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Abstract: Novel ternary Fe-Sn-P alloys prepared by simple single-step electrodeposition are 

investigated as promising anodes for Li-ion batteries. The Fe51Sn38P11 electrode, in particular, 

shows outstanding Li-storage properties, with initial specific discharge/charge capacities of 857.8 

and 655 mA h g–1, respectively. The reversible capacity remains stable at 427 mA h g–1, even after 

90 cycles, corresponding to a coulombic efficiency of 96% and a capacity retention of 65%. The 

cauliflower-like morphology of the above anode is well preserved after 90 cycles, suggesting that 

this alloy could significantly mitigate the electrode volume expansion by exerting a positive 

multiphase synergistic effect. The superior electrochemical performance of the ternary Fe-Sn-P 

alloys confirmed its potential as an alternative Li-ion storage anode; the large-scale suitability of 

the developed electroplating method provides an additional advantage. 
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1. Introduction 

  Rechargeable Li-ion batteries (LIBs), as well as supercapacitors, exhibit high power density, 

high safety, and long lifetimes, thereby playing an important role in our daily life because they 

are widely used in electronic devices, implantable medical devices, smart grid systems, and 

vehicles [1-5]. However, the accessible capacities of Li-ion batteries still cannot meet the 

fast-growing energy demand of newly emerging applications such as electric vehicles. Therefore, 

the development of anode materials with high capacities and superior cyclabilities as alternatives 

to graphite materials (372 mA h g–1) for Li-ion batteries has become increasingly important. 

Among the various potential anode materials, phosphorus has recently attracted much attention 

because of its high theoretical discharge capacity (2596 mA h g–1), unique puckered layer 

structure, and low Li intercalation potential (0.02–0.2 V) [6-8]. The puckered layer structure with 

a low stacking density of 30% can release structural strain and enable fast diffusion of Li+, thus 

enhancing the electrochemical cycling stability. Because the electronic conductivity of P is rather 

poor, extensive research has been conducted on transition metal phosphides (MPs) that can 

effectively improve the overall electronic conductivity of the electrode, affording enhanced 

Li-storage properties [9-11]. However, the commercial application of MP anodes is hindered by 

their large volume changes upon Li insertion and extraction that result in particle pulverization 

and rapid capacity fading [12]. So far, various binary MPs such as MnP4, FePx, CoP3, Cu3P, NiP2, 

SnP0.94, and Sn4P3 have been fabricated via high-temperature solid-state synthesis, ball milling, 

solution-phase techniques, and other traditional time-consuming and high-cost stepwise methods 

[7, 9, 12-18], which often require extreme operating conditions incompatible with practical 

applications.  

  In recent years, ternary metal phosphides (e.g., Sb-Co-P, Fe-Sb-P, and Sn-Ni-P) and even a 



 3 

quaternary Fe-Sn-Sb-P system have been explored as alternatives to binary MPs [19-22]. The 

introduction of inactive elements (Fe/Ni/Co) can not only effectively alleviate the mechanical 

stress induced by active phase (Sn/Sb/P) volume changes, but also enhance electron transfer and 

dynamic/mechanical strength. More importantly, these ternary/quaternary phosphides can be 

prepared via single-step electroplating, which is cost-effective and easy to scale-up, allowing 

facile film deposition onto substrates. In addition, the electroplating technique is flexible and 

adjustable, allowing one to control the composition, morphology, and thickness of the produced 

thin films via a simple variation of the current density and plating time.  

  Herein, we report a novel multiphase Fe-Sn-P composite via a facile single-step electroplating 

method. Five ternary Fe-Sn-P alloys of different compositions were electrochemically deposited 

on copper foil substrates; the optimal performance was observed for Fe51Sn38P11. The Fe-Sn-P 

alloys were used to prepare a binder-free LIB anode, delivering high capacity and superior 

cycling performance. Thus, these alloys hold great promise as a superior Li storage anode. 

2. Experimental section 

2.1 Linear sweep voltammetry (LSV) characterization 

  All electrochemical analyses were conducted using an electrochemical workstation (CHI660C, 

Chenhua Instruments, China) and a three-electrode setup. A Pt sheet (exposed area = 2 cm2) and a 

glassy carbon electrode (diameter = 0.5 mm) were employed as the counter and working 

electrodes, respectively, and the potential applied between them was regulated using a reference 

saturated calomel electrode (SCE).  

2.2 Fabrication of Fe-Sn-P-multiphase composite electrodes  

  Fe-Sn-P alloys were galvanostatically fabricated at room temperature using a potentiostat; the 

composition, content, and function of each reagent are listed in Table 1. The pH was adjusted to 
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1.5 by utilizing 1 M hydrochloric acid. All chemicals were of reagent grade and were dissolved in 

distilled water. A Pt foil with an area of 4 cm2 was used as a counter electrode, with the SCE used 

as a reference. Fe-Sn-P electrodes were deposited on Cu foil circles (diameter = 1.6 cm, exposed 

surface area = 2.0 cm2) at an applied current density of 8.85–44.25 A dm–2 for 2 min.  

2.3 Material characterization 

  The crystal structures of the deposited materials were investigated by powder X-ray diffraction 

(XRD; Philips X’pert Pro Super X-ray diffractometer, Netherlands, Cu Kα radiation, λ = 1.5408 Å) 

at a scan rate of 2° min−1. The morphology and elemental composition of the electrodeposited 

films were determined by field emission scanning electron microscopy (SEM, Hitachi S-4800) 

coupled with energy dispersive X-ray spectroscopy (EDX). The binding energies of Fe, Sn, and P 

in as-prepared Fe-Sn-P alloys were determined by X-ray photoelectron spectroscopy (XPS, 

Quantum 2000 spectrometer, USA)  

2.4 Electrochemical performance characterization  

  As-deposited Fe-Sn-P electrodes were heated to 80 °C under vacuum for 12 h, and their 

electrochemical behavior was characterized using a two-electrode cell; a lithium foil was used as 

a reference/counter electrode. All CR2025 coin cells were assembled in an Ar-filled glove box 

(with H2O and O2 levels being less than 2 ppm). The electrolyte corresponded to a 1.0 M solution 

of LiPF6 in a mixture of diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethylene 

carbonate (EC) (DEC:DMC:EC = 1:1:1 v/v/v) containing 2 wt% of vinylene carbonate (VC, 

provided by Guangzhou Tinci Materials Technology Co., Ltd., China). A Celgard 2400 

polypropylene membrane was used as a separator. 

  Galvanostatic charge-discharge tests of Li/Fe-Sn-P half-cells were performed using a 

LAND-V34 (Wuhan, China) battery tester at a rate of 100 mA g–1 in a fixed voltage range of 
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1.5–0.02 V at room temperature. The cycled electrodes were dismantled in the glove box, washed 

with DMC and acetone for three times, and reserved in a special box sealed with epoxy resin glue 

prior to SEM measurements.  

3. Results and discussion 

  Fe-P and Fe-Sn-P films deposited on the Cu substrate were characterized by cathodic LSV, 

which was performed in cathodic direction from –0.6 to –1.15 V at room temperature and a scan 

rate of 5 mV s–1 (Fig. 1a). Curve 1 (red line in Fig. 1a) was recorded in a solution of 0.6 M 

H3BO3, 1.0 M NH4Cl, 0.5 M NaH2PO2·H2O, and 0.05 M FeCl2·4H2O. A rapid increase in current 

density was observed between –1.09 and –1.5 V (vs. SCE), associated with Fe-P 

electrodeposition and simultaneous evolution of hydrogen, in agreement with a previous study 

[20]. Significant changes were observed upon incorporation of Sn2+ ions into the Fe-P 

system, such as the appearance of a new reduction peak at around –0.65 V (curve 2, black line). 

This peak was attributed to the deposition of Sn, as confirmed by SEM and EDX (inset) 

measurements (Fig. 1b). Ternary alloy deposition occurred at potentials more negative than –1.0 

V. Under these conditions, curve 2 was observed to have a higher current density than curve 1 

because of the electrodeposition of Sn on the Cu substrate. To confirm Sn deposition at –0.65 V, 

a thin film was deposited on the Cu substrate from the same solution at –0.65 V for 10 min. The 

corresponding SEM image in Fig. 1b shows numerous stripes on the thin film surface, without 

any other special features. As illustrated in the inset of Fig. 1b, EDX results demonstrate that the 

deposit obtained at –0.65 V consists of Sn, and the weak intensity of the Sn peak indicates the 

low amount of this metal. The peak of Cu was attributed to the Cu matrix. No peaks of other 

elements were observed, implying that pure Sn was deposited at around –0.65 V. When cathodic 

scanning was carried out at -1.5 V, a ternary Fe-Sn-P alloy was obtained. As shown in Fig. 1c, 
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the SEM image reveals that the as-deposited Fe-Sn-P (denoted as Fe51Sn38P11) exhibits uniform 

and compact packing without holes or cracks. It features cauliflower-like aggregates composed of 

nanoparticles, most of which are spherical and exhibit sizes between 50 and 1.5 m. This 

cauliflower-like morphology provides more active sites for electrochemical reactions due to its 

large specific surface area, as compared to those of planar or spherical particles. This morphology 

effectively alleviates the volume expansion induced by repeated Li+ insertion and extraction. 

Moreover, the elemental mappings of element Fe, Sn, and P shown in Figs. 1d-f confirm that 

these elements are homogenously dispersed in the composite without any impurity. 

  The reactions on the Cu surface can be expressed as follows [23]: 

              H2PO2
– + 2H+ + e–  → P + 2H2O         (1) 

                   Fe2+ + 2e–   →  Fe               (2)  

                   Sn2+ + 2e–   →  Sn               (3) 

                   2H+ + 2e–   →  H2↑             (4) 

  Generally, the deposit composition is significantly affected by current densities. Therefore, 

five Fe-Sn-P alloys of different compositions (Fe51Sn38P11, Fe58Sn30P12, Fe70Sn16P14, Fe75Sn10P15, 

and Fe73Sn13P14) were electrochemically deposited from the same electrolyte at various current 

densities (Table 2 and Fig. 2a). The contents of Fe and P in these alloys increased with 

increasing current density, whereas that of Sn concomitantly decreased. The crystalline phases of 

the as-deposited Fe-Sn-P alloys were further probed by XRD (Fig. 2b). The peaks of Fe3Sn (2θ = 

43.2°; JCPDS No. 03-065-3524), Sn (2θ = 30.5°, 32.0°, and 45.0°; JCPDS No. 00-001-0926), 

and SnP (2θ = 86.0°; JCPDS No. 00-021-1230) were clearly identified for Fe51Sn38P11 deposited 

at 8.85 A dm–2; no other peaks were detected except for those of the Cu substrate (2θ = 50.4°, 

74.0°, and 89.9°). For Fe58Sn30P12, the peak of SnP was not observed, and the intensities of the 
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Fe3Sn and Sn peaks were weaker than those of Fe51Sn38P11. When the current density was 

increased to 26.5–44.25 A dm–2, a broad peak was observed at 40–45°, indicating that the 

Fe-Sn-P alloys deposited under these conditions were amorphous due to their high P content (as 

determined by EDX) [24, 25]. Besides, a very weak peak of Fe3Sn was observed at 2θ = 43.2° 

(JCPDS No. 03-065-3524), indicating that the content of this phase in the above alloys was very 

low. Thus, increasing current density induced a crystalline-to-amorphous structural transition, 

allowing the preparation of two multiphase and three amorphous Fe-Sn-P electrodes at low and 

high current densities, respectively. When a Fe-Sn-P multi-phase composite electrode was used 

an LIB anode, the inactive Fe component therein maintained good electronic conduction and 

could withstand the mechanical stress induced by the alloying/de-alloying of P and Sn with Li+ 

because the electrode exhibits excellent mechanical strength, chemical inertness, and electrical 

conductivity. Furthermore, Fe played an important barrier role, preventing the agglomeration of 

active materials (Sn and P) and enhancing the cycling performance during the charge/discharge 

processes [26-29]. Thus, such multiphase Fe-Sn-P alloy electrodes were expected to exhibit better 

cycling performance than their amorphous counterparts.  

  The chemical composition of the Fe-Sn-P alloy deposited at 8.85 A dm–2 was examined by 

EDX. Figure 3a presents the EDX spectrum of Fe51Sn38P11, revealing the presence of Fe, Sn, and 

P only, with the exception of substrate-originated Cu. The weaker intensities of Sn and P peaks 

compared to that of the Fe peak indicate the lower contents of these elements in the alloy. The 

presence of Fe51Sn38P11 was further confirmed by XPS, with the corresponding spectrum (Fig. 3b) 

showing major peaks at ~130 (P 2p), 500 (Sn 3d), and 724 (Fe 2p) eV, confirming the 

simultaneous presence of Fe, P, and Sn, in agreement with the results of EDX analysis. 

  To further investigate the effects of composition and structure on the electrochemical 
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performance, three sample Fe-Sn-P alloys prepared at 8.85, 26.5, and 44.25 A dm–2 were 

investigated as anodes in half-cell LIBs. Their Li storage behavior is shown in Fig. 4. Using the 

multielectron reactions( Sn + 4.4 Li ⇋ Li4.4Sn; P + 3 Li ⇋ Li3P ) [30], the theoretical capacities 

of Fe51Sn38P11, Fe70Sn16P14, and Fe73Sn13P14 were calculated to be 698.3, 481.3, and 439.4 mA h 

g–1, respectively. The battery with the Fe51Sn38P11 anode is expected to deliver the best 

electrochemical performance. As shown in Fig. 4a, b, and c, Fe51Sn38P11, Fe70Sn16P14, and 

Fe73Sn13P14 displayed the initial discharge capacities of 857.8, 609, and 612.6 mA h g–1, 

respectively, at a current density of 100 mA g–1. Using the corresponding charge capacities of 655, 

476, and 474 mA h g–1, the initial coulombic efficiencies were estimated as 76%, 78%, and 77%, 

respectively. According to previous studies [31, 32], low initial coulombic efficiencies are caused 

by the electrolyte decomposition (DMC and DEC), irreversible reaction of oxide impurities, and 

formation of a solid electrolyte interface (SEI) layer on the electrode surface. Importantly, the 

greatly increased coulombic efficiency (>96%) observed from the second cycle onwards 

demonstrates that such irreversible reactions were significantly suppressed by SEI layer 

formation on the electrode surfaces of these three samples. After 90 cycles, the capacities of the 

Fe70Sn16P14 and Fe73Sn13P14 anodes significantly decreased. Conversely, Fe51Sn38P11 exhibited the 

highest discharge and charge capacities (857.8 and 427 mA h g–1, respectively) and retained the 

best cycling performance, which was attributed to its optimized composition. In Fe-Sn-P alloys, 

lithium intercalation is enabled by the presence of both Sn and P, which react with Li+ at 0.05–0.4 

and 0.02–0.2 V (vs. Li+/Li), respectively. When Li+ reacts with Sn at a higher voltage, P and Fe 

act as an inactive matrix to alleviate the volume change of Sn. Similarly, the insertion of Li ions 

into P to form LixP at a lower voltage is buffered by the Li-Sn alloy. Moreover, the introduced 

inactive Fe-containing intermetallic compound (Fe3Sn) increases the electronic conductivity and 
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acts as a buffer matrix, thereby improving the cell cyclability. The above XRD analysis results 

show that even though Fe51Sn38P11 is crystalline and Fe70Sn16P14 and Fe73Sn13P14 are amorphous, 

all three samples exhibit a similar cycling trend with different capacities, indicating that the 

cycling performance of Fe-Sn-P alloy electrodes depends on the phase composition but not on the 

crystal structure. The high discharge/charge capacity of Fe51Sn38P11 was ascribed to its higher Sn 

content than that of Fe70Sn16P14 and Fe73Sn13P14, as determined by EDX analysis. Since pure Sn 

was not detected by XRD, the Sn contained in this alloy could react with lithium to deliver 

lithium storage capacity. Thus, Fe51Sn38P11, with the highest Sn content, showed better 

electrochemical performance than the other two Fe-Sn-P alloy electrodes. Notably, the 

electrochemical performance of the developed FeSnP anode was superior to those of the Sb-Co-P 

and Fe-Sb-P composite electrodes reported by our group previously [19, 22].  

  Figure 4d depicts the discharge-charge voltage profiles of the Fe51Sn38P11 composite electrode 

for the 1st, 2nd, 30th, 60th, and 90th cycles. The sloping region at 1.5–0.8 V (vs. Li+/Li) in the initial 

discharge curve was assigned to the suppression of the irreversible reaction with the electrolyte 

and the presence of possible oxide impurities on the anode surface. These irreversible reactions 

accounted for the large irreversible capacity that is often unavoidable in electrochemical cycling. 

Three obvious discharge curve plateaus at 0.7, 0.54, and 0.45 V were attributed to Sn alloying 

with Li+ to form LixSn (x < 2.33) [33]. Reactions occurring below 0.2 V were ascribed to the 

formation of Li3P [34]. The sloping region observed during charging at 0.3–1.1 V was assigned to 

LixSn and LixP delithiation.  

  Figure 5a shows the SEM image of the Fe51Sn38P11 electrode after complete delithiation after 

90 cycles, revealing that the structural integrity of the particles is well preserved despite their 

slightly increased size, with no evident sign of pulverization. No obvious SEI formation could be 
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detected on the anode surface, indicating that the produced SEI film was transparent and very 

thin, achieving suitable coulombic efficiency, in agreement with the results shown in Fig. 4. 

Similar to the as-prepared sample (Fig. 1c), the EDX mappings after 90 cycles shown in Figs. 

5b-d did not show any elemental agglomeration, in which Fe, Sn, and P are well-dispersed over 

the sample. It also indicates that the prepared structures can be maintained over repeated cycling 

process, which is consistent with the good cycling stability of Fe51Sn38P11 (Fig. 4a).  

  Thus, the electrochemical reaction between Fe51Sn38P11 and Li+ occurred in a reversible and 

stable manner, with the capacity degradation caused by electric contact loss effectively 

suppressed. The excellent capacity storage and cycling performance was ascribed to the unique 

cauliflower-like morphology and multiphase composition of the Fe51Sn38P11 composite electrode, 

which provides elastic accommodation to restrain volume changes and electrode pulverization 

during discharge/charge processes.  

4. Conclusions 

  In summary, we have prepared novel ternary Fe-Sn-P alloy electrodes of different 

compositions via single-step electroplating and examined their electrochemical performances as 

LIB anodes. The results revealed that the multiphase Fe51Sn38P11 electrode can exhibit 

outstanding cycling stability and high specific capacity, showing initial discharge and charge 

capacities of 857.8 and 655 mA h g–1, respectively. The corresponding charge capacity is 

sustained at 427 mA h g–1 over 90 cycles at a high coulombic efficiency of 96%, with the charge 

capacity retention equaling 65%. The high Li-storage capacity and superior cyclability of this 

ternary electrode were attributed to its cauliflower-like structure and multi-phase composition (Sn, 

Fe3Sn, and SnP phases). Thus, this study demonstrates that it is feasible to prepare novel binder- 

and conductive agent-free P-based electrodes for potential application in LIBs by electroplating. 
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Table 1.Composition of the bath and electroplating conditions used for the preparation of 

Fe-Sn-P alloys. 

 

Table 2.Chemical composition of Fe-Sn-P alloys deposited at different current density. 
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Bath composition Concentration (M) Function 

SnCl2·2H2O(stannous chloride) 

H3BO3(boric acid)  

0.03 

0.60 

Source of Sn 

Buffer agent 

NH4Cl(ammonium chloride) 1.00 Complex agent  

NaH2PO2·H2O(sodium hypophosphite) 0.5 Source of P 

FeCl2·4H2O(ferrous chloride) 0.05 Source of Fe 

Electro-deposition parameters  value  

Current density (A/dm2) 8.85–44.25  

pH 

Temperature   

Plating time                           

1.5 

Room temperature   

2 min                      

 

                      

          

Table 1 
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Current 

density   

A/dm2 

8.85 17.7 26.5 35.40 44.25 

At% At% At% At% At% 

Fe 50.8 58.2 70.2 75.0 73.0 

Sn 38.1 30.3 16.1 10.3 13.2 

P 11.1 11.5 13.7 14.7 13.8 

Total % 100 100 100 100 100 

Table 2 
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Figures and Figure Captions 

Figure 1 (a) Linear sweep voltammetry (LSV) of Fe-P and Fe-Sn-P alloy deposition in different 

solutions. 

(1) 0.6 MH3BO3, 1.0 M NH4Cl, 0.5 M NaH2PO2·H2O, and 0.05 M FeCl2·4H2O; 

(2) 0.03 M SnCl2·6H2O, 0.6 MH3BO3, 1.0 M NH4Cl, 0.5 M NaH2PO2·H2O, and 0.05 M 

FeCl2·4H2O; 

(b) SEM image of a Sn film deposited at –0.65 V for 10 min. The inset figure is the EDX 

spectrum of the Sn film deposited at –0.65 V for 10 min. 

(c) SEM image of the as-prepared Fe51Sn38P11 electrode and elemental mapping images of (d) Fe, 

(e) Sn, and (f) P. 

 

Figure 2 (a) Chemical composition of Fe-Sn-P alloy film prepared at various current densities; (b) 

XRD patterns of Fe-Sn-P alloys with different compositions. 

 

Figure 3 EDX (a) and XPS spectra (b) of Fe51Sn38P11 multiphase composite electrode. 

 

Figure 4 Lithiation/delithiation capacities and coulombic efficiency of Fe51Sn38P11, Fe70Sn16P14, 

and Fe73Sn13P14 (a–c) and (d) galvanostatic charge-discharge curves of Fe51Sn38P11 multiphase 

composite electrode in the fixed voltage range of 1.5–0.02 V at a current density of 100 mA g-1. 

 

Figure 5 (a) SEM image of Fe51Sn38P11 electrode after 90 cycles and elemental mapping images 

of (b) Fe, (c) Sn, and (d) P.  
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