2 being within the statistical error of the

bulk value for adjacent layers.

4.2.4.2 Systems with dopants

To study the effect of the host phase on the structure of a flexible achiral dopant

molecule, two host systems with γeq = 1800 and γeq = −1100 were doped with flexible

dopant molecules, by replacing 10% of the molecules in the already equilibrated

systems by dopant molecules. This kept the total number of molecules constant,

N = 4000, and resulted in Nsolvent = 3636 and Ndopant = 364. The dopant molecules

were modelled exactly as the solvent, but their dihedral angle potential was modelled

with equation (4.2), choosing A = 10.0, n = 12, γ0 = 0, resulting, on average, in

an achiral structure, with 12 equally spaced wells (figure 4.15) corresponding to

different twists. Both systems were then run for 3 million MD steps.

In this very simplified case, the effect of the host phase on the structure of

the dopant molecules can be directly assessed by calculating the dihedral angle

distribution, f(γijkl). This is presented in figure 4.16 for the solvent (solid line)

and dopant molecules (dashed line). For the dopant molecules in an achiral host
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Figure 4.16: A dihedral angle distribution calculated from MD simulations for sys-
tems with 10 % of doping, NSolvent = 3636 and NDopant = 364, with an achiral dopant
with 12 evenly distributed wells (Figure 4.15). Achiral solvent with γeq = 1800 (left)
and chiral solvent γeq = −1100 (right).

phase (left panel) the solvent dihedral angle distribution is symmetric around the

equilibrium value of γeq = 1800. The distribution for the dopant molecules shows

a symmetric distribution of 12 peaks around γijkl = 0, showing that the dopant

molecules are indeed achiral in a nematic reference field. Interestingly, the dopant

molecules prefer conformations similar to the host phase, which is shown by the

growth of the peaks close to γijkl = 1800 and suppression of peaks close to γijkl = 0,

relative to the unperturbed gas phase distribution, which can be assumed to be a

Boltzmann inversion of the potential energy function (dotted line in figure 4.15),

with all peaks having an equal area. This conformational selectivity is apparent

also in the chiral host phase (right panel). Here the dihedral angle distribution for

the solvent is symmetric around γeq = −1100, but the dopant molecules now become

chiral with a preferential selection of conformations which are twisted in the same

direction as the host phase (right panel in figure 4.16).

To study the chiral induction further, dopant molecules with only two equilibrium

dihedral angles, were considered, corresponding to states which are characterised by

equal but opposite chirality. Marking the molar fraction of these molecules in left-

and right-hand conformations by nL and nR, respectively. It must be true that

nL + nR = 100%. Further, in an achiral phase, such as the gas phase, an isotropic

liquid or an uniform nematic phase, the relation nL = nR must hold. For this
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 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

-150 -100 -50  0  50  100  150

D
is

tr
ib

ut
io

n

γijkl (degrees)

Doped solvent (10%)
Dopant, chiral solvent

Dopant, nematic solvent
Pure solvent

Figure 4.18: Dihedral angle distributions from MD simulations. Doped solvent (solid
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dopant molecule, a dihedral potential of form equation (4.3) with parametrisation

A = 20, n = 40 and γ0 = 55 was employed. Leading to two symmetrical wells at

γeq = ±110 separated by a barrier of height 20ǫ0 (dashed line in figure 4.17). Two

host systems with 10% doping were considered: an achiral host phase and a chiral

host phase with γeq = −1500 (solid line in figure 4.17). Systems were constructed

as in the previous case and run for 4 million MD steps.

Again, the conformational chirality of the dopant molecules was estimated by

calculating the dihedral angle distribution function. This is presented in figure 4.18

for the dopant molecules in the nematic host phase (dotted line) and in the chiral

nematic host phase (dashed line). The relative populations, nL and nR, can be

calculated by integrating the area under the corresponding peak. This was done nu-
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Figure 4.19: Bulk twist angle, φ(z), for local directors along the helical, z, axis for
the system with γeq = −1500 for two cases: A pure melt (squares) and system with
10% doping (dopant molecules had two equal but opposite chiral conformations,
γeq = ±110) (circles). The lines are least-squares fits of linear functions, f(z) =
az + b, to the data.

merically using the trapezium method. In the nematic phase, the equality nL ≈ nR

is true within statistical error, for the dopant molecules. However, when the dopant

molecules are placed in the chiral host phase, (as seen before) a preferential selection

of conformations with twist in the same direction as the host phase occurs. Rela-

tive populations of 59.3±0.5% and 40.7±0.5% were obtained for the conformations

twisting the same direction and opposite direction as the host phase. These pref-

erentially selected conformations, centred around γijkl = −1100, are higher twisting

than the host phase, resulting in a higher twisting power as can be depicted from

results for the bulk twist angles for the molecules with different level of twist, as

presented in figure 4.13.

Figure 4.19 shows an increase of the bulk twist angle, φ(z/σ0), for the system

with 10% dopant molecules when compared to the pure melt. From the slope of the

linear fit to the φ(z/σ0), the pitch, p, of the chiral nematic phase can be calculated.

The pitch was found to be p = (88.5± 1.0)σ0 and p = (103.2± 0.7)σ0 for the doped

and pure systems, respectively. This shows an approximate 17% increase of the

bulk twist when the systems was doped with an achiral dopant. This seems quite a

large increase. To check the results another simulation of 4 million MD steps was

performed for the pure system. This time it was found that p = (89.6 ± 1.3)σ0,

resulting in a more modest increase of approximately 1.2% of the bulk twist. A

crucial requirement for this analysis is the linear behaviour of the φ(z/σ0), which
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Figure 4.20: Radial distribution functions, g(r∗), for solvent molecules (solid line),
dopant molecules (dashed line) and solvent-dopant cross distribution (dotted line)
on the left panel. Snapshot of the dopant molecules, where solvent molecules are
removed for clarity, right panel. Results are for the solvent system with γeq = −1500

doped with achiral dopant molecules with γeq = ±1100.

is fulfilled for the systems shown in figure 4.19, but was less so for the second pure

melt. The most probable reason for this is due to the aligning walls in the z-direction,

leading to φ(z/σ0) adopting a slightly less linear form. Despite these limitations,

the simulations do demonstrate that a preferential selection of high twisting dopant

conformers with a twist in the same directions as the host phase, can lead to an

increase of the bulk twist of the chiral nematic system upon doping with an achiral

dopant molecules. Moreover, these findings help to explain the experimental findings

of Thisayukta et al. [193] that an achiral dopant can increase the twist of a bulk

chiral nematic phase.

Considering the mechanism of how preferential selection of the dopant confor-

mations lead to an increase of the bulk twist, three scenarios arise: firstly, dopant

molecules could phase separate to form a highly twisting cluster leading to an in-

crease in overall twist. Secondly, dopant molecules could affect the chirality of the

solvent molecules (dihedral angle distribution, in this highly coarse grained case)

making the solvent molecules more chiral and thirdly, dopant molecules are dis-

tributed evenly in the system but their preferentially selected high twisting confor-

mations lead to an increase of the bulk twist.
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To check these hypotheses for this system, the distribution of the dopant molecules

was assessed in the terms of pair distribution functions, g(r∗). Comparing the dopant

molecules g(r∗) (left panel of figure 4.20) to the solvent and solvent-dopant g(r∗)

it can be seen that that all of them have a nearest neighbour peak separation at

approximately r∗ ≈ 1.3. For larger separations the solvent and solvent-dopant pair

distribution functions quickly reach a constant value of 1, indicating liquid like or-

der. The dopant g(r∗) shows the growth of slight shoulder between separations of

r∗ ≈ 2.4 and r∗ ≈ 6.0, indicating a slight preference for forming small clusters.

For separation larger than r∗ > 6.0 the g(r∗) goes to constant value of 1. A sim-

ilar picture can be seen from a snapshots of dopant molecules, where the solvent

molecules have been removed for clarity. The dopant molecules are uniformly dis-

tributed across the simulation box, apart from some evidence for formation of very

small clusters (right panel of figure 4.20). Figure 4.18 shows the calculated dihedral

angle distributions for the solvent with 10 % doping (solid line) and for the pure

solvent (dot-dashed line). These are in agreement within the line width, thus it

can be concluded that the doping does not change the chirality of the solvent. The

increase of the bulk twist arises almost entirely from the preferential selection of

high twisting conformations of uniformly distributed dopant molecules.

4.2.4.3 Chiral segregation in nematic phase

A recent experimental study by Görtz et al. [195] of achiral bent-core bis-(phenyl)-

oxadiazole derivatives, reported unusual properties in the nematic phase, including

evidence of segregation into domains of opposite handedness. In figure 4.21 a snap-

shot of a uniform nematic phase is shown with colour coding according to the hand-

edness of individual molecules. From this it can be seen how locally the molecules

prefer the same handedness as their neighbours leading to segregation into small do-

mains with opposite handedness. Here however, the chiral domains are quite small

as opposed to the findings in [195]. It is an interesting and currently open question

as to whether preferential selection of chiral conformations in an achiral nematic

phase can lead to true “phase separation” of large scale macroscopic (µm) domains

with opposite handedness.



4.3. Conclusions 99

Figure 4.21: A snapshots showing chiral segregation in a uniform nematic phase
(γeq = 1800) where the colour coding has been applied as blue for “left”-handed and
red for “right”-handed conformations.

4.2.5 Conclusion for chiral induction

Chiral induction was studied using a coarse grained model constructed from three

anisotropic sites, modelled as soft-core spherocylinders, connected together using

harmonic bonds and angles. A dihedral potential describing rotation around the

middle spherocylinder was introduced to control the conformational chirality of in-

dividual coarse grained molecules. The simulation showed that when an achiral

equilibrium structure was set, the bulk system formed a uniform nematic phase.

When conformational chirality was introduced a twisted nematic phase was formed

with the twist of the bulk phase increasing upon increasing the twist of the individ-

ual molecules. Further, simulations demonstrated an increase in bulk twist, through

the preferential selection of high twisting conformations, when the system was doped

with on average achiral dopant molecules. Finally, an evidence of a local segregation

into domains with opposite handedness was observed in a uniform nematic phase.

4.3 Conclusions

In this chapter the new soft-core model developed in chapter 3 was applied to two

different systems. The first simulation study, presented in section 4.1, consisted of

mapping an approximate phase diagram for a main chain liquid crystalline poly-
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mer as a function of the volume fraction for the mesogenic unit. Simulations also

demonstrated a rich phase behaviour corresponding to the formation of nematic and

lamellar phases for large rod volume fractions. In the middle of the phase diagram,

a large lamellar stability was observed. For small rod volume fraction some evi-

dence for formation of cylindrical micelles was present and for intermediate values

the formation of a gyroid phase was observed.

In the second study, presented in section 4.2, chiral induction was studied by

considering flexible dopant molecules within a chiral nematic solvent. Here, results

demonstrated that dopant conformers preferred twisting the same direction as the

host phase. Moreover, evidence was obtained, this preferential selection leading to

an increase of overall twist of the host phase. Finally, evidence of chiral segregation

in an achiral nematic phase was seen. These result demonstrate, that these highly

coarse grained models, used in meaningful ways, can provide results of experimental

interest and to help to explain experimental observations.

Chapters 3 and 4 have introduced and used the new anisotropic soft-core model

within conventional MD framework. In the remaining three chapters (5, 6 and 7),

three different advanced simulations methods, will be considered. In chapter 5 coarse

grained surfactant system is studied. The solvent interactions are modelled using

Stochastic Rotational Dynamics method, introduced in section 2.2.5, this allows

for a computationally very efficient description of the solvent-solvent interactions,

with the further advantage that SRD conserves momentum leading to correct hy-

drodynamics on large time and length scales. In chapter 6 the new anisotropic

model is combined with a relatively new advanced simulation method, Statistical

Temperature Molecular Dynamics (STMD). STMD allows the construction of mi-

crocanonical temperature (as a function of internal energy) for a given temperature

range in a single simulation. This provides the possibility of constructing relevant

thermodynamic variables such as entropy and free energy. Finally in the chapter

7, Hamiltonian Replica Exchange Molecular Dynamics (HREMD) is applied to a

Gay-Berne system bridging the isotropic-nematic phase transition.



Chapter 5

Stochastic rotational dynamics

simulations of surfactant

self-assembly

5.1 Introduction

The ability of surfactant molecules to aggregate in solution to form micelles and

other ordered phases is due to the amphiphilic nature of the molecules, i.e. each

molecule consists of hydrophobic and hydrophilic parts. The ability of surfactant

aggregates to change size, shape and topology under different physical or chemical

conditions (for example temperature, solvent quality or salt concentration), is an

important phenomena in biology and also in industry. Important quantities for a

micellar solution include the average size of micelles, the micelle size distribution,

the kinetics of micelle formation and disintegration and pathways for aggregate

formation and rearrangement. For example understanding fusion and fission of

surfactant aggregates would be a key element for targeted drug delivery [196]. Many

of these phenomena are non-equilibrium in nature and involve complex molecular

level processes. In an attempt to understand the kinetic pathways and physical

mechanisms involved, various theoretical efforts have been tried previously, including

coarse grained computer simulations. The time and length scales involved possess a

great challenge for computer simulations. References [197–199] include three recent

101
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reviews of CG simulations of biological systems, including surfactants.

In a series of coarse grained studies, Pool and Bolhuis studied the free energies

of micelle formation [200], critical micelle concentrations [201], kinetics of micelle

fusion and fission [202] using conventional simulation techniques such as MC and

MD in combination with advanced free energy techniques. They also suggested

a new autocatalytic replication mechanism for micelle formation [203]. Recently,

kinetics of formation and disintegration of spherical micelles have also been studied

by a combination of MD and stochastic modelling [204].

To bridge the length and time scales an implicit solvent model for surfactants

have been developed by using soft-core models in a dissipative particle dynamics

framework [198, 205] and with tunable attraction [206]. Recently, Schmid et al.

developed a generic model for lipids by using Lennard-Jones and Weeks-Chandler-

Andersen potentials, coupled to a computationally very efficient “phantom solvent”.

The latter, interacted repulsively with the lipids, but had no self-interaction [207,

208]. This model was used in series of Monte Carlo studies [207–210] of lipid mono-

layers and bilayers.

In this chapter simulations studies of model CG surfactant will be performed

where the system is coupled to a phantom solvent modelled by stochastic rotational

dynamics (section 2.2.5 in chapter 2). This model has the advantage of a com-

putationally very cheap representation of the solvent interactions, while still main-

taining the correct hydrodynamics, which is an essential requirement for studying

non-equilibrium phenomena. The simulations were carried out by the thesis author

while visiting the University of Pittsburgh for 8 weeks in spring 2008. All the simu-

lations were performed using Pitt. Molecular Modelling (pmm) package developed

in Prof. David J. Earl’s research group in the University of Pittsburgh. All the

relevant implementations of SRD within pmm were carried out by Dr Christopher

Adam Hixson from the University of Pittsburgh.
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5.2 Computational details

The studies of surfactants in a mesoscopic water-like solvent were carried out by

using a coarse grained (CG) surfactant model consisting of a hydrophilic head bead,

(h), connected to hydrophobic tail beads (t). Each solvent particle, s, was repre-

sented by a single site. Non-bonded interactions were modelled using a Lennard-

Jones potential

uLJ(rij) = 4ǫij

[(
σij

rij

)12

−
(
σij

rij

)6
]

, (5.1)

where ǫij is the potential well depth, σij is the interaction range between particles i

and j calculated from the sizes as σij = 1/2(σi + σj) and rij is the distance between

particles i and j. To allow the potential to go smoothly to zero, the potential was

truncated at a cutoff distance rcut and shifted

u(rij) =





uLJ(rij) − uLJ(rcut) if rij ≤ rcut

0 if rij > rcut

, (5.2)

using a cutoff radius rcut = 2.5σ0. Purely repulsive interactions were modelled using

Weeks-Chandler-Andersen potential (WCA) [211]

uWCA(rij) =






4ǫij

[(
σij

rij

)12

−
(

σij

rij

)6
]

+ ǫij if rij < 2(1/6)σij

0 if rij ≥ 2(1/6)σij

. (5.3)

The consecutive beads were connected through a harmonic spring potential

ubond(rij) =
kbond

2
(rij − r0)

2 , (5.4)

where kbond is the spring constant and r0 is the equilibrium bond length. The chain

rigidity was controlled through a harmonic angle potential for angle, θijk, between

three consecutive beads i, j and k

uangle(θijk) =
kangle

2
(θijk − θ0)

2 . (5.5)

The solvent was modelled using stochastic rotational dynamics (SRD) introduced in
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Table 5.1: Non-bonded parameters employed in simulations for the head h, tail t
and solvent s pair interactions. The epsilon, ǫij , for the Lennard-Jones interaction
was chosen as ǫij = 1.0ǫ0 unless stated otherwisea.

Interaction h t s σi/σs

Model A h WCA WCA WCA 1.1
t WCA LJ WCA 1.0
s WCA WCA SRD 1.0

Interaction h t s σi/σs ǫij/ǫ0
a h

Model B h WCA WCA LJ 2.0 s1 1.0
t WCA LJ WCA 1.0 s2 0.75
s LJ WCA SRD 1.0 s3 0.5

s4 0.25

SRD collision rotation angle unit box length
time step α a0

5 × ∆tMD 90 1.0

section 2.2.5 of chapter 2. The SRD solvent was coupled to the CG-surfactants by

a hybrid MD scheme (section 2.2.5) with the interaction modelled by LJ and WCA

potentials. The non bonded interaction parameters are summarised in table 5.1.

In all the simulations the mass of each bead was set to m = 1 and the equations

of motion were integrated using a Nosè-Hoover thermostat and the velocity-Verlet

algorithm with timestep δt = 10−3τ , where τ =
√
mσs/ǫ is the reduced time unit.

5.3 Self-assembly of lipid bilayers

For studying the applicability of a SRD solvent for the formation of self assem-

bled lipid bilayers a simulation study of a coarse grained lipid model was car-

ried out. Each lipid consisted of a head bead h bonded to chain of 6 tail beads

(h1t6). Harmonic bond and angle potentials were employed with force constants

kbond = 100.0/ (ǫ0 σ
−2
s ), kangle = 4.7 /(ǫ0 rad−2) with an equilibrium bond length

r0 = 0.7σij and an equilibrium angle θ0 = 180.00 for the bond and angle potentials

respectively. For the non-bonded interactions an attractive Lennard-Jones and re-

pulsive WCA-potential were used. The non-bonded parameters are summarised in

table 5.1 as model A. The coarse grained lipid model is very similar to one used

previously in Monte Carlo studies of Langmuir monolayers [209], and in studying

the formation of rippled phase in a lipid bilayer system [210], where it was coupled
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with a phantom solvent [207, 208]. It must be noted that the interaction potentials

used in this study, intra- as well as intermolecular, differ slightly from those used in

references [207–210].

Initially the system of N = 512 lipid molecules were placed in three different

sized cubic simulation boxes with box lengths L = 18, 19 and 20σ. Each system

was then run for 500 000 MD steps in the NVT ensemble with a fairly high reduced

temperature, T ∗ = 3.0, to ensure an isotropic starting configuration for the SRD

simulations. The SRD solvent particles were inserted in the void of the isotropic

(gas) phase of the lipids minimising the overlap between solvent particles and lipid

monomers. The SRD solvent parameters are given in table 5.1. 2 SRD particle per

unit box, V0 = a3
0, were used giving solvent free density of ρfree

s = 2.0.

Given that the state point, temperature T ∗ and density ρ∗, are favourable, the

lipids will self assemble into a stable bilayer. The important quantity in simulation

of the bilayers is the area across the simulation box perpendicular to one of the

axes, as the bilayer is stabilised with its periodic image along this cross section.

Further, the surface tension of the bilayer should be zero as a biological membrane

when being free of any external constraints adopts a configuration in which it is

tensionless [212]. This could be achieved by altering the area of the bilayer such a

way that the total volume of the simulation box remains constant [205]. Another

possibility would be to use an iterative scheme, i.e. run multiple simulations with

different cross section and choose the one where the area per lipid is such that the

bilayer adopts a stress free configuration. In references [213, 214] this method was

used.

Changing box dimensions is a non-trivial exercise with the current state of SRD

algorithm. In this study the aim was to test if the SRD solvent could be used to drive

the isotropic lipid system to self-assemble into a bilayer rather than to rigorously

study of phase changes between different bilayer phases where a condition of the

bilayer being tensionless is an essential requirement for reliable data. For the system

with a simulation box length of L = 18σs, the system quickly self-assembled into

a bilayer in the yz-plane after approximately 300 000 MD steps. The equilibrium

temperature of the system settled at T ∗ ≈ 2.1. The system was monitored for
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Figure 5.1: Snapshots from simulations of N = 512 lipid molecules, head groups (h)
are coloured green and tails (t) white, in a SRD solvent with solvent free density
ρfree

s = 2.0 with simulation box size L = 18σs. An isotropic starting configuration
(left) where SRD solvent particles are inserted in voids minimising the overlap with
lipid molecules. Self-assembled bilayer (right) where the lipid molecules are organ-
ised as a bilayer with, on average, the hydrophobic tails shielded from the solvent
by hydrophilic head groups.

a further 700 000 MD steps during which the bilayer diffused along x-axis. The

snapshot of the initial configuration and self-assembled bilayer are presented in the

figure 5.1.

5.4 Formation of micelles

The formation and kinetics of micelles in a SRD solvent was studied using a h1t4

surfactant with fairly large, σh = 2σs, head group connected to four tail beads

σt = σs. Consecutive beads, i and j, were bonded to each other through a harmonic

spring potential with an equilibrium bond length r0 = 0.7σij and a force constant

kbond = 5000 ǫ0σ
−2
s . No angle potentials were used. The non-bonded interaction

parameters are summarised in table 5.1 as model B.

Initially N = 676 surfactant molecules were placed into a cubic simulation box

with L = 30σs and run in a NVT ensemble at reduced temperature of T ∗ = 3.0

for 500 000 MD steps to ensure an isotropic starting configuration for the SRD

simulations. 16200 SRD solvent particles were then inserted into the voids between
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Figure 5.2: The average number of monomers in an individual micelle as a function
of molecular dynamics steps obtained from SRD simulations of N = 676 model
h1t4 surfactants. The results are presented for four different systems with different
attraction between the solvent (s) beads and the head groups (h) with well depths
ǫsh = 1.0, 0.75, 0.5 and ǫsh = 0.25.

surfactant molecules, resulting in a solvent free density of ρfree
s = 16200/303 ≈ 0.6

and to (surfactant) bead number density ρ∗ = Nb/V ≈ 0.125. The system was left

to equilibrate and evolve in time, keeping the reduced temperature at T ∗ ≈ 1.03.

For analysing micelle growth and dynamics snapshots were written to disk every

10000 MD steps. Two molecules were deemed to belong to the same micelle if their

terminal tail beads were within a cut-off distance of rcut = 2.5σs.

5.4.1 Isotropic starting configuration

For studying solvation effects on micelle growth four different solvents were consid-

ered with attractive interaction between solvent beads (s) and the the large head

beads (h) with well depths ǫsh = 1.0, 0.75, 0.5 and ǫsh = 0.25. The average

micelle size, i.e. the number of monomers per individual micelle as a function

of MD steps is presented in figure 5.2. Initially the micelles are formed by free

monomers aggregating into micelles. Since the simulated systems are far above the

critical micelle concentrations (ρCMC/ρs ≈ 10−6 [200, 201] for this kind of surfac-

tant models) aggregation occurs very quickly. The average micelle size was cal-

culated averaging over the final 500 000 MD steps of the simulation. It was ob-
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Figure 5.3: Time time evolution of the micelle size distribution from the system with
the well depth for solvent and head group interaction ǫsh = 0.25 calculated at four
different simulation stages: (a) averaged between 1.9-2.0 million steps, (b) 2.9-3.0
million steps, (c) 4.9-5.0 million steps and (d) between 6.9-7.0 million steps.

served to be 〈Nm〉 ≈ 12.13 ± 0.03, 〈Nm〉 ≈ 13.70 ± 0.03, 〈Nm〉 ≈ 15.51 ± 0.04

and 〈Nm〉 ≈ 22.46 ± 0.04 for the systems with ǫsh = 1.0, 0.75, 0.5 and ǫsh = 0.25

respectively.

Interestingly, the system with the smallest well depth, ǫsh = 0.25, between the

solvent and the head group, displays a noticeable jump of the average micelle size

between 3 and 4 million MD steps. This suggest that there also exists a secondary

process by which micelles grow. To study this further a micelle size distribution was

calculated at different points during the simulation for the system with ǫsh = 0.25.

From the figure 5.3 it can be observed how the distribution of number of monomers

per individual micelle changes over the course of simulation despite lack of small

aggregation number aggregates.

These observed changes could happen through multiple pathways; a single monomer

could escape from an existing micelle, it would then quickly aggregate into another

micelle. For micelles close to the equilibrium size, this seems quite unlikely since the

free energy barrier for removing a single surfactant and from an existing micelle is

quite high [200,201]. Recently, Pool and Bolhuis suggested an autocatalytic replica-

tion mechanism for micelle formation [203] in which a micelle grows by adding single

monomers by diffusion. When reaching critical size the micelle becomes unstable
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Figure 5.4: Snapshots from four different stages of the simulation: Top left isotropic
starting configuration. Top right free monomers have aggregated into micelles of
variable size after approximately 2 million MD steps. Bottom left, the two smaller
red coloured micelles have fused together to form a large micelle after approximately
4 million MD steps. Bottom right, the end configuration. One monomer has escaped
from the large red coloured micelle and joined into another micelle.
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and it splits into two daughter micelles. Naturally in order to facilitate detailed bal-

ance a reverse reaction i.e. fusion of two micelle should be possible. The kinetics of

the micelle fusion and fission transition was recently studied [202] for similar models

to those considered here. It was found that the fusion rate is a factor 10 higher than

the fission rate for h1t4 surfactant molecule with head to tail size ratio 1.5:1 where

micelle/s of aggregation number n = 50 were considered. The fusion of two micelles

was also recently reported in united atom simulations of DeTAB surfactants [215].

In figure 5.4 a series of snapshots is presented for the system with ǫsh = 0.25

from different stages of the simulation to highlight one observed micelle growth

mechanism. At top left the isotropic starting configuration is presented with the

solvent beads removed for clarity. The monomers quickly aggregate into variable

sized micelles. On top right a snapshot of the system after approximately 2 million

MD steps is presented. Now the monomers highlighted in red have self-assembled

into two micelles with aggregation numbers of n = 14 and n = 22, respectively.

After approximately 4 million MD steps the two red micelles have fused together to

form a large “supermicelle” with aggregation number of n = 36 (figure 5.4 bottom

left). This can also be observed from the shrinking of the bars corresponding to the

aggregation numbers of n = 14 and n = 22 between the micelle size distribution

calculated at 2.9-3.0 and 4.9-5.0 million MD steps as shown in figure 5.3(b,c) as well

as the appearance of the bar at the aggregation number n = 36 in figure 5.3(c). The

end configuration of the simulation is presented in bottom right of the figure 5.4. It

can be seen that the supermicelle highlighted in red has lost one monomer which has

then aggregated into another micelle. This is also evident from the shifting of the

bar at aggregation number n = 36 to n = 35 between the graphs 5.3(c) and 5.3(d).

This mechanism where two smaller micelles fuse together into a large “supermicelle”

which then decays to smaller more stable micelle by stepwise removal of monomers,

as presented in snapshots in figure 5.4, might be particularly important in adsorption

kinetics of micellar solutions [216].
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Figure 5.5: The average number of monomers in individual micelle as function of
molecular dynamics steps obtained from SRD simulations of N = 676 model h1t4
surfactants. Initially the system was run with well depth between the solvent s
beads and the head groups h as ǫsh = 1.0. After 1.3 million MD steps the well depth
was set to ǫsh = 0.75, 0.5, 0.25. The change in solvent quality is marked with the
vertical line.

5.4.2 Micelle saturated starting configuration

As the starting configuration for the simulations with solvent (s) head group (h)

well depths ǫsh = 0.75, 0.5 and ǫsh = 0.25 a configuration with averaged micelle

size 〈Nm〉 ≈ 11.14 ± 0.06 was used. This configuration was achieved by running

a simulation with ǫsh = 1.0 for 1.3 million MD steps starting from an isotropic

configuration. The time evolution of the average micelle size for these systems

is shown in figure 5.5 where the change in solvent quality after 1.3 million MD

steps is marked by a vertical line. The systems quickly relaxed, giving the average

number of monomers per micelle (averaged over the last 500 000 MD steps) 〈Nm〉 ≈
13.82 ± 0.05, 〈Nm〉 ≈ 15.82 ± 0.05 and 〈Nm〉 ≈ 21.19 ± 0.08 for the systems with

ǫsh = 0.75, 0.5 and ǫsh = 0.25 respectively.

The curve of the average micelle size for the system with ǫsh = 0.25 shows a rapid

rise between 1.3 to 2.0 million MD steps after which, it continues to rise at more

slowly arriving at Nm ≈ 20.0 after approximately 4 million MD steps. To study the

micelle growth process, the size distribution of the micelles was calculated at different

times along the simulation trajectory. This is shown in figure 5.6. Comparing
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Figure 5.6: The time evolution of the micelle size distribution of the system with
ǫsh = 0.25. (a) The starting configuration for the simulations with ǫsh = 0.25 (as
explained in the text) calculated between 1.2-1.3 MD steps, (b) between 1.9-2.0
million MD steps, (c) between 4.9-5.0 million MD steps and (d) between 6.9-7.0
million MD steps.

the starting configuration for the simulation with ǫsh = 0.25, figure 5.6(a), to the

distribution calculated between 1.9-2.0 million MD steps, 5.6(b), it can be seen how

the distribution shifts towards larger micelles including the disappearance of the

bars at aggregation number n = 5, 6, 7 and n = 8 and the appearance of the

large super micelles at aggregation numbers n = 34 and n = 35. At a later stage,

averaged between 4.9-5.0 million MD steps, the distribution shows growth of the bars

at aggregation numbers n = 32 and 34 as well as shrinkage of the bar at aggregation

number n = 10 (figure 5.6(c)). There is also a notable difference between 5.6(c) and

5.6(d) which have been calculated between 6.9-7.0 million MD steps. This suggests

that even when the average micelle size, as show in figure 5.2, stays relative constant

the size distribution itself evolves despite the lack of free monomers.

5.5 Conclusions

A coarse grained (CG) simulation model to study the formation of bilayer and

micelles has been developed by coupling a stochastic rotational dynamics (SRD)
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solvent to a CG surfactant model. The results demonstrated formation of a bilayer

when the density and the temperature were favourable. The formation of micelles

was studied in a variety of different solvent qualities. The results showed, that

the average micelle size was increased when the attraction between the hydrophilic

head beads and solvent was reduced. Experimentally, this would correspond to

adding ions (salt) to the solution leading the ions to screen the electrostatic repulsion

between head beads. The pathways for surfactant aggregation were monitored both

visually and by calculating the micelle size distributions at various points along

the simulation trajectory. These showed how the size distribution evolves despite

the lack of small aggregation number aggregates, suggesting a secondary process in

micellar growth. One such a process, namely a fusion of two micelles, was directly

observed in the simulations.

Due to the low computational cost of the solvent-solvent interaction and at least

partly the lack of solvent structure, combined with correct hydrodynamics, the ap-

proach presented shows promise for future simulation of large scale non-equilibrium

process, such as the merger of two vesicles.



Chapter 6

Statistical-Temperature Molecular

Dynamics simulations of

self-organising fluids

6.1 Introduction

The simulation work presented in chapters 3 and 4 highlighted some of the difficulties

associated with predicting the phase behaviour of self-organising complex liquids.

Typically, the potential energy landscape of a complex system is characterised by

multiple local minima separated by potential energy barriers. For fairly simple

systems at low density and high temperature, conventional MC and MD methods

provide sufficient sampling of phase space. Moving to more complex systems at high

density or low temperature, potential energy barriers can easily prevent conventional

MC or MD simulations accessing all the relevant configurations within reasonable

computational time. This leads to a failure in the correct sampling of the phase

space. A second problem with conventional molecular simulation techniques are,

that thermodynamic quantities such as entropy and free energy are not readily

available.

In addition to the soft-core potentials and SRD presented earlier in this the-

sis, a range of different techniques have been proposed to specifically tackle the

difficulties of sampling phase space in complex systems. A histogram reweighting

114
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technique [217,218] where results of multiple MC simulations could be combined to

increase the total accuracy. Parallel tempering or replica exchange [219, 220] meth-

ods, where large number of replicas, with for example different temperatures, are

considered simultaneously and the replicas are changed among each other. The ther-

modynamic quantities for intermediate temperatures can be calculated by histogram

reweighting [217, 218] (Hamiltonian replica exchange method will be considered in

the next chapter.) These techniques still rely on conventional canonical sampling of

the phase space.

Another class of techniques are flat-histogram or uniform sampling methodolo-

gies, where the system under study is sampled with a non-Boltzmann weight (often

referred as Multicanonical (MUCA) weights or more generally non-Boltzmann sam-

pling (NBS)), such that uniform sampling in respect to a chosen order parameter

is achieved [221]. The main problem here is in choosing these sampling probabil-

ities. The original work on the MUCA method [222] and a follow up on entropic

sampling [223], showed that the distribution yielding flat energy histogram can be

constructed iteratively. Recently published Wang-Landau (WL) sampling method

(also known as density-of-states MC) [224] showed how the density of states estimate

can be dynamically updated during the simulation, leading to uniform sampling of

the energy space. Originally, WL-sampling was tested on a 2D-Ising model [224]. It

has been generalised for continuum systems with continuous potential energy as well

as for isobaric-isothermal (NPT ) and grand canonical (µV T ) ensembles [225, 226],

where the vapour-liquid coexistence of Lennard-Jones system was studied. Later it

was successfully applied to the glass transition in binary Lennard-Jones system [227],

protein folding in vacuo and implicit solvent [228, 229], helical polymers [230] and

complex liquids including the isotropic-nematic phase transition of Gay-Berne meso-

gens by sampling density space at fixed temperature [231].

Despite these success stories, problems still exist for the simulation of continu-

ous and large systems and some non-trivial modifications are needed [232–236]. In

their studies of the isotropic-nematic phase transition of the Lebwohl-Lasher liquid

crystal model, Jaysri et al. [233] discovered a critical slowing down of dynamics with

216 or more spins, non-trivial modifications were needed to overcome this barrier.
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Another obstacle for using WL-sampling for simulation of complex system, where

no effective MC moves are present, is that it is based only upon MC. To overcome

these problems a new methodology, Statistical Temperature Molecular Dynamics

(STMD), was recently proposed [76]. It relies on the connection between the statis-

tical temperature and density of states, 1/kBT = (∂ ln Ω/∂E)N,V , effectively com-

bining multicanonical MD [237, 238] and WL-sampling as will be shown in next

section. STMD has been successfully applied to the Ising model, a Lennard-Jones

liquid, and to biomolecules [76, 239–241].

Next section, 6.2, introduces the theory behind the STMD method. The connec-

tion between WL-sampling and multicanonical MD will be discussed and a practical

simulation approach will be presented. Results for STMD simulations of single-site

system and model diblock copolymer melt will be presented in sections 6.3.1 and

6.3.2, respectively.

6.2 Theory

6.2.1 Statistical Temperature Molecular Dynamics algorithm

6.2.1.1 Wang-Landau sampling

Considering the density of states Ω (N, V,E), for a number of particles N , volume

V and energy E, the microcanonical probability of a state (s) occurring is [37]

Ps =
1

Ω (Ns, Vs, Es)
. (6.1)

Now considering two energy states of discrete energy space, E1 and E2, generated

in a MC simulation, the detailed balance criteria can be written

1

Ω (N, V,E1)
p(E1 → E2) =

1

Ω (N, V,E2)
p(E2 → E1), (6.2)
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where p(E1 → E2) is transition probability from state E1 to state E2. The accep-

tance criteria for the transition can now be written [224]

p(E1 → E2) = min

[
Ω (N, V,E1)

Ω (N, V,E2)
, 1

]
. (6.3)

At the beginning of a random walk the density of states Ω (N, V,E) is unknown. The

idea behind WL-sampling [224] is to represent the density of states as a histogram,

Ω(E). Initially the density of states, Ω(E), for all energies, E, is set to Ω(E) = 1.

Then a random walk is conducted using acceptance criteria of equation (6.3) to

move between states. At each visit to a particular energy E, the density of states

estimate is updated as

Ω(E) = Ω(E) × f, (6.4)

where f is a modification factor with constraint, f > 1, and the energy histogram,

H(E), is accumulated. The random walk is continued, with constant f , until the

energy histogram, H(E), is sufficiently flat. Then the modification factor, f , is

reduced and the energy histogram is set to zero. The simulation can be stopped

when the modification factor f has become sufficiently close to unity. In the original

implementation of the method the choice for the initial modification factor, f0,

reduction function and stopping criteria, ffinal, were f0 = e1 ≈ 2.718, fi+1 =
√
fi

and ffinal = exp(10−8) [224].

Due to the dynamic updates for density of states the detailed balance condition,

equation (6.2), is satisfied only within an accuracy proportional to ln(f). Every time

when the flat energy histogram, H(E), is recovered the density of states estimate,

Ω(E), is converged to its true value within accuracy of ln(f).

6.2.1.2 Generalised ensemble MD

Considering a separable probability distribution for the momentum, p and position,

q, the probability distribution for the reference temperature, kBT0 = 1/β0, takes

the form [242]

P (p,q) = A(p)B(q) ∝ exp[−β0Keff − β0Veff ]. (6.5)
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This leads to an effective Hamiltonian

Heff = Keff + Veff , (6.6)

where the effective kinetic energy, Keff , and the effective potential energy, Veff , can

be given within a constant by

Keff(p) = − 1

β0
lnA(p), Veff(q) = − 1

β0
lnB(q). (6.7)

Barth et al. [242] showed how these generalised distributions can be realised in molec-

ular dynamics simulations using the Nosé-Hoover (and Nosé-Poincaré) formalism.

In the special case where Keff takes the standard form for the canonical distribution,

the only difference to the standard Nosé-Hoover formalism is in the derivation of

the forces from Veff(q) [242]

f̃ = −∇qVeff(q). (6.8)

In the multicanonical ensemble [237, 238] the momenta distribution is the same

as in the canonical, const-NV T , ensemble. The configurational distribution takes

the form [237,238]

PMUCA(U [q]) = e−S(U [q])/kB , (6.9)

where S is the entropy of the state with potential energy U and U [q] is a continuous

potential energy. This leads to an effective potential of

Veff(q) =
1

kBβ0
S(U [q]). (6.10)

Now the forces can be solved

f̃ = −∂Veff(p)

∂q
= − 1

kBβ0

∂S(U [q])

∂q

= − 1

kBβ0

∂S(U)

∂U

∂U [q]

∂q
, (6.11)

where −∂U [q]/∂q is a normal force term which is rescaled by the derivative of the

entropy. Substituting 1/β0 = kBT0 into equation (6.11), the sampling of configu-
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rations according to the weight e−S(U), can now be realised in molecular dynamics

simulation with Nosé-Hoover thermostat by maintaining the kinetic energy at the

reference temperature T0 and scaling the forces with the energy dependant term

µ(U) ≡ T0
∂S(U)

∂U
. (6.12)

6.2.1.3 Dynamic update scheme for the statistical temperature estimate

The idea behind STMD [76] is to combine WL-sampling with multicanonical MD

such a way that the weights, µ(U) = T0
∂S(U)

∂U
, needed to integrate the equations of

motion can be constructed dynamically. For a constant number of particles, N , and

volume, V , the statistical temperature (taking kB = 1) is defined as [37]

β(U) =
1

T (U)
=
∂S(U)

∂U
, (6.13)

with the relation between the entropy, S(U) and density of states, Ω(U)

S(U) = ln [Ω(U)] . (6.14)

Now considering an equally spaced energy grid, Uj = int[U/∆U ]∆U , substituting

equation (6.14) into the WL-update scheme (6.4) one arrives at an update scheme

for the entropy [76]

Sj → Sj + ln f. (6.15)

A dynamic update scheme for the inverse temperature can be realised by approxi-

mating equation (6.13) with the central difference [76]

βj =
1

Tj
≈ (Sj+1 − Sj−1)/2∆U (6.16)

and using the update scheme for the entropy (6.15). Substituting j → j + 1 in to

equation (6.16) and using (6.15)

βj+1 =
Sj+2 − Sj

2∆U
=
Sj+2 − Sj − ln f

2∆U
= βj+1 − δf, (6.17)
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where δf = ln f/2∆U , and similarly for j − 1, a general update scheme for the

inverse temperature is recovered [76]

βj±1 = βj±1 ∓ δf. (6.18)

Writing this in terms of temperature [76]

Tj±1 = αj±1Tj±1, (6.19)

with

αj±1 =
1

1 ∓ δfTj±1

. (6.20)

This operation defines the statistical temperature, T (U), at the discrete grid

points Uj . However, the energy dependent force scaling factor (6.12) requires a

continuous description of T (U). In the original work [76] two different interpolation

schemes between the grid points were discussed: staircase interpolation and linear

interpolation. In the linear temperature estimate the successive grid points are

connected linearly. For potential energy U ∈ [Uj , Uj+1] the temperature estimate

T (U) becomes

T (U) = Tj + λj(U − Uj), (6.21)

where the slope connecting [Uj , Tj] and [Uj+i, Tj+1] is

λj =
(Tj+1 − Tj)

∆U
. (6.22)

Now the multicanonical scaling factor (6.12) combined with dynamic estimate of the

temperature (6.20) yields the statistical temperature molecular dynamics (STMD),

with forces scaled with energy dependent term as [76]

f̃i = µ(U)fi = T0
∂S(U)

∂U
fi =

T0

T (U)
fi, (6.23)

where the fi is the unscaled force on particle i derived from the pair potential as in

usual MD.
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6.2.2 Integrating the entropy estimate and calculation of en-

semble averages

Given the canonical probability distribution function is known, a canonical ensemble

average for observable A can be calculated as a weighted average

〈A(T )〉 =
∑

j

Ω(Uj)e
−Uj/kBT

∑
j Ω(Uj)e−Uj/kBT

A(Uj) =
∑

j

eS(Uj)−Uj/kBT

∑
j e

S(Uj)−Uj/kBT
A(Uj). (6.24)

When the simulation has converged, the temperature estimate with smoothing

(6.21) can be integrated to give a continuum estimate of the entropy S(U). Applying

analytic integration [76]

S(U) =

∫ U

Ul

β(U
′

)dU
′

=

∫ U

Ul

1

Tj + λj (U ′ − Uj)
dU

′

=
i∗∑

j=l+1

ln [1 + λj−1 (Uj − Uj−1) /Tj−1]

Tj−1

+
ln [1 + λi (U − Ui) /Ti]

Ti

,(6.25)

where the limits of summation are defined by which bin i the energy U belongs, as

i∗ = i − 1 for U ∈ [(Ui−1 + Ui)/2, Ui] and i∗ = i for U ∈ [Ui, (Ui+1 + Ui)/2] and

Ul is an arbitrarily defined lower integration limit. Now using equation (6.24) the

average of observable A can be calculated for the desired temperature T .

In practice using equation (6.24) is problematic due to the huge range of S(U)

and U leading to numerical instabilities when trying to calculate exponential terms.

To circumvent this, it has been suggested [239] that these problems can be avoided

by assuming that the distribution function is a gaussian centred about a fixed point

in energy U †, with T = T (U). This is the equivalent of assuming a canonical

sampling with temperature T . Then the averaging can be done with modifying the

exponents by subtracting the maximum value Fmax = S(U †) − βU † [239]

〈A(T )〉 =
∑

j

eF (Uj)−Fmax

∑
j e

F (Uj)−Fmax

A(Uj). (6.26)
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6.2.3 Practical simulation approach

The STMD method can be implemented in an existing molecular dynamics program

via force scaling, equation (6.12), and linear interpolation, equation (6.20). It might

be useful to note, that the potential energy, U , considered is the total potential

energy of the system i.e. it includes all the interactions (non-bonded, bond, an-

gle, etc.), so the scaling should be applied after all the different force components

are added together. Therefore a natural “place” for implementing the scaling is

after all the forces have been calculated and just before the equations of motion

are integrated. The running temperature estimate can be achieved by having a

histogram representing the statistical temperature T (U) estimate and modifying it

with equation (6.20) for bin j corresponding to each visit in the potential energy

int(Uj/∆U)∆U (int taking the nearest integer), at every MD step.

A practical STMD simulation can be summarised as [239]:

• Determine the desired temperature range with upper and lower bounds Th, Tl

and the reference temperature T0, normally it is chosen to be T0 = Th. Choose

the energy bin size ∆U and initial modification factor f0.

• Set the initial temperature estimate T (U) = Th and zero the energy histogram

H(U) = 0.

• Perform the STMD simulation by using the temperature, equation (6.20) and

force scaling, equation (6.12), and accumulate energy histogram H(U).

• During the initial stage of the simulation a low energy flattening can be applied

to the temperature estimate as T (U) = Tmin for U < Umin where Umin is the

lowest visited energy and Tmin = min(T (U)). During the initial stage of the

simulation the energy histogram, H(U), is not accumulated.

• The end points of the temperature range can be enforced by restricting the up-

dates of Tj at range Tg ∈ [Tl, Th] and setting Tj = Tl and Tj = Th beyond lower

and upper temperature limits Tl and Th. This is the equivalent of confining

the WL-sampling into a desired energy range [243].
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• When a flat energy histogram is found, the convergence factor is reduced,

fi+1 =
√
fi, and the energy histogram is set to zero, H(U) = 0. The simulation

is continued from the current temperature estimate T (U). Simulation can be

stopped when the modification δf is sufficiently small, for example 10−8.

• After the simulation the thermodynamic properties can be calculated using

equation (6.26).

The low energy flattening, applied in the initial stage of the simulation is not compul-

sory, but it has been seen to speed up the initial sampling speed. For 110 Lennard-

Jones particles in the fluid region of the phase diagram, a speed up of approximately

2.5 times was found when comparing to system a without low energy flattening [239].

There is no universal way of determining when the energy histogram H(U) is suf-

ficiently flat. In the original STMD formulation [76, 239], it was taken that H(U)

was sufficiently flat when fluctuations were less than 20% from the average value

∣∣∣∣∣
H(U) −H(U)

H(U)

∣∣∣∣∣ < 0.2, (6.27)

where H(U) is the average of the histogram H(U).

6.3 Simulations of phase transitions

6.3.1 Simulation of Isotropic-Nematic phase transition

6.3.1.1 Simulation details

The applicability of the STMD method for first order like phase transition was

studied for a bulk system consisting N = 512 spherocylinders (SCS). The SCS

interaction were modelled with equation (3.1) as the model B in chapter 3, using

parameters U∗
max = 25.0, U∗

attr = 150.0, ǫ1 = 12.0, ǫ2 = 0.0 and with elongation

L/D = 3.0. This parametrisation destabilises T and cross configurations relative

to the side-by-side and end-to-end configurations and it has been seen exhibit a

large nematic region (section 3.4.2 in chapter 3). The simulations were run with a

timestep, ∆t∗ = 0.01, at reduced number density ρ∗ = N/V ∗ ≈ 0.34, in which the
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system in known to have a isotropic-nematic phase transition in the temperature

range T ∈ [3.5, 4.0].

All the simulations were started with initial modification factor, f0 = 1.0005,

but four different energy bin sizes, ∆U = 16, 32, 64, 128, were considered. The

temperature range was chosen from Tl = 2.8 to Th = 4.6 with the reference kinetic

temperature maintained at T0 = Th = 4.6 by applying a Nosé-Hoover thermostat.

A linear temperature estimate (6.21) between the grid points was used.

Initially the temperature estimate was set to T (U) = Th and low energy flat-

tening, T (U) = Tmin for U < Umin, was applied every 105 MD steps, until Tmin

reached Tl. After Tmin had reached Tl the flatness of the energy histogram H(U)

was checked (6.27) every 105 MD steps. When a flat energy histogram was recov-

ered the modification factor was reduced fi+1 =
√
fi and simulation was continued

with the current running estimate of T (U). Simulations were terminated when the

modification factor reached log(f) < 10−8.

6.3.1.2 Results

In figure 6.1, the evolution of the statistical temperature estimate T (U) for the SCS

system studied is presented for the simulation with energy bin size ∆U = 64. It takes

approximately 2.5 million MD steps for the system to reach Tl which is then followed

by a fairly uniform sampling of the temperature range. On the bottom part of figure

6.1, the evolution of the total potential energy U∗ for the system is presented. From

this it can be seen that a large energy range of approximately U∗ ∈ [−500, 3000] was

sampled uniformly during the STMD simulation. Comparing both top and bottom

parts of the figure 6.1, connection between the temperature and the potential energy

can be observed. The low temperature regions (top) correspond to the low energy

regions (bottom) and similarly for high temperature and energy regions, giving a

mapping of (T, U) phase space.

The simulations were considered as being converged when the modification factor

had become sufficiently small, i.e. fd = f − 1 = 10−8 [76]. The converged temper-

ature estimates T (U) for the systems with energy bin sizes ∆U = 16, 32, 64, 128

are presented in figure 6.2. They are indistinguishable apart from a small rugged-
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Figure 6.1: (top) The evolution of the temperature estimate, T (U∗), (bottom) the
evolution of the reduced potential energy U∗ as a function of MD steps for 512
spherocylinders system with energy bin size ∆U = 64.

 3

 3.5

 4

 4.5

-500  0  500  1000 1500 2000 2500 3000 3500

T
(U

)

U

∆U=16
∆U=32
∆U=64

∆U=128

Figure 6.2: Convergent temperature estimate T (U) for 512 SCS systems as a func-
tion of the potential energy U for systems with energy bin size, ∆U = 16, 32, 64, 128.
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ness for the estimate using the smallest energy bin size ∆U = 16. There can be

observed a change in curvature in the energy region U∗ ∈ [1000, 2000] corresponding

to temperatures T ∈ [3.5, 4.0] suggesting a phase transition.

The convergent temperature estimate can be integrated, equation (6.25), to give

an entropy estimate S(U), which can then be used to construct the weights needed

to calculate canonical ensemble averages using equation (6.24) or (6.26). The av-

erage reweighted potential energy Uave(T ) was calculated using equation (6.26).

It can be compared to the statistical temperature estimate through the relation

T (U) ≡ U−1
ave(U). In figure (6.3) the temperature estimate T (U) generated in STMD

simulations with ∆U = 32, inverse reweighted average energy U−1
ave(U) and inverse

average energy from NV T simulations are compared. It can be observed that the

results from STMD simulations agree very well with those from conventional canon-

ical simulations including the end points. The inverse reweighted average energy

U−1
ave(U) shows small deviations at low and high energy ends.

The reweighting (6.26) can be also applied to structural quantities or snapshots

as long as their distribution as a function of energy is known for the desired en-
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ergy range. To generate data points, a production run of 1 million MD steps was

performed for the system with ∆U = 32 using the converged temperature estimate

T (U) with modification factor fd = f − 1 = 10−7. The configurations were written

to disk every 1000 steps.

The evolution of the orientational order parameter, S2, and the potential energy,

U , from the production run is presented in figure 6.4. From this, it can be observed

how the system samples both the isotropic phase with higher potential energy U and

vanishing orientational order, S2 ≈ 0, and the nematic region with lower potential

energy and non-zero orientational order parameter S2 6= 0. It is also apparent

how the system changes continuously between these two regions, leading to uniform

sampling of the potential energy space.

The ensemble average of the orientational order parameter 〈S2(T )〉 was calcu-

lated by reweighting (6.26) from the configurations generated in the production run.

The results for 〈S2(T )〉 and average potential energy Uave(T ) from the STMD simu-

lations are compared to the results from conventional canonical simulation in figure

6.5. There can be seen that a change in curvature of the potential energy curve,

Uave(T ), occurs approximately at the temperature range T ≈ 3.75 . . . 3.6, and on the

same temperature range the orientational order parameter grows from 〈S2〉 ≈ 0.15 to
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〈S2〉 ≈ 0.6 signalling a phase transition from an orientationally disordered isotropic

liquid to a uniaxial nematic phase. Comparing the results from the conventional

canonical simulation, both the reweighted energy Uave(T ) and the orientational or-

der parameter 〈S2(T )〉 are in very good agreement, including the isotropic nematic

phase transition point.

The thermodynamics quantities such as the entropy, S(T ), and free energy, F (T ),

as a function of the temperature, T , are available through the construction of the sta-

tistical temperature, equation (6.13) and reweighting, equation (6.26). Entropy as a

function of potential energy is known from the integration of the statistical tempera-

ture estimate and linear interpolation, equation (6.25). S(T ) can then be calculated

by reweighting. The free energy, F (T ), can be calculated using the reweighted values

for the entropy S(T ) and internal energy U(T ) ≡ Uave(T ) for desired temperatures

T as F (T ) = U(T )−TS(T ) [37]. The heat capacity of the system can be calculated

from the energy fluctuations as [37] CUU(T ) = 〈(δU)2〉
T 2 = 〈U2〉−〈U〉2

T 2 , where reweighted

averages 〈U〉T = Uave(T ) are used.

Entropy S(T ), free energy F (T ) and heat capacity, CUU , are presented in figure

6.6 for the temperature range T ∈ [2.8, 4.6]. The heat capacity can be observed
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to have a peak at T ≈ 3.72 marking the phase transition between isotropic and

nematic phases. The entropy curve shows a change in curvature at the same point,

being consistent with the expectations in a first order-like phase transition for a

finite size system. It must be noted that for infinitely large systems at a first order

phase transition the heat capacity, CUU , would go to infinity and the entropy, S(T ),

would have a discontinuity. These changes are damped through effects of the fairly

small system size (N = 512). Despite the finite size effects the expected behaviour

for entropy, free energy and heat capacity is recovered.

For understanding the effects of the energy bin size, ∆U , for the convergence

times, the evolution of the modification factor, f , was analysed for each of the

systems with the energy bin sizes ∆U = 16, 32, 64, 128. It is useful to note that

the CPU time for each MD step is independent of the choice of ∆U . In figure 6.7, the

logarithm of the modification factor fd (remembering fd = f − 1) is plotted against

MD steps for the systems with bin sizes ∆U = 16, 32, 64, 128. A speed up can be

seen in convergence of approximately 1.7 times and 2.8 times moving from ∆U = 16

to ∆U = 32 and to ∆U = 64 respectively. This behaviour is similar to the findings

for a 110 particle Lennard-Jones system in the liquid region [239]. Interestingly, the

system with the largest energy bin size ∆U = 128 shows initially only a fractionate

speed up compared to ∆U = 64 and then the convergence slows down finishing equal

to the ∆U = 32 system. This result implies that there exists a critical energy bin

size, after which the sampling speed will slow down. This can be partly understood

through the modification of the statistical temperature estimate, equation (6.20),

where the modification factor used is δf = ln(f)/2∆U . The use of a very large bin

size also increases the individuals length of the linear interpolations between grid

points. This can also affect the convergence times. It must be noted that all the

converged temperature estimates, figure (6.2), were very similar, so no obvious effect

of the energy bin size, ∆U , on the accuracy of the temperature estimate, T (U), was

seen.
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6.3.2 Simulation of the isotropic-lamellar phase transition of

model diblock copolymer

6.3.2.1 Simulation details

The isotropic-lamellar phase transition of a model soft-core diblock copolymer sys-

tem of N = 512 polymers was studied using the STMD method. An individual

polymer was constructed by tethering a chain of 5 spheres (sp) onto a spherocylin-

der (SCS) resulting to total number of interaction sites as 3072. The SCS pair

interaction, equation (3.1), was modelled with parameters U∗
max = 100.0, U∗

attr =

1200.0, ǫ1 = 60.0 and ǫ2 = −60.0 and taking the spherocylinder elongation L/D = 4

with D = σ0 = σsp. The SCS-sp and sp-sp interactions where modelled with

purely repulsive potential, setting ǫ∗ = 0 in equation (3.1), and using U∗
max = 100.0.

Harmonic bond and bond angle potentials (equations (3.23) and (3.24)) were used

for intramolecular interactions between consecutive particles with equilibrium bond

length and angle l0/σ = 1 and θ0 = 0.0, with force constants kbond = 50.0/(ǫ0 σ
−2
0 )

and kangle = 2.5/(ǫ0 rad−2) for bonds and angles respectively.

The simulations were run with an initial modification factor f = 1.0005 and

energy bin sizes ∆U = 64, 128, 256 over the temperature range Tl = 2.0 to Th = 3.0

with the reference temperature set to T0 = Th = 3.0. A time step of δt = 0.01 was

used and the system was kept at a reference temperature by using a Nosé-Hoover

thermostat [81]

6.3.2.2 Results

The simulations were run for 240, 223 and 194 million MD steps and flat energy

histogram (using the criteria of equation (6.27)) were found 8, 6 and 7 times for the

systems with ∆U = 64, 128 and ∆U = 256, respectively. In figure 6.8 the gener-

ated statistical temperature (or microcanonical temperature), T (U), and averaged

potential energy as function of temperature, Uave(T ), is presented for all the systems

and compared to conventional NVT simulations. All the system are in very good

agreement with each other and the NVT simulations on both sides of the phase

transition. However, in the phase transition region, T ∈ [2.5, 2.3], the temperature
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potential energy, Uave(T ), (right) compared to normal canonical MD for the three
systems considered ∆U = 64, 128, 256.

estimates and calculated averages differ from each other. Typically, in finite size

systems, the microcanonical temperature would exhibit a back bending behaviour

(Van der Waals loop) at a first order-like phase transition [244–248]. Evidence of

this can be seen from the T (U) curves (left panel in figure 6.8). The curves seem to

show two of, instead of one, back bending regions, suggesting two phase transitions

or two separate processes in the phase transition region. Similarly the heat capacity

(left panel figure 6.9) shows the peak splitting into two peaks. This behaviour was

unexpected. It could be due to poor sampling in the phase transition region. In

this system the free energy barrier between the two phases is relatively high, leading

to the system preferentially sampling one of the two phases and only occasionally

bridging through the phase transition. This is highlighted in the temperature tra-

jectory (right panel in figure 6.9) for the system with ∆U = 64. From this, it can be

seen how the system samples states above and below the approximate phase tran-

sition temperature, T ≈ 2.4, but only bridges through the phase transition region

approximately 17 times during the 240 million MD step simulation run.

To try to enhance the sampling of the phase transition region, two more simu-

lations were performed, for the systems with ∆U = 64 at the temperature windows

of T ∈ [2.3, 2.5] and T ∈ [2.25, 2.45]. The flat energy histogram was found 10 and 7

times within 85 million and 153 million MD steps, for the systems with T ∈ [2.3, 2.5]

and T ∈ [2.25, 2.45], respectively. The T (U) curve for the T ∈ [2.3, 2.5] shows only
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one back bending region, while the system in T ∈ [2.25, 2.45] shows two (left panel

in figure 6.10). The heat capacity (right panel in figure 6.10) tells a similar story,

with the system in T ∈ [2.3, 2.5] showing only one peak at approximately T ≈ 2.407

and the system in T ∈ [2.25, 2.45] showing two clear peaks at temperatures approx-

imately T ≈ 2.390 and T ≈ 2.361. The slight difference between the location of the

first peak between the two systems is not understood.

The two back bending regions in the T (U) are separated by a linear decrease of

the microcanonical temperature. This strongly suggests the presence of two indepen-

dent first order-like phase transitions. This is quite surprising. One could speculate

that the higher temperature (energy) transition could correspond to a phase sepa-

ration of the two components (rods and spheres) and the second lower temperature

transition would correspond to the orientational ordering of the rods in the lamellar

layers. Previous microcanonical studies of melting transitions of Lennard Jones clus-

ters [244,248] and peptide aggregation processes [246] suggests that phase separation

would lead to a back bending behaviour of the temperature. Phase coexistence (for

example formation of nematic clusters in the nematic isotropic phase transition)

within a first order phase transition for finite size systems, would not lead to two

back bending regions but would be a part of the same region in microcanonical tem-

perature [245,247]. These would suggest that if the results presented here are indeed

accurate, it then would have to correspond to the occurrence of two separate first

order-like phase transitions. However, to gain full confidence of this result, further

(and longer) simulations need to be performed.

One intriguing possibility would be to use the very recently proposed replica

exchange statistical temperature Monte Carlo [248], by the original authors of the

STMD method. This reference showed a 4 orders of magnitude increase in bridging

through the phase transition region when benchmarked against conventional replica

exchange Monte Carlo method for the melting of Lennard-Jones cluster of N = 55

particles.
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6.4 Conclusions

The recently developed statistical temperature molecular dynamics (STMD) al-

gorithm [76] has been applied to the simulation of the isotropic-nematic and the

isotropic-lamellar phase transition of two anisotropic bulk systems; a single site

soft-core spherocylinder system and a multi-site rod-coil model diblock copolymer

melt. In both cases, STMD was able to successfully bridge the phase transition and

achieve a uniform sampling of potential energy space for a very large range of ener-

gies: U ∈ [−500, 3000] and U ∈ [4200, 14200] for the single-site system and diblock

copolymer system respectively. Results for the temperature evolution of the poten-

tial energy and the orientational order parameter were compared to conventional

const-NV T MD simulations for the single site spherocylinder system and found to

be in excellent agreement. Moreover, the thermodynamic quantities such as entropy,

free energy and heat capacity were readily available from the STMD simulations.

It should be noted also that STMD can be efficiently implemented in existing

parallel molecular dynamics codes, since the force, f appearing on the right hand

side of equation (6.12) is the total force acting on a particle, including all the contri-

butions from the non-bonded and the bonded interactions. Therefore the “natural”

place to implement the energy dependent scaling is after all the force terms have

been added together and prior of the integration of the equations of motion. In this

work, STMD was implemented within a parallel replicated data MD program but it

possible also for the algorithm to be used within a domain decomposition molecular

dynamics (DD-MD) approach with minor modifications to a typical DD-MD code.



Chapter 7

Hamiltonian replica exchange

simulations of soft-core Gay-Berne

potential

7.1 Introduction

For liquid crystalline systems, a major simulation cost is associated with taking a

simulation through a phase transition to a more ordered phase. Often long sim-

ulations are required to first nucleate the more ordered phase and then to grow

a uniform domain across a simulation box. The time for this grows with system

size and (often) with the complexity of the coarse-grained model used (e.g. several

coarse-grained sites joined together). Consequently, even for simplified potential

models, such as the Gay-Berne, it would be highly desirable if it was possible to

speed up this process.

One simulation method, which has received much attention is replica exchange

[249]. In its conventional form of parallel tempering, several simulations are run

at different temperatures and “replica exchange Monte Carlo moves” take place to

“swap” coordinates between ensembles. The net result (in principle) is improved

configurational sampling at each temperature [250]. However, for liquid crystals,

parallel tempering to bridge across a phase transition is not a sensible option. The

major change in configurational space at the transition means that it is very difficult

136
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to bridge temperatures spanning a phase transition, even if the position of the phase

transition is known a priori.

Another possibility is to use Hamiltonian replica exchange molecular dynamics

(HREMD) [77,78], where the Hamiltonian of the system is varied over the different

replicas instead of the temperature. If replicas are chosen in such a way that the free

energy landscape is simplified, this can allow a faster sampling of the configurational

phase space. Potentially, this can lead to a significant speed up in the equilibration

of the lowest unperturbed replica in comparison to conventional simulation. Origi-

nally HREMD was applied to proteins dissolved in implicit solvents or vacuum [78].

The results showed that a scaled hydrophobicity led to considerably better sampling

efficiency compared to standard replica exchange. It has also been used in simula-

tions of biomolecules in explicit water [251, 252]. Recently HREMD was applied to

studies of GTP and 8-Br-GTP molecules using soft-core interactions [253].

In this chapter, a soft core variant of the Gay-Berne potential developed by Dr

Roberto Berardi and Prof. Claudio Zannoni in university of Bologna, is introduced

and showed that, through the use of Hamiltonian replica exchange, this potential

can be used to speed up the process of equilibration of a liquid crystalline phase. Ad-

ditionally, it is demonstrated that the new soft core potential itself, works effectively

as an alternative coarse-grained potential for the study of liquid crystalline systems.

The development, implementation and pure melt simulations of the soft-core Gay-

Berne potential was carried carried out solely by Prof. Zannoni’s research group

mainly by Dr Roberto Berardi. The thesis author was responsible to the implemen-

tation and simulation of the Hamilton replica exchange method. Vast majority of

this work was carried out while thesis author was visiting the University of Bologna

and Cineca super computer centre for 4 weeks in autumn 2008 as HPC-Europa

fellow.1

1The results of this chapter have been submitted to publication in J. Chem. Phys. as: A
soft–core Gay–Berne model for the simulation of liquid crystals by Hamiltonian replica exchange.
R. Berardi, C. Zannoni, J. S. Lintuvuori and M. R. Wilson.
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7.2 Soft-core Gay-Berne model

The model used in this work in this work is a soft-core variant of the standard

Gay-Berne pair potential (section 2.1.1), developed by the Bologna group2

UGBS = [1 − f(rij,ω)]UGB(rij,ω) + f(rij,ω)USC(rij,ω). (7.1)

In this context, the label soft-core Gay-Berne (GBS) means that the UGBS < 0

portion of the anisotropic energy surface (corresponding to the centre-centre sep-

aration larger than the anisotropic contact distance, σ(ω) (equation 2.4), with

ω ≡ (r̂ij , ûi, ûj)) is given by the GB potential UGB (equation 2.3), while the

UGBS ≥ 0 part is replaced with a soft core with linear repulsion with slope −m for

all the orientations

USC(rij ,ω) = m [rij − σ(ω)], (7.2)

The switching between the Gay-Berne potential and soft core was achieved by em-

ploying a switching function f(rij,ω) of sigmoidal shape

f(rij ,ω) = exp[k (rij − σ(ω))]/(1 + exp[k (rij − σ(ω))]). (7.3)

The parameter k controls the “steepness” at the inflection point located at the

anisotropic contact distance rij = σ(ω). For k < 0 the switching function tends

asymptotically to 0 for increasing values of rij, while for r < σ(ω) it goes to unity.

The forces and torques can evaluated from the derivatives DUGBS = [1−f ]DUGB +

f DUSC + [USC −UGB]Df , where D stands for the gradient ∇r or the angular mo-

mentum Li operators, using standard procedure for anisotropic potentials [139].

In figure 7.1 the mixed soft core Gay-Berne potential is plotted for the Gay-

Berne parametrisation of κ ≡ σe/σs = 3, κ′ ≡ ǫs/ǫe = 5, µ = 1 and ν = 3 i.e.

GB(3,5,1,3) [4] with parameters for the soft core, k = −100.0 and m = −70, for the

strength of the switching and for the slope of the repulsion, respectively.

To obtain this generic picture of the effects of softness on the mesogenic properties

2Dr Roberto Berardi and Prof. Claudio Zannoni. Department of Industrial Chemistry, Univer-
sity of Bologna, Italy.
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of a GB liquid crystal Dr Roberto Berardi performed a preliminary exploration of

the phase diagram of the GB(3,5,1,3) model. He used MD simulations in the NV T

ensemble with a velocity-Verlet integrator [41, 68] and a weak-coupling Berendsen

thermostat [254] to study an N = 1024 sample at dimensionless density ρ∗ ≡
Nσ3

0/V = 0.3 [4]. The time–step was ∆t∗ = (ǫ0/σ
2
0m0)

1/2∆t = 0.001, steepness

k = −70 σ−1
0 and for slope m three different values m = −30 ǫ0σ

−1
0 , −40 and

m = −60 were considered. The results for the orientational order parameter 〈P2〉
are given in figure 7.2. From these it can be seen that the steeper soft-repulsive

energy barrier, m = −60 ǫ0σ
−1
0 , enhances the stability range of ordered phases:

the I-N transition shifts to a higher temperature. The soft-core samples also show

larger values of the average order parameter, 〈P2〉, with respect to the standard

GB over the entire temperature range considered. The weaker repulsive barrier,

m = −30 ǫ0σ
−1
0 , impairs the anisotropy of the GB model: the I-N transition shifts to

a lower temperature, and average 〈P2〉 values are now systematically lower. Finally,

the intermediate barrier, m = −40 ǫ0σ
−1
0 , closely follows the phase diagram of the

standard GB in the smectic and nematic regions, and deviates only in giving a higher

I-N transition temperature.
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Figure 7.2: The orientational order parameter 〈P2〉 for the soft-core GB potential
with logistic function steepness k = −100 σ−1

0 , and soft-core slopes m = −60, −40,
and −30 ǫ0σ

−1
0 . The state points are from MD simulations in the NV T ensemble

for an N = 1024 sample at dimensionless density ρ∗ = 0.3. The reference points
from the NV T simulation of the standard GB(3,5,1,3) model [4] are given by grey
points. Figure and Simulations by Dr Roberto Berardi, University of Bologna.

7.3 Hamiltonian replica exchange

The Hamiltonian replica exchange algorithm [77,78] uses several simulations running

simultaneously over a range of different Hamiltonians, corresponding to potential

energies Un(Xn) of each independent replica. An attempt to exchange configurations

between the different pairs is carried out periodically.

The acceptance probability for the Hamiltonian replica exchange can be realised

(See for example refs. [78] and [251]) by considering two replicas with different

Hamiltonians En(Xn) and Em(Xm) where Xn and Xm represents the configurational

coordinates for the replicas n and m, respectively. The equilibrium probability

(Boltzmann distribution) for the nth replica can be written

Pn =
1

Zn
exp [−βEn(Xn)] , (7.4)

with β ≡ 1/(kBT ). Now considering the transition probability, T (Xn, En;Xm, Em)

that the configuration Xn in the nth replica exchanges with the configuration Xm

in the mth replica, the detailed balance condition can be written

Pn(Xn)Pm(Xm)T (Xn, En;Xm, Em) = Pn(Xm)Pm(Xn)T (Xm, En;Xn, Em). (7.5)
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Substituting (7.4) into (7.5) the ratio of the transition probabilities can be realised

T (Xn, En;Xm, Em)

T (Xm, En;Xn, Em)
= exp(−∆nm), (7.6)

where

∆nm = β {[En(Xm) + Em(Xn)] − [En(Xn) + Em(Xm)]} . (7.7)

This yields a Metropolis-type acceptance criteria for the transition

T (Xn, En;Xm, Em) =





1 if ∆nm ≤ 0,

exp(−∆nm) if ∆nm > 0.
(7.8)

7.4 Simulation results

The molecular dynamics (MD) simulations were performed using a parametrisation

GB(3,5,1,3) for the Gay-Berne potential and k = −100.0 σ−1
0 , m = −70.0 ǫ0 σ

−1
0 for

the GBS potential. The system consisted of N = 1024 particles in a cubic simulation

box at scaled density ρ∗ ≡ Nσ3
0/V = 0.3. The system was simulated in the constant

NV T ensemble using velocity rescaling to keep the temperature constant. The scaled

temperature was chosen to be T ∗ ≡ kBT/ǫ0 = 2.8. The equation of motions were

integrated using the velocity-verlet algorithm with scaled time step of ∆t∗ = 0.001.

For the GB(3,5,1,3) parametrisation at a given state point the Gay-Berne system

is know to be well into the nematic region with an orientational order parameter

〈P2〉 ≈ 0.821±0.004 [4]. For the soft core system a slightly higher orientational order

parameter 〈P2〉 ≈ 0.850± 0.009 was observed, which is in agreement with the phase

diagram results presented earlier. For the Hamiltonian replica exchange simulations

a high temperature isotropic configuration was used as the starting configuration.

Two different systems were considered; one with both GB and soft core replicas

using the same time step ∆t∗ = 0.001 and an other where a timestep of ∆t∗ = 0.01

was used for the soft core replica. An attempt to exchange the configurations was

carried out every 50, 100 and 500 MD steps using the acceptance criteria of equation

(7.8). To obtain an estimate of the average speed-up of the equilibration when using

the HREMD in respect to the standard MD, a total of 10 independent HREMD
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Figure 7.3: The instantaneous order parameter P2 for the Hamiltonian replica ex-
change simulations. Bold line GB replica; dashed line GBS replica; dotted line stan-
dard GB simulation with ∆t∗ = 0.001 (provided for comparison). Plate (a) both
GB and GBS replicas are run with same time–step ∆t∗GBS = ∆t∗GB = 0.001; plate
(b) GBS replica with time–step ∆t∗GBS = 0.01, and GB replica with ∆t∗GB = 0.001;
and plate (c) enlargement of the first 6000 MD time–steps from the system with
∆t∗GBS = 0.01 and ∆t∗GB = 0.001 of plate (b).

simulations were carried out in each case.

The orientational order parameter, P2, as a function of MD steps is presented

in figure 7.3 over the isotropic nematic phase transition, for the HREMD simula-

tions, Gay-Berne replica (bold line), soft core replica (dashed line) and for normal

Gay-Berne system (dotted line), to provide comparison. In the system where both

replicas used the same timestep ∆t∗ = 0.001, figure 7.3(a), a conservative speed

up of approximately 20 % for equilibrating the nematic phase was observed. This

is due to the soft-core potential simplifying the underlying free energy landscape,

allowing the soft-core replica to sample the relevant phase space more quickly than

the normal Gay-Berne potential. This enhances the sampling of the relevant phase

space for the Gay-Berne replica through frequent exchanges of the configurations

between the two replicas.

To check the advantage of using longer time-step in the integration of the equa-
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tions of motion for the soft-core potential, additional replica exchange simulations

were carried out employing a timestep ∆t∗GBS = 0.01 for the soft-core replica while

attempting the exchange of the configurations every Nex = 50 or Nex = 100 MD

time-steps. The HREMD simulation results were compared with those for standard

GB simulations, where the onset of the nematic phase took place on average (con-

sidering ten independent equilibration runs) between 21000 MD time-steps in the

best case and 45000 MD time-steps in worst one. In the two H–REMD simulations

cases a nematic order was achieved within a range of 3600–7600 and 4000–9600 MD

time-steps, leading to speed-up of approximately 2.8–12.5 and 2.2–11.3, for the sys-

tems with Nex = 50 and Nex = 100, respectively. (It must be noted that one of the

HREMD simulation with Nex = 100 failed to attain a stable nematic organisation

within the 10000 MD time–steps window allowed for the experiments.) The average

acceptance probabilities for exchanging the replicas were 〈∆50
GBS−GB〉 ≈ 0.212±0.006

and 〈∆100
GBS−GB〉 ≈ 0.23 ± 0.01.

7.5 Conclusions

The simple soft-core variant of the Gay-Berne potential developed in the university

of Bologna and introduced in this chapter, combined with Hamiltonian replica ex-

change, leads to considerable speeds up in the equilibration of a Gay-Berne system.

This is illustrated by a reduced number of molecular dynamics steps required to

pass through an isotropic-nematic phase transition. It should also be noted, that

the soft-core coarse-grained potential used here can have potential applications in

its own right for the study of liquid crystalline systems e.g. as a potential for the

simulation of very large systems of mesogens (for example in studying the interaction

of a liquid crystal with fields), as a reference nematic solvent (for use with atomistic

potentials), or in a multi-site coarse-grained model for use with liquid crystalline

macromolecules, similarly to the systems considered in the chapters 3 and 4.



Chapter 8

Conclusions

The main aim of the work presented in this thesis, was to develop and apply novel

models and methods to gain improvement in simulation of molecular materials;

with a special emphasis on tackling the time scale problem associated with self-

organisation of complex systems.

In chapter 3, a new anisotropic soft-core model, based on a spherocylinder, with

tunable attractive interactions, was developed. The new model has a number of nice

qualities. The attractive interactions can be tuned to favour different configurations

between the pairs of particles thus allowing different mesophases to be stabilised. It

is, by construction, continuous and goes smoothly to zero, making it usable in molec-

ular dynamics simulations. Moreover, this new model benefits from the possibility

of using a timestep, which is approximately an order of magnitude larger than the

one required for molecular dynamics simulations of conventional anisotropic models

(such as the Gay-Berne potential or the soft repulsive spherocylinder).

Initially, the anisotropic soft-core spherocylinder model, was tested by simu-

lations of two different single site systems, one with particles strongly favouring

side-by-side configuration (model A) and the other with T and cross configurations

de-stabilised with respect to side-by-side and end-to-end configurations (model B),

in the isobaric-isothermal (const-NPT ) ensemble. The results demonstrated a rapid

equilibration, giving an isotropic and a smectic A phase (model A) and an isotropic,

nematic and low temperature smectic phases (model B). The phase behaviour of

model B was studied further by multiple cooling simulations along different isobars.

144
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From these, an increase of nematic stability upon increasing the pressure was ob-

served which is similar to results obtained for Gay-Berne systems with similar well

depth ratios. The results also confirmed, that the soft-core models are not univer-

sally as nice as the Gay-Berne or the Gay-Berne-Kihara models, due to unphysical

particle overlaps at high densities. As a second test case, the new model was used as

the mesogenic part of a coarse grained multipedal liquid crystalline molecule. Bulk

simulations of, N = 125, of these molecules showed spontaneous self-assembly of a

smectic A phase over approximately 30 hours of simulation time on a single pro-

cessor computer. Further, these simulation demonstrated that there exists a strong

coupling between the structure of the phase itself and structure of the individual

molecule; such that the molecules adopt a rod-like shape on the transition to the

ordered mesophase.

Chapter 4 demonstrated two different applications of the new potential model.

In the first case, the new spherocylinder model was used as the mesogenic unit

of a main chain liquid crystalline polymer. This model allowed relatively quick

equilibration and control over the volume occupied by the rigid mesogenic unit by

varying the spherocylinder elongation, L/D. Molecular dynamics simulations were

used to map out an approximate phase diagram in constant occupied volume fraction

as a function of the rod volume fraction. The results obtained, demonstrated a

rich phase behaviour with a large area of lamellar stability for approximately equal

volume fractions for the rods and coils. In going from longer rods to shorter, the

following sequence of phases was observed: nematic-lamellar-gyroid-lamellar with

cylindrical micelles, for very short rods.

Chiral induction was studied in the second part of chapter 4. Here, a mini-

mal computationally efficient model with control over conformational chirality was

developed from three connected anisotropic building blocks, modelled by the new

spherocylinder model. When flexible achiral dopant molecules were used as a so-

lute in a chiral nematic host phase, the results showed a preferential selection of

dopant conformations with a “molecular” twist in the same direction as the host

phase. Moreover, the results demonstrated that the preferential selection of chiral

conformations can lead to an increase in the bulk twist of the host phase. Thus,
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helping to explain the experimental findings of Thisayukta et al. [193] that an achi-

ral dopant can increase the twist of a bulk chiral phase. In addition, evidence of

chiral segregation of domains with left and right handed conformations was observed

in an achiral nematic phase. These results benefitted from the exceptionally good

sampling of chiral conformations provided by the use of the new soft core simulation

model developed in the course of this research project.

A Stochastic Rotational Dynamics (SRD) solvent was coupled with a simple

coarse grained surfactant model in chapter 5. This allowed for a relatively cheap

model for solvent-solvent interactions, while still maintaining the correct hydrody-

namics. Simulation of model surfactants solvated in the “phantom” SRD solvent,

showed a spontaneous self-assembly of a bilayer and spherical micelles. The average

micelle size was studied as a function of the solvent quality, controlled by altering the

attraction between the hydrophilic head beads and the solvent beads. The results

demonstrated an increase in the average number of monomers per micelle when the

the attraction between the head bead and solvent was reduced. The calculations of

micelle size distributions as a function of time, revealed that the size distribution

can evolve over time, despite the lack of small aggregation number aggregates. This

result, suggests that there exists a secondary process for micelle growth in addi-

tion to the addition of a single monomer. One such process, namely merger of two

micelles into a fairly large supermicelle, was directly observed in the simulations.

In chapter 6, a relatively new simulation methodology, Statistical Temperature

Molecular Dynamics (STMD) developed recently by Kim et. al. [76], was intro-

duced. STMD effectively combines the Wang-Landau Monte Carlo method with

Multi-Canonical molecular dynamics, in such a way that the weights needed to in-

tegrate the equations of motions are constructed on the fly. STMD was applied to

the isotropic-nematic phase transition of a single site system and to the isotropic-

lamellar phase transition of a model rod-coil diblock copolymer melt. In both cases,

the STMD simulations were compared to conventional molecular dynamics simu-

lations. The results showed very good agreement. The advantages of the STMD

method are that the convergent simulations show the true phase behaviour of the

system for the simulated temperature range for very high precision, and the thermo-



Chapter 8. Conclusions 147

dynamic quantities, such as the entropy and the free energy, are readily available.

Interestingly, the STMD simulations of the rod-coil diblock copolymer melt, sug-

gested that there exists not one, but two separate first-order like phase transitions.

It could be speculated, that if this is indeed true, the mechanism of the isotropic-

lamellar phase transition could consist of two separate process with the likely can-

didates being, phase separation and orientational ordering of the rods. Further, this

behaviour should be true for many more if not all the rod-coil systems going through

an isotropic-lamellar phase transition. If system of flag poles tethered with chain of

footballs would exhibit isotropic-lamellar phase transition, it should occur the same

way.

Finally in chapter 7, a Hamiltonian Replica Exchange Molecular Dynamics (HREMD)

simulation of soft-core Gay-Berne potential was presented. These results showed up

to an order of magnitude speed up in equilibration of the nematic phase when com-

pared to conventional simulations of the Gay-Berne potential.

Overall, the studies presented here, demonstrate that meaningful results can be

achieved using highly coarse grained models, provided that the problem and model

are formulated sensibly. The work here points towards many interesting suggestions

for future studies.

The new anisotropic soft core potential of chapters 3 and 4 is efficient to simu-

late. Consequently, there are number of interesting soft matter systems which would

be beneficial to study using it. In particular, it may be useful for CG simulations

of biological systems (for example proteins and membranes), where interesting phe-

nomena occur at large time and length scales. It may may also be very useful for

further studies of liquid crystalline polymers and dendrimers, where equilibration of

existing models is very difficult to achieve.

The SRD model used in chapter 5 is also computationally efficient. Further

studies of large systems of amphiphiles would be interesting, in terms of studying

the time scales involved in the formation of self-assembled structures, such as mi-

celles and vesicles. To obtain reliable results for the kinetics, several independent

simulations would need to be performed. There exists also a number of interesting

non-equilibrium phenomena, such as the fusion of two vesicles or pore formation in
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membranes, which are very difficult to study via conventional simulations because

of the time scale issues.

The STMD simulation technique is very new, but the results in chapter 6 suggest

that it may be possible to use this strategy in further CG studies of soft matter

systems. One very interesting possibility would be to test the replica exchange

statistical temperature Monte Carlo [248], developed this year by the original authors

of the STMD method, to self-assembling soft matter systems. Another possible

extension, to what has been presented here, would be to try to combine the STMD

work of chapter 6 with the HREMD strategy of chapter 7. The combination of the

highly efficient simulation model (chapters 3 and 4) and two advanced simulation

methodologies (chapters 6 and 7) could make a major difference to the future of soft

matter modelling; making it possible to study systems and problems which have so

far proved inaccessible to CG simulations.

Lastly, the chirality results presented in chapter 4 are of fundamental interest.

Further studies of chirality transfer in chiral systems would be possible using the

model of chapters 3 and 4. Also, of an interest here are suggestions of chiral segrega-

tion into large scale chiral domains of opposite handedness in nematic phase formed

by achiral bent-core molecules.
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