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Abstract: Following Wooldridge (2014), we discuss and implement in Stata an efficient 
maximum likelihood approach to the estimation of corrected standard errors of two-stage 
optimization models. Specifically, we compare the robustness and efficiency of this estimate 
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ivpoisson, heckman, and ivregress.  

Keywords: Maximum Likelihood Estimation, non-linear models, endogeneity, two-step 
models, standard errors 

 

1. Introduction 

Endogeneity in non-linear models has not been easy to handle given the probabilistic nature of the 

endogenous explanatory variable. Applying two-stage linear methods produce inconsistent results for the 

structural parameters as well as the standard errors. Although the properties and formulation of the correct 

standard errors associated with two-stage optimization models have been available in the literature for 

decades (Murphy and Topel, 1985; Newey and MacFadden, 1994 and White, 1982), outside of already 

packaged commands, practical implementation is not yet standard (Terza, 2016). Despite the efforts of 

many authors to provide strategies and programming codes to facilitate the implementation of standard 

error corrections in Stata (Hardin, 2002; Hole, 2006 and Terza, 2016), the majority of applied researchers 

implement bootstrap methods at best or ignore the problem by reporting the uncorrected errors at worst 

(Terza, 2016).  

In this article, we suggest a different and easier to implement approach to the estimation of 

corrected standard errors of two-stage optimization models, based on Wooldridge (2014), compared to 
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those already applied in other packaged commands within Stata. The method relies on the maximum 

likelihood estimation available in Stata, which is used to estimate a joint function that characterizes the 

data- generating process of the first-stage and second-stage systems, under the assumption of independent 

errors. The main use of this model is to facilitate the estimation of endogenous non-linear models using a 

control function approach such as the ones described in Terza et al. (2008), with corrected standard errors.  

The rest of the paper is organized as follows. In Section 2, we review the framework of quasi-

likelihood function in non-linear models. Section 3 establishes the general framework of the estimation 

based on maximum likelihood functions. Section 4 provides examples of the estimation compared to 

existing methods in Stata and of the control function approach, which is also known as the two-stage 

residual imputation approach (Terza, 2008). 

2. Two-Stage Estimations 
 

Systems in which results from one estimation are used in a second model are common in the applied 

literature. The most prominent examples are the estimation of the two-stage Heckman selection models 

(Heckman, 1979), two-stage least squares (2SLS) for the treatment of endogeneity in linear models, and 

the control function approach for the robust estimation of non-linear models with endogenous variables 

(Terza et al., 2008; Wooldridge, 2014). Although these types of models can be estimated jointly, two-step 

procedures are often easier to be estimated because they require fewer restrictions on the joint distribution 

of the data-generating functions (Greene, 2003).   

 

While easy to implement, the main drawback of two-stage models has been that the standard 

errors obtained from the second stage alone are incorrect, as they ignore the measurement error that 

carries over from using the predictions of one model in the next model. Hardin (2002) and Hole (2006) 

provide guidance for implementing the variance estimator suggested by Murphy and Topel (1985) when 

one includes the predictions of a first-stage model into a second model. More recently, Terza (2016) 

suggests an additional simplification of the estimation of standard errors in two-stage models, with 



emphasis on the application of the two-stage residual inclusion approach and the handling of endogeneity 

in nonlinear models. 

The original model described in Hardin (2002) is characterized as follows: 

 

𝑀𝑜𝑑𝑒𝑙 1: 𝐸(𝑦1|𝑥1, 𝜃1) 

𝑀𝑜𝑑𝑒𝑙 2: 𝐸(𝑦2|𝑥2, 𝜃2, 𝐸(𝑦1|𝑥1, 𝜃1)) 

 

where in Model 1 we are modeling the conditional mean of the endogenous variable 𝑦1 as a function of 

exogenous variables 𝑥1, and model 2 models the conditional mean of the variable 𝑦2 as a function of 

exogenous variables 𝑥2, and some form of the predicted values of the first model. 

According to Hardin (2002), two approaches can be used to estimate the models. The first 

approach is a full information maximum likelihood, where we start by specifying a joint distribution 

𝑓(𝑦1, 𝑦2|𝑥1, 𝑥2, 𝜃1, 𝜃2) which is then maximized jointly. A second approach is the estimation of a limited 

information maximum likelihood (LIML), a two-step procedure. Because the first model only depends on 

the parameter 𝜃1, it can be consistently estimated. The estimated parameters of the first model can be 

directly included in the second model, which can be estimated using a conditional log likelihood function: 

 

max
𝜃2

ℒ2(𝜃2|𝜃1) = ln ∑ 𝑙𝑛 (𝑓 (𝑦2|𝑥2, 𝜃2, 𝑔(𝑥1, 𝜃1))) 

 

In this framework, Hardin (2002) and Hole (2006) indicate that while the raw variance obtained 

from the second stage model is incorrect, it can easily be corrected using the Murphy-Topel approach, 

which states that: 

�̂�(𝜃2) = �̂�∗(𝜃2) + �̂�∗(𝜃2)(�̂��̂�1�̂�′ + �̂��̂�1�̂�′ − �̂��̂�1�̂�′)�̂�∗(𝜃2) 



where �̂�∗(𝜃2) is the incorrect estimation of the variance obtained from the second-stage 

maximization problem, �̂�1 is the correct estimation of the variance of the first-stage estimate. �̂�′ and �̂� are 

the matrices products defined as: 

�̂� = 𝐸 {(
𝜕ℒ2

𝜕𝜃2
) (

𝜕ℒ2

𝜕𝜃1
′ )}  𝑎𝑛𝑑 �̂� = {(

𝜕ℒ2

𝜕𝜃2
′ ) (

𝜕ℒ2

𝜕𝜃1
)}  

 

Which Hardin (2002) indicates can be traced back to represent the sandwich estimate of the 

variance given two maximum likelihood functions ℒ1(𝜃1) and ℒ2(𝜃2|𝜃1). (see Hardin (2002) for details). 

 
3. Quasi-Maximum Likelihood Approach 

 
According to Wooldridge (2014), the model described above can also be estimated using what he 

describes as a quasi-limited information maximum likelihood (QLIML). As described in his paper, for 

cases in which the models are linear (two-stage least squares), and under the assumption that the errors of 

the models distribute as normal and independent, the joint maximum likelihood function can be written 

as: 

ℒ(𝜃1, 𝜃2) =  ℒ1(𝜃1) + ℒ2(𝜃2|𝜃1) 

 

As he indicates, the estimation of this type of model can be done using readily available statistical 

software. Further, inferences can be drawn by reporting the White (1982) type of sandwich variance 

estimations, to account for miss-specified likelihood functions. Furthermore, Wooldridge (2014) indicates 

that the estimation of this joint quasi-maximum likelihood estimation (QMLE) can also be applied to a 

larger set of maximum likelihood models that belong to the linear exponential family, because they 

remain consistent even when the density function is partially miss-specified (Cameron and Trivedi, 2005). 

This suggests that a range of models, such as the models described in Terza et al. (2008) and Wooldridge 

(2015), can also be estimated consistently using quasi-maximum likelihood functions. 

 



Notably, this type of estimation is not foreign to the processes already built into statistical 

software such as Stata. According to the reference manual, the estimation of Probit and Tobit models with 

endogenous variables follows this approach (Newey, 1987). A few examples will be presented regarding 

how the estimation of two-stage models can be performed using QMLE. 

 

3.1. Estimation of QMLE in Stata 

The estimation of models using Stata Maximum likelihood functions is simple, but requires some 

programing and knowledge of the appropriate density functions the researcher assumes determines the 

data generating process of the data in hand. In this section, we provide the general setup of how the 

program can be written using the lf method, which is the simplest method with the Stata ML estimation 

commands.  

 As described in Cameron and Trivedi (2009), the lf method can be used for the especial case 

where the objective function is an m estimator. Namely, the sum or average of some function 𝑞(. ) over 

the sample of observations. As the authors indicate, this method can be applied for any function 𝑞(. ), but 

that robust standard errors need to be reported if the objective function is not Likelihood based. In the 

framework of a two-step program, the corresponding program can be written as follows: 

program myols_ols 
args lnf xb1 s1 xb2 s2 
qui { 
 tempvar lnf1 lnf2 

* OLS ML Component L2  
gen double `lnf2'=ln(normalden($ML_y2,`xb2',exp(`s2'))) 
* OLS ML Component L1  
gen double `lnf1'=ln(normalden($ML_y1,`xb1',exp(`s1'))) 
replace `lnf’=`lnf1'+`lnf2' 

} 
end 

This program can be used for the simultaneous estimation of two linear models under the assumption of 

normal and independent distributed errors. Calling for the estimation of this model is rather simple. It 

requires providing two left hand variables, two sets of explanatory variables. Other options can be used 

for the maximization methods or initial values: 



ml model lf myols_ols (xb1:y1=x1 x2 x3) (s1:) (xb2:y2=x1 x2 x3 x4) (s2:), maximize robust 

Now, in order to allow for the results from the one of the models to enter into the log likelihood of the 

other model, we need to specify an additional parameter to be estimated, which will introduced in the log 

likelihood function. In this example, we will call this link parameter `g’. The program and the 

maximization command then are modified as follows: 

program myols_ols 
args lnf xb1 g s1 xb2 s2 
qui { 
 tempvar lnf1 lnf2 

* OLS ML Component L2  
gen double `lnf2'=ln(normalden($ML_y2,`xb2',exp(`s2'))) 
* OLS ML Component L1, including the prediction of the first model xb2 into the 
second one. 
gen double `lnf1'=ln(normalden($ML_y1,`xb1'+`g'*`xb2',exp(`s1'))) 
replace `lnf’=`lnf1'+`lnf2' 

} 
end 

ml model lf myols_ols (xb1:y1=x1 x2 x3) (g:) (s1:) (xb2:y2=x1 x2 x3 x4) (s2:), maximize robust 

Notice that in this case we are implementing something similar to a two stage least squares, where the 

predictions from the first model `xb2' is used as an additional variable determining the conditional 

mean of the second model. Also notice that for this particular example, the endogenous variable y2, is not 

included in the list of explanatory variables in the main model. If we would be using a residual 

inclusion/Control Function approach, however, the endogenous variable would be included in the list of 

explanatory variables.  

The above code can be easily extended to allow for multiple equations, for example, a model with two 

endogenous variables, by just including an additional link parameter from the first stage to the second 

stage: 

program myols_ols 
args lnf xb1 g1 g2 s1 xb2 s2 xb3 s3 
qui { 
 tempvar lnf1 lnf2 lnf3 

* OLS ML Component L2  
gen double `lnf2'=ln(normalden($ML_y2,`xb2',exp(`s2'))) 
gen double `lnf3'=ln(normalden($ML_y3,`xb3',exp(`s3'))) 
 
* OLS ML Component L1, including the prediction of the first model xb2 into the 
second one. 



gen double `lnf1'=ln(normalden($ML_y1,`xb1'+`g1'*`xb2'+`g2'*`xb3',exp(`s1'))) 
replace `lnf'=`lnf1'+`lnf2'+`lnf3' 

} 
end 

ml model lf myols_ols (xb1:y1=x1 x2) (g1:) (g2:) (s1:) (xb2:y2=x1 x2 x3 x4) (s2:) (xb3:y3=x1 x2 
x3 x4) (s3:), maximize robust 

In the next section, we show a few examples of how this simple set up can be used for the estimation of 

two step estimation procedures, comparing the results with Stata built-in procedures. 

4. Applications  

4.1. Probit and Tobit models with endogenous continuous variables 

According to Terza et al (2008), a consistent estimation of models with endogeneity in the context of 

nonlinear outcome functions uses the two-stage residual approach, also known as the control function 

approach (CF; Wooldridge 2015). Because the underlying models behind the estimation of IV Probit and 

IV Tobit follow a setup similar to the 2SRI approach, we begin by providing the implementation of the 

proposed method in the framework of these two models. In the framework of a continuous endogenous 

variable, the first stage involves the estimation of a linear model, while the second step estimates a probit 

model, using the predicted residuals of the first stage as explanatory variables. 

To estimate this model in Stata, the first step is to write a program that specifies this objective 

function. We will use a simplified program based on the one presented in section 3.1: 

program myivprobit 
args lnf xb1 g xb2 s2 
* xb1 will be the parameters associated with the probit model  
* g will be the parameter associated with the predicted error 
* xb2 and s2 are correspond to the conditional mean and variance of 1st stage OLS 
qui { 
* OLS ML Component L1  
replace `lnf'=ln(normalden($ML_y2,`xb2',exp(`s2'))) 
* probit ML component L2 
replace `lnf'=`lnf'+ln(normal(`xb1'+`g'*($ML_y2-`xb2'))) if $ML_y1==1 
replace `lnf'=`lnf'+ln(1-normal(`xb1'+`g'*($ML_y2-`xb2'))) if $ML_y1==0 
} 
end 

Using this program, we estimate a model equivalent to an IVProbit and compare it to the outcomes from 

the built-in command -ivprobit-. 



use http://www.stata-press.com/data/r14/laborsup, clear 
ivprobit fem_work fem_educ kids (other_inc = male_educ), vce(robust) 
est sto m1 
ivprobit fem_work fem_educ kids (other_inc = male_educ), two  
est sto m2 
* for this particular model, we need to set up an initial value for the variance, to correct for 
the overdispertion of “other_inc”. 
matrix lns2=2.9 
matrix colname lns2=_cons 
matrix coleq lns2=lns2 
ml model lf myivprobit (fem_work:fem_work= other_inc fem_educ kids )  (g:=) (other_inc:other_inc= 
fem_educ kids male_educ ) (lns2:), init(lns2)   maximize robust 
est sto m3 

 

This particular example took 15 iterations to be estimated using the NR optimization method. Below we 

show the outputs of all the models: 

Table 1 IVprobit Results 

  ivprobit-ml ivprobit-two     QMLE 
main       
other_inc -0.05428 -0.05847 -0.05847 
 (0.0062) (0.0093) (0.0092) 
fem_educ 0.21111 0.22744 0.22744 
 (0.0251) (0.0282) (0.0264) 
kids -0.18209 -0.19617 -0.19617 
 (0.0487) (0.0496) (0.0513) 
_cons 0.36721 0.39561 0.39561 
  (0.4410) (0.4983) (0.4896) 
g 

  
0.02405 

   
(0.0097) 

lns2 2.81338   2.81338 
  (0.0327)   (0.0327) 
N 500 500 500 

    Note: Robust Standard errors in parenthesis, except for ivprobit-two steps. 
First Stage results available upon request. 

 

As can be seen, except for differences caused by the maximum likelihood estimation of the OLS 

component (it is, as Wooldridge (2015) describes, consistent but biased), the results of the two-step model 

and the QML point estimates are identical, with small differences in the standard errors.  



A second command that explicitly uses the joint quasi-maximum likelihood function is the 

estimation of the IVTobit. The first stage here also involves the estimation of a linear model, and the 

second uses the residuals of the first as an explanatory variable assuming the outcome variable follows as 

a censored normal distribution. As indicated earlier, we must specify the objective function. We can again 

estimate the model using maximum likelihood and the two-step procedure based on Stata example 

datasets: 

program myivtobit 
args lnf xb1 g s1 xb2 s2 
* Similar to before, we first specify the ML corresponding to the OLS  
qui { 
replace `lnf'=ln(normalden($ML_y2,`xb2',exp(`s2'))) 
* And we add the corresponding contribution coming from the Tobit Maximum Likelihood 
replace `lnf'=`lnf'+ln(normalden($ML_y1,`xb1'+`g'*($ML_y2-`xb2'),exp(`s1'))) if $ML_y1>0 
replace `lnf'=`lnf'+ln(1-normal(( `xb1'+`g'*($ML_y2-`xb2'))/exp(`s1')))      if $ML_y1==0 
} 
end  

 

We can again estimate the model using maximum likelihood and two-step procedure base some 

Stata example datasets: 

webuse laborsup, clear 
* we modify the outcome function just to assume the information is censored at 0 
replace fem_inc=fem_inc-10 
ivtobit fem_inc fem_educ kids (other_inc = male_educ), ll robust 
est sto m1 
ivtobit fem_inc fem_educ kids (other_inc = male_educ), ll  twostep 
est sto m2 
ml model lf myivtobit (fem_inc:fem_inc= other_inc fem_educ kids )  (g:=) (lns1:)  
(other_inc:other_inc= fem_educ kids male_educ ) (lns2:) , init(lns2)  robust maximize 
est sto m3 

 

Table 2 IVtobit estimation 

  ivtobit-ML ivtobit-two QMLE 
main       
other_inc -0.90454 -0.90454 -0.90454 
 (0.1322) (0.1330) (0.1322) 
fem_educ 3.27239 3.27239 3.27239 
 (0.3788) (0.3969) (0.3788) 
kids -3.31236 -3.31236 -3.31236 
 (0.7543) (0.7220) (0.7543) 
_cons 9.24735 9.24735 9.24734 



  (7.5886) (7.3739) (7.5886) 
alpha/g 0.29077 

 
0.02405 

 
-0.1297 

 
(0.0097) 

lns1 2.87403   2.87403 
  (0.0497)   (0.0497) 
N 500 500 500 

Note: Robust Standard errors in parenthesis, except for ivtobit-two steps. First 
Stage results available upon request. 

 

In this case, the program takes longer and requires 36 iterations for its estimation. The number of 

required estimations can be reduced by providing better initial values and alternative maximization 

techniques. Nevertheless, because this model is exactly identified, the point estimates for the IV Tobit 

ML, IV Tobit two-step, and the QMLE are identical, with small differences in the standard errors 

compared to the IV Tobit two-step. 

4.2. Heckman Selection Model 

Another model that is readily available in statistical software such as Stata is the classic Heckman 

selection model. The two-stage procedure suggested for the estimation of this model (Heckman, 1979) 

can also be adjusted and implemented in the framework of the QMLE. The two stage procedure, also 

known as heckit procedure, involves the estimation of a probit model in the first stage. The parameters of 

this first stage are used to estimate a selection term or inverse mills ratio, which are included in the second 

stage with is assumed to be a linear model. 

The program associated with the estimation of this model can then be written as: 

program myheckman 
args lnf xb1 g s1 xb2 
qui { 
*Here the first stage is a Probit Model 
replace `lnf'=ln(normal(`xb2')) if $ML_y2==1 
replace `lnf'=ln(1-normal(`xb2')) if $ML_y2==0 
*And the second is a linear model, which we assume has normal distributed errors. 
replace `lnf'=`lnf'+ln(normalden($ML_y1,`xb1'+`g'*normalden(`xb2')/normal(`xb2'),exp(`s1'))) if 
$ML_y2==1 

} 
end 

 



Once again, we can compare these results with the standard Stata commands: 

webuse womenwk, clear 
gen wseen=wage!=. 
replace wage=0 if wage==. 
heckman wage educ age, select(wseen=married children educ age) 
est sto m1 
heckman wage educ age, select(wseen=married  children educ age) two 
est sto m2 
ml model lf myheckman (wage=educ age) (g:) (s1:) (wseen:wseen=married children educ age), 
maximize technique(bhhh nr) 
est sto m3 

 

This particular model is more difficult to estimate without appropriate initial values. For this, we use a 

combination of two maximization techniques (nr and bhhh) as shown in code above.  

Table 3 Heckman Estimation 

  Heckman-ml Heckman-two QMLE 
main       
education 0.98995 0.98253 0.9832 

 
(0.0534) (0.0539) (0.0544) 

age 0.21313 0.21187 0.21424 

 
(0.0211) (0.0221) (0.0229) 

_cons 0.48578 0.73404 0.6175 
  (1.0991) (1.2483) (1.2871) 
Selection equation       
married 0.44517 0.43086 0.42323 

 
(0.0668) (0.0742) (0.0692) 

children 0.43871 0.44732 0.44254 

 
(0.0273) (0.0287) (0.0279) 

education 0.05573 0.05836 0.05817 

 
(0.0109) (0.0110) (0.0110) 

age 0.03651 0.03472 0.03573 

 
(0.0042) (0.0042) (0.0042) 

_cons -2.49102 -2.46737 -2.48892 
  (0.1884) (0.1926) (0.1904) 
athrho 0.87421     

 
(0.1051) 

  lnsigma 1.79256 
 

1.67716 

 
(0.0288) 

 
(0.0198) 

Mills/g 4.22441 4.00162 4.04450 
Lambda (0.4172) (0.6065) (0.6168) 
N 2000 2000 2000 

 

Note: Robust Standard errors in parenthesis, except for heckman-two steps. 
First Stage results available upon request.  

 



As can be observed, the results of the QMLE are similar, although not identical, to the ones 

obtained using the built-in Heckman commands. Nevertheless, the QMLE standard errors are close to the 

ones obtained from the Heckman two-stage procedures. In this model, the main reason why even the point 

estimates are different from the two-step procedure is that in the two-step procedure, the parameters of the 

first-stage model are estimated by maximizing the objective function of the first model alone, whereas 

similar to the full ML approach, in the QMLE model the parameters of the first model are estimated by 

maximizing the likelihood of the first and second model.  

4.3.  OLS with endogeneity Two-Stage Least Squares 

A model that is more typically used for the treatment of instrumental variables when the outcomes and 

endogenous variables are continuous variables is the 2SLS process. This estimation involves obtaining 

linear predictions for the endogenous variables using all exogenous variables, which then are used instead 

of the original variables in the outcome equation (two-stage predictor substitution-2SPS).  Alternatively, 

one can obtain the predicted residuals of the first stage models, and add them to the main outcome model 

to control for the possible endogeneity. This strategy is also known as a control function approach or two-

stage residual inclusion approach (2SRI) (Terza et al 2008; Wooldridge 2014, 2015). This model can also 

be estimated based on the QMLE approach, using both the standard two-stage prediction substitution 

approach and the two-stage residual inclusion approach (2SRI). As indicated by Wooldridge (2014), 

using the 2SRI approach in an MLE framework is equivalent to using a limited information maximum 

likelihood for IV regress.  

First, let us outline the two alternative models for the estimation of equivalent 2SLS. In this case, 

we assume that both the first and second stage are to be estimated using MLE under the assumption of 

normality, instead of ordinary least squares. 

* This one will assume the classic 2SLS prediction substitution 
program myivreg2sls 
args lnf xb1 g s1 xb2 s2 
* First Stage Model 
qui:replace `lnf'=ln(normalden($ML_y2,`xb2',exp(`s2'))) 
* Second Stage model, with prediction inclusion 



qui:replace `lnf'=`lnf'+ln(normalden($ML_y1,`xb1'+`g'*`xb2',exp(`s1'))) 
end 
 
* This one will use 2SRI approach 
program myivreg2sri 
args lnf xb1 g s1 xb2 s2 
* First Stage Model 
qui:replace `lnf'=ln(normalden($ML_y2,`xb2',exp(`s2'))) 
* Second Stage model, with predicted errors inclusion 
qui:replace `lnf'=`lnf'+ln(normalden($ML_y1,`xb1'+`g'*($ML_y2-`xb2'),exp(`s1'))) 
end 

 

Alternatively, we can also drop the assumption of normality, and specify the objective function in 

the program as if we were estimating the model using Ordinary Least Squares. This simplifies the model 

as the standard error is no longer estimated. However, for appropriate statistical inferences, the model 

needs to be estimated using robust option in the standard errors: 

 
program myivreg2sls_2 
args lnf xb1 g xb2  
* First Stage Model 
qui:replace `lnf'=-($ML_y2-`xb2')^2 
* Second Stage model, with prediction inclusion 
qui:replace `lnf'=`lnf'-($ML_y1-`xb1'-`g'*`xb2')^2 
end 
 
* This one will use 2SRI approach 
program myivreg2sri_2 
args lnf xb1 g   xb2   
* First Stage Model 
qui:replace `lnf'=-($ML_y2-`xb2')^2 
* Second Stage model, with predicted errors inclusion 
qui:replace `lnf'=`lnf'-($ML_y1-`xb1'-`g'*($ML_y2-`xb2'))^2 
end 
 

We will compare the results from the above models to the built-in packages using the example 
dataset from Stata: 

webuse hsng2, clear 
ivregress 2sls rent pcturban (hsngval = faminc i.region ), robust 
est sto m1 
ivregress liml rent pcturban (hsngval = faminc i.region ), robust 
est sto m2 
ivregress gmm rent pcturban (hsngval = faminc i.region ), robust 
est sto m3 

 

Regarding the estimation of the QMLE and QOLS models, it should be noted that for the 2SRI, 

the endogenous variables are directly introduced in the set of explanatory variables; however, that is not 

the case for the standard 2SLS. Empirically, the joint QML is difficult to estimate using the maximum 



likelihood method, and thus we use a two-stage procedure. The first imposes a restriction on the link 

coefficient ‘g’ and then uses those initial values to estimate the full model. 

constraint 1 [g]_cons=0 
ml model lf myivreg2sls (rent:rent =pcturban ) (g:) (s1:) (hsngval:hsngval = pcturban  faminc 
i.region) (s2:), maximize constrain(1)  
matrix b=e(b)   
ml model lf myivreg2sls (rent:rent =pcturban ) (g:) (s1:) (hsngval:hsngval = pcturban  faminc 
i.region) (s2:), maximize   technique(nr bhhh) init(b)   robust 
est sto m4 
ml model lf myivreg2sri (rent:rent =pcturban hsngval)  (g:) (s1:) (hsngval:hsngval = pcturban  
faminc i.region) (s2:), maximize init(b)  technique(nr bhhh) robust 
est sto m5 
ml model lf myivreg2sls_2 (rent:rent =pcturban ) (g:)  (hsngval:hsngval = pcturban  faminc 
i.region) , maximize   technique(nr bhhh) init(b, skip)   robust 
est sto m6 
ml model lf myivreg2sri_2 (rent:rent =pcturban hsngval)  (g:)  (hsngval:hsngval = pcturban  
faminc i.region) , maximize init(b, skip)  technique(nr bhhh) robust 
est sto m7 

 

The results of all estimations are presented in the table below. As indicated by 

Woorldridge(2014), the QMLE-2SRI approach provides results that are identical to the IV regress LIML 

procedure. The QMLE-2SPS, which has a setup similar to the standard 2SLS, provides point estimates 

that are closer to the LIML estimations, with standard errors that are also similar in magnitude (constant 

in equation g).  In addition, using both QOLS approach we obtain the same point estimates as the 

standard 2SLS, with standard errors differing only due to the ML estimation procedure. 

 

Table 4 ivregress Estimations 

 ivregress 2sls ivregress liml ivregress gmm QMLE-2sps QMLE-2sri QOLS-2sps QOLS-2sri 
main        hsngval 0.00224 0.00267 0.00146  0.00267  0.00224 

 (0.0007) (0.0008) (0.0004)  (0.0008)  (0.0007) 
pcturban 0.08152 -0.18274 0.76155 -0.14639 -0.18273 0.08151 0.08151 

 (0.4446) (0.4942) (0.2895) (0.5100) (0.5315) (0.4230) (0.4230) 
_cons 120.7065 117.6087 112.1227 118.0348 117.6088 120.7065 120.7065 

 (15.2555) (18.8799) (10.8023) (17.8511) (18.0421) (15.6815) (15.6813) 
g    0.00261 -0.00219 0.00224 -0.00159 

    (0.0008) (0.0008) (0.0007) (0.0007) 
s1    2.72398 2.66467   
    (0.1156) (0.1280)   N 50 50 50 50 50 50 50 

Note: Robust Standard errors in parenthesis. First Stage results available upon request. The “g” coefficient 
corresponds to the Endogenous variable coefficient for the QMLE-2sps and QOLS-2sps column 



 
 

4.4.  Poisson with continuous endogenous variables 

The last model we use to compare the performance of the QMLE approach is for the estimation of a 

Poisson model continuous endogenous variables, and compare the performance with built-in command 

are rated to the -ivpoisson-. The built-in commands in Stata have various options for the estimation of this 

model, including GMM with additive and multiplicative errors and a control function model using GMM. 

The choice of model comparison is important in the construction of the objective function, particularly 

because the control function estimation option of IV Poisson is only available for the model with 

multiplicative error specification. To appropriately compare the results, we provide estimations of two 

alternative specifications to the Poisson regression, a log linear model, which will be equivalent to a 

multiplicative error model, and a linear exponential model, which will be similar to an additive model.1 

In this framework, we can program the three models using a two-stage control function approach 
as follows 

* Poisson with 2SRI and additive error 
program myivpoisson 
   args lnf  xb1 g xb2 si2 
  * First Stage: OLS using ML 
   qui: replace `lnf'=ln(normalden($ML_y2,`xb2',exp(`si2'))) 
   qui: replace `lnf'=`lnf'-exp(`xb1'+`g'*($ML_y2-`xb2'))+(`xb1'+`g'*($ML_y2-`xb2'))*$ML_y1-
lngamma($ML_y1+1) 
end 
 
* OLS ln(y)=xb+e or y=exp(xb)exp(e) 
program myivregpoisson1 
args lnf xb1 g s1 xb2 s2 
   qui: replace `lnf'=ln(normalden($ML_y2,`xb2',exp(`s2'))) 
   qui: replace `lnf'=`lnf'+ln(normalden(ln($ML_y1),`xb1'+`g'*($ML_y2-`xb2'),exp(`s1'))) 
end 
 
*  OLS y=exp(xb)+ e    Additive error 
program myivregpoisson2 
args lnf xb1 g s1 xb2 s2 
   qui: replace `lnf'=ln(normalden($ML_y2,`xb2',exp(`s2'))) 
   qui: replace `lnf'=`lnf'+ln(normalden($ML_y1,exp(`xb1'+`g'*($ML_y2-`xb2')), exp(`s1'))) 
end 

Again, we implement the estimation of all these models as follows: 

webuse website, clear 
ivpoisson gmm visits ad female (time = phone frfam), add 

                                                           
1 Under this specification, the two models will be y=exp(xb+e), for a multiplicative error model, and y=exp(xb)+e, 
for an additive error model. 



est sto m1 
ivpoisson gmm visits ad female (time = phone frfam), mult 
est sto m2 
ivpoisson cfunction visits ad female (time = phone frfam) 
est sto m3 
ml model lf myivpoisson (visits= ad female time) (g:) (time:time = phone frfam ad female) (s1:),  
technique(nr bhhh) maximize robust 
est sto m4 
ml model lf myivregpoisson1 (visits= ad female time) (g:) (s1:) (time:time = phone frfam ad 
female) (s2:),  technique(nr bhhh) maximize robust 
est sto m5 
** The next model is difficult to maximize unless we provide good starting values 
matrix b=e(b) 
matrix b[1,6]=exp(exp(b[1,6])) 
ml model lf myivregpoisson2 (visits= ad female time) (g:) (s1:) (time:time = phone frfam ad 
female) (s2:),  technique(nr bhhh ) maximize robust init(b) 
est sto m6 

 

In the results provided below, we can see that the GMM and cfunction estimations for the model 

in hand provide very similar results for the estimation of the impact of the endogenous variable. The 

additive model provides the smallest estimated standard error, nearly half as large as the other models. 

The results from the QMLE 2SRI model in this case appear to be quite different than the specification 

obtained using the IV Poisson cfunction. The reason for this difference is that the QMLE is specifying the 

model as if the errors were additive rather than multiplicative. Using a simpler specification (log linear 

model]) shows results that are closer to the IV Poisson cfunction approach, with standard errors that are 

somewhat smaller, whereas the specification used in the additive model provides results similar to the 

2SRI shown in Column 4.  

Table 5 IV poisson estimations 

  ivpoisson gmm ivpoisson gmm ivpoisson gmm QMLE-2sri QMLE QMLE 
  add error mult error Cfunction   lny=xb+e    y=exp(xb)+e    

main                        
time 0.05893 0.06144 0.06836 0.03896 0.06794 0.03498 

 
(0.0108) (0.0181) (0.0182) (0.0173) (0.0169) (0.0172) 

ad 0.13734 0.13929 0.14233 0.14184 0.15729 0.13997 

 
(0.0102) (0.0112) (0.0128) (0.0122) (0.0120) (0.0122) 

female -0.02477 -0.00909 0.00144 -0.04497 0.00401 -0.08436 

 
(0.0376) (0.0443) (0.0437) (0.0399) (0.0405) (0.0368) 

_cons 1.04151 0.99201 0.94221 1.08001 0.82229 1.15203 
  (0.0386) (0.0627) (0.0542) (0.0487) (0.0505) (0.0442) 
c_time/g 

  
0.07968 0.07745 0.0804 0.06032 



_cons 
  

(0.0216) (0.0203) (0.0197) (0.0208) 
lns1 

   
0.80688 -0.87683 0.69126 

_cons     
 

(0.0603) (0.0355) (0.0781) 
N 500 500 500 500 500 500 
Note: Robust Standard errors in parenthesis. First Stage results available upon request. The “g” coefficient 
corresponds c_time coefficient from the Ivpoisson cfunction output. 

 
4.5. Comparing QMLE to Terza (2016) 

In Terza (2016), the authors propose a simplified method to address the correction of standard errors in 

two-stage procedures that could be applied for the appropriate estimation of endogenous models in the 

framework of Terza et al. (2008) and the two-stage residual imputation approach. In this paper and its 

companions, the author outlines the simplified correction of the standard errors when the first and second 

stage of the models are estimated using NLS and MLE estimations. In the previous examples thus far, we 

have presented the estimation of the models under the assumption that both the first and second stage of 

the models are estimated using MLE or both are estimated using OLS. While empirically the QMLE 

cannot be used when the joint ML functions are a combination of MLE and NLS objective functions, if 

the objective functions for both models follow the NLS objective function, the proposed estimation 

method is valid and identical to the correction provided in Terza (2016). For comparison, we will use the 

same data provided with the Terza (2016) ancillary files. 

The model is based on the data from Mullahy (1997). The model estimated in this paper and 

replicated in Terza (2016) can be written as follows: 

Outcome: 𝑦1 = exp(𝛽𝑦𝑦2 + 𝛽𝑥𝑋 + 𝛽𝑢𝑢) + 𝜈 
First Stage: 𝑦2 = exp(𝛾𝑥𝑋 + 𝛾𝑧𝑍) + 𝑢 

where X is a set of exogenous variables, Z is the instrument, and y2 is the endogenous variable. 

This is a direct application of the 2SRI for the treatment of endogenous variables when the outcome 

equation is nonlinear. As indicated in Terza (2016), in the original study the model fit using a GMM 

estimator. Although not discussed, the equivalent specification for a GMM model would be to use a first 

stage that is linear in parameters, instead of the exponential model, for comparison: 



First Stage b: 𝑦2 = 𝛾𝑥𝑋 + 𝛾𝑧𝑍 + 𝑢 

Either model here can be estimated using MLE, assuming the normality of the errors 𝜈, 𝑢. 

Alternatively, we specify the objective function to minimize the sum of the squared errors. This 

specification is valid but requires both standard errors to be reported using the robust option in the 

estimation. For the benchmark model, assuming normality with a nonlinear function in both stages, the 

corresponding objective function can be programmed as follows: 

program my2sri 
args lnf xb1 g s1 xb2 s2 
qui:replace `lnf'=ln(normalden($ML_y2,exp(`xb2'),exp(`s2'))) 
qui:replace `lnf'=`lnf'+ln(normalden($ML_y1,exp(`xb1'+`g'*($ML_y2-exp(`xb2'))),exp(`s1'))) 

end 

If we assume that the first stage of the model is linear, we can compare the results to the GMM 

procedure. The above program can be modified, and thus we obtain: 

program my2srib 
args lnf xb1 g s1 xb2 s2 
qui:replace `lnf'=ln(normalden($ML_y2,(`xb2'),exp(`s2'))) 
qui:replace `lnf'=`lnf'+ln(normalden($ML_y1,exp(`xb1'+`g'*($ML_y2-(`xb2'))),exp(`s1'))) 

end 
 

Finally, if we instead want to estimate both stages of the model using NLS, we can easily modify 

the above programs to do so: 

program my2sric 
 args lnf xb1 g  xb2  
 qui:replace `lnf'=-($ML_y2-exp(`xb2'))^2 
 qui:replace `lnf'=`lnf'-($ML_y1-exp(`xb1'+`g'*($ML_y2-exp(`xb2'))))^2 
end 

 

Note that in this case, the objective function is the negative of the squared residual, such that the 

estimation would be equivalent to an NLS. For the implementation of the model, we estimate the models 

as follows: 

use mullahy-birthweight-data.dta, clear 
generate BIRTHWTLB=BIRTHWT/16 
* Terza(2016) replication are taken directly from the paper. 
* GMM estimation 
gmm (BIRTHWTLB/exp({xb:CIGSPREG PARITY WHITE MALE} + {b0})-1), /// 
   instruments(PARITY WHITE MALE EDFATHER EDMOTHER FAMINCOM CIGTAX88)  
 est sto m2 
* As in previous cases, the model is rather difficult to estimate without good initial values 



* Here we start by estimating a simplyfied model assuming g=0 
constrain 1 [g]_cons=0 
ml model lf my2sri (xb1:BIRTHWTLB=CIGSPREG PARITY WHITE MALE)  (g:)  (s1:)  (xb2:CIGSPREG =PARITY 
WHITE MALE EDFATHER EDMOTHER FAMINCOM CIGTAX88) (s2:) ,  maximize technique(nr bhhh)  robust 
constrain(1)  
matrix b=e(b)  
* Benchmark model. Y1=exp(xb+c1*y2+c2*u)+e y2=exp(zb)+u 
ml model lf my2sri (xb1:BIRTHWTLB=CIGSPREG PARITY WHITE MALE)  (g:)  (s1:)  (xb2:CIGSPREG =PARITY 
WHITE MALE EDFATHER EDMOTHER FAMINCOM CIGTAX88) (s2:) ,  maximize technique(bhhh nr)  init(b) 
robust 
est sto m3  
* alternative model. GMM comparable Y1=exp(xb+c1*y2+c2*u)+e y2= zb+u 
ml model lf my2srib (xb1:BIRTHWTLB=CIGSPREG PARITY WHITE MALE)  (g:)  (s1:)  (xb2:CIGSPREG 
=PARITY WHITE MALE EDFATHER EDMOTHER FAMINCOM CIGTAX88) (s2:) ,  maximize technique(bhhh nr)  
init(b) robust 
est sto m4 
* NLS equivalent model. Both stages are estimated using NLS  
ml model lf my2sric (xb1:BIRTHWTLB=CIGSPREG PARITY WHITE MALE) (g:) (xb2:CIGSPREG =PARITY WHITE 
MALE EDFATHER EDMOTHER FAMINCOM CIGTAX88) ,  maximize technique(bhhh nr)  init(b, skip) robust  
est sto m5 

 
 

The results of the above estimations are shown below. In Columns 1 and 2, we report the corrected 

estimates from Terza (2016) and the GMM estimations from Mullahy (1997). Although these estimates 

are similar to each other, the GMM estimate corresponding to the endogenous variable CIGSPREG is nearly 

50% larger in the 2SRI approach; all other estimates are nearly the same in terms of point estimates and 

standard errors.  

Under the assumption of normality in Column 3, the QMLE results are close to those in Column 1. In 

Column 4, in which we modify the specification of the first stage to a linear model rather than an 

exponential one, we obtain point estimates that are closer to the GMM estimates, with standard errors for 

the endogenous variable that are slightly larger than the GMM estimates indicate. Finally, in Column 5, 

we present the estimates from the NLS estimations. Here, the point estimates are almost identical to 

Terza’s, with standard errors that are equally close, with the differences possibly due to estimating the 

model using the ML estimator rather than the standard OLS estimator. 

Table 6 Mullahy(1997) Model estimations 

  Terza(2016) GMM QMLE QMLE QNLS 
      1st y2=exp(zb)+e 1st y2=(zb)+e   
main                      
CIGSPREG -0.01401 -0.00989 -0.0145 -0.01092 -0.01403 

 
(0.0038) (0.0029) (0.0041) (0.0033) (0.0039) 



PARITY 0.01666 0.01765 0.01678 0.0173 0.01667 

 
(0.0052) (0.0053) (0.0054) (0.0053) (0.0053) 

WHITE 0.05363 0.054 0.05347 0.05486 0.05362 

 
(0.0127) (0.0121) (0.0130) (0.0122) (0.0130) 

MALE 0.02979 0.02708 0.03089 0.0262 0.02985 

 
(0.0095) (0.0092) (0.0098) (0.0092) (0.0097) 

_cons 1.94821 1.93898 1.94851 1.94103 1.94823 
  (0.0166) (0.0159) (0.0168) (0.0156) (0.0167) 
xuhat/g 0.00978   0.0103 0.00657 0.00981 

 
(0.0038) 

 
(0.0041) (0.0034) (0.0039) 

lns1 
  

0.21148 0.21298              
      (0.0315) (0.0315)              
N 1388 1388 1388 1388 1388 
Note: Robust Standard errors in parenthesis. First Stage results available upon request. The “g/xuhat” coefficient 
corresponds to the coefficient of the first stage residuals as in Terza (2016). 

 
5. Summary 

 
In the past decade, a few papers have offered various strategies and codes to correct the 

estimation of standard errors in the framework of two-step models, including Hardin (2002) and 

Hole (2006), and more recently Terza (2016). While these strategies are potentially as simple to 

be implemented as Bootstrap methods are, Bootstrap methods are usually preferred in the 

empirical literature.  

In this paper we provide an alternative strategy for the estimation of two-step models 

using a joint Quasi Likelihood function as described in Wooldridge (2014). While this method 

also requires some level of programming, it can be easily extended to allow for a large set of 

two-step models with minimum changes to the programs shown in text. We compare the results 

obtained with this strategy with the results from built-in commands in Stata, showing its 

reliability. We also show how the model compares to the results provided in Terza (2016). The 

use of this estimation method may facilitate the estimation of non-linear models with 

endogenous variables in the spirit of Terza et al. (2008) and Wooldridge (2014, 2015), including 

multinomial models with continuous endogenous explanatory variables. 
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