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ABSTRACT OF THE THESIS

FINITE DIFFERENCE TIME DOMAIN ANALYSIS OF FRACTAL ANTENNAS

USED IN WIRELESS COMMUNICATIONS

by

Chritz Adenauer Duncan

Florida International University, 2004

Miami, Florida

Professor Tadeusz M. Babij, Major Professor

The advances in wireless technology and the ever-growing demand for multiband

and smaller antennas in wireless communications has led to the field of mathematics

known as fractal. The use of fractal geometry in antenna design has created a significant

amount of interest within the wireless communications societies and most importantly,

antenna design.

This thesis investigates the performance and optimization of fractal antennas used

in wireless communications. The principle analytical tool utilized in the study is the

Finite Difference Time Domain technique (FDTD). This numerical method was applied

to calculate the electromagnetic propagation characteristics of the Sierpinski gasket and

Koch snowflake fractal antennas.

Numerical results were computed for the two fractal antennas and compared to a

conventional antenna. The input impedance, radiation pattern, the return loss and far field

condition of these antennas are computed and analyzed. The Finite Difference Time

Domain (FDTD) simulated results were collected and showed to be in good agreement.
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Chapter 1 Introduction

1.1 Overview

Due to the huge growth of the mobile telephony and wireless communication, the

market is moving towards the integration of as many services as possible. The key to this

process of the integration of many services leads to a consideration of multifrequency

solutions which respect the environment.

The market penetration of the handheld devices throughout the world has allowed

humanity to live in a wireless atmosphere. However, new challenges appear in terms of

minimizing the terminal size, such as the need in which to integrate as many systems as

possible in a single handset [1].

The combination of mobility and wireless technology is transforming the way in

which we communicate, and this is putting new demands on radio-frequency components

such as antennas. The size and performance of antennas are very important to satisfy the

needs of wireless devices and services.

Antennas for the next generation of cell phones and other wireless communication

devices are becoming of great interest to antenna designers. The challenge they face is to

design and provide a smaller and more efficient antenna to meet the requirements of the

more sophisticated technology in new cell phones, mobile communication and other PDA

devices.

These antennas must be very small and they must be able to operate and perform

at different frequency band simultaneously. In this sense, Fractal Antennas are the best

solutions to accomplish this goal. Antennas are basically narrowband devices.
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Their behavior is very much dependent on the antenna size to the operating

wavelength ratio. That is, for a fixed antenna size, the main antenna parameters such as

the gain, input impedance, pattern shape and secondary lobe level and distribution, will

undergo strong variations when changing the operating frequency [1]. In addition, given a

specific frequency, the antenna cannot be made randomly small; it typically has to keep a

minimum size, normally in the order of a quarter wavelength.

There is a trade-off in designing small, effective antennas since small antennas are

in general poor radiators. One main factor that affects the size of the tags is the frequency

that is used.

These known facts have been constraining the antenna performance in

telecommunications systems for decades. The size to wavelength dependence is still a

problem in many systems where former antenna designs are not particularly suitable [1].

In that sense, the fractal-shaped antennas can help in dealing with the problem by

contributing with a vast, rich variety of geometrical shapes with some astounding

properties.

Traditional antenna design needs a single antenna for each application. Using

fractal technology, this constraint is no longer valid. Fractal Antennas appear to be an

attractive way to design multiband and miniature antennas. Antenna Design can benefit

from the study of fractal geometries. When applied to antenna design fractals can

minimize the size of an antenna and also improve on its impedance matching.

In this thesis project, the research is intended to propose fractal antennas structure for

applications in wireless communication.
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The main goal of this research is to study and improve on conventional antennas

by applying the concept of fractals to different antennas and using the Finite Difference

Time Domain technique to simulate and analyze these structures.

Fractal antennas represent a class of radiators where the overall structure is comprised of

a series of repetitions of a single geometry basis, where each geometric repetition is

typically on a different scale [2]. It has been shown that when a fractal antenna is of the

same overall size as a Euclidean antenna, the fractal antenna has a lower resonant

frequency and it exhibits resonance compression of multiband behavior as a function of

frequency [2]. Therefore, fractal antennas can be implemented to operate effectively at

various frequencies, thus providing a wider band.

In carrying out this research, each proposed antenna structure will first be

manually design and the necessary parameters calculated. Each designed structure will be

then implemented on the XFDTD platform and simulated. For each structure, the results

will be calculated and plot, the performance of each structure will then be observed and

compared.

This thesis is based on the properties of fractals when applied to antenna design

such as miniaturizing and developing multi-band and wideband antennas.

The two main fractals that will be considered in this thesis research are: Koch Snowflake

and the Sierpinski Gasket. These fractals geometry exhibit the characteristics and

therefore are investigated and analyzed by using the XFDTD numerical method. The

results are observed and compared to a conventional Bowtie antenna with the same

parameters.
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Chapter 2 Finite Difference Time Domain (FDTD) Method

The Finite Difference Time Domain method is by means a very useful numerical

method of calculating electromagnetic propagation in the time domain. This method is

very useful when applied in solving many electromagnetic related problems. It has

emerged as a very reliable and accurate numerical tool in solving Maxwell's equations in

the time domain and also being a very convenient method for solving radiation,

interaction and scattering problems [3].

2.1 Introduction

The FDTD method was first created by Kane S Yee in 1966 [3]-[4]. He developed

a three dimensional central finite difference algorithm that solves Maxwell's curl

equation in both time and space. FDTD technique is based upon a transient marching in

time approach [3] in which the transient fields are computed as a function of time.

Finite Difference Time Domain is a method that divides time into discrete steps

and in each time step, electric and magnetic fields are calculated on a discrete grid. This

technique is becoming increasingly popular due to it's usefulness in a large variety of

electromagnetic problems, including the modeling and analysis of various antenna

designs.

The Finite Difference Time Domain (XFDTD) software is marketed by

REMCOM, Inc. This software uses the FDTD method for electromagnetic calculations

which is an excellent tool for modeling and simulating various electromagnetic problems
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such as antenna radiation scattering/penetration biological calculations and microwave

circuit calculations [4].

The FDTD Method has been used extensively for more complex structures and

materials than can be accommodated using integral equation approaches. It also provides

the advantage of being a time domain technique thereby allowing broadband analysis in a

single calculation. This is important for impulse or broadband applications where the use

of a frequency domain method would require many calculations to cover the necessary

bandwidth.

2.2 Features and Limitations of XFDTD

When using the FDTD method there are several useful features and capabilities in

which to consider [4].

These features and limitations are:

* Modeling of lossy dielectric and perfect conductor.

* Building, displaying and modifying meshed geometries cell by cell graphically

with mouse control.

* The use of local grids to mesh objects with different cell sizes in the sane FDTD

space.

* Simulations that include dielectric materials with frequency dependant constituent

parameters.

* Merging several meshed geometries with material priority control over

over-lapping regions.
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* Modeling of thin wires with wire radii smaller than FDTD cell dimensions.

* Choice of excitation pulse (gaussian, gaussian derivative, modulated gaussian,

sinusoidal, or user defined).

* Sampling of near zone electric fields and currents.

* Graphical display of near zone fields and currents for each time step over planar

slices of the FDTD space.

* Calculation of antenna impedance.

* Transient far zone field calculations as a function of angle for either a constant phi

or constant theta pattern.

2.3 The limitations of XFDTD are:

* Inability to display electric fields with color-coded positive and negative

polarities.

* Limited number of materials types that call for the redesigning of resistive

antenna geometries.
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2.4 FDTD Equations

The FDTD algorithm was formulated by J.C. Maxwell in 19th century to describe

electric and magnetic fields. The algorithms are derived from 4 previous laws as shown

below:

- Ampere's Law

- Faraday's Law

Gauss's electric field law

-- Gauss's magnetic field law

The XFDTD algorithm provides means to numerically solve Maxwell's equations

in the time domain [5]. This method is based on the two Maxwell curl equations. The

algorithm begins by discretizing Maxwell's curl equations in space and time, thus

resulting in two finite-difference equations. FDTD solves differential form of Maxwell's

interpretation of Ampere's Law and Faraday's Law.

2.5 Maxwell's Equation Faraday's Law:

-- V xE -J, (2.1)
at

(2.2)

J,, =pH (2.3)

VxE=- t pH (2.4)

Where, im is current density, and B is magnetic flux density.
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2.6 Scalar Equation:

H l E, DE1 aE.5
=- ( i ; pH,) .at Y, z ay

3H 1 E BEal v ( ~ a x - _P H ) (2 6)at Iy Y )x az

3H 1 3E FiE
-- ( x -p H ) (2.7)

at pU ay ax

2.7 Maxwell's Equation Ampere's Law:

aDV x H- J(2.8)
Fit

D=eB (2.9)

JC =o (2.10)

VxH=e +E (2.11)
at

2.8 Scalar Equation:

FE, 1 +H , H (2.12)

--- (- + 0E )at ex az ay

(- + X rE,) (2.13)
at , 3x az

---- =-(- + , Ez) (2.14)
at ez Fy Fx

Where pA is the permeability, is the permittivity and o is the conductivity of the isotropic

material.
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2.9 Computer Requirements

It is very important to know that when running the FDTD platform, one should

consider the computer resources available. There are two important parameters along

with the computers storage capacity that is required for an FDTD simulation.

The computer requirements by the XFDTD program can be determined by considering

the following factors. They are: the cell size and the time step.

2.10 FDTD Cell Size

It is very important to know that the first step in the geometry design process is to

define the size of the FDTD cell.

It should be noted that the cell size should be very small for a very accurate result. The

FDTD method requires that the cell size (in x, y, and z directions) should be much less

than the smallest wavelength of interest.

The typical rule is 10 cells per wavelength, that is, each cell side should be 1/10 X

or smaller at the smallest wavelength or highest frequency of interest.

The size of the cells is determined by:

1/10 2. Ax, A y, Az (2.15)

Where is the shortest wavelength been considered.

If the computational problem involves a penetrable material, then the wavelength

in the material should be considered since the material conductivity and permittivity

affect the wavelength [4].
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2.11 The Time Step Size

Once the FDTD space and cell sizes are determined, then the maximum time-step

At can be calculated from the FDTD space grid. The maximum time step At needed for

stability can be found by using the Courant condition [4].

For a 3-D grid the Courant condition is:

Courant equation = vAt 1 (2.16)
S1 1

(x )(2 <)2 ()2

Where:

v is the velocity of the electromagnetic wave in the medium,

At is the time step and Ax, Ay, Az are the dimensions of the cell.

If by any circumstance the FDTD space contains a dielectric material, then At would need

to be lowered proportionally to ensure that the sampling is sufficient.

Therefore, At decreases by the following:

vAt = At(free-space) / Or (2.17)

sr is the relative permittivity of the dielectric material.
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2.12 Specification of the Incident Field

It should be noted that one of the main advantages in using the scattered field

formulation is that the incident field is specified analytically. This can be seen if we

assumed our specified incident field is a Gaussian pulse wave. This wave gives the

smoothest slope in frequency and thus is best to implement.

A plane wave is introduced by specifying the direction that the incident plane

wave is coming from by specifying the angles 6 and 9, where 0 is measured from the z-

axis and p is measured from the x-axis.

One can consider that the incident plane wave is in the time domain and are in a

spherical coordinate system with the FDTD Cartesian coordinate system. Where 0 and p

are the spherical coordinate system unit vectors, c is the speed of light, '1 is the

impedance of free space and r is unit vector pointing from the origin in the FDTD space

in which the incident field is computed.
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2.13 FDTD Problem Space

Once the cell size has been found, the FDTD problem space can be determined by

realizing the number of cells required to design the object plus an appropriate amount of

free space.

The total number of cells in the FDTD space is the product of x, y, and z. In order

to obtain accurate results, a margin of 10 to 20 cells in all directions is required to

separate the geometry from its outer boundary. The total number of cells depends upon

the problem and most computers can accommodate from a few hundred thousand up to

several million cells [4].

If the total space were too small for the problem, then the results would be

inaccurate. A computational space of 100x 1 00x60 cells (cell size = 1 cm) was found to be

insufficient for single antenna simulations and was increased to 10x100x100 cells (cell

size = 1 cm) for accurate results [4].

Also the absorbing boundary condition (ABC) should be taken into consideration.

It is typical to use 10 to 15 cells for the absorbing boundary. These will allow for a more

accurate calculation.
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2.14 Yee Cells

The Yee's FDTD formulation will be illustrated. In this chapter the Yee FDTD

scheme will be restricted to a model with linear, non-dispersive and non-magnetic

dielectric. Various considerations such as numerical dispersion, stability of the model and

terminating the model with absorbing boundary condition (ABC) will be discussed.

The Yee algorithm Solves for both the electric and magnetic fields in time

space. It uses time-dependent scalar equations. Every E component is surrounded by four

H components, and vice-versa, which is useful in boundary situations [5]. The Yee

algorithm is also used in time and frequency solutions solved at same time.

This method came to be known as FDTD in which its original work was for

lossless materials [5]. In using this algorithm in the FDTD platform we define all points

of mesh such as the Dielectric, Magnetic materials and Metal conductors. The B and H

fields are determined everywhere in mesh at every time step. This allows picture of EM

field progression throughout structure solving simultaneous equations and matrix

inversion are avoided entirely in FDTD, thus greatly reduces computation time.
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The Finite Difference Time Domain method is a numerical method defined for

linear isotropic materials. The FDTD problem space is constructed using Yee Cells [5].

The Yee Cell is a 3-dimensional cube in which the permittivity, conductivity and

permeability of the material is bounded by the perimeter of the cube. The direction of the

electric and magnetic fields are defined with the cell as shown with by the position and

direction of the arrows.

The entire problem space is quantized by the unit Yell Cell in the rectangular volume.

The materials can be free space, perfect conductor or a lossy dielectric.

The figure below shows the Yee Cell:

Figure 1 The Yee Cell [5
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The Yee Cell lattice is assumed to be uniformly in space with each cell edge

having length Ax, Ay and Az. The electric and magnetic fields are both in space and time

increments. The six field components are found.

The six finite difference equations are:

E l (J+11/2j,k) =Ai+h12j,kEx"(i+112j,k)
+Bi+112,[H n+112(i+1 /2j+1/2,k)-H n+12(i+1/2j-1/2,k) (2.18)
+Hy"+1/2 k1/2,k H (I+)Hyn+k2()+1 /2j,k+1/2)]

Ey+1(I +1/2,k)=Ai +1/2,kEy"(I j+1/2,k)

+Bi,+12,[Hxl+11 2 (ij+11/2,k+1/2)-Hxn+11 2( j+12,k-1/2) (2.19)
+Hzn+112(-1/1.2,j+ 1/2,k)-Hzn+112(i+ 1/2j+ 1/2,k)]

n+i 1/E (i j,k+112)=HA f j +1 (ij 2,k+1/2)+Bij,k+1/2[Hyn+112(i+1/2,j,k+1/2)-H,,n+112(i-1/2,j,k+1 /2) (2.20)+Hxnp +E12(ij-1/2,k+ 1/2)-Hxn+12(i j+ 1/2,k+12)]

Hxn+1/2(i1j+12,k+1/2)=Hxn-/2(i j+1/2,k+1/2)

+At!( [Ey"(i, j+1/2, k+1) - Ey"(ij+1/2, k) (2.21)
+Ez"(ij,k+1/2)-Ez"(i j+1,k+1 /2)]

Hn+1/2(k+ 1/2)= yn-2(i+1/2j,k+112)
At/py [Ez" (i+1, j, k+1/2) - Ez"(i, j, k+1/2) (2.22)
+Exn(i+1/2,j,k)-Ex"(i+1/2,j,k+1)]

Hzn+1r2(i+1/2 +1/2,k)=Hzn-v(1/2,+/k)

At/ 6 [Ex" (i+1/2, j+1, k) - E, (i+1/2, j, k) (2.23)
+Ey"(i j+1/2,k)-Ey"(i+1,j+1/2,k)
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2.15 Absorbing Boundary Condition

Types of boundary conditions

- Mur's first and second order ABC[6]

Some important considerations about the boundary condition are shown below:

On metal surfaces, tangential electric fields are set equal to zero.

Average dielectric value at boundaries

Simulation lasts forever without boundaries

Boundary shouldn't be near the circuit.

In modeling a structure that is in free space, such as a radiating antenna or a

scattering object, we would want the radiated or scattered fields to propagate into

boundless free space without the aid of an absorbing boundary [6]. The absorbing

boundary condition (ABC) thus, provides and simulates the effect of free space. If the

absorbing boundary condition is not set correctly, then the FDTD formulas will not be

able to use the correct values to update the fields. This will result in the field being

reflected on the boundaries other than propagating outwards.

It should be noted that the boundary condition in the FDTD is a second order

stabilized radiation boundary [6]. There is a minimum free space that should be taken in

account when placing a scattering object with the FDTD space. This minimum free space

between the scattering object and the outer boundary should be 10 to 15 cells or more for

the best results.
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2.16 XDTD Validation Process

The XFDTD platform as stated previously is a numerical method that was developed

by Remcom Inc [4] to compute electromagnetic propagation in the time domain. It is

used in this thesis as the calculation and simulation tool in our fractal antennas design and

simulation.

The FDTD calculation included the simulation project setup, the output data analysis

and the geometry definition. We will use and follow this process as shown below to

design and analyze fractal antennas used in wireless communications.

Shown below is the FDTD process:

At time t = 0, all fields are set equal to zero

The number of time steps n are chosen

Gaussian excitation started at input port

Electric field values calculated from FDTD equations

Magnetic field values calculated from FDTD equations

The tangential E fields are set to zero on all metal conductors in the mesh

The field values are saved in holding matrices

Move forward one time step

After the number of time steps have been completed, compute the scattering matrix

parameters from the time domain results.
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Chapter 3 Fractals

3.1 Introduction to Fractals

"Fractal" is a word founded by Bonoit Mandelbrot in 1975 to describe shapes

which are detailed at all scales [8]. Mandelbrot definition of fractal dimension of a

geometric object was based on the definition given by Hausdrof in 1919. This definition

involves a limit process. It is basically a change in the object size versus the change in

measurement scale, as the measurement scale approaches zero. Logarithms are used for

both size and scale.

The word Fractal is originated from the Latin root "Fractus" which implies

fragmented, broken and discontinues [8]. Fractal can be looked at as a rough or

fragmented geometric shape that can be subdivided in parts, each of which is a reduced

size copy of the whole [8].

From a mathematical view, fractal is a set for which the Hausdroff-Besicovitch

dimension strictly exceeds the topological dimension. This Hausdroff- Besicovitch

dimension is called "Fractional Dimension" [9]; they may also be defined recursively.

Also, a fractal can be classified as an object which is self-similar; they are

repetitive in shape, but not in size. That is, no matter how much you magnify a fractal it

will always look the same or at least similar.
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3.2 What are Fractals?

Fractal geometry is the geometry of the irregular shapes that can be found in

nature and in general fractals are characterized by infinite detail, infinite lengths and the

absence of derivative or smoothness [8]-[9]. They can be used to generate landscapes or

sunset, mountains, ripples on lakes and rough terrains, clouds and coastlines that do not

correspond to simple geometric shapes.

Fractals, short for "fractional dimension," are mathematical models originally

used to measure jagged contours such as coastlines [9]. Like a mountain range whose

profile appears equally rocky when observed from both far and near, fractals are used to

define curves and surfaces, independent of their scale [9]. Any portion of the curve, when

enlarged, appears identical to the whole curve a property known as "self-symmetry."

Most fractal shapes have self-similar shapes, although a few can be found that does not

posses this character. These fractal shaped objects have infinite complexity, that is, the

shaped of the fractal remains no matter how far you zoom-in.

There are many mathematical structures that are fractals; eg. Von Koch snowflake,

Sierpinski gasket, the Mandelbrot set, Cantors comb and the Lorenz attractor, et.

For example Mandelbrot [8] discuss the fractal theory in nature as it relates to the

characteristics of a coastline (Figure 2). It is seen that the length of the coastline depends

greatly on the size of the measuring yardstick/ruler.
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Considering the stretch of coastline, we can see that the length is at least equal to

the distance measured along a straight line between its beginning and its end [9]. On the

other hand, a typical coastline is irregular and winding and there is no uncertainty that it

is much longer than the straight line between its end points. There is a self-similar trait

seen as we observe the coastline at various resolutions.

With a fractal object, like a coastline, the smaller you make your ruler, the longer

the coastline appears. This is because smaller and smaller rulers measure smaller and

smaller jigs and jags in the coastline. Fractal objects have jigs and jags on all scales. They

do not start to look smooth as you magnify them [9].

Figure 2 Coastline [9]
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Another example in which fractal geometries are present in nature can be seen in

a fern, as shown in Figure 3, the entire leaf has the same structure as each branch. It is

seen that if each individual branches were looked at very closely, it is very hard to

imagine that it is a completely separate leaf with branched if it's own.

Figure 3 Fern [9]

With these known properties of fractal structures, we will now focus on fractal

being applied to antenna design. Chapter 4 in this thesis research discusses the

application of fractal theory in antenna design. Antenna Design is becoming a very

import aspect in applying fractal geometry. This is the main reason why this thesis

project was done, to investigate the characteristics and performance of fractals antennas.
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Chapter 4 Fractal Applied to Antenna Design

4.1 Introduction

Fractal geometries and its uses have significantly found its way in many areas of

science and engineering. Fractals have captured the attention, enthusiasm and interest of

many people around the world.

One area in which fractal geometries is of much interest is antenna design. With the

increasing in demands for better antenna designs, fractal geometries have been used in

antenna applications relatively recently.

Fractals, when applied to antennas offers a rich environment in which to explore, create

and build new antenna structures that will lead to the development of more efficient

antennas.

The concept of applying fractals to the development of various antennas allows

for smaller, resonant antennas that are multi-band and broadband and have optimized

gain. With the ability of most fractals to have infinite complexity and the detail can be

used to reduce antenna size and design low profile antennas.

Fractal antennas have drawn the interest in many antennas designer and

researchers and have been studied extensively over the last few years. There have been

many studies and research of different fractal shaped antenna: such as the Sierpinski

gasket, Sierpinski carpet, Koch curve, Koch snowflake, Minkowski patches, Minkowski

island and the Fractal tree antenna to name a few.
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In this thesis study, we will be concentrating on two fractal geometries. The

Sierpinski gasket, Koch snowflake are explored. Some distinguishing features of their use

demonstrated by corresponding antenna characteristics are presented separately.

In this thesis work it is seen that apart from bringing in the necessary mathematical

sequence, the use of these fractal geometries can be exploited in antenna design by

integrating their fractal definition into conventional antenna design formulae.

4.2 Fractal Antenna Design

With the increasing demands for better performing antennas and the advancement

of the communication systems and other wireless applications, wideband and low profile

antennas are of high demand in the communication industry.

A conventional wideband antenna when designed to operate in the low frequency

wireless bands can only be attained with heavily loaded wire antennas, which typically

incorporates different antennas for the desired frequency bands [11].

The concept of fractal theory being applied to antenna design comes down to the

basics of how an antenna works. In order for an antenna to work effectively at all

frequencies it must satisfy two criteria; it must be symmetrical about a point and it must

be self similar, having the same basic shape at every scale, that is, it has to be fractal [11}.

Also, the size of an antenna is a critical parameter, since the behavior of the antenna

depends on its size. That is, the antenna has to have and keep a certain size to operate

effectively. If the antenna size is not the correct one, then the antenna performance will

be greatly reduced [12].
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Fractal technology enables us to design miniature and multiband antennas because

of its self-similar and space filling properties of fractal shapes. This fractal technology

uses the properties of fractal geometries to design effective and advanced antennas.

Fractal antennas have the properties to use a single small antenna to be operated in

several frequency bands, thus eliminating the need for multiple and large antennas.

A fractal antenna is an antenna that uses a fractal design to maximize the length of

material that can receive or transmit electromagnetic signals within a given total surface

area. This result in fractal antennas to be very compact and are anticipated to have useful

applications in cellular telephone and microwave communications.

It is found that the mathematical principles behind the repetition of these

geometrical structures with similar shapes could be applied to a methodology for

developing antenna designs [12].

With this method, we can develop antennas that meet two important challenges

presented by the new generation of wireless devices. They conserve space and can

operate simultaneously at several different frequencies.

Fractal methodology allows you to pack more electrical length into smaller

spaces. It allows the antenna size to be significantly reduced without degrading the

performance [13]. By increasing the electrical length the antenna can resonate at lower

frequencies.

Since fractal designs are self-symmetrical, they are effective in developing

antennas that operate at several different frequencies. One section of the antenna can

resonate at one frequency while another section resonates at another frequency.
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Fractal antenna response differs greatly from conventional antenna designs, in

that it is capable of operating optimally at many different frequencies simultaneously. In

general standard antennas have to be designed for the frequency for which they are to be

used and thus only optimally work at that frequency. This makes the fractal antenna an

excellent design for broadband applications in which an antenna can be designed to

operate at different frequencies.

4.3 Advantages of using Fractals

The space-filling nature of fractal allows a high response fractal antenna to be

fitted into a relatively small space. Also depending on the geometry, antennas can be

multi-band with resonant frequencies reflecting the self-similarities of the fractal or

alternatively can have frequency independent response.

The use fractals in antennas design when compared to conventional antenna designs

center around size and bandwidth. This means that the size of an antenna can be reduced

from two to four times with surprising good performance. Mulitband performance is non-

harmonic frequencies and at higher frequencies the fractal antenna is naturally broadband

[14]. It should also be noted that polarization and phasing of fractal antennas are possible

in attaining.
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4.4 Self-similarity

When parts of a figure contain small copies of the whole, then the figure is said to

be self-similar. If a figure can be broken into parts which are exact copies of the whole,

then the figure is said to be strictly self-similar. This notion of self-similarity is the main

characteristics of many fractals [15].

Self-similar antennas have been known since Mushiake's 1948 work on self-

complementary designs [15]. However, it has only been in the last few years that fractal

antennas have been extended to a more generalized design approach. The self-similar

patterns can be exploited to incorporate one or more useful attributes including:

substantial size shrinkage; broad or multi bands; increased gain; power pattern agility.

Self similarity means that the antennas can operate simultaneously in multiple

bands with similar radio-electric parameters.

4.5 Fractal Dimension

Fractal dimension means that the geometry does not have one, tow or three

dimensions like most of the objects we are used to, but they have incomplete dimensions

that are not integer values. Unlike Euclidean geometries that have integer dimensions,

fractals have fractional dimensions.

Fractal dimension concept has the property that allows us to minimize antennas.

An antenna is said to be small when its larger dimension is less than two times the radius

of the radian sphere in which the antenna is enclosed.

Because of the space filling properties of some fractal structures, fractal

dimension might allow fractal shaped antennas to better take advantage of the small

surrounding space [14]. Since fractals are space filling geometries, then they can
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efficiently incorporate large electrical lengths. The dimension of the geometry can be

looked at as a quantification of the space filling ability of the geometry.

4.6 Fractal Antenna Configuration / Method

In this research two antenna cases have been analyzed and implemented to find

the optimum configuration. These fractal antenna configurations were structured and

tested using the FDTD numerical method, such as the Koch Snowflake and the Sierpinski

gasket.

The main focus in this thesis is to simulate these two fractal structures and

analyze there characteristics as an antenna. The antennas were modeled using FDTD, the

cell dimensions, cell space step and absorbing boundary conditions and other parameters

were found and implemented. Below is a brief description of the two fractal geometries

that are studied in this thesis. They will further be discussed in chapters 6 and 7.
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4.7 The Sierpinski Triangle/Gasket

The Sierpinski gasket is named after the Polish mathematician Waclaw Sierpinski

who described some of the main properties of this fractal geometry. The Sierpinski

triangle has Hausdorff dimension log(3)/log(2) ~ 1.585, which follows from the fact that

it is a union of three copies of itself, each scaled by a factor of 1/2.

The Sierpinski Triangle structure exhibit strict self-similarity feature. This

structure naturally decomposes into three triangular parts, an upper portion and two lower

portions.

Figure 4 Sierpinski Gasket [23]

Each of these parts is an exact copy of the whole original structure. Each of its

three main parts is exactly a scaled version of the original object. Since each and every

part of the Sierpinski Triangle has this property it is this feature why it's said to be

strictly self-similar.

The self-similarity properties of the fractal shape are translated into its

electromagnetic behavior and thus results in creating a multi-band antenna.
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4.8 Koch Curve

The Koch curve figure uses a recursive, scaling and substitution process to

produce its structure. The Koch curve has been used to reduce antenna sizes. Koch curves

exhibit a novel and most interesting combination of complexity and simplicity.

The Koch Curve was found by Helge Von Koch in 1904 [16]. It is built by

starting with an equilateral triangle, removing the inner third of each side, building

another equilateral triangle at the location where the side was removed, and then

repeating the process indefinitely.

Figure 5 Koch Curve [161

The Koch curve has infinite length because each time the steps above are

performed on each line segment of the figure its length increases by one third. The length

at step n will therefore be (4/3)n and the fractal dimension is log4/log3 =~1.26. The Koch

curve is continuous, but not differentiable anywhere.
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Chapter 5 Antennas

5.1 Introduction

An antenna can be described as a metallic device such as a rod or wire for

radiating or receiving radio waves [1]. The antenna is the transitional structure between

free-space and a guiding device. This guiding device is usually a coaxial line or a

waveguide which is used to transport electro-magnetic energy from the transmitting

source to the antenna or from the antenna to the receiver [1]. An electromagnetic wave

consists of changing magnetic field and electric fields and transport through free space.

Conventional antennas are essentially narrowband devices. There are many types

of antennas each having different characteristics. The typical types of common antennas

are the dipole and the loop antennas. These types of antenna typically have a broad

radiation pattern that when positioned vertically will transmit and receive in all

directions. These are referred to as an isotropic antenna.

There behavior and performance is greatly dependent on the antenna size to the

operating wavelength ratio [1]. That is, for a fixed antenna size the main antenna

parameters such as gain, input impedance and pattern shape will go through strong

variations when altering the operating frequency.

In this thesis research, we would be studying the characteristics and performance

of fractal antenna. However, these fractal shaped geometries where created using a

conventional Bowtie antenna. The since a fractal shaped antenna need to be created from

a initiator, then using the bowtie antenna and applying the fractal methodology to it

results in us creating two fractal shaped antennas. The resulting fractal shaped antennas

are: Koch Dipole and Sierpinksi Triangle.
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5.2 Introduction Bowtie Dipole Antenna

In this thesis research we will be conducting an investigation on fractal antenna

characteristics. This research will take part in three stages. First we will consider a

Bowtie Antenna and then we would apply fractal theory to this antenna in designing a

Koch fractal and a Sierpinski Fractal.

The reason why the bowtie was considered was because of it similarities of the

geometries. The two fractal structures that are considered in this thesis have bowtie

geometry. It should be noted that the initiator geometry of the Koch and Sierpinski fractal

structure is a bowtie structure.

A dipole antenna consists of two lengths of straight wire fed at its center and

looks as an open circuit. The dipole is typically referred to as an antenna whose overall

length is one-half wavelength.

The Bowtie dipole antenna is created by taking two equilateral triangles and

feeding at its center as shown in Figure 6.

Figure 6 Bowtie Dipole Antenna

The dimension of the Bowtie is 72mm for each side of the triangle.
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The length of the bowtie is 123mm. A 1mm feed-point was placed at the center of

the two triangles thus forming the bowtie antenna. The geometry dimension is shown in

figure 7.

5.3 XFDTD Analysis of Bowtie Dipole Antenna

In carrying out this thesis research, we first developed and implement a Bowtie

Dipole antenna. Since in this thesis we would be investigating the characteristics of the

Koch Snowflake and the Sierpinski Gasket dipole antenna and then compare the results

with that of a convention dipole antenna we would need to do a XFDTD numerical

analysis of a dipole antenna.

The Bowtie dipole antenna was used in the analysis since it is the same size and

geometry as the initiator geometry of the fractal antennas under study. The structure was

implemented on the FDTD platform and the simulation was carried out.

The structure was implemented and design using the following parameters as

discussed in section 5.4 of this chapter.
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5.4 Geometry of Bowtie Dipole Antenna

The Bowtie dipole antenna geometry was created using two equilateral triangles.

This was implemented in the XFDTD platform. The dimension of each side of the

triangle is 72mm. The two triangles are fed at the center using a Modulated Gaussian

source with pulse width of 768 and input impedance of 500. The Antenna was simulated

at amplitude of 1 volts and the computation was run for 4500 time step. The antenna was

mounted on a FR-4 substrate with a relative dielectric constant Er =4.7. The thickness of

the substrate is 0.012. The antenna was modeled using the FDTD model. The 3

dimensional FDTD space was determined. The FDTD computational space has

200x180x20 cells, AX = 0.05mm, AY = 0.05mm and AZ =0.047mm.

123mm

72mm

1mm

Figure 7 Geometry of Bowtie Dipole Antenna
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5-5 Results of Y.FDTD Simulation
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5.6 XFDTD Stimulus Waveform
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5.7 XFDTD Run Parameters

Figure 10X Rn armeer

used i the T simulation. The M Mdulaed Gaussa was use inti iuain

~30
2000 4000 1g 0Figure 10 XFDTD Run Parameters

Figure 10 shows the FDTD run parameters. This is the setup of the source parameters

used in the FDTD simulation. The Modulated Gaussian was used in this simulation.
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5.8 XFDTD Space
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Figure 11 Bowtie Dipole Antenna in XFDTD space
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5.9 XFDTD Input Voltage vs Frequency

Figure 12 Input Voltage vs Frequency for Bowtie
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5.10 XFDTD S11 Parameters

Figure 13 S11, Parameter for Bowtie Antenna

The S 1 simulated results shows that the Bowtie antenna has a resonant frequency of

about 1.23 Gz.
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5.11 Return Loss for Bowtie

Retur Loss for Bowtie
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Figure 14 Return loss of Bowtie Dipole

The return loss for bowtie antenna simulated using Matlab. The result corresponds

to the simulated results obtained from the FDTD simulation. The input impedance

bandwidth obtained from the numerical calculation has an operational bandwidth ranges

from about 1.23 GHz to 4.3 GHz. At resonant frequency of 1.23 GHz it is found that

Bowtie is to be -19 dB
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5.12 XFDTD Input Impedance vs Frequency Bowtie Dipole

i

Figure 15 Input Impedance for Bowtie Dipole

The figure above shows the Imaginary and Real part of the Input Impedance of the

Bowtie antenna:. The results were obtained from the DTD simulation.
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Figure 16 below shows the Imaginary and Real part of the Input Impedance of the Bowtie

antenna.

Real and Imnaginary parts for Bowte
400 - -- T- -- - -~

1- Real
-' 2- Imaginary

300 -__ -

20 0 -

E
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Frequency (GHz)

Figure 16 Real and Imaginary Input Impedance for Bowtie Dipole
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5.13 FDTD Gain vs Theta plot

Figure 17 FDTD Simnulated Gain of Bowtie Antenna

The above figure shows the Gain vs Angle XFDTD simnulation.
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5.14 FDTD CP Gain vs Theta Plot
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Figure 18 FDTD Simulated Constant Phi Gain

The figure above shows the Gain vs Angle XFDTD simulation at Constant Phi.
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5.15 Simulated Radiation Pattern of Bowtie Dipole
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Figure 19 Simulated Radiation Pattern of Bowtie Dipole at resonant frequency.
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Chapter 6 FDTD Analysis of Koch Snowflake Fractal Antenna

6.1 Introduction

In this thesis research, the proposed fractal geometries that are studied are the

Koch Snowflake and the Sierpinski Gasket. These structures are implemented to study

the properties of fractal theory when applied to antenna design. The main purpose of this

research is to show that when fractal theory is applied to antenna design, these fractal

antennas can exhibit properties of miniaturizing an antenna and also having broadband

and multiband properties.

The fractal structure that enables an antenna to be reduced in size possesses

wideband properties and thus maintaining it performance is the Koch Snowflake. The

Sierpinski Gasket geometry when applied to an antenna structure give rises to multiband

and wideband properties.

Therefore, because of these significant properties when applied to antenna design

it has drawn a lot of attention in designing smaller and multiband antenna and thus, drew

my interest in researching these fractal antennas structures.

As mention in Chapter 2, the XFDTD numerical platform will be used to study

these structures. The results will be compared to conventional antenna with the same

design parameters.
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6.2 Koch Fractal Antenna

With the increasing demands for developing smaller antennas to meet the

advancing in wireless communication devices, leads to the use of fractal geometries in

antenna design. As stated in chapter 4, fractal theory when applied to antenna design can

reduce the size of an antenna and having wideband properties while retaining its

performance. The fractal geometry that allows us to apply the fractal theorem in reducing

the size and having wideband properties of an antenna is the Koch Fractals.

Figure19 below shows the development of the Koch Curve.

Koch 0

Koch 1

Koch 2

Koch 3

Koch 4

Figure 21 Construction of Koch Curve [9]

The Koch curve consists of four one third sized copies of itself. If we let Koch 0

to be a line segment of unit length. The set Koch 1 consists of four segments obtain by

removing the middle third of Koch 0 and replacing it by the other two of the equilateral
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triangle based on the removed segment. Koch 2 is designed by applying the same

procedure to each of the segments in Koch I and so on. This procedure is applied

repeatedly to the remaining lines. Each fourth of the structure is a rescaled copy of the

entire structure.

6.3 Koch Snowflake

The Koch snowflake fractal starts out with a solid equilateral triangle in the plane.

The Koch snowflake is constructed by adding smaller and smaller triangles to the

structure in an iterative manner. The geometry is developed by replacing each of the sides

of an equilateral triangle by a Koch curve. The three Koch curves are joined together to

form the Koch snowflake structure. The Koch snowflake has been primarily used to

develop new designs for miniaturizing antennas.

This Koch snowflake structure has been studied in [16] and it was shown that at

fundamental mode the Koch snowflake fractal antenna has a resonant frequency that is

lower than that of its conventional Euclidean shaped antennas. The resonant frequency

and the quality factor are of interest in the study of the behavior of the Koch snowflake

antenna. The behavior of the quality factor Q with each Koch snowflake fractal iterations,

are observed in [18].
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The quality factor Q, as related to 1/BW, for UWB antennas is given by McLean

[18] as:

(6.1)

Where the wavelength in k=21 is the geometric mean of the wavelengths at the band

edges.

In this thesis, the properties and characteristics of the Koch snowflake fractal is studied

and compared to a Bowtie dipole antenna.

6.4 Geometry of Koch Snowflake Antenna

As stated above the Koch Snowflake fractal is designed and analyzed using the

Finite Difference Time Domain (FDTD) method. The first four iterations are analyzed

numerically to in order to study the antenna input impedance, bandwidth, return loss and

the radiation patterns.

The geometry of the Koch Snowflake fractal is based of the conventional Bowtie

dipole antenna structure. The Bowtie dipole antenna as described in Chapter 5 is made up

of two equal triangle patches with sides of length 0.225X, which is mounted of the FR-4

substrate with a relative dielectric constant cr =4.7. The thickness of the substrate is

0.01k.

The antenna was modeled using the FDTD model. The 3 dimensional FDTD

space was determined. The FDTD computational space has 200x1 80x20 cells,

AX = 0.05mm, AY = 0.05mm and AZ =0.047mm.
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The geometry of the Koch snowflake fractal antenna is developed by taking the

equilateral triangle patches the make up the Bowtie antenna and then scaled down the

equilateral triangle patches by a factor of 1/3, and then adding the resulting triangle the to

each side of the original patch triangle.

This procedure of reduction by a factor of 1/3 is then applied to the first iteration

and thus, the second iteration of the patch is then scaled down by a factor of 1/9 and the

added to the sides of the previous triangles that were formed.

For the iteration procedure the following equations defines the scaling factor s of

the triangles used and also the equation of the straight line segments L produced for each

iteration.

1S = +1 for n = 0,1,2,.......... (6.2)

L = 3.4" for n =0,1,2,......... (6.3)

Since the Koch Snowflake fractal is formed by using the iteration procedure, it

should be noted that at different iterations stages the area of the Koch fractal will differ.

That is, the area of the structure increases when you perform different iteration stages.

The equation below best describes how the area of the next iteration is computed.
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The area formed at the nth iteration for each of the patches is calculated by using

the following equation:

Ann =An + - -a (6.4)
12 9

Where a, as shown in Figure 22 is the length of one side of the original triangle.

Also, it is shown that the area of the original triangle is given by:

AO -- a (6.5)
4

With increasing iteration, it is seen that the geometric area converges to

A=2 -a2 (6.6)
5

Where all the iterations are circumscribed inside a circle of radius r given by:

r = 3a /3 (6.7)

Another property in that shows significant changes is the perimeter of the Koch

Snowflake fractal geometry. It is shown by the equation below that the perimeter of the

fractal increases at each iteration stages. The total perimeter for iteration n is given as

follow:

i = 3a -- 6.8)
53
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It is seen that from the geometry of the Koch Snowflake fractal, this geometry

possesses self-similarity attributes. With this known fact, the Koch geometry has a self-

similarity dimension D which is shown by the equation below:

D-log(n)(69D = 
(6.9)

log -
S

Where n is the number of copies of the original geometry which is scaled down

by a factor of s. This equation can be said to show how each different part are scaled

down by similarities with the different scale down factor.

The geometry of the Koch Snowflake fractal antenna that is studied in this thesis

is shown below. It should be noted that the initiator (Koch 0) of the Koch snowflake is

formed from the Bowtie antenna structure. The scale down factor is then applied to the

antenna for three iteration stages and thus generates the final Koch Snowflake fractal

Koch 3.
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The figure below shows the construction of Koch Snowflake Fractala
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Figure 22 Various Iteration Stages of Koch Snowflake Fractal [9]

Where, a= 1/3 of original side and b-1/3 of original side of triangle
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In this study the antenna is implemented on the XFDTD platform. The antenna is

fed by using a Modulated Gaussian Pulse of 768, with the input impedance of 5O0. The

antenna is simulated by using the FDTD numerical method to determine the resonant

frequency, the antenna bandwidth and the impedance of the fractal geometries.

6.5 Results

From the XFDTD simulation the results of the Koch Snowflake fractal dipole

antenna is shown below. The results of the iteration stages will be presented here.

The initiator geometry, which is Koch 0 is identical to that of the Bowtie Dipole antenna.

The other iterated geometries where then developed accordingly. They were then

simulated and the results were analyzed.

The geometry is implanted on the XFDTD platform and the parameters were set up as

follows:
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6.6 XFDTD Sources Loads et
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Figure 24 Source / loads Parameters for Koch Q
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6.7 XFDTD Stimulus Waveform Setup

3 ~

Time Doma) Frequency Domain

Figure 25 Stimulus Waveform for Koch 0
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6.8 Koch 0 in XFDTD Space

Figure 26 Koch 0 at XY plane in XFDTD space
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6.9 XFDTD Input Impedance Plot of Koch 0

Figure 27 Input Impedance of Koch 0

The figure 27 shows the Imaginary and Real part if the input impedance of Koch 0

fractal. This result was obtained from the XFDTDsimulation.
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Figure 28 below shows the Imaginary and Real part if the input impedance of Koch 0

fractal.

Real and Imaginary Parts for Koch 0
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Figure 28 Real and Imaginary Input Impedance of Koch 0

Figure 28 shows the real and imaginary input of Koch 0. The plot shows that at resonance

frequency is about 1.23 GHz.
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6.10 FDTD Input Voltage vs Frequency Plot of Koch 0

Figure 29 Input Voltage vs Frequency of Koch 0
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6.11 FDTD S 1 Parameter Plot of Koch 0

Figure 30 S Parameters of Koch 0
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6.12 Return Loss for Koch 0

Return Loss for Koch 0

o - Koch O
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Figure 31 Return Loss for Koch 0

The input impedance bandwidth obtained from the numnerical calculation has an

operational bandwidth ranges from about 1.23 GHz to 4.3 GHz. At resonant frequency of

1.23 GHz it is found that Koch 0 to be -19 dB and at 4.3 GHz was -12 dB.

62



6.13 FDTD Gain vs Theta Plot of Koch 0

Magrn 0de

0100 200 0
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Figure 32 FDTD Simulated Gain of Koch 0

The above figure shows the Gain vs Angle XFDTD simulation. The figure shows the

gain vs Theta when Phi is at a constant.
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6.14 FDTD CP Gain Plot of Koch 0

Figure 33 FTD Sirnulated Constant :Phi Gain of Koch 0

The above figure shows the Gain vs Angle XFDTD simulation at Constant Pi.
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6.15 Simulated Radiation Pattern of Koch 0
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Figure 34 Simulated Radiation Pattern of Koch 0 at resonant frequency.
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Figure 35 Simulated Radiation of Koch 0 at resonant frequency.
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6.16 Koch I in FDTD ace
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Figure 36 Koch 1 at XY plane in, - D space
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6.17 FDTD Input Impedance Plot for Koch 1

$~m mary

Figure 7 Input pedance of Koch 1

The above figure showes the Imaginary and Real part of the Koch Ifractal. Th esults

were obtained from the FDTD simulation.
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Figure 38 below shows the Imaginary and Real part of the Koch I fractal

Real and Imaginary paris for Koch 1
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Figure 38 Real and Imaginary Input Impedance of Koch 1
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6.18 Sil Parameters for Koch 1

0 
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Figure 39 S 11 Parameters for Koch 1
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6.19 Return Loss for Koch 1

B turn Loss for KOCh 1
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Figure 40 Return Loss for Koch 1

The input impedance bandwidth obtained from the numerical calculation has an

operational bandwidth ranges from about 1.22 GHz to 6 GHz. At resonant frequency of

1.22 GHz it is found that Koch 1 to be -15 dB and at 6 GHz is - 29 dB.
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6.20 XFDTD Gain Plot for Koch 1

Figure 41 FDTD Simulation Gain Koch 1

The figure above shows the Gain vs Angle XFDTD simulation.
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6.21 XFDTD CP Gain Plot of Koch I

Figure 42 T Simulation of CP Gain vs Theta for Koch 1

The figure above shows the Gain vs Angle XFDTD simulation at Constant Phi.
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6.22 Simulated Radiation Patterns for Koch 1
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Figure 43 Simulated Radiation Pattern for Koch 1 at resonant frequency.
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Figure 44 Simnulated Radiation Pattern for Koch 1 at resonant frequency.
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6.23 Koch ace
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Figure 45 Koch 2 at Y plane in XFDTD space
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6.24 FDTD Input Voltage vs Frequency Plot of Koch 2

~i

Figure 46 Input Voltage vs Frequency for Koch 2
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6.25 FDTD Input Impedance Plot for Koch 2

Figure 47 Input Impedance of Koch 2

Figure 47 shows the Imaginary and Real part of the input impedance of Koch 2

fractal. The results were simulated and obtained using FDTD platform.
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Figure 48 below shows the Imaginary and Real part of the input impedance of Koch 2

fractal.

Real and Imaginary for Koch 2
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Figure 48 Real and Imaginary Input Impedance of Koch 2
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6.26 FDTD S1 , Parameter plot for Koch 2

1

:Figure 49 i Parameters for Koch2
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6.27 Return Loss for Koch 2

Return Loss for Koch 2
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Figure 50 Return Loss of Koch 2

The input impedance bandwidth obtained fromn the numnerical calculation has an

operational bandwidth ranges from about 1.22 GHz to 5.3 GHz.

At resonant frequency of 1.22 Glz it is found that Koch 2 is to be -11dB and at 5.3 GHz

was -10.9 GHz
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6.28 Simulated Radiation Pattern for Koch 2
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Figure 51 Simulated Radiation for Koch 2 at resonant frequency.
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Figure 52 Simulated Radiation for Koch 2 at resonant frequency.
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6.29 Koch 3 in XFDTD Space

a

I:I

Figure 53 Koch 3 at XY plane in XFDTD space
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6.30 FDTD Input voltage vs Frequency Plot of Koch 3

Figure 54 Input Voltage vs Frequency
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6.31 XFDTD Input Impedance of Koch 3
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Figure 55 Input Impedance of Koch 3

Figure 55 shows the Imaginary and Real part o the input impedance of Koch 3

fractal. This result was simulated and obtained by using the FDTD platform.
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Figure 56 below shows the Imaginary and Real part of the input impedance of Koch

fractal.

Real and Imaginary parts for Koch 3
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Figure 56 Input Impedance of Koch 3
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6.32 FDTD S1 Parameter Plot for Koch 3

r~

Figure 57 SI Parameter of Koch 3
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6.33 Return Loss for Koch 3

Retur Loss for Koch 3
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Figure 58 Return Loss of Koch 3

The figure above shows return loss of Koch 3 fractal. The input impedance

bandwidth obtained from the numerical calculation has an operational bandwidth ranges

from about 1.22 GHz to 4.9 GHz.

At resonant frequency of 1.22 GHz it is found that Koch 3 is to be 10.9 dB
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6.34 XFDTD Gain Plot for Koch 3

/
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Figure 59 FDTD Simulated Gain Koch 3

The figure above shows the Gain vs Angle FDTD simulation when Phi is constant.
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6.35 XFDTD CP Gain Plot for Koch 3

Figure 60 FTD Simulated CP Gain Koch 3

The Figure above shows the Gain vs Angle XFDTD simulation at Constant Phi. In this

simulation Phi is set to zero.
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6.36 Simulated Radiation Pattern for Koch 3
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Figure 61 Simulated Radiation Pattern for Koch at resonant frequency.
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Figure 62 Simulated Radiation Pattern for Koch at resonant frequency.
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6.37 Results / Discussion

In this thesis, the Koch Snowflake Dipole antenna was simulated and analyzed

using the XFDTD numerical method. The antenna was designed having 4 iteration stages.

These were implemented on the XFDTD platform and analyzed accordingly. The

necessary parameters as stated earlier in the chapter were setup to carry out the

simulation.

From the XFDTD numerical analysis of the Koch snowflake dipole antenna, it

could be deduce that the bandwidth of the antenna structure increases as the number of

iteration stages increases. It could also be seen that the resonant frequency of the four

geometries studied remains the same. It should be noted that with an increase in the

number of iterations, the Koch snowflake antenna shows an increase in the quality factor

Q of the antenna.

In analyzing the numerical results it was observed that the resonant frequency SII

response of the first iteration stage at Koch 0, was found to be -19 dB. Further analysis

shows that at the next stage at Koch 1 the Si 1 response was -19dB. For iteration stage,

Koch 2 the S11 response was found to be -10.9 dB and at the final iteration stage at Koch

3 the S11 was -10.9 dB.

With these analyses it can be seen that at each iteration stages the Koch

Snowflake antenna yields a different S1 responses. That is, at Koch 0 the antenna

exhibits a S I response of -3 dB, at Koch 1 it has an SII of -3.97 dB, at Koch2 the antenna

has an Sii of -4.56 dB and for the last iteration stage Koch3 it has an SI of -4.82 dB.
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The figure below shows Return Loss of Koch Antenna with Various Iterations

0,

Figure 63 Retur Lossf Koch Anten with Various Iterations

Further analysis of the XFDTD numerical results show that the input impedance

relating to the four iteration stages converges as the number of stages increases. In

analyzing the radiation plots of each iterated structure, it was seen that for fractal iteration

for the radiation pattern was constant throughout each stage and thus remains the same.

However, a slight change in the third fractal iteration stage was observed in which the

null was removed.
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The figure below shows the variation in input impedance for the Koch fractal at various

iterations.
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Figure 64 Input Resistance for Koch Fractal with different iterations

It can be clearly seen that the input impedance of the Koch fractal varied

according to different iterations. This is a very useful characteristic because by adjusting

the iteration stages we were able to control a very important property of the antenna. It is

seen that as the number of iterations increases the input impedance converges.
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It can be said that the Koch Snowflake antenna exhibit lower resonant frequencies

as the number of fractal iteration increases. The antenna has a wideband property as the

iteration number increases.

The Figure below shows the results of when applying fractal to a bowtie antenna it can

exhibit wideband behavior.
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Figure 65 Return Loss for Bowtie and Koch Fractal

Fromn the numnerical calculation it can be seen that at the stage of iteration Koch I

fractal the antenna shows an increase in bandwidth. At S11 response the resonant

frequency of .23 GHz is to be -15 dB and at 6 GHz the return loss was -29 dB.
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The numerical calculation shows that the Koch 1 has an operation bandwidth

from ranges 1.23 GHz to 6 GHz. While the operational bandwidth for the Bowtie antenna

was found to be 1.23 GHz to 4.2 GHz. This result shows an increase in bandwidth of

about 1.8 GHz.

In this thesis the proposed Koch Snowflake structure was developed and analyzed

using the XFDTD numerical method. The results were observed and the performance and

characteristics were compared to that of the bowtie dipole antenna.
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Chapter 7 FDTD Analysis of Sierpinski Gasket Fractal Antenna

7.1 Introduction

The Sierpinski gasket is one of the most widely studied fractal geometry for

antenna applications. The Sierpinski gasket antennas have been researched considerably

for monopole and dipole antenna configurations [19]. The self-similar current distribution

on these antennas is expected to cause its multi-band characteristics [20]. That is, the

antenna has shown various frequencies when operating. It has been found that by

changing the geometry the multi-band nature of these antennas can be controlled [21].

The objective of this chapter is to show how fractals can be used as multiband

antennas. This is done by simulating a Sierpinski gasket antenna using the XFDTD

numerical method. It should be noted that the Sierpinski antenna can be compared to the

Bowtie dipole antenna.

The Sierpinski gasket fractal is studied in this thesis to investigate the

performance as an antenna with multiple frequencies. This antenna is said to have several

bands of resonance due to its self-similarity of the fractal geometry. The Sierpinski gasket

fractal antenna that is investigated in this thesis is implemented as a dipole. This structure

is basically is scaled version to the 4 th iteration of a bowtie antenna. This design was

chosen so as to compare its multiband characteristics with that of a bowtie antenna.
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7.2 Geometry of Sierpiuski gasket fractal

As stated above, the Sierpinsk gasket fractal is a self-similar antenna that exhibit

multiband characteristics [22]. In this thesis study, the Sierpinski gasket dipole will be

analyzed. This antenna is very similar to that of a conventional bowtie antenna. Below in

Figure 66 is the fractal iteration in which the Sierpinski gasket is generated. It can be seen

that the first geometry is that of a bowtie antenna. The other geometries were generated

from this initiator (triangle 1) and thus create the final Sierpinski triangle after the

iteration stages have completed.

2 3 4

Figure 66 Iteration of a Sierpinski Gasket Fractal Antenna [24]

The Sierpinski triangle is constructed by repeatedly removing a central inverted

equilateral triangles from an initial equilateral triangle of unit side length (Fig 66). Once

the central inverted triangle is removed, three equilateral triangles remain on the

geometry, each with half the size of the initial triangle.

This procedure can be looked at as repeatedly replacing an equilateral triangle by

three triangles on half the height [24].
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This iteration is carried out an infinite number of times until the desired fractal Sierpinski

gasket is obtained. In this thesis, a 4t order iteration stage was used to test and analyzed

the multiband properties of the antenna.

By applying several slots on the patch surface of the conventional bowtie dipole

antenna forms the fractal like bowtie dipole antenna as shown in Figure 67. With this

structure, each triangle of its three main parts are exactly equal and identical to the whole

geometry, but it is scaled by a factor of two and so are each of the three triangle gasket

that make up any of those parts.

$ie 0iw~ Sierpinsld Sie risM deriu

Figure 67 Geometry of Sierpinski Gasket Dipole Antenna [24]

In this study, the Sierpinski gasket antenna is implemented as a dipole antenna as

shown in Figure 67.
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The antenna source is fed as a dipole at the center with a Modulated Gaussian

pulse width of 768 and an input impedance of 50 . The Sierpinski dipole was

constructed and measured on the XFDTD platform.

The antenna was mounted on a FR-4 substrate with a relative dielectric constant

zr =4.7. The thickness of the substrate is 0.01 k.

The antenna was modeled using the FDTD model. The 3 dimensional FDTD space was

determined. The FDTD computational space has 200x 180x20 cells, with a space step of

AX = 0.05mm, AY = 0.05mm and AZ =0.047mm.

123mm

72mm

mm

Figure 68 Geometry of Sierpinski Fractal
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7.3 Results of the Siepinski Gasket Fractal Antenna XFDTD Analysis

In this thesis a Sierpinski Gasket Dipole antenna is presented. As stated above,

this antenna structure will be implemented and simulated using the XFDTD numerical

platform. The results are compared to the original Bowtie dipole antenna in which it was

created from.

The each iteration stage of the antenna structure was simulated and the results

were analyzed so see that changes in characteristics and performance for each iteration

stages. The results of the XFDTD analysis of the Sierpinski Gasket are presented in the

following pages, pp 100-135
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7.4 XFDTD Run Parameter for Sierpinski Gasket 0

Figure 69 T setup Run Parameters for Siepiski Gasket

Figure 69 shows the setup run parameters for a T simulation. The Mdulated

Gaussian was implemented in the setup.
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Figure 7 sierpinski at ' large in XFDTD ace
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7.6 XFDTD Input Impedance plot of Sierpinski 0

Figure 71 Input Impedance of Sierpinski 0

Figure 71 shows the Imaginary and Real part of the input impedance of the

Sierpinski 0 fractale The results were obtained fro.m the FTDsimulation.
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Figure 72 below shows the Imaginary and Real part of the input impedance of the

Sierpinski 0 fractal

Real and Imaginary parts for i erpinski 0
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Figure 72 Real and Imaginary Input Impedance of Sierpinski 0
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7.7 XFDTD SI Parameter Plot of Sierpinski 0
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Figure 73 S11 Parameters of Sierpinski 0
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7.8 Return loss for Sierpinski 0

Return Loss for Sierpinsk 0
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Figure 74 Return Loss for Sierpinski 0

The figure above shows the return loss for the sierpinski 0 fractal. The results

where plot using Matlab software. This was used to validate the results obtained from the

FDTD simulation. The impedance bandwidth obtained from the numerical calculations of

the Sie inski 0 fractal has an operational bandwidth ranges from 1.23 GHz to 4.3 GHz.

It was found that the S 11 response for the Sierpinski 0 was -19 dB.
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7.9 XFDTD Gain Plot of Sierpinski 0

Figure 75 FDTD Simulated Gain of Sierpinski 0

The figure above shows the Gain vs Angle XFDTD simulation.
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7.10 XFDTD CP Gain Plot of Sierpinski 0

Figure 76 FDTD Simulated Constant Phi Gain of Sie inski 0

The figure above shows the Gain vs Angle XFDTD simulation at Constant Phi.
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7.11 XFDTD Run Parameters for Sierpinski 

>& ' 1K1

Figure 77 FDTD Run Parameter for Sierpinski 1

Figure 77 shows the setup run parameters for a FDTD simulation. The Modulated

Gaussian was implemented in the setup.
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7.13 XFDTD Input Impedance Plot of Sierpinski 1
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Figure 79 Input Impedance of Sierpinski 1

Figure 79 shows the Imaginary and Real part of the input imnpedance of Sierpinski

I fractal. This result was obtained fromn the FDTD simnulation.
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Figure 80 below shows the Imaginary and Real part of the input impedance of Sierpinski

1 fractal.
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Figure 80 Real and Imaginary Input Impedance of Sierpinski 1
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7.14 XFDTD SI Parameter Plot of Sierpinski 1

Figure 81 S i parameter of Sierpinski 1
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7.15 Return Loss for Sierpinski 1

Retur Loss for Sierpinsk 1
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Figure 82 Return Loss of Sierpinski 1 fractal

Figure 82 above shows the return loss for the sierpinski 1 fractal. The results

where plot using Matlab software. This was used to validate the results obtained from the

FDTD simulation. The impedance bandwidth obtained from the numerical calculations of

the Sierpinski 1 fractal has an operational bandwidth ranges from 1.25 GHz to 4.3 Glz

and 6.8 GHz. It was found that the Si 1 response for the Sierpinski 1 at resonant

frequencies of 1.25 GHz was -15 dB, 4.3 GHz was -27dB and 6.8 GHz was -22 dB.
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7.16 XFDTD Gain plot of Sierpinski 1

Figure 83 FDTD Simulated Gain of Sierpinski 1

The above figure 83 shows the Gain vs Angle XFDTD simulation.
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7.17 XFDTD CP Gain Plot of Sierpinski i
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Figure 84 TD Simulated CP Gain of Sierpinski 1

The above figure shows the Gain vs Angle XFDTD simulation at Constant Phi.
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7.18 XFDTD Run Parameters of Sierpinski 2

I 0

Figure 85 FDTD Run parameters for Sierpinski 2

Figure 85 shows the setup run parameters for a FDTD simulation. The Modulated

Gaussian was implemented in the setup.
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Figure 6 Sierp nsk 2 at Plane in XFDTD Space
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7.20 XFDTD Input Impedance plot of Sierpinski 2

Figure 87 below shows the Imaginary and Real parts of the input impedance. The results

were obtained from the XFDTD simulation.

Figure 87 Real and Imaginary Input Impedac of Sierpinsk 2u,11 -
4J

31 - - n

- - 14 t

- F euency(GH

Figure 87 Real and Imaginary Input Impedance of Sierpinski 2
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Figure 88 below shows the Imaginary and Real parts of the input impedance

Real and Imaginary Parts for Sierpinski 2
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Figure 88 Real and Imaginary Input Impedance of Sierpinski 2
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7.21 XFDTD SI Parameter plot of Sierpinski 2

Figure 89 Si parameter of Sierpinski 2
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7.22 Return Loss of Sierpinski 2

Return Loss to Sierpinski 2

m
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and a 3 rsonan freuenc 6.8eqzuwsn-1 dB.zFigure 90 Return Loss of Sierpinski 2 FractalThe figure 90 above shows the return loss for the sierpinski 2fractal. The resultswhere plot using Matlab software. This was used to validate the results obtained from the
FTD simulation. The impedance bandwidth obtained from the numerical calculations of

the Sierpinski 2 fractal has an operational bandwidth ranges from 1.25 Gz to 4.2 Gz

and 6.8 Gz. It was found that the S11 response for the Sierpinski 2 at the 1st resonant

frequency of 1.25 Gz was -15 dB, the 2" resonant frequency at 4.2 Gz was -44 dB

and at 3rd resonant frequency 6.8 G Hz was -1.3 d.

121



7.23 XFDTD Gain plot for Sierpinski 2

Figure 91 FDTD Simulated Gain of Sierpinski 2

The above figure shows the Gain vs Angle XFDTD simulation.
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7.24 XFDTD CP Gain plot for Sierpinski 2

i p -

Figure 92 FD TD Simnulated CP Gain of Sierpinski 2

The above figure shows the Gain vs Angle XFDTD simulation at Constant Phi.
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7.25 XFDTD Run Parameter for Sierpinski 3

Figure 93 FDTD Run Parameters of Sierpinski 3

Figure 93 shows the setup rn parameters for a FDTD simulation. The Modulated

Gaussian was implemented in the setup.
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7.26 Sierpinski 3 in XFDTD Space

Figure 94 Sierpinski 3 in XFDTD Space

125



7.27 XFDTD Input Impedance of Sierpinski 3

1~1

Figure 95 Input Impedance of Sierpinski 3

Figure 95 showes the Imaginary and Real part of the input impedance of Sierpinski

3 fractal. This was obtained from the FDTD simulation.
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Figure 96 below shows the Imaginary and Real part of the input impedance of Sierpinski

3 fractal.
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Figure 96 Real and Imaginary Input Impedance of Sierpinski 3
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7.28 XFDTD SI parameter of Sierpinski 3

Figure 97 Su parameter of Sierpinski 3
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7.29 Return Loss Sierpinski 3

Return Loss for Sierpinski 3
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Figure 98 Return Loss of Sierpinski 3 Fractal

The figure 98 above shows the return loss for the sierpinski 3 fractal. This was

used to validate the results obtained from the FDTD simulation. The imnpedance

bandwidth obtained from the numerical calculations of the Sierpinski 3 fractal has an

operational bandwidth ranges from 1.23 GHz, 4.2 GHz, 6.5 GHz and 6.9 GHz. It was

found that the Si 1 response for the Sierpinski 3 at thei1st resonant frequency of 1.23 GHzrid rd

was -18 dB, the 2" resonant frequency at 4.2 GHz was -42 dB, the 3r frequency of 6.5

GHz is -15 dB and the 4' frequency of -16 dB was 6.9 GHz.
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7.30 XFDTD Gain plot of Sierpinski 3

Figure 99 FDTD Simulated Gain of Sierpinski

The above figure shows the Gain vs Angle XFDTD simulation.
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7.31 XFDTD CP Gain plot of Sierpinski 3

FCgure100 DDs Simute d)a PGain of Seirpinski3

Figure 100 aTi Simulated CP Gain of Seirpinski 3

The above figure shows the Gain vs Angle X Tsiulation at Constant hi.
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7.32 Results / Discussion

The Sierpinski gasket structure was presented in this thesis report. The structure

was implemented and simulated on the XFDTD platform. The results were analyzed and

compared to a bowtie antenna. From the results taken, it was seen that this fractal antenna

has an improved bandwidth as the number of iteration increases. It was seen that for the

first three stages of iteration the changes in the characteristics and performance were not

much to its original, although there were noticeable changes and the resonant frequency

changes slightly.

However, the last stage of the iteration show a much significant change in the

behavior of the characteristic and performance of the structure. Noticeable, was the

increase in band with along with the multiple resonant frequencies. This shows a

multiband property of the structure that was not presented in the initial bowtie structure.
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The figure below shows the Return Loss of Sierpinski Antenna with various fractal

iterations.
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Figure 101 Return Loss of Sierpinski Antenna with various fractal iterations

The XFDTD simulation demonstrated that with increasing iteration, the Sierpinski

gasket have multiband properties, figure 101. One very interesting observation is the

increase in bandwidth of the Sierpinski gasket geometry in which it presents about a 20%

bandwidth increase. It is seen that Sie inski 1, 2 and 3 fractals exhibits an almost steady

part of the S 11 response below -10 dB. It could be seen that sierpinski 1, 2 and 3 exhibit a

better return loss of -27 dB, -44 dB and -42 dB respectively.
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Figure 102 below shows the variation in input impedance for the Sierpinski gasket fractal

antenna with different iteration stages
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Figure 102 Input Resistance for Sierpinski Fractal at various iterations.

It can be clearly seen that the input imnpedance of the Sierpinski fractal varied

according to different iterations. This is a very useful characteristic because by adjusting

the iteration stages we were able to control a very important property of the antenna.
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Figure 103, below shows the return losses of the Bowtie and the final iteration stage of

Sierpinski 3 fractal.
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Figure 103 Comparison of Return Loss for Bowtie and Sierpinski 3

The figure above shows the comparison of a bowtie and a 4t order sierpinski

fractal antenna. The result shows that the sierpinski antenna has a better return loss. It can

be seen that the sierpinski has a better return loss of -42 dB compare to the bowtie which

has a return loss of -19 dB
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Chapter 8 Conclusions

In this thesis work the FDTD numerical method was used to analyze two fractal

shaped antennas presented in chapters 6 and 7. These structures were presented in this

paper with the goal of applying fractal geometry to antenna design and conducting a

numerical analysis to find the characteristics of these antenna structures.

The FDTD method has shown to be a very power numerical tool when applied to

the simulation and analysis of both the Koch Snowflake Fractal and the Sierpinski Gasket

fractal shown in chapters 6 and 7 respectively, pp 46-94 and pp 95-135. The two

structures were modeled, simulated and analyzed as shown in chapters 6 and 7.

The FDTD method was able to provide us with some interesting results of these

structures. It was seen where a conventional antenna that does not possesses wideband or

multiband properties, could be improved by applying fractal theory figure 106. The

FDTD platform allows for us to structure these fractal antennas and thus have some

promising results as shown in chapters 6 and 7.
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The figure below shows the comparison of the return losses of the three antenna

structures that were studied.
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Figure 104 Return Loss of Bowtie, Sierpinski and Koch fractal

In addition the FDTD method also shows fractal shaped antennas provides us with

a better performing antenna than its counterpart as shown in figure 104. For this reason,

the use of this method is very appropriate in the demands of the required analysis.
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Chapter 9 Future Work

With the study and investigation that was presented in this thesis a reasonable

continuation to this work would be valuable in understanding more about fractal

antennas. In the future, fractal antennas can be studied and analyzed in several areas.

One aspect in which further research could be done is by applying more iterations to the

investigated structures and observe there characteristics and performance along with

improving on it.

One major area in which further work could be done is by implementing the

FDTD design on a printed circuit board and carry out a physical experiment of the

designed geometries. This would enable us to have numerical results along with an

experimental result and thus be able to compare these characteristics.

Further work could also be done by performing FDTD analysis on other different

Fractal antenna structure and therefore giving us a better understanding of these antenna

structures in wireless communications.
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