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Abstract: This paper presents a variation focused cluster analysis strategy to identify typical 8 

daily heating energy usage profiles of higher education buildings. Different from the existing 9 

cluster analysis studies which were primarily developed using Euclidean distance as the 10 

dissimilarity measure and tended to group the daily load profiles with similar magnitudes, 11 

Partitioning Around Medoids (PAM) clustering algorithm with Pearson Correlation Coefficient-12 

based dissimilarity measure was used in this study to group the daily load profiles on the basis of 13 

the variation similarity. A comparison of the proposed strategy with a k-means cluster analysis 14 

with Euclidean distance as the dissimilarity measure was also performed. The performance of the 15 

proposed strategy was tested and evaluated using the three-year hourly heating energy usage data 16 

collected from 19 higher education buildings in Norway. The results demonstrated the 17 

effectiveness of the proposed strategy in identifying the typical daily energy usage profiles. The 18 

identified typical heating load profiles provided the information such as the peaks and troughs of 19 

the daily heating demand, daily high heating demand period and daily load variation. The 20 

identified profiles also helped to categorize multiple buildings into different groups in terms of 21 

the similar energy usage behaviors to support further energy efficiency initiatives.  22 
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Keywords: Cluster analysis; Load profile; Pearson Correlation Coefficient; Higher education 23 

buildings 24 

Nomenclature 25 

C   set of the identified clusters  26 

cov  covariance 27 

d    distance 28 

D  Dunn index 29 

k   number of clusters 30 

n  number of observations 31 

Nd   number of days belongs to a typical daily load profile 32 

Nd,max  maximum number of days belongs to a typical daily load profile  33 

o   data point identified as a medoid 34 

p    tail area probability 35 

PCC  Pearson Correlation Coefficient 36 

q   data point 37 

R    studentized deviate 38 

RP  relative proportion  39 

t   t-distribution  40 

X, Y  vectors 41 

x,y  values of individual dimension 42 

Greek letters 43 

α   significance level   44 

λ   critical value 45 

σ    standard deviation 46 
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φ    identified clusters   47 

Subscripts 48 

ED  Euclidean distance 49 

PCC  Pearson correlation coefficient 50 

 51 

1. Introduction 52 

Building energy efficiency is essential for reducing global energy usage and promoting 53 

environmental sustainability, as the building sector contributes to a large proportion of the total 54 

energy usage worldwide [1, 2]. With the development of automatic meter reading systems, 55 

massive high-resolution energy usage data from buildings can now be easily collected with a 56 

reasonably low cost [3]. This massive amount of data provides a great opportunity to assist in 57 

better understanding building energy usage characteristics and operational performance, and in 58 

extracting the useful and hidden information to support the areas including but not limited to 59 

building energy performance assessment and benchmarking, building load estimation and 60 

demand side management, occupant behavior prediction, and fault detection and diagnosis of 61 

heating, ventilation and air-conditioning systems.  62 

Identification of typical building load profiles based on the collected massive energy usage 63 

data has been proved to be an effective way to understand building energy usage characteristics 64 

and help to develop cost effective load shifting and peak demand control strategies [4, 5]. Cluster 65 

analysis, as a data mining technique to discover the natural grouping(s) of a set of patterns, points, 66 

or objects [6], has been used in a number of studies to identify typical building load profiles [4, 5, 67 

7, 8]. Jota et al. [4], for instance, used an agglomerative hierarchical clustering algorithm with 68 

Euclidean distance (ED) to identify the typical building load profiles, which were further used to 69 

predict the accumulated energy usage at the end of the day and the daily peak demand. Typical 70 
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heating load profiles of Danish single-family detached homes were studied by do Carmo and 71 

Christensen [5] using the k-means algorithm. Three types of typical load profiles, i.e. high 72 

demand, medium demand and low demand, were identified for the buildings operated during 73 

weekdays and weekends, respectively. A binary regression analysis was also performed to 74 

identify the explanatory factors governing the different heating load profiles. The implementation 75 

and evaluation of a cluster analysis approach for smart meter data were reported by Flath et al. 76 

[7], in which the k-means algorithm was used to identify typical building daily and weekly load 77 

profiles of a business intelligence environment. Symbolic Aggregate approXimation (SAX) 78 

method was used by Miller et al. [8] to transform building energy usage data into alphabets while 79 

the k-means algorithm was used to identify the typical daily load profiles. Fuzzy c-means (FCM) 80 

was adopted by Fernandes et al. [9] to identify the typical gas consumption profiles of residential 81 

buildings. It was found that the gas consumption peaks were related to the upper-middle social 82 

class with a high income and the highest daytime off-peak gas usage was related to the ageing 83 

population. Panapakidis et al. [10] utilized several clustering algorithms, including k-means, k-84 

means++, minimum variance criteria, FCM and self-organizing map (SOM), to identify typical 85 

building electricity usage profiles. It was concluded that SOM and k-means++ in the frequency 86 

domain outperformed the other clustering techniques in terms of the clustering error.  87 

Cluster analysis distinguishes data vectors based on a certain type of dissimilarity measures 88 

[11]. Although different cluster analysis algorithms have been proposed for different scenarios, to 89 

the best knowledge of the authors, the existing studies on the identification of building typical 90 

load profiles using cluster analysis were primarily developed using ED as the dissimilarity 91 

measure. Cluster analysis using ED-based dissimilarity measure tends to identify the daily load 92 

profiles that are similar in terms of the intensity rather than the variation. In other words, the 93 

typical daily load profile identified using cluster analysis with ED as the dissimilarity measure is 94 
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more related to the load magnitude. For example, do Carmo and Christensen [5] labeled the 95 

identified load profiles as high demand, medium demand, and low demand. ED-based 96 

dissimilarity measure is also difficult to identify building daily load profiles with similar 97 

variations but with different magnitudes, which will be elaborated in Section 2.2. 98 

Higher education buildings have an important role in the minimization of greenhouse gas 99 

emissions from the built environment and in assisting the mitigation and adaptation of our society 100 

to climate change [12]. This paper presents a strategy using Partitioning Around Medoids (PAM) 101 

clustering algorithm to identify typical daily heating energy usage profiles of a group of higher 102 

education buildings. The novelty of this paper is to use Pearson Correlation Coefficient (PCC) as 103 

the dissimilarity measure to cluster daily heating energy usage profiles, in which the typical 104 

energy usage profiles are identified based on the load variation instead of the load magnitude, 105 

which is different from the majority of the previous studies used cluster analysis with ED as the 106 

dissimilarity measure. Based on the identified typical load profiles, a hierarchical clustering was 107 

used to group the buildings with similar heating energy usage characteristics. A comparison of 108 

the proposed strategy with an ED-based k-means cluster analysis strategy was also performed. 109 

The performance of the proposed strategy was evaluated using three-year hourly district heating 110 

energy usage data collected from 19 higher education buildings in Norway.  111 

2. Development of the variation focused cluster analysis strategy 112 

2.1 Outline of the variation focused cluster analysis strategy 113 

The outline of the proposed variation focused cluster analysis strategy is illustrated in Fig. 1, 114 

which was developed following the standard Knowledge Discovery from Database (KDD) 115 

process [13]. It mainly consisted of four steps, including data collection, data pre-processing, data 116 

mining, and results evaluation and interpretation. 117 
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The collection of hourly energy usage data of individual buildings was the first step and the 118 

necessary data can be generally collected from building management systems. There were four 119 

tasks in the data pre-processing step, including outlier removal, data standardization, data 120 

segmentation and the removal of the weekend data and the data segments with small variations. 121 

In this study, the generalized Extreme Studentized Deviate (ESD) test method was used to 122 

identify and remove the outliers in the collected raw data. As the magnitude of the energy usage 123 

varied from building to building, to avoid the influence of identifying typical daily energy usage 124 

profiles, the processed data of each building was standardized to zero mean and one standard 125 

deviation. Data segmentation was then performed to transform the data into 24 hours segments in 126 

order to form daily load profiles. As the primary focus of this strategy was to identify the typical 127 

daily energy usage profiles during the building occupied periods with distinctive variation 128 

patterns, the segments during the weekends and the segments with small variations were 129 

discarded. The segments with small variations refer to the segments with a small difference 130 

between the daily maximum and minimum energy usages. In this study, a threshold of 5.0% was 131 

used, which means that 5.0% of the segments with the least difference among all daily segments 132 

were discarded. 133 

In the data mining step (see Fig. 1), Pearson Correlation Coefficient (PCC) was first 134 

calculated to measure the dissimilarities among different daily load profiles. The Partitioning 135 

Around Medoids (PAM) clustering algorithm was then applied to cluster the daily load profiles 136 

with similar variations based on the PCC-based dissimilarity measure calculated. A boxplot was 137 

used to remove the daily load profiles with the large aggregated dissimilarities (i.e. the sum of the 138 

dissimilarities to all other daily load profiles in the same cluster) in each cluster, in order to 139 

reduce the influence of the extreme daily load profiles on the identification of typical daily load 140 

profiles. The daily load profiles with the aggregated dissimilarity measure beyond Q3+1.5IQR, 141 
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where Q3 is the third quartile and IQR is an inter-quartile range between Q1 and Q3, were 142 

discarded. The typical daily load profiles were then determined by averaging the remaining daily 143 

load profiles in each cluster. Lastly, a hierarchical clustering was used to group the buildings with 144 

similar load characteristics.  145 

In the last step, the identified typical daily load profiles and building groups were visualized, 146 

evaluated and interpreted. 147 

2.2 Outlier removal with the generalized Extreme Studentized Deviate (ESD) test method 148 

Generalized ESD test method has been applied for identifying and removing outliers in 149 

building energy usage data in a number of studies [14-16]. This method detects outliers through 150 

comparing the studentized deviate R of n extreme observations to a critical value λ. The extreme 151 

observations are the observations with the first n largest differences compared to the mean value 152 

𝑥̅. The Ri of the ith extreme observation xe, i is determined using Eq. (1) and the corresponding λi 153 

is defined in Eq. (2) [14]. The generalized ESD test method starts with the most extreme 154 

observation and compares its Ri to the corresponding λi. If Ri is greater than λi, the extreme 155 

observation is then identified as an outlier and removed from the dataset. The same process is 156 

applied to the next extreme observation until all the n extreme observations are examined. More 157 

details of the generalized ESD test method can be found in [14]. If an outlier is identified and 158 

removed, its position will be filled through the linear interpolation. 159 
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where σ is the standard deviation, tn-i-1,p is the t-distribution with n-i-1 degrees of freedom and p is 162 

the tail area probability and is defined in Eq. (3) [14]. 163 
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where α is the significance level.   165 

2.3 Pearson Correlation Coefficient (PCC)-based dissimilarity measure 166 

Cluster analysis groups the data by minimizing the inter-cluster dissimilarity while 167 

maximizing the intra-clusters based on a certain type of the dissimilarity measures [17]. In the 168 

proposed strategy, the distance between the two daily load profiles (dPCC) determined by Eq. (4) 169 

was used to measure the dissimilarity between the two daily load profiles, in which the PCC is 170 

defined in Eq. (5). 171 
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where d means the distance, cov stands for the covariance, X and Y represent the vectors, and x 174 

and y stands for the values of the individual dimension.  175 

A comparison between the use of the PCC-based and ED-based dissimilarity measures is 176 

illustrated in Fig. 2, where ED was calculated using Eq. (6). The data used in Fig. 2 was given 177 

only for illustration purpose.  178 

 ( )2

1

( , )
n

ED i i
i

d X Y x y
=

= −∑   (6) 179 

It can be seen that the ED of Profiles 1 and 2 (d12) and ED of Profiles 1 and 3 (d13) were 180 

38.91 kWh and 8.178 kWh, respectively. Compared to Profile 2, Profile 3 was closer to Profile 1 181 

in terms of the ED dissimilarity measure. However, the variation of Profile 2 was more similar to 182 

that of Profile 1, as shown in Fig. 2(a). The PCC of Profiles 1 and 2 (PCC12) and PCC of Profiles 183 
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1 and 3 (PCC13) were 0.978 and 0.173, respectively. A higher PCC indicated a higher similarity 184 

between the two profiles in terms of the daily load variation. Therefore, PCC-based dissimilarity 185 

measure can better identify the daily load profiles with similar variations.  186 

2.4 Partitioning Around Medoids clustering algorithm 187 

Partitioning Around Medoids (PAM) clustering algorithm [18] was used to cluster daily load 188 

profiles using the PCC-based dissimilarity measure. In PAM, a medoid is a data point in a 189 

particular cluster which has a minimized aggregated distance to all other data points in that 190 

cluster. The objective of PAM clustering algorithm is to find a subset {o1,o2,…,ok}∈{q1,q2,…,qn} 191 

which minimizes the objective function as shown in Eq. (7) [18, 19].  192 

 
1,...,1

( , )
n

i mm ki
min d q o
=

=
∑   (7) 193 

where n is the number of the data points, k is the number of the clusters,  q is the data point, and o 194 

is the data point identified as a medoid. 195 

PAM consists of two major steps, i.e. build and swap. The first step is to build initial medoids 196 

by selecting the first medoid as the data point with the minimum sum of the distance to all other 197 

points and selecting the subsequent medoids by finding the points which minimize Eq. (7). The 198 

second step repeatedly swap i∈ {o1,o2,…,ok} with j∈ {q1,q2,…,qn} if the swap decreases the 199 

objective significantly until reaching the convergence [18, 19].  200 

PAM requires users to provide the number of clusters k as an input parameter. In the 201 

proposed strategy, Dunn Index was used to validate the clustering result and determine the 202 

optimal value of k. Dunn Index is expressed as the ratio of the smallest inter-cluster distance to 203 

the largest intra-cluster distance and is defined in Eq. (8) [20]. 204 
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where Ck and Cl are the clusters belong to the set of the identified clusters φ . A higher Dunn 206 

Index means a better clustering result. The optimal number of clusters k was determined based on 207 

the highest Dunn Index within the defined range of the number of clusters. 208 

2.5 Buildings classification with hierarchical clustering 209 

A hierarchical clustering with the heat map visualization technique was used to group 210 

buildings that share the similar daily load characteristics. Hierarchical clustering is a bottom-up 211 

strategy, which starts with placing each object in its own cluster and then merges the atomic 212 

clusters into larger clusters until all objects are in a single cluster [21]. Complete-linkage, which 213 

is the maximum ED of the data objectives in two clusters, was used to measure the distance 214 

between the clusters.  215 

An advantage of the hierarchical clustering is that the overall process can be represented by a 216 

tree structure graph called a dendrogram. The dendrogram can help to visualize the cluster 217 

structure and assist in determining the optimal number of clusters. Fig. 3 illustrated a dendrogram 218 

with three data points, where the ordinate axis indicated the distance between the data 219 

points/clusters. The split points indicated the distance between the two data points/clusters. The 220 

higher the split point, the less similarity between the data points/clusters [4]. Clusters can be 221 

determined by the dashed line shown in Fig. 3, which is a user-defined threshold. The data points 222 

under the same split point below the dashed line can be merged into a cluster while the split 223 

points above the dashed line are kept unchanged. For instance, the data points #1 and #3 were 224 

under the same split point and below the dashed line and they will be merged into the same 225 

cluster while the data point #2 formed another cluster. The threshold can be determined 226 

graphically or based on the cluster validation index such as Dunn Index. More details of the 227 

hierarchical clustering can be found in [21]. 228 
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3. Performance evaluation of the proposed strategy 229 

In this study, the proposed strategy was implemented in R [22] while PAM algorithm was 230 

implemented using the R package cluster [23]. The majority of the figures presented in this study 231 

were generated using R package ggplot2 [24]. 232 

3.1 Description of the case study buildings 233 

The performance of the proposed strategy was evaluated based on the heating energy usage 234 

data collected from 19 higher education buildings, with a total floor area of approximately 235 

200,000 m2, at Norwegian University of Science and Technology in Trondheim, Norway. The 236 

hourly building operational data were collected through a web-based Energy Monitoring System. 237 

Most of these 19 buildings were built before the year 2000, and the buildings built between 238 

1960 and 1970 accounted for a large part. The energy certificate of the buildings indicated that 239 

the U-values of the exterior walls of the majority buildings were in the range of 0.4-0.60 W/m2K, 240 

which failed to comply with the current energy efficiency regulations. Table 1 summarizes the 241 

major information of the 19 buildings studied. More information on these buildings can be found 242 

in [25].  243 

The heating demand of these higher education buildings was supplied through a district 244 

heating network and each individual building was equipped with a dedicated heating energy 245 

usage meter. The three-year hourly heating energy data collected from September to April in 246 

2011-2013 were used in this study for performance evaluation of the proposed strategy.  247 

3.2 Data pre-processing 248 

The generalized ESD test method was first used to detect and remove outliers. Fig. 4 249 

illustrates the three-year hourly heating energy usage data collected from building 03 with the 250 

outliers identified (i.e. red circles). It can be seen that there is a large variation in the heating 251 
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demand annually. The highest heating demand generally occurred in January and February. It 252 

should be noted that there was a small heating demand from May to August but this amount of 253 

heating demand was significantly lower than that during the main heating period and was 254 

therefore not considered in this study.  255 

The data were then standardized to zero mean and one standard deviation and transformed to 256 

daily segments. After removing the daily load profiles with small variations and daily load 257 

profiles in the weekends, a total of 9,062 daily heating energy usage profiles were generated after 258 

the completion of the data pre-processing step. 259 

3.3 Identification of typical daily heating energy usage profiles 260 

The number of clusters selected will directly influence the identification of the typical daily 261 

load profiles. A too small cluster number might result in meaningless typical daily load profiles 262 

while a large cluster number requires a large computational cost and increases the difficulties in 263 

the results evaluation and interpretation. In this study, the optimal cluster number k (i.e. the 264 

number of the typical daily load profiles) was selected between 5 and 15. Fig. 5 presents Dunn 265 

Index calculated when using different numbers of the clusters. It is shown that the highest Dunn 266 

Index resulted when the cluster number was 11, which was therefore determined as the optimal 267 

cluster number in this study.  268 

The boxplot of the aggregated dissimilarity measure of the identified clusters is illustrated in 269 

Fig. 6 for visualization and removal of the daily load profiles beyond the threshold. It can be 270 

observed that the number of the daily load profiles in all clusters ranged from 474 to 1413, 271 

indicating that there was no cluster formed with few daily load profiles. It can also be seen that 272 

all clusters contained the extreme daily load profiles (i.e. black dots) with the aggregated 273 

dissimilarity beyond the threshold (i.e. Q3+1.5IQR) and these extreme daily load profiles were 274 
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removed in subsequent analysis. A total of 8,521 daily load profiles remained after removing the 275 

identified outlier (i.e. extreme daily load profiles) from the dataset. The removal of this small 276 

fraction of the extreme daily load profiles could enhance the visualization of the identified typical 277 

daily load profiles without significant loss of the information. 278 

Fig. 7 shows the identified typical daily load profiles by averaging all daily load profiles in 279 

each cluster after the removal of the extreme daily load profiles. The red curves in the figure 280 

showed the typical daily load profiles identified while the gray curves were all corresponding 281 

daily load profiles in this cluster. It can be found that there was a clear boundary in the heating 282 

demand between the working hours and non-working hours in some typical daily load profiles 283 

such as the load profiles 2 and 8 while that in some typical daily load profiles (e.g. the load 284 

profiles 1 and 5) were not very clear. There was no obvious boundary in the load profile 10. 285 

Moreover, the nighttime from 22:00 to 03:00 of next day was the lowest heating energy usage 286 

period for the majority of the typical daily load profiles identified except the typical load profiles 287 

6, 7 and 10 with a noticeable high heating demand during the nighttime which is worthwhile for 288 

further investigation.  289 

Fig. 8 shows the weekday distribution of the building daily load profiles in the identified 290 

clusters, in which y-axis represents the percentage of the number of days belongs to each 291 

weekday to the total number of days in each cluster. It was shown that the daily load profiles on 292 

Tuesday, Wednesday, Thursday and Friday in each cluster were almost evenly distributed. In 293 

some clusters such as the clusters 4 and 11, the number of days on Monday was obviously 294 

different from that on the other weekdays and the reason behind this is presented in Section 4. 295 

Therefore, this weekday load profile distribution can assist in determining whether a specific load 296 

profile existed only in some specific days of a week. 297 
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Table 2 summarizes the key characteristics and the estimated high heating demand period of 298 

the typical daily load profiles identified. To understand the knowledge and information 299 

discovered by the proposed strategy, the profiles with a relatively high demand in the early 300 

morning and late night as well as those with clear heating demand peaks and troughs will be 301 

further investigated in Section 4. These include the typical daily load profiles 4, 6, 7, 9 and 11. 302 

The rest of the typical load profiles were either similar to the typical daily load profiles 303 

mentioned above or did not contain interesting characteristics and were therefore not further 304 

investigated in this study. 305 

3.4 Building classification based on the identified typical daily load profiles 306 

In this section, 19 case study buildings were grouped according to the typical daily heating 307 

load profiles identified. In order to eliminate the influence from the insignificant profiles, the first 308 

two most dominant profiles of each building (see Table 3) were selected as the features for 309 

building classification. From Table 3, it can be seen that for some buildings such as buildings 02, 310 

14 and 17, the most dominant profile accounted for a large proportion of the total number of days 311 

remained for the typical daily load profile identification. For instance, 436 days out of 490 of 312 

building 02 were in the most dominant profile, demonstrating that the daily load variation of this 313 

building was consistent. In contrast, the number of days in the most dominant profiles of some 314 

buildings such as building 10 and 15 were relatively small, which indicated that these buildings 315 

did not have a consistent daily load profile during the time period investigated (2011-2013).  316 

The percentages of the first two most dominant profiles were then used to group the buildings 317 

that share the same daily energy usage characteristics based on the hierarchical clustering. Fig. 9 318 

presents the dendrogram of building classification results, in which the buildings in the same 319 

cluster were marked with the same color. In this study, the threshold (i.e. dashed line in the figure) 320 



15 
 

was visually selected due to the small number of the data points (i.e. buildings) used. It can be 321 

seen that some clusters were formed with a single building while some clusters were formed with 322 

several buildings. For instance, building 02 was identified as an individual cluster and buildings 323 

01, 05, 10, 11 and 12 were grouped into one single cluster.   324 

In order to better visualize and confirm the clustering results, the number of days belongs to a 325 

typical daily load profile of different buildings were plotted as a heat map and are shown in Fig. 326 

10. In this figure, the relative proportion (RP) was determined using Eq. (9) and the same order of 327 

the building number as illustrated in Fig. 9 was used. It was visually shown that the majority of 328 

the buildings had one significant dominant profile. 329 

 
,

d

d max

NRP
N

=   (9) 330 

where Nd stands for the number of days belongs to a typical daily load profile of an individual 331 

building and Nd,max stands for the maximum number of days belong to a typical daily load profile 332 

of the same building.  333 

4. Interpretation of the identified typical daily load profiles 334 

In order to understand the reasons behind the main characteristics of the typical daily load 335 

profiled identified, buildings 02, 14, 17, 08 and 03 were selected based on the clustering results 336 

and used to represent the typical daily load profiles of 4, 6, 7, 9 and 11 presented in Fig. 7, 337 

respectively.   338 

4.1 Building 02 – Typical daily load profile 4  339 

Building 02 is an office and laboratory building which was built in 1965. A recent survey 340 

indicated that this building was poorly insulated with a U-value of 0.91 W/m2K for the exterior 341 

wall insulation and a U-value of 0.59 W/m2K for the roof insulation. Different from many other 342 

buildings using hot water radiators for space heating, the heating of this building was supplied 343 
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through ventilation without using heat recovery. However, the heat recovery has been 344 

mandatorily required for decades in Norway in ventilation.  345 

Fig. 11(a) shows the heating energy usage of building 02 in the two consecutive days. It was 346 

clearly shown that the high heating demand started at 04:00 in the morning, which was consistent 347 

with the typical daily load profile 4. However, it was much earlier than the normal building 348 

occupied hours. The feedback from the building operator indicated that the occupants in this 349 

building continuously complained about the thermal comfort during the morning time. The 350 

heating period was therefore extended in order to satisfy the occupant thermal comfort and to 351 

provide freezing protection [26]. 352 

4.2 Building 14 – Typical daily load profile 6 353 

Building 14 is a sports center, which was usually operated till midnight. The heating demand 354 

of this building in the two consecutive days is illustrated in Fig. 11(b). The major characteristics 355 

of the two-day heating demand matched well with that of the typical daily load profile 6. The 356 

highest heating demand generally occurred around 19:00. This high heating demand was 357 

probably related to the hot water usage for the shower requirement. The water usage data of this 358 

building in the same two days are presented in Fig. 12. It was clearly shown that there was a high 359 

peak of the water usage at around 19:00, which was in line with the heating energy usage profiles. 360 

It was also found that the water usage of this building dropped to zero at 01:00 which also 361 

matched with the heating demand variation.    362 

4.3 Building 17 – Typical daily load profile 7 363 

Building 17 is a multi-functional building with offices, educational rooms and laboratories, 364 

which was constructed around the year 1996. As shown in Fig.  11(c), the two-day heating load 365 

profile of this building was similar to that of the typical daily load profile 7 identified. The high 366 

heating demand period lasted till to 23:00. The feedback from the building operator indicated that 367 
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the building occupants required the building to be heated till to 23:00 for special activity 368 

requirements. 369 

4.4 Building 08 – Typical daily load profile 9 370 

Building 08 is an old building constructed in 1924 and is also a multi-functional building 371 

with offices, educational rooms, and laboratories. A clear peak and a clear trough can be 372 

observed in Fig. 11(d) at 05:00 and 21:00 respectively, which were consistent with the 373 

information presented in the typical daily load profile 9. The heating demand peak and trough 374 

were found to be mainly caused by the sudden change of the supply water temperature. The 375 

recorded data showed that the hot water was supplied at about 70oC during the daytime and 40oC 376 

during the nighttime. The sudden rise of the supply water temperature in the early morning 377 

resulted in the heating demand peak of the building while the sudden drop of the supply water 378 

temperature in the nighttime led to the occurrence of the trough in the heating load profile. This 379 

relationship between the heating energy usage and the variation in the supply water temperature 380 

was also observed in a previous study [27]. 381 

The building operator was also approached for the reason why the high heating demand 382 

started at around 05:00. However, no information on this was recorded. This is probably also due 383 

to the poor insulation of the building (i.e. U-value of 1.0 W/m2K for the exterior wall insulation 384 

and U-value of 0.7 W/m2K for the roof insulation), which might result in a longer pre-heating 385 

period before the building was occupied. 386 

4.5 Building 03 – Typical daily load profile 11 387 

Building 03 is a mix of offices and laboratories, which was constructed in 1951. The typical 388 

daily load profile 11 was very similar to the typical daily load profile 9. However, in the typical 389 

daily load profile identified, there were very few days from Monday. Fig. 11(e) illustrates the 390 

heating demand of building 03 in two days of Monday and Tuesday. It was clearly shown that 391 
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there was a heating demand peak at 07:00 and a trough at 17:00 in the daily heating load profile 392 

on Tuesday, which matched well with the typical daily load profile 11. However, on Monday, the 393 

heating demand peak occurred at 06:00. This is mainly due to the fact that, during the weekend, 394 

the heating system was either not running or running with a lower supply water temperature, 395 

resulting in a lower indoor temperature than during the weekdays. In order to achieve a desirable 396 

thermal comfort on Monday morning, the building was therefore pre-heated earlier than that 397 

during the weekdays. 398 

5. Comparison between the use of ED-based and PCC-based clustering 399 

In this section, the results of using the ED-based and PCC-based clustering were compared 400 

and presented. The same data pre-processing used for the PCC-based clustering was performed 401 

for the ED-based clustering while the commonly used k-means and ED-based dissimilarity 402 

measure were used to replace PAM and PCC-based dissimilarity measure. The optimal number 403 

of clusters for the ED-based clustering determined was 10, as shown in Figure 13, which was also 404 

determined based on Dunn index. 405 

Based on the optimal number of clusters determined, the typical daily heating load profiles 406 

can then be identified after removal of the extreme daily load profiles based on the box plot 407 

analysis. Fig. 14 presents the clustering results and the identified typical daily heating load 408 

profiles using the ED-based clustering. It can be seen that the profiles identified using the k-409 

means clustering with ED-based dissimilarity measure can still provide some useful information 410 

in the identified typical daily heating load profiles. For instance, a morning peak was observed 411 

and the building was heated till to midnight in the typical daily load profile 7, which was very 412 

similar to the typical daily load profile 6 identified using the proposed strategy.  413 

However, some profiles identified such as the typical daily load profiles 3 and 9 were too flat 414 

and cannot provide useful information for further analysis. Some important information, e.g. 415 
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05:00 heating demand peak (corresponding to the load profile 9 in Fig. 7), 04:00 high heating 416 

demand start time (corresponding to the load profile 4 in Fig. 7), 17:00 low trough 417 

(corresponding to load profile 11 in Fig. 7), identified by the proposed strategy cannot be 418 

identified using the k-means clustering with ED-based dissimilarity measure. In addition, some 419 

profiles such as the load profiles 2 & 7, and the load profiles 6 & 8 presented in Fig. 14 showed 420 

very similar trends but with different magnitudes. This further demonstrated that the ED-based 421 

dissimilarity measure tends to identify daily load profiles that were similar in terms of the 422 

intensity. 423 

The heat map in Fig. 15 illustrated the number of days belongs to a typical daily load profile 424 

of different buildings when using the ED-based clustering. The order of the buildings in the map 425 

was also determined based on the hierarchical clustering. Compared to the results presented in 426 

Fig. 10, it was clearly shown that the building heating energy usage cannot be characterized by 427 

the most dominant load profiles as there was no clear difference between the number of days 428 

belong to the most dominant typical daily load profile and that belongs to the other typical daily 429 

load profiles. It was also demonstrated that it is difficult to use the ED-based clustering identified 430 

typical daily load profiles for building classification. 431 

6. Conclusions 432 

Understanding multiple buildings energy performance requires advanced data analytics. This 433 

paper presented a variation focused Partitioning Around Medoids (PAM) cluster analysis strategy 434 

to identify the typical daily load profiles of higher education buildings, in which Pearson 435 

Correlation Coefficient was used as the dissimilarity measure to group the daily load profiles on 436 

the basis of the variation similarity instead of the magnitude similarity.   437 

The performance of the proposed strategy was evaluated using the heating energy usage data 438 

of 19 higher education buildings in Norway collected from 2011 to 2013. The results showed that 439 
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the proposed strategy can identify and discover the information related to building daily heating 440 

energy usage characteristics, including daily high heating demand start time and end time, the 441 

peaks, troughs and variations of daily heating energy usage. The results obtained also confirmed 442 

the effectiveness of the proposed strategy in identifying the typical daily heating energy usage 443 

profiles in terms of the variation similarity.  444 

The identified daily heating energy usage characteristics can be used to assist in the 445 

development of advanced building control and fault detection & diagnosis strategies, and cost-446 

effective demand side management techniques. The information discovered is also useful to 447 

support the energy planning and retrofitting of higher education buildings. This method could be 448 

adapted to identify the daily energy usage characteristics of other types of buildings. 449 
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Table 1 Major information of the case study buildings 518 

Building 
NO. 

Construction 
year 

Main 
functions#  

Floor 
area (m2) 

Building 
NO. 

Construction 
year 

Main 
function 

Floor 
area (m2) 

01 1962 O/E/L 15,026 11 1968 O/L 12,861 
02 1965 O/L 3,030 12 1910 O 3,375 
03 1951 O/L 2,215 13 1981 O/E/L 3,955 
04 1960 O/E/L 7,598 14 1966 S 4,046 
05 1966 O/E/L 11,400 15 1975 O/E/L 18,175 
06 1958 O/E/L 12,600 16 1951 O/E/L 5,053 
07 1965 O/E/L 9,168 17 1996 O/E/L 2,476 
08 1924 O/E/L 4,116 18 2002 E/L 4,312 
09 1960 O/L 5,028 19 2000 O/E/L 52,773 
10 1961 O/L 17,936         
# O: office; E: educational room; L: laboratory; S: sports complex. 519 

Table 2 Key characteristics of the identified typical daily heating energy usage profiles 520 

Typical 
load 

profile 
No. 

Est. high 
heating 
demand 
period 

Weekday load 
profile almost 

evenly 
distributed 

Main characteristics 

1 07:00-
15:00 

Yes There was a high heating demand from 07:00 to 10:00. The 
heating demand was then gradually decreased till to 16.00 and 
then kept relatively stable. 

2 07:00-
17:00 

No The high heating demand occurred during the office hours. A 
clear heating demand peak can be observed at 07:00.  

3 07:00-
18:00 

No There was a clear heating demand peak at 07:00 and the 
heating demand was then gradually decreased till to 18:00. 

4 04:00-
17:00 

No A high heating demand started at around 04:00 and then kept 
relatively stable till to 17:00. 

5 07:00-
18:00 

Yes The daily heating demand variations were similar to that of the 
typical load profile 1. 

6 09:00-
24:00 

Yes There was a small peak at 06:00. A high heating demand 
started at 09:00 and lasted till to the midnight. 

7 09:00-
23:00 

Yes Similar to the load profile 6 but the heating demand during the 
high heating demand period was more stable.  

8 06:00-
18:00 

No Similar to the load profile 2. However, there was a clear trough 
at 19:00. 

9 05:00-
20:00 

No Similar to the load profiles 2 and 8 but there was a clear peak 
at 05:00 and a clear trough at 21:00. 

10 Not clear Yes The heating demand during 24 hours was relatively stable. 
However, the demand in the early morning was slightly higher 
than the rest of the day. 

11 07:00-
16:00 

No Similar to the load profiles 2, 8 and 9. There was a clear 
heating demand peak at 07:00 and a clear trough at 17:00. 
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Table 3 Summary of the first two most dominant profiles of individual buildings 521 

 522 

  523 

Building 
No. 

Total 
number 
of days 

The most dominant profile The 2nd most dominant profile 
Typical 

daily load 
profile No. 

Total 
days 

Percentage 
(%) 

Typical 
daily load 
profile No. 

Total 
days 

Percentage 
(%) 

1 457 5 240 53 3 79 17 
2 490 4 436 89 3 17 3 
3 486 11 252 52 8 57 12 
4 458 11 207 45 4 58 13 
5 436 5 271 62 7 36 8 
6 437 3 246 56 1 93 21 
7 471 8 300 64 11 65 14 
8 471 9 285 61 7 87 18 
9 448 10 124 28 3 118 26 
10 439 7 107 24 5 103 23 
11 471 5 175 37 7 81 17 
12 371 5 172 46 10 83 22 
13 449 3 148 33 2 127 28 
14 495 6 440 89 7 35 7 
15 382 1 94 25 3 73 19 
16 486 2 316 65 4 67 14 
17 480 7 386 80 5 40 8 
18 367 7 152 41 6 115 31 
19 427 1 116 27 5 112 26 
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 524 

Figure Captions 525 

Fig. 1 Outline of the variation focused cluster analysis strategy. 526 

Fig. 2 Comparison between the PCC and ED-based dissimilarity measures (a) ED; (b)&(c) PCC. 527 

Fig. 3 Illustration of the dendrogram with three data points. 528 

Fig. 4 Illustration of the building heating energy usage and outliers identified - building 03. 529 

Fig. 5 Dunn Index calculated for different numbers of the clusters - PCC-based clustering. 530 

Fig. 6 Boxplot of the aggregated dissimilarities of the identified clusters. 531 

Fig. 7 Typical daily heating load profiles (red) identified using the proposed strategy with all 532 
corresponding daily load profiles (gray). 533 

Fig. 8 Weekday load profile distribution in different clusters identified. 534 

Fig. 9 Dendrogram of building classification results. 535 

Fig. 10 Heat map of the typical daily load profiles in different buildings - PCC-based clustering. 536 

Fig. 11 Illustrations of the heating energy usage of the buildings in two consecutive days. 537 

Fig. 12 Water usage of building 14. 538 

Fig. 13 Dunn Index calculated for different numbers of the clusters - ED-based clustering. 539 

Fig. 14 Typical daily heating load profiles (red) identified using the ED-based clustering with all 540 
corresponding daily load profiles (gray). 541 

Fig. 15 Heat map of the typical daily load profiles in different buildings - ED-based clustering. 542 

 543 

 544 

  545 
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Fig. 1 Outline of the variation focused cluster analysis strategy. 549 

 550 

 551 

Fig. 2 Comparison between the PCC and ED-based dissimilarity measures (a) ED; (b)&(c) PCC. 552 
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 554 

Fig. 3 Illustration of the dendrogram with three data points. 555 

 556 

Fig. 4 Illustration of the building heating energy usage and outliers identified - building 03. 557 
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 558 

Fig. 5 Dunn Index calculated for different numbers of the clusters - PCC-based clustering. 559 

 560 

 561 

 562 

Fig. 6 Boxplot of the aggregated dissimilarities of the identified clusters. 563 
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 565 
Fig. 7 Typical daily heating load profiles (red) identified using the proposed strategy with all 566 

corresponding daily load profiles (gray). 567 

 568 

 569 
Fig. 8 Weekday load profile distribution in different clusters identified. 570 
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 571 

 572 

Fig. 9 Dendrogram of building classification results. 573 

 574 

 575 

Fig. 10 Heat map of the typical daily load profiles in different buildings - PCC-based 576 

clustering. 577 
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 579 
Fig. 11 Illustrations of the heating energy usage of the buildings in two consecutive days. 580 
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 582 
Fig. 12 Water usage of building 14. 583 

 584 

Fig. 13 Dunn Index calculated for different numbers of the clusters - ED-based clustering. 585 
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 589 

Fig. 14 Typical daily heating load profiles (red) identified using the ED-based clustering with all 590 
corresponding daily load profiles (gray). 591 
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 593 
Fig. 15 Heat map of the typical daily load profiles in different buildings - ED-based clustering. 594 
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