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Abstract 

 

Cube satellites or CubeSats are attractive for use in space research and education 

programs. This is because of their low-cost, short development time, and ease of 

deployment. Moreover, CubeSats are able to communicate with each other, and 

assemble into swarms to carry out different functions such as wide area 

measurements and sensing. These capabilities require CubeSats to be equipped with 

an efficient, high gain, wideband and small antenna to facilitate communication links 

with each other and with ground stations. However, the limited real estate, power and 

communication opportunities of CubeSats pose real challenges to any antenna 

designs. Specifically, designs are required to meet the size and weight restrictions of 

CubeSats while yielding high gain and wide bandwidth.  To date, CubeSats employ 

wrapped-up wire dipole antennas that require deployment after launch. However, this 

adds complexity and there is a risk they might not deploy, which increases the 

likelihood of mission failure. They also have low total gain and narrow bandwidth.  

One approach to avoid deployment failure is to use micro-strip patch or slot 

antennas. However, they have low gains and narrow bandwidth. Moreover, their 

performance on CubeSats is unknown.  

This thesis, therefore, provides the first comprehensive study of existing planar 

antenna designs to determine their suitability for use on CubeSats. The study is 

focused on small size micro-strip patch and slot antennas that have the ability to 

achieve high gain, beam steering, and wide bandwidth. It shows that amongst all 

previous S-band planar antennas that are suitable for CubeSats, the best gain is only 

5.96 dB and the smallest size is 38×38×3.2 mm3 at 2.45 GHz. The qualitative 

comparison shows that only shorted patch, CPW-feed square slot and asymmetric E-

shaped antennas have suitable designs for use on CubeSats. This is followed by a 

quantitative evaluation of their performance on a 2U CubeSat. The results show that 

only the performance of the CPW-feed square slot antenna is significantly affected 

by the 2U CubeSat body. In addition, all three designs are relatively small. However, 

their main limitation is that they do not operate at the desired CubeSat ISM operating 
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frequency of 2.4-2.5 GHz band. To this end, this thesis presents a repurposed shorted 

patch and CPW-fed square slot antennas that have operating frequency of 2.45 GHz. 

It also compares their performance in the presence of a CubeSat body.  Although the 

repurposed shorted patch and CPW-fed square slot antennas have smaller size, they 

have low gains and bandwidths.  

Henceforth, this thesis proposes a wideband S-band F-shaped patch antenna for a 3U 

CubeSat. The main idea is to use two arms of the upper patch with different lengths 

and feed them by a folded ramp-shaped patch to generate a second resonant 

frequency and hence broaden its bandwidth. The results show that the antenna 

achieves a wideband of 1121 MHz (1.606-2.727 GHz) and a high gain of 8.51 dB.    

This thesis also presents a high gain coplanar waveguide (CPW)-fed slot antenna for 

use on 3U CubeSats. A key feature is the use of a Metasurface Superstrate Structure 

(MSS) to significantly improve gain and reduce back-lobe.  This antenna has been 

evaluated comprehensively using the High Frequency Simulator Structure (HFSS) as 

well as on a 3U (10 x 10 x 30 cm3) CubeSat platform. The results show that proposed 

antenna achieves a wide bandwidth of 730 MHz and a superior gain of 9.71 dB. 

Finally, this thesis presents a low profile high gain CPW-fed slot antenna for 

CubeSats. The proposed antenna is backed with a low profile metallic reflector. The 

cavity reflector is utilized to significantly improve gain and reduce back lobe 

radiation. The antenna has a compact size of 36×36 mm2, meaning it is compatible 

with any CubeSats standard structure. It occupies only 12.96% of a 1U CubeSat’s 

surface and 6.48% of a 2U CubeSat’s surface. The results show that the proposed 

antenna achieves a superior gain of 8.62 dB and a bandwidth of 109 MHz.
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Chapter 1 

 

INTRODUCTION 

 

1.1 Satellite Communications  

Satellites communication was first demonstrated by the United States of America 

(USA) navy in 1954. The project, called Communication Moon Relay (CMR), used 

the moon as a natural communication satellite to reflect radio waves back to a ground 

station. In particular, the moon was used to relay operational and facsimile messages 

in the Medium Frequency/High Frequency (MF/HF) range [1].  

To date, satellites have become an essential part of our everyday life. They have 

many advantages. Amongst them, they include enabling communication links 

between users located in different parts of the Earth; for example, in the CMR 

project, the moon was used to link Hawaii and Washington DC. Advantageously, 

they are able to cover large geographical areas. Apart from that, the cost of a satellite 

connection is not effected by increasing user numbers or the distance between 

communication points [2]. Moreover, satellites operate independently from terrestrial 

infrastructure. This means they are not affected by man-made and natural disasters.  

Satellites are classified based on their orbits; namely, geostationary or sun 

synchronous. Geostationary satellites also known as Earth-synchronous satellites 

orbit the Earth's axis as fast as the Earth spins; see Figure 1.1 (a). These 

geostationary satellites operate at an altitude of about 36,000 km over a single point 

above the Earth and their path follows the equatorial plane of the Earth; examples are 

those used by video or TV communications systems [3].   

Sun synchronous, aka polar orbiting, satellites operate at altitudes of 800 to 900 km. 

They cross the equator at the same local time every day with an orbital velocity of 

about 7.8 km/s; see Figure 1.1 (b). They are mainly used for (i) communications; 
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e.g., mobile telephony, or (ii) remote sensing; e.g., land imaging and weather 

forecasting. Another application is military, where they are used for spying, watching 

the borders of countries, and to enable secure communications [4]. As shown in 

Table 1.1, these conventional satellites are relatively large and heavy with most 

weighing in at above one tonne, and have high power consumption in the range of 1 

kW. Moreover, they are able to carry high gain (usually parabolic) antennas for 

ground communications, and their typical life cycle exceeds 10 years. Lastly, they 

are very expensive, costing upwards of one billion dollars [5]. Compared with 

conventional and medium sized satellites, as set out in Table 1.1, small satellites cost 

less and easy to construct but have fewer capabilities.  

 

Figure 1.1. Satellite orbits: (a) geostationary, and (b) sun synchronous. 

1.2 Pico satellites  

Pico-satellites (picosats) are extremely small and lightweight. They have a wet mass 

between 0.1 and 1.33 kg. The most common type of picosats is CubeSat [4]. 

Advantageously, CubeSats can be constructed using Commercial Off-The-Shelf 
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(COTS) electronic components [6]. Figure 1.2 depicts a 10-cm CubeSat with a mass 

of no more than 1 kg. All CubeSats have a fixed size of 10cm×10cm with three 

different lengths: 10cm, 20cm, and 30cm. These lengths correspond to the 

requirement of the Poly-Pico satellite Orbital Deployer (P-POD) [7]; a standardized 

CubeSat deployment system developed by students at Cal Poly San Luis Obispo. As 

shown in Figure 1.3, P-POD is capable of carrying three standard CubeSats and can 

be released as secondary payloads on a wide range of launch vehicles. Consequently, 

they can be deployed from standard rockets or more recently from the International 

Space Station (ISS) [8]. Indeed, they can be placed in a single launcher/tube. A 

launch vehicle carrying such a tube can then simply release the satellites upon 

reaching their target orbit.  

 

Table 1.1. Classifications of small satellites 

Type Mass 

(kg) 

Cost 

(US $) 

Time to 

Build 

(Year) 

Antenna 

Gain 

Power  

Consumption 

(W) 

Conventional  >1000 0.1-2 B >5  Very high ~ 1000  

Medium  500-1000 50-100 M 4  Very high ~ 800  

 

Small 

Satellites 

Mini 100-500 10-50 M 3  High 53.2 

Micro 10-100 2-10 M ~ 1  Medium 35  

Nano 1-10 0.2-2 M ~ 1  Medium 7  

Pico 1-1.3 20-200 K <1  Low 2  

Femto <0.1 0.1-20 K <1  Low 0.006  
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Figure 1.2. An example CubeSat (10cm×10cm×10cm) [9].  

http://www.sciencedirect.com/science/article/pii/S0094576510002316#gr7
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Figure 1.3. A poly-pico satellite orbital deployer [10]. 

Interestingly, CubeSats can be networked to form a swarm comprising of a 

constellation of satellites; see Figure 1.4. The resulting swarm allows CubeSats to 

have a longer contact time with ground stations and enables them to collectively take 

multiple measurements over a larger geographical area; consequently, they allow 

sensing missions to conduct comprehensive assessments of a given geographical 

region that otherwise would be impossible with a single conventional satellite [11, 

12]. Moreover, CubeSats can jointly maintain a fixed or relative position with each 

other in a distributed manner [13]. An example CubeSat swarm is RapidEye. It is a 

commercial venture with a constellation of five mini-satellites deployed in 2008 and 

operate in the low earth orbit (LEO) (630 km) [5]. In another example, the authors of 
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[14] and [15] reported the launch of six aerospace pico-satellites by Stanford 

University using an orbiting automated pico-satellite launcher. Four of these pico-

satellites have a dimension of 4×3×1 cubic inches, and the other two measure 8×3×1 

cubic inches. Notably, the entire launch costs only USD $30,000 [16]. The Edison 

Demonstration of Smallsat Network (EDSN) is the first 1.5U CubeSat swarm project 

demonstrated by NASA [17]. The EDSN swarm consists of eight CubeSats. Each has 

a mass of about 1.7 kg. The mission goal is to conduct multi-point science and 

transfer collected data to a ground station. Hence, EDSN can be used as a platform 

for distributed space weather measurements or other experiments that require 

distributed and multi space radiation measurements in LEO. The pico-satellites in the 

swarm use the Ultra-high frequency (UHF) band at a data rate of 9.6 Kbits. It also 

provides a communication link between CubeSats and a ground station over S-band.  

To date, CubeSats have found applications in fields such as education and scientific 

experiments. Specifically, CubeSats programs provide education and training to 

students, scientists and engineers in space related skills; e.g., design production, test, 

launch and orbital operations of satellites. Many universities and engineering schools 

in Europe, Japan, and the United States of America have already developed, 

launched and operated their own pico-satellites. For example, Picpot [18] is an 

educational pico-satellite built at the Politecnico di Torino University. In particular, 

pico-satellites are good examples of a complex system with specific constraints and 

requirements. Consequently, building one allows students to learn techniques and 

procedures related to pico-satellites development. Apart from that, CubeSats enable 

missions that cannot be accomplished by large satellites. For example, missions that 

require high temporal and spatial resolution. In this respect, CubeSats can be used to 

gather data from multiple points. For example, ocean altimetry measurements, 

remote sensing of sea ice, land and ocean temperature measurements, environmental 

disaster monitoring, atmospheric temperature and humidity measurements [19]. One 

example is the Disaster Monitoring Constellation (DMC) project [16, 20]. It consists 

of six micro satellites that are used to monitor and mitigate man-made and natural 

disasters; e.g., the Indian Ocean tsunami in 2004. Apart from that, the international 

community is working to form and launch swarms of pico-satellites. One example is 

the QB50 project, which is collaboration between 15 different partners from all over 
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the world [21-23]. Its aim is to provide affordable access to space and in-situ 

measurements of Earth’s lower thermosphere/ionosphere region.  

 

Figure 1.4. A swarm with seven small-sized 1U CubeSats. 

There are many criteria and challenges when designing a CubeSat. The primary ones 

are listed in Table 1.2. Their limited size means only a small area is available for 

solar cells, which in turn limits the generated power that feeds all components. The 

other challenge is the small power budget of usually no more than 2W, which limits 
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or entirely eliminates backup units. Consequently, CubeSats have low reliability, and 

hence, they have a short lifetime ranging from a few weeks to a few months [24]. As 

a result, CubeSats need to operate autonomously and must be able to handle any 

anomalies that occur. They also need to be equipped with lightweight and small 

antennas that provide high gain and wide bandwidth. These antennas make it 

possible to track and control CubeSats from a ground station. In addition, antennas 

are important in space missions that require CubeSats to communicate with each 

other in a swarm and to transmit payload data; e.g., images to a ground station.  

Table 1.2. Pico- satellites system challenges and their importance 

 

1.3 Antennas for CubeSat Communications 

CubeSat communications require the development of small size, low profile, low cost 

and high gain antennas. To date, past works on antenna designs for small satellites 

have considered different antennas. They include: 

Challenges Implications Operating 

Ranges 

Small size • Limited surface area, primarily used for solar cells, 

meaning the energy harvesting rate is small, which in turn 

affects operational lifetime.  

• Constrains available resources such as batteries, and hence, 

affects mission durability. 

• Bounds on antenna size.  

≤10×10×10 cm3 

Small mass 

 

 

 

• Limits the size and capacity of battery, which in turn 

bounds the power budget of communication components. 

• Precludes the use of standard Attitude Determination and 

Control Systems (ADCS) for pico-satellites with mass less 

than 1.3 kg [25].  

• Obviates the use of high gain, and usually heavy, 

directional horn antennas. Moreover, additional weight will 

be incurred if satellites are equipped with complicated 

reflectors and arrays to achieve high gains. 

≤ 1.3 kg 

Limited power  • Mass and surface area restrictions affect the amount of 

generated power from solar cells, which in turn limits 

redundancy.  

• Limits the use of high performance, but power hungry, 

elements such as steering arrays and ADCS.  

• Low hardware redundancy, and hence, increases the 

probability of system failure. 

≤ 2 W 

Limited 

bandwidth and 

communication 

opportunities 

 

• Affect applications that require high data rates. For 

example, mapping, and downloading high resolution 

images to a ground station [26].  

• Reduced transmission capacity due to the loss of contact 

with ground stations. 

 1.2 – 9.6 kbit/s 
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• Omni-directional 

They are required by the Telemetry, Tracking and Command (TTC) sub-system to 

facilitate space to ground communications. They include monopole, patch-excited 

cup and helix antennas. While simple to deploy, these antennas tend to radiate in 

all directions. They also occupy a large area. As a result, pico-satellites typically 

use lightweight and small sized micro-strip patch and slot antennas for TTC [27, 

28]. 

• High gain  

These antennas are mainly used for high speed down-links to ground stations. 

High data rates require an antenna with a gain of about 12 dB [27]. However, the 

very limited space and power on pico-satellites make it difficult to accommodate 

such a high gain antenna. The most common type of high gain antennas used by 

conventional satellites is a horn antenna with a pointing mechanism and S-band 

quadrifilar-helix antennas; see [27]. In addition, the authors of [29] proposed a 

high gain deployable hemispherical helical antenna for CubeSat to ground 

communications.  

• Medium-gain and low backward radiation 

These antennas are mainly used by receivers in the Global Positioning System 

(GPS) to ascertain the position, velocity, and timing of pico-satellites in LEO. 

Many types have been developed; namely, patch-excited cup and shorted–annular 

patch antennas. They have a gain of about 12 dB, operate at 1.575 and 1.227 GHz 

and have a small size. Also, they produce low back radiation to minimize 

interference with satellite components. Recently, in [27], the authors presented a 

Geohelix ceramic loaded quadrifilar-helix antenna.  

• Directive self-steering  

The main function of these antennas is to provide circular polarization (CP) in 

order to establish communication links between satellites. Furthermore, beam 

steering techniques can be employed to increase directivity and achieve higher 
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gains [27]. In this respect, pico-satellites use self-steering. In contrast, 

conventional satellites employ dynamic beam steering [30]. 

• Planar antennas  

They have a number of characteristics, including low profile, low cost, small 

size, are easily to fabricate and do not require a deployment mechanism. These 

characteristics make planar antennas suitable for CubeSat communications. The 

major limitations of many low-profile planar antennas are their narrow 

bandwidth and relatively low gains. However, many techniques and approaches, 

such as photonic band-gap (PBG) structures, cavity-backed model, folded-patch 

approach, and asymmetry structure, can be used to enhance their gain and 

bandwidth.  

1.4 Frequency Bands Allocation for CubeSats 

CubeSats use an array of frequency bands to provide communication links between 

CubeSats and ground stations. These frequency bands include VHF (30-300 MHz), 

UHF (300 MHz – 3 GHz), S-band (2-4 GHz), C-band (4-8 GHz), and X-band (8-12 

GHz). The majority of CubeSats operate at the amateur band. They use frequency of 

about 437 MHz which is a UHF-band for downlink communications and 144 MHz in 

VHF-band for uplink communications. Antennas that use these frequency bands are 

wire antennas, i.e., dipole and monopole antennas. Other CubeSats use patch and slot 

antennas that operates in the S-band or C-Band frequencies for downloading images 

to ground stations and providing a communication link between CubeSats. Recently, 

some CubeSat programs are operating in the X-Band frequencies to further reduce 

the size of the antenna. 

1.5 Motivation 

Most antennas for CubeSat communications are designed to cover a specific area. On 

the other hand, the weight and size restrictions of CubeSats constraint the antenna 

design space. In particular, solar cells compete with the space used to place antennas. 

Apart from that, some antenna designs for CubeSats require a deployment 

mechanism; examples include linear wire antenna, Yagi-Uda antenna, and helical 
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antenna [31-35]. A key concern is that any problems with their deployment system 

may lead to entire system/mission failure.   

An obvious solution to the deployment problem is to use planar antennas, i.e., slot 

and micro-strip patch antennas. They, however, have low gains and efficiency [36]. 

Current 2.45 GHz patch antennas that are suitable for use on CubeSats have a 

maximum gain of 5.9 dB with bandwidth of 1500 MHz while for slot antennas the 

maximum gain is 4 dB with small resulting bandwidth of 110 MHz [37]. The 

resulting low gain is due to their bidirectional patterns.  

1.6 Thesis Aims and Contributions 

To date, no works have examined the suitability of existing planar antenna designs 

for use on CubeSats. This thesis, therefore, aims to study the suitability of existing 

small size micro-strip patch and slot antennas that have the ability to achieve high 

gain, beam steering, and wide bandwidth. In particular, this thesis aims to: (1) 

present a quantitative evaluation of the most suitable antenna designs for CubeSats, 

(2) design a low profile S-band patch antenna for CubeSats that improves upon 

current state-of-the-art in terms of bandwidth and gain, (3) design a unidirectional 

CPW-fed slot antenna with a superior gain using MSS, and (4) design a miniaturized 

cavity backed CPW-fed slot antenna with high gain that operates at 2.45 GHz.   

Henceforth, this thesis contains the following contributions: 

1. This thesis first provides a comprehensive and qualitative comparison of 

micro-strip patch and slot antennas in terms of their mass, size, gain, beam 

steerability, type of polarization, operating frequency band, and return loss.  

2. This thesis then presents a quantitative evaluation of three planar antenna 

designs that best address CubeSats challenges on a common platform. 

Critically, it studies how their performance is affected by a 2U CubeSat body. 

It compares and evaluates these designs with and without a 2U CubeSat and 

recorded their performance in terms of volume, gain at 2.45 GHz, bandwidth, 

return loss, robustness, beam steerability and cost. In addition, the Quasi 

Newton method is used to shift the operating frequencies of shorted patch and 
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CPW-fed slot antennas to 2.45 GHz (S-band). This thus allows it to operate in 

the unlicensed Industrial, Scientific and Medical (ISM) band without 

critically affecting its radiation performance.  

3. This thesis proposes a wide band F-shaped patch antenna for S-band CubeSat 

communications. To broaden bandwidth, it uses two arms of the upper patch 

with different lengths to generate a second resonant frequency. It then studies 

the effect of the arm length and width on the return loss, resonant frequency 

and impedance bandwidth on a 3U CubeSat. The antenna has a small size and 

achieves a wideband, high gain of 8.51 dB and small return loss of -32.85 dB 

at 2.45 GHz.  

4. This thesis proposes the design of a high gain CPW-fed slot antenna for 2.45 

GHz CubeSat communications. The antenna has the highest gain amongst 

antennas that are suitable for use on a CubeSat. A key novelty is the use of 

MSS to significantly increase the gain from 2.52 to 5.67 dB. This gain further 

improves to 9.71 dB when the CPW-feed slot antenna is placed on the surface 

of a cube satellite constructed using Aluminium. The antenna has been 

evaluated comprehensively using HFSS as well as on a 3U CubeSat platform. 

5. This thesis proposes a low profile high gain cavity backed CPW-fed slot 

antenna that operates at 2.45 GHz. The main idea is to use a part of the 

CubeSat’s body as a low profile cavity reflector to redirect the back lobe 

pattern forward. This design is more robust and occupies less surface area on 

CubeSats; i.e., 12.96% for 1U and 6.48% for 2U as compared to using a 

MSS. The proposed antenna has a small size of 36mm×36mm and a total gain 

of 8.6 dB; in contrast, amongst all previous S-band planar antennas that are 

suitable for CubeSats, the best gain is only 5.96 dB and the smallest size is 

38×38×3.2 mm3 at 2.45 GHz. 

1.7 Publications 

 This thesis has resulted in the following papers: 
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1. F. EM. Tubbal, R. Raad, K-W. Chin, and B. Butter, “S-band Shorted Patch 

Antenna for Inter Pico Satellite Communications,” IEEE 8th International 

Conference on Telecommunication System, Services and Application (TSSA 

2014), Bali, Indonesia, pp. 1-4, October, 2014. 

 

2. F. EM. Tubbal, R. Raad, K-W. Chin, and M. A. Madni, “Low-profile Planar 

Antennas for Inter Cube Satellite Communications,” 4th International CubeSat 

workshop, London, United Kingdom, May 2015. 

 

3. F. EM. Tubbal, R. Raad, and K-W. Chin, “A Survey and Study of Planar 

Antennas for Pico-Satellites,” IEEE Access, vol. 3, pp. 2590-2612, December 

2015.   

 

4. F. EM. Tubbal, R. Raad, K-W. Chin, and B. Butters, "S-band Planar 

Antennas for a CubeSat," International Journal on Electrical Engineering and 

Informatics, vol. 7, no. 4, December 2015. 

 

5. F. Em. Tubbal, R. Raad, K-W. Chin, B. Butters, L. Matekovits and G. 

Dassano "A High Gain S-band CPW-fed Slot Antenna for CubeSat 

Communications,". Submitted to IEEE Access. 

 

6. F. EM. Tubbal, R. Raad, and K-W. Chin, "A Wideband F-shaped Patch 

Antenna for S-band CubeSat Communications," 10th International Conference 

on Signal Processing and Communication Systems (ICSPCS), Surfers 

Paradise, Gold Coast, Australia, pp. 1-4, 19-21 Dec. 2016.  
 

7. F. Em. Tubbal, R. Raad, and K-W. Chin, "A Low Profile High Gain CPW-fed 

Slot Antenna with a Cavity Backed Reflector for CubeSats", unpublished.   

1.8 Thesis Structure  

The remainder of the thesis is organized as follows: 

1. Chapter 2. This chapter presents the first comprehensive survey and study of 

planar antennas for pico-satellites. Specifically, this chapter provides a 

qualitative comparison of planar antenna designs and their suitability for use 

on CubeSats. 

2. Chapter 3. This chapter presents a quantitative evaluation of the most suitable 

planar antenna designs on a common platform.  

3. Chapter 4. This chapter studies and compares repurposed shorted patch and 

CPW-feed square slot antennas for CubeSat communications. Specifically, it 

studies the impact of a 2U CubeSat’s surface on the performance of these 

antennas. It also proposes the design of a wideband F-shaped patch antenna for 

S-band CubeSats communications. The key idea is to feed the resonance arms 
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of the upper F-shaped patch by a folded ramp-shaped patch. This generates two 

resonant frequencies and hence achieves a wide bandwidth. 

4. Chapter 5. This chapter outlines a high gain S-band CPW-fed slot antenna for 

CubeSat communications. A key feature that results in high gain is the use of a 

MSS as a resonant cavity model. This has the effect of redirecting the back-

radiation pattern forward.  

5. Chapter 6. This chapter proposes a low profile high gain CPW-fed slot 

antenna. The main idea is to use a part of the CubeSat’s body as a low profile 

cavity reflector to redirect the back lobe pattern forward.  

6. Chapter 7. This chapter concludes the thesis, and provides a summary of 

research outcomes and future research directions. 



  

15 

 

Chapter 2 

 

LITERATURE REVIEW: MICRO-STRIP PATCH AND SLOT ANTENNAS  

 

This chapter presents a unique collection of techniques and approaches that apply to 

micro-strip patch and slot antennas in order to achieve miniaturization, high gain and 

wide bandwidth. It then provides an extensive qualitative comparison of these 

antennas in terms of gain, volume, mass, beam steerability, polarization, operating 

frequency and return loss.  

2.1 Micro-strip Patch and Slot Antennas 

There is growing interest in planar antennas that can be integrated easily with Radio 

Frequency (RF) and microwave circuits. However, using planar antennas for pico-

satellite communications must overcome a number of constraints that affect their 

performance; see Table 2.1. They must have low profile, high gain, wide bandwidth, 

and achieve beam steerability. The following sections present planar antenna 

designs, problems addressed by a given antenna designs, their advantages and 

limitations. 

2.1.1 Micro-strip patch antennas  

Patch antennas have applications in the medical field such as skin cancer detection   

[38, 39], on CubeSats used for Earth observation [40], and radar scanning, i.e., 

detecting moving targets [38]. Figure 2.1 shows a typical micro-strip patch antenna 

that consists of a metal (‘Patch’) on the top of a grounded dielectric substrate. This 

patch can be made of different shapes; rectangular being the most common shape. 

Moreover, the patch antenna is fed by a micro-strip transmission line. The patch and 

feed line are usually made from copper. 
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Table 2.1. Antenna design challenges for pico-satellites 

Design Properties Performance Relevant Works 

Small size and low mass • Low power consumption, easy to construct, cheap, occupy a small area, 

and provides sufficient real estate to mount solar cells.  

• Do not dominate the satellite profile or weight budget. 

 

[40-56] 

 

  

Circular polarization  

 
• Eliminates polarization mismatch losses.  

• Only 3 dB loss regardless of antenna orientation.  

[41-47], [52-54] and [6, 57-67] 

 

 

Impedance matching  • Maximize power transfer or equivalently, minimize power loss. 

• Minimize signal reflection.  

[6, 40-55, 57-70] 

High gain and wide bandwidth  • Long distance communication, increased contact period with ground 

stations.  

• Enable inter-satellite communications.  

 [41, 42], [45-47], [52-54], [6, 56-66] and 

[69] 

Frequency re-configurability 

 
• The ability to radiate more patterns at different frequencies and 

polarizations to enhance system performance. 

[64] and [69]. 

Beam steerabilty • Saves power by directing an antenna’s beam to a desired direction.  [54], [57], [61, 62], [6] and [65] 

 

 

 

 

 

http://en.wikipedia.org/wiki/Signal_reflection
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Table 2.2 shows designs aimed at micro-strip patch antennas with the goal of 

achieving beam steerability, increasing gain, reducing their size, and enhancing 

supported bandwidth. These designs achieve gains ranging from 1.53 to 18 dB, with 

an antenna size ranging from 3.14×0.64×0.078 cm3 to 12×16.8×2.5 cm3. Moreover, 

they work in the L, S, C and X frequency bands (1 – 14.15 GHz). In terms of gain 

and size, most of these designs are suitable for CubeSat communications.  

The next section further discusses these proposals in more details in terms of their 

gain and steerability. After that Section 2.1.1.2 presents antennas that have wide 

bandwidth followed by Section 2.1.1.3, which presents those that are size sensitive.  

 

 

Figure 2.1. A micro-strip patch antenna. 

 
 

 

 



Literature Review                                                                                                                                18 

  

     

 

Table 2.2. Different micro-strip patch antenna designs and their performance 

Reference Gain (dB) Volume (cm3) Band (GHz) 

Osorio et al. [6] 6.9 9×9×0.5 C-Band (5.8) 

Ma et al. [61] 7.5 15×15×0.96 S- Band (2.37) 

Hu et al. [65] 18 16×16×0.35 C-Band (6.175) 

Nascetti et al. [40] 5.9 3.97×1.2×0.21 S-Band (2.45) 

Mizuno et al. [62] 6.25 10×10×0.16 C-Band (10.5) 

Budianu et al. [57] 4.8 10×10×0.16 S-Band (2.45) 

Qian et al. [66] 5.02 12×16.8×2.5 Ku-band (14.15) 

Montaño et al. [67] n/a 8.01×8.01×2.25 S-Band (2.40) 

Iwasaki [59] 6 7×7×0.16 L-Band (1.525) 

Ferrero et al. [42] 6.2 2.7×2.7×0.0892 S-Band (3.5) 

Massa et al. [58] 5.9 8.8×8.8×2.5 C-Band (4.32) 

Chiu et al. [41] 2.58 or 2.4 5.4×5.4×0.7 and 4×4×0.7 C-band (3.5-6.5) 

Malekpoor et al. [46] 4.9 or 3.9 2.8 ×1×0.7 and 1.8×1.5×0.7 UWB (3.57-11.98) 

Holub et al. [44] n/a 2.21×2.21×1.5 L-band (1.575) 

UHF-band (0.869) 

Ouedraogo et al. [51] 5.96, 4.8, and 

4.23 

3.14 ×0.64× 0.078  S- band (2.45) 

Addaci et al. [48] n/a 3.14 × 2.72× 1.37 S- Band (2.4-2.5) 

Rahmadani et al. [43] 1.53 3.8 ×3.8 S- Band (2.45) 

Malekpoor et al. [56] 8 3.4 ×1.3×0.7 C-Band (6.73) 

 

2.1.1.1 Steerability and gain improvement  

Recently, beam-steerable and high gain antennas have received considerable attention 

due to their enhanced radiation performance and suitability for long distance 

communications. The main techniques used to achieve beam steering include 

sequential phase-rotation, retrodirective array [62], beam forming algorithm [57], and 

for increasing gain, photonic band-gap (PBG) structures [66], and single proximity 

coupled feed [59]. The conventional pointing mechanisms, such as [6], for steering 

antenna beams are not suitable for use by pico-satellites because of their size and 

mass constraints. The following approaches are used to achieve steerabilty and to 

enhance antenna gains: 

• Sequential phase-rotation 

Sequential phase-rotation is a popular approach. The main idea is to feed each 

sub-array element sequentially by making adjacent patches orthogonally oriented 

(90°) to achieve CP at the following phases: 0°, 90°, 180°, and 270°. In [6], 

Osorio et al. propose a square antenna array with nine identical elements (3×3). 
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Each element is formed by a 2×2 sub-array of rectangular patches. Adjacent 

patches are orthogonally oriented to provide CP. Beam steerability is achieved by 

feeding the sub-arrays at 00, 900, 1800, and 2700 using a phase shifter. They 

reported beam steerability and a high gain of 6.9 dB. The use of rectangular 

patches leads to a reduction in mutual coupling between adjacent patches. This 

improves performance due to the isolation between antenna arrays. This also 

leads to a reduction in interference between array elements. Its main limitation, 

however, is the low coupling between the feed line and the radiating patch. This 

significantly affects impedance matching and radiating efficiency. To solve this 

problem, Osorio et al. propose moving the feed line slot back to the centre of the 

patch where the coupling through the electrical dipole is maximized. Another 

limitation is its inability to switch between two different polarizations, which is 

an important feature as it helps enhance the reception of weak signals.  

Micro-strip arrays can provide various radiation characteristics with their feed 

networks, which are often designed using power dividers (or a combiner) to 

deliver a RF signal with specific amplitude and phase to each radiating element. 

In [61], Ma et al. propose a technique to achieve polarization diversity and an 

electrically steerable radiation pattern. The main approach is to use a three quasi-

lumped coupler and a 900 phase delay line. The operation of these couplers can 

be switched between the T-junction divider mode and 3-dB hybrid mode by 

controlling the capacitance value of the lumped capacitors. By connecting this 

feed network to four rectangular radiating elements of the micro-strip array, the 

T-junction divider provides linear polarization (LP) while a 3-dB hybrid [71] 

provides CP. This is important as it achieves the best signal strength and 

mitigates multipath fading. Moreover, the beam steering capability of circular 

polarisation allows a link to be established when re-orienting two satellites. It is 

interesting to note that steerability and high gains of 7.1dB and 7.5 dB are 

obtained for CP and LP respectively. One major drawback is the antenna size, 

i.e., 15×15×0.96 cm3, which exceeds the size of pico-satellites.  
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Power dividers, which distribute power to different radiating elements, facilitate 

beam steering control. In [65], Hu et al. use a two-way Wilkinson power divider 

[72] to feed a network array that has sequential rotated elements. This power 

divider provides high isolation and 900 phase shift between adjacent radiating 

elements and sub-arrays. This is important as it achieves broadband CP at high 

gains. They reported beam steerability, wide bandwidth and a superior gain of 18 

dB. This design achieves wider bandwidth and much higher gain than the designs 

presented in [6] and [61]. Compared to [61], which uses a three-port power 

divider, the two-way divider in [65] occupies a smaller area because it reduces 

the total size of the feeding network layout. Its main limitation is the large 

antenna size (16cm×16cm×0.35cm). This has a non-negligible impact on the 

actual surface area used for solar cells, and hence energy harvesting rate, which 

in turn affects operational lifetime. Another limitation is the use of a 900 phase 

shifter, which has a significant impact on cost, dimension and is complex to 

control.  

One of the most popular power divider designs is the Wilkinson power divider 

[73]. It splits the input power signal into n signals of equal amplitude and phase, 

and is commonly applied in antenna array systems that require parallel feed 

systems. In [40], Nascetti et al. used a Wilkinson structure to design a power 

divider that feeds a network array of four identical patches placed on a 1U 

CubeSat face. This power divider design provides high isolation between output 

ports at good impedance matching. The main idea is to feed every two adjacent 

patches that are orthogonally oriented (900) using a power divider to achieve CP 

at high gain. This is important as it increases the reception and signal strength; it 

thus helps establish communication links with a ground station and other 

CubeSats. The design achieves a maximum gain of 5.9 dB and a return loss of -

15.05 dB at an operating frequency of 2.45 GHz for a single patch. Moreover, the 

authors used all four patches to achieve a high gain of 7.3 dB and a small return 

loss of -25 dB at 2.45 GHz. Compared to the designs in [61], [6], and [65], the 

one reported in [40] has a much smaller antenna size, i.e., 3.97×1.2×0.21cm3, and 

less complex. However, it is used only on one face of a CubeSat. This means no 

cross-links communications when CubeSats are oriented toward a ground station.  
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• Retrodirective (self-steering)  

Approaches that use retrodirective arrays [74-76] are becoming popular due to 

their simplicity as compared to those that use phased-array and smart antennas. 

Specifically, retrodirective antennas are able to reflect an incident signal towards 

the source direction without any prior location information. In [62], Mizuno et al. 

use a retrodirective (self-steering) array. This technique is an alternative to 

dynamic beam steering and also helps increase gain. Note that that conventional 

phased-array antennas use phase shifters to achieve beam steerability. In contrast, 

retrodirective arrays steer their beams by sensing the incoming signal without the 

need for phase shifters. Consequently, they are cheaper, less complex, lighter, and 

smaller in size. Compared to smart antennas that rely on digital signal processing 

for beam control, e.g., [61], and [6, 65], retrodirective array systems are much 

simpler and potentially faster because it does not require computation. However, 

their main limitation is the use of a high local frequency that is set to twice the 

incoming radio frequency. Hence, they incur higher power, which is a key 

concern when they are used on energy-constrained pico-satellites.  

• Beam forming algorithm approach 

Different antenna array systems use beam forming algorithms to control radiation 

patterns. Budianu et al. [57] propose to install a micro-strip patch antenna on each 

face of CubeSats. Each antenna provides CP. A beam forming algorithm is then 

used to identify the spatial signal signature of a receiver and thus maximizes 

directivity to said receiver. Also, the six antennas, one on each face of a CubeSat, 

ensure a communication link remains available at all times regardless of the 

CubeSat’s orientation. Compared to the designs in [61] and [6, 65] that use 

complex digital signal processing and a phase shifter to steer beams, beam 

forming algorithms are simpler as they are based on simply adding the electrical 

fields of adjacent antennas, and hence, have higher gains. However, this approach 

occupies precious space that otherwise could be used for solar cells. 

• Photonic band-gap (PBG) structures 

Surface-wave losses in patch antennas lead to a decrease in radiation efficiency 

and gain. Therefore, surface-wave suppression techniques are needed to enhance 
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radiation pattern efficiency. Most of these techniques are related to periodic 

structures [77-81]. The most popular ones are PBG structures [82]. In [66], Qian 

et al. propose to surround a patch antenna with a square-lattice of small metal 

pads. This leads to a substantial suppression of surface waves excited in the 

dielectric substrate. They reported a radiation efficiency of 85% and a gain of 

5.02 dB. In general, this technique achieves wider bandwidth, higher gain, lower 

backside radiation, beam shape control and surface wave suppression. 

Unfortunately, the resulting antenna is not steerable. 

• Single proximity coupled feed 

A proximity coupled feed technique is used to transfer power between the micro-

strip line and the radiating patch based on electromagnetic field coupling [83]. In 

[59], Iwasaki presents a design for a circularly polarized patch antenna with a 

single proximity couple feed line. This antenna has a cross slot with unequal 

lengths on its patch. A single proximity coupled feed is an electromagnetically 

coupled method. This electromagnetic field coupling is carried out to transfer 

power between the micro-strip line and the radiating patch. This leads to higher 

isolation between the DC supply and RF signal. It achieves a CP without the need 

for an external circular polarizer. This is important as it is less complex and 

incurs less weight and size. Iwasaki reported a high gain of 6 dB at CP which is 

important for cross-link communications in pico-satellites. Another advantage is 

the ability to control gain, resonant frequency and antenna size. 

2.1.1.2 Antenna bandwidth enhancement 

The main techniques used to enhance bandwidth include agile polarization [42], 

cavity [58], U-slot and L-slit geometries [41], folded-patch approach [46], and 

transparent mesh line geometry [67]. All these techniques achieve significant 

enhancement in bandwidth ranging from 3.8% in the 3.8 GHz frequency band to 

98.22% in bands ranging from 4 to 11 GHz. Moreover, these approaches have no 

significant effect on antenna size. All these approaches and techniques are presented 

in more details as follows:  
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• Agile polarization 

Antennas of this type are able to dynamically change their polarization state, i.e., 

they can have either linear (vertical or horizontal) or CP (left or right hand) [84]. 

In [42], Ferrero et al. designed a novel quad-polarization agile patch antenna to 

achieve simple polarization reconfigurability and to enhance bandwidth. The main 

approach is to feed a radiating patch with two orthogonal slots that are excited by 

a tuneable quasi-lumped coupler (QLC). These couples can be switched between 

two different operating modes: 3-dB hybrid coupler and directional coupler via a 

DC bias voltage to achieve agile polarization capabilities. This is important as it 

addresses multipath fading. The resulting antenna has a wide 3 dB axial ratio CP 

bandwidth of 3.8% with respect to the centre frequency of 3.5 GHz.  

• Cavity model 

This technique is used to analyze micro-strip patch geometry and to provide a 

better way to model radiation patterns [85]. In [58], Massa et al. developed a 

cavity model for a printed annular patch antenna to achieve higher bandwidth and 

simplified match feeding system. The key idea is to connect (shorting) the inner 

edge of the annular patch antenna by a cylindrical conducting wall. This in turn 

reduces the antenna’s stored energy. As bandwidth (BW) depends on the ratio 

between the radiated power (𝑃𝑟) and stored energy (𝑊𝑡) of the antenna (𝐵𝑊 =

𝑃𝑟/𝑊𝑡), reducing the amount of stored energy leads to an increase in bandwidth. 

This is important for systems requiring wider coverage; e.g., in [57] the authors 

use six antennas on the surface of pico-satellites to achieve a wide bandwidth in 

order to establish crosslinks between satellites. Advantageously, the impedance 

around their edge is low, which allows the use of a coplanar micro-strip without 

the need for an external matching network. This is important as it simplifies the 

whole design and enhances matching capability. In addition, the annular antenna 

design in [58] works as a circular patch antenna to provide circular or double 

polarization. Moreover, annular design provides wider bandwidth and better 

coverage.  
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• U-slot and L-slit geometries 

U-slot and L-slit are two common geometries employed by antennas with dual-

band operation as they help enhance bandwidth [86]. In [41], Chiu et al. propose 

two approaches based on U-slot and L-slot geometries to enhance the bandwidth 

of a conventional quarter-wave patch antenna. The key idea is to include a folded 

inner small patch within the larger patch. Also, shorting walls are used to reduce 

the overall size of the antenna to nearly a quarter wavelength of the centre 

operating frequency (3.5 to 6.5 GHz). This is important because it increases 

bandwidth and reduces antenna size. Chiu et al reported a significant enhancement 

in bandwidth with a voltage standing wave ratio (VSWR) of less than two. The 

bandwidth of a U-slot antenna is 53.54% (3.57 to 6.18 GHz) while for L-slit it is 

45.12% (4.265 to 6.75 GHz). Compared to the micro-strip patch antenna designs 

in [42, 58], the one reported in [41] has a much wider bandwidth than the design 

in [58] and smaller than that of [42]. 

• Folded-patch feed 

Folded-patch feed is used by ultra-wideband (UWB) patch antennas [87, 88], [89]. 

In [46], Malekpoor et al. use two different approaches to design shorted patch 

antennas with significant enhancement in impedance bandwidth. The first 

approach is to feed unequal resonance arms of the upper patch by a folded ramp-

shaped patch. This helps enhance bandwidth without incurring any increase in 

patch size. In the second approach, they use a folded ramp-shaped feed and one 

pin in the centre of the upper patch to increase bandwidth. They also use shorting 

pins between the patches and the ground plane to miniaturize their size. They 

reported a significant enhancement in impedance bandwidth; specifically, 94.17% 

at 4.13 to 11.48 GHz, and 98.22% at 3.57 to 10.46 GHz, for first and second 

techniques respectively. This is very important as they enable high data rates. 

Compared to the designs in [42, 58] and [41], the proposed antenna in [46] has a 

much wider bandwidth, i.e., 3.57 to 10.46 GHz and is smaller in size, i.e., 2.8 × 1 

× 0.7 cm3 and 1.8 × 1.5 × 0.7 cm3. 
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• Transparent mesh line geometry 

A meshed structure is an alternative to those that are made of transparent 

materials. They have high transparency; i.e., 80% and good efficiency; i.e., 50% 

[90]. Montaño et al. [67] propose a transparent mesh printed patch antenna design 

to be placed on the face of a 3U CubeSat for downlink or ground communications. 

The designed antenna consists of a 4.34 cm2 square meshed lines on 8.01 cm2 

squared ground plane. The main idea is to implement copper grid lines on a high 

transparent substrate; i.e., quartz material. The resulting meshed antenna is then 

placed underneath solar cells. This is very important as it maximizes the efficacy 

of the solar panels. Moreover, the gain, operating frequency, efficiency, and 

bandwidth are enhanced by varying the mesh lines width. Montaño et al. reported 

a bandwidth of 80 MHz and return loss of -22 dB at a resonance frequency of 2.4 

GHz. Compared to the designs in [41, 42], [46] and [58], the proposed antenna 

design in [67] provides more space for solar cells; i.e., its affords a CubeSat more 

power.   

2.1.1.3 Patch antenna miniaturization 

The main techniques used to reduce antenna size include meandering [44], 

metamaterial [51], cylindrical skirts with shorting pins [48], artificial magnetic 

conductor [43] and shorting pins [56]. These techniques are capable of reducing the 

antenna size by 3.14×0.62×0.078 to 3.14×2.72×1.37 cm3. Techniques and approaches 

that are used to miniaturize the patch antenna size are as follows:  

• Meandering 

This technique reduces the size of micro-strip patch antennas without affecting 

their resonant frequency. This is important as there is a constant demand for small 

antennas that operate at high frequencies; e.g., distributed pico-satellites systems 

[91]. Holub et al. [44] use a multilayer meanderly folded shorted patch structure to 

miniaturize micro-strip patch antennas. This means repeatedly folding the cavity 

of conventional patch antenna and hence, the electrical length of the whole N-

times folded cavity and the resonant frequency remain constant. This decreases the 

original shorted (quarter-wavelength) patch by 1/N, where N is a number of 
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vertically placed patch plates. Holub et al. tested two antenna prototypes; the first 

design has two cavity meanders and resonant frequency of 1.575 GHz. The second 

design has three cavity meanders and resonant frequency of 0.869 GHz. They 

reported two structures with physical lengths of 2.21cm and 1.63 cm. This is 

significant as the resulting physical lengths are much smaller than those of 

conventional rectangular patch antennas (9.52cm).  

• Metamaterial 

This is an important technique as it provides higher levels of miniaturization such 

as negative permeability metamaterial, µ-negative (MNG) metamaterial, a 

volumetric metamaterial and magneto-dielectric embedded-circuit metasubstrate 

[92-95]. Ouedraogo et al. [51] introduced a new design methodology that 

produces highly miniaturized patch antennas with a low profile, low cost, and are 

easy to fabricate. The key idea is to place complementary split-ring resonators 

horizontally between the patch and the ground plane. Optimizing the split rings 

geometry leads to high levels of miniaturization. Ouedraogo et al. simulated three 

miniaturized patch antennas at 2.45 GHz and with different radii of 1.2, 0.8, and 

0.6 cm to achieve 1/4, 1/9, and 1/16 of the traditional patch area respectively. 

Compared to traditional patch antennas, they achieve a size reduction of 75% with 

good impedance matching. This thus makes them suitable for use on pico-

satellites. They, however, have smaller bandwidth; i.e., 1.2% (29.4 MHz), 0.8% 

(19.6 MHz) and 0.4% (9.8 MHz) and have a low gain because of their back loop 

pattern. 

• Cylindrical skirts with shorting pins 

The main advantage of wire patch antennas is their low profile, large bandwidth 

and monopolar type radiation pattern. However, their ground planes are generally 

too cumbersome as compared with the size of the radiating element [96]. In [48], 

Addaci et al. demonstrated a new design with a smaller, low profile circular wire 

patch antenna that operates in the 2.4-2.5 GHz; i.e., the ZigBee application 

frequency band [97]. The key idea is to bend the metallic plates of the upper and 

lower patches to form cylindrical skirts. The upper patch is a radiating element 

while the lower patch is a ground plane. These two patches are then connected 
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using shorting pins. Moreover, the main advantage of upper and lower skirts is 

their ability to provide a better control of antenna performance in terms of 

resonant frequency and its overall dimension. Also, the distance between shorting 

wires and feeding pins allow the control of the antenna’s operating frequency 

without changing its dimensions. They reported a miniaturization ratio of 42% and 

bandwidth of 4.7%. Compared to the patch antenna design in [51], the one in [48] 

has a wider bandwidth and higher front to back ratio.  

• Artificial magnetic conductor 

An Artificial Magnetic Conductor (AMC) is a structure with a distinct reflection 

phase property. Specifically, it introduces a zero-degree reflection phase shift to 

incident waves [98]. To this end, Rahmadani et al. [43] investigated the use of 

AMC in miniaturizing micro-strip patch antennas. Specifically, they replaced the 

antenna ground plane with an AMC structure, and thereby, allowing it to act as a 

virtual ground plane. This is important as it has good radiation patterns without 

unwanted ripples or side lobes and it reduces the antenna size by 31%. The main 

limitation is its low gain; i.e., 1.53 dB.  

• Shorting pins  

Shorting pins help enhance patch antenna performance characteristics; i.e., 

bandwidth, as well as reduce their size [99]. Malekpoor et al. [56] designed a 

small size E-shaped micro-strip patch antenna. The main technique is to use two 

shorting pins between the edge of the upper patch (asymmetric E-shaped patch) 

and the ground plane. This increases the effective electrical length of the patch and 

reduces its physical size. Moreover, the use of shorting pins leads to a lower 

resonant frequency and wider bandwidth. The other approach is the use of an 

asymmetric E-shaped patch with unequal resonance arms to generate three 

resonant frequencies and hence achieve a wide bandwidth. Malekpour et al. 

reported a wide -10 dB bandwidth; i.e., 4110 MHz (3.34-7.45GHz), high peak 

gains; i.e., 5, 6.3 and 8 dB, and low return losses; i.e., -25, -28, and -22 dB at 

resonant frequencies of 4.74, 6.13 and 6.73 GHz respectively. Compared to the 

antenna designs in [43, 44], [48], and [51], the one in [56] has much wider 

bandwidth, provides higher gains, and is small; i.e., 3.4 ×1.3×0.7 cm3. 



Literature Review                                                                                                                                28 

  

     

 

Amongst all micro-strip patch antenna designs, i.e., those in [41, 42], [44], [46], [40, 

48], [51], [56-59], [61, 62], [6], [65-67], [84-89], the one in [65] has the highest gain 

at 18 dB and operates in the 6.175 GHz. However, its size, i.e., 16×16×0.35 cm3, 

rules it out for use by CubeSats. On the other hand, the design in [42] has the 

smallest dimension at 2.7×2.7×0.0892 cm3 and a high gain of about 6 dB. In terms of 

operating frequency, all the designs in [41, 42], [43, 44], [46], [40, 48], [51], [56-59], 

[61, 62], [6], [65-67], and [84-89] are suitable for satellite links and wireless 

communication applications as they operate in the Super High Frequency (SHF) 

band (2-30 GHz). However, the most suitable frequency band for pico-satellites is 

the S-band (2-4 GHz). Moreover, one limitation of the antenna designs in [41], [43, 

44], [46], [40, 48], [51],[56], [58] and [67] is the lack of steerability. This is very 

important for cross links, and secure communications.  

2.1.2 Slot antennas 

Figure 2.2 shows a typical slot antenna that is normally made of an infinite 

conducting sheet (ground plane) that has a rectangular slot cut. The micro-strip line 

is used to feed the slot antenna by applying a voltage across the slot. This generates 

an electrical field and currents within and around the slot. Slot antennas are cheap, as 

they are constructed from low cost materials, easy to fabricate, robust, have good 

radiation performance and have very small profile. These advantages make slot 

antennas suitable for pico-satellite communications. 
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Figure 2.2. A rectangular slot antenna. 

Different techniques and approaches are used in [45, 47, 49, 50, 52-55, 60, 63, 64, 

68-70] to enhance the radiation pattern of slot antennas, whilst reducing their size. 

The superior gain of 12.45 dB of miniaturized slot antennas reported in [70] leads to 

better and long distance communication between pico-satellites, and with a ground 

station. However, their main limitation is the narrow bandwidth and large antenna 

size; i.e., 16×17×0.68 cm3. On the other hand, the design of [50] has a small antenna 

size; i.e., 5.327×5.327×0.05 cm3, and a low gain of 2.7 dB. In terms of bandwidth, 

Liao et al. [45] reported a significant enhancement in the CP bandwidth of 51.7% at 

the 2.45 and 3.15 GHz frequency bands, high gain of 5 dB and small antenna size; 
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i.e., 6×6×0.08 cm3. To date, the only design with steerability is the one reported in 

[64] where reconfigurable polarization is achieved using a quasi-lumped quadrature 

coupler. Further details can be found in section 2.1.2.1. In order to make the designs 

in [45, 46, 49, 50, 52-55, 60, 63, 68-70] steerable, researchers have employed 

different techniques and approaches. For example, using arrays and external circuits. 

These works are further discussed in the following sections. 

2.1.2.1 Steerability and gain improvement 

Beam-steering and high gain antennas are key components in applications that 

require tracking and frequent satellites repositioning. The main techniques used 

include the cavity-backed model [54], half mode substrate integrated waveguide 

(HMSIW) [52], quasi-lumped quadrature coupler (QLQC) [64], and parasitic patch 

and windowed metallic superstrate [70]. These techniques are discussed below: 

• Cavity-backed model   

This is an important technique as it suppresses the back-lobe radiation of the 

antenna, and hence increases its directivity and gain [100]. In [54], Sievenpiper et 

al. describe the use of a cavity-backed model for a low-profile slot antenna that 

operates in the 2.34 GHz to achieve higher gain and better radiation performance. 

The key idea is to use a thin cavity-backed crossed-slot antenna with a single 

probe feeding network. The use of two orthogonal crossed-slots with slightly 

different lengths provides circular vertical polarization. This is important as it 

enhances the signal strength and reception; hence, it helps establish cross-links 

between satellites. Furthermore, this technique prevents back radiation. This in 

turn increases the antenna gain and facilitates long distance communications. They 

reported a gain of 4 dB for LP and CP. The main limitation is the use of a quarter 

wave depth cavity that results in a non-negligible increase to the total antenna 

weight as the added cavity is of size 6.3 × 6.3 × 0.3 cm3. 

• Half mode substrate integrated waveguide 

The main advantage of this technique is the reduction in micro-strip patch antenna 

size whilst maintaining the same resonant frequency. In [52], Razavi et al. applied 
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this technique to create a novel low-profile circularly polarized cavity-backed 

antenna for right and left-hand polarization based on half mode substrate 

integrated waveguide technique [101]. The key idea is to use triangular quarter-

wave length patches as a cavity. The resulting antenna has two electrical fields 

with equal magnitude and 90-degree phase shift. This is important as it achieves 

high gain and CP. Moreover, applying HMSIW to the cavity backed antenna 

design of [52] leads to a further reduction of the substrate integrated waveguide 

(SIW) that is used in conventional metallic cavity-backed antennas. They reported 

high gains of 4.87 and 4.2 dB for right and left hand CP. Compared to the design 

in [59], the one reported in [52] has a much smaller structure waveguide and 

hence smaller antenna size; i.e., 3.7×1.61×0.078 cm3, wider bandwidth; i.e., 

1.74% (153 MHz) and similar gains of about 4.20 to 4.80 dB. 

• Quasi-lumped quadrature coupler (QLQC) 

This tuneable coupler has the ability to generate polarization diversity with 

frequency agility [102]. To this end, Row et al. [64] propose a novel design for a 

frequency agile slot antenna with reconfigurable polarization. This is an important 

capability as switching between circular and linear polarization at high gains leads 

to better signal strength. The main approach is to implement the ring slot antenna 

with a metallic reflector and then to excite it with a QLQC. The use of a reflector 

ensures the back radiation is reduced and hence, increases gain. Moreover, QLQC 

works in two different modes; quadrature hybrid mode and T-junction power 

divider mode to provide circular and linear polarizations respectively. They 

reported a high gain of 4.5 dB and a bandwidth of about 2.9% (1.77 GHz).  

• Parasitic patch and windowed metallic superstrate 

This technique has the ability to increase antenna gain significantly. This is 

important for many applications that require high gains; e.g., point-to-point 

communications. In [70], Tu et al. present a novel low-profile, high gain slot 

antenna that operates in the 2.35 to 2.55 GHz band. The main approach is to print 

parasitic patches symmetrically to the feeding line. This changes the bi-directional 

radiation pattern to unidirectional and hence, increases slot antenna gain. In 

addition, placing a windowed metallic superstrate above the slot antenna leads to 
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further gain enhancement. The main advantage is the superior gain of about 12.45 

dB for long distance communications. Its main limitation is its large size; i.e., 

16×17×0.6 cm3. Compared to the designs in [52] and [54, 64], the design in [70] 

has a much higher gain and provides longer communication distance. 

2.1.2.2 Antenna bandwidth enhancement 

The main techniques used to enhance bandwidth include using a coplanar waveguide 

(CPW) [45], inductive elements [47], series feed configuration [53], folded and self-

complementary structures [63], asymmetry structure [60], and distributed and lump 

elements [69]. All these techniques achieve significant enhancement in bandwidth 

ranging from 2.1% (0.027 GHz) to 51% (1.5 GHz) and operate in the 0.336 to 3.15 

GHz range. Moreover, these approaches have no significant effect on antenna size. 

The following sections provide the main approaches used for bandwidth 

enhancement:  

• Coplanar waveguide (CPW) feed 

This feed mechanism is an alternative to using a micro-strip-line because it has 

many advantages such as low dispersion, low radiation leakage, and the ability to 

effectively control the characteristic impedance of an antenna [103-105]. In [45], 

Liao et al. present a square slot antenna that has excellent broadband CP 

bandwidth. This is important for modern wireless communication as the signal 

level remains constant with varying antenna angles. This is required for a cross 

link communication between a transmitter and a receiver. The main approach is to 

feed the slot antenna with a lightening-shaped feed-line from the centre signal 

strip of the feeding CPW, and then to embed a tuning stub in the feeding. 

Moreover, Liao et al. [45] embed two symmetrical F-shaped slits in the opposite 

corners of the ground plane to introduce more resonant branches. They reported a 

superior bandwidth of 51.7% at the 2.45 and 3.15 GHz frequency bands. It, 

however, suffers from back-lobe radiation which in turn reduces gain.  
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• Series inductive elements 

Behdad et al. [47] presented a small antenna with a wide bandwidth. This is 

important as it leads to better communication performance and coverage, less 

fabrication cost, and thus is more suitable for pico-satellites. The key idea is to 

examine the use of multi-resonance (double resonant) antenna structures at 850 

MHz and inductively loaded miniaturized slot antenna at 1 GHz. The use of series 

inductive elements along the antenna slot leads to a reduction in the guided 

wavelength of the resonant slot line. This in turn decreases the overall antenna 

length. In addition, using a double resonant antenna leads to significant bandwidth 

enhancement. As a result of using a single slot antenna (SEA), the antenna has a 

bandwidth of 0.9% (8 MHz) while 2.54% (21.6 MHz) for a double slot antenna 

(DEA). This is an improvement of about 1.64%. Behdad et al. [47] remarked that 

the only limitation is the need for an external network for impedance matching. 

• Series feed configuration 

This configuration is mainly used to improve CP bandwidth. In [53], Row presents 

a CP squarer-ring slot antenna design that operates in the 2.695 GHz and has a 

small size and wide bandwidth. The main approach is to feed the narrow square-

ring slot antenna with a series micro-strip-line-feed configuration. They use a 

coupling strip to feed the two orthogonal sides of a square ring slot antenna with 

the same amplitude at 90 degrees out of phase by optimizing slot side lengths. 

This is important as it achieves CP without the need to use an external coupler, 

which in turn enhances bandwidth and reduces antenna size. Moreover, Row uses 

a micro-strip impedance transformer to achieve good impedance matching at 50 

ohms. He reports a CP bandwidth of 6.1% (2.695 GHz) at a return loss of about -

30 dB. Compared to the designs in [45, 47], the antenna in [53] has wider 

bandwidth. Its main limitation is its back-lobe radiation, which decreases gain.  

• Folded and self-complementary structures  

Folded and self-complementary structures approaches are mainly used to increase 

the bandwidth of miniaturized antennas. Azadegan et al. [63] employ such 

structures to increase bandwidth. Their first approach is to use a complementary 
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pair of miniaturized slot antennas; i.e., a miniaturized folded printed wire. The 

main idea is to increase the radiating aperture of the antenna without increasing 

the total antenna size or reducing its efficiency. Additionally, replacing slot lines 

by metallic strips to work as a ground plane leads to wider bandwidth of about 

0.60% (0.336 GHz). The second approach is to implement a self-complementary 

folded antenna structure. This approach is a combination of the first approach and 

a normal folded slot antenna. Furthermore, its final structure is a self-

complementary H-shaped antenna with a wide bandwidth of 2.1% (1.3 GHz). 

Azadegan et al. [63] pointed out that this design can be matched easily without the 

need for external matching networks. This is important as it leads to less complex 

and low cost designs. 

• Asymmetry structure 

This technique is simple and is mainly used for CP bandwidth enhancement. In 

[60], Wong et al. propose a square and annular printed ring antenna that achieves 

3 dB axial ratio CP bandwidth and operates in the 1.5 and 1.720 GHz band. This is 

significant as CP is important for establishing cross-link communications. 

Moreover, achieving wider bandwidth and higher gain means better and longer 

communication distance between any two satellites. The key idea is to introduce 

some asymmetry into the structure of the ring slot antenna in order to enhance its 

bandwidth and to obtain good CP. The resulting design achieves a higher 

bandwidth of 4.3% (0.0645 GHz) while for an annular ring slot antenna it is 3.5% 

(0.0602 GHz). The main limitation is the slight asymmetry in radiation patterns. 

The authors posit that this is due to the asymmetry inherent in the antenna 

structure.  

• Distributed and lump elements 

This technique enhances bandwidth by varying the CP antenna frequency. Lee et 

al. [69] propose a lightweight annular-ring slot antenna that operates in the 1.58 

and 2.59 GHz bands. The main approach to obtain CP is to excite the square ring 

slot antenna using a L-shaped coupling strip. This provides good CP bandwidth 

and has a stable radiation pattern across all supported bandwidth. Moreover, 

distributed and lump elements are used to vary the CP operating frequency to 
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enhance its bandwidth. The reconfigurability of the operating frequency is 

important as it leads to better CP performance. Compared to the designs in [53, 

60] and [47, 63], the antenna design in [69] has wider bandwidth; i.e., 730 MHz. 

However, the main limitation of the design in [69] is its large size; i.e., 

10×10×0.16 cm3. 

2.1.2.3 Slot antenna miniaturization  

Recall that pico-satellites are limited in size and they must be light. Consequently, 

miniaturization of employed antennas is critical. In this respect, the following 

techniques have been used to yield a reduction ranging from 3.7×1.61×0.078 

(smallest) to16×17×0.68 cm3 (largest):  

• Inductive load 

The approach involves loading the antenna with series inductive elements (coiled 

wire) along the aperture of the slot antenna. In [49], Azadegan et al. present a 

novel small slot antenna that works in the 0.3 GHz frequency band. The main 

approach is to short the slot line with an inductor; the line has an electrical length 

is less than a quarter wavelength. Moreover, they use a substrate with rectangular 

spiral geometry. This is important as it leads to higher antenna efficiency. The 

main limitation, as pointed out by the authors, is the resulting narrow bandwidth; 

i.e., 1.6% (4.8 MHz). This is because a higher inductive load leads to a reduction 

in bandwidth. Another limitation is the dramatic increase in dielectric and ohmic 

losses [106] that are attributed to the concentration of fields over a very small area 

of substrate. An open problem is how to increase gain and bandwidth without 

increasing physical size and loss.   

• Physical aperture expansion 

This is an effective technique that expands the physical size of an antenna’s slot to 

enhance bandwidth and to achieve high efficiency without increasing antenna size. 

Azadegan et al. [50] propose a new miniaturized antenna structure with a large 

radiation conductance (physical aperture), bandwidth, and efficiency as compared 

to the miniaturized slot antenna presented in [49]. Advantageously, the resulting 
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antenna has the same size. This is important as it leads to high communication 

performance, and less fabrication cost. The key idea is to increase only the 

physical aperture of the folded slot to as large as that of the miniaturized slot in the 

design of [49]. This increases the bandwidth and the efficiency of the folded slot 

antenna without increasing its overall size. Moreover, they use a coplanar 

waveguide. This significantly reduces matching impedance but the resulting 

antenna has a low gain. 

•  Loading wires 

Its main advantage is its ability to reduce the operating frequency without 

increasing antenna length. In [68], Ghosh et al. present a new miniaturization 

technique for planar slot antennas using loading wires. These wires are used on 

either sides of the antenna aperture and they penetrate the substrate or a cavity 

backing to compensate for the reactive environment. This is important as it leads 

to a reduction in resonant frequencies without increasing antenna size. The authors 

propose two slot antenna prototypes; namely, one on a dialectic substrate that 

operates in the 2.32 GHz band, and another on a ground plane with backing cavity 

that operates in the 3.26 GHz band. A reduction of 28.83% in resonant frequency 

is achieved for the slot antenna on a dielectric substrate, and 45.52% for the slot 

antenna on the ground plane. Moreover, the use of backing cavity suppresses back 

radiation, and improves gain.  

• Series of parallel strip lines 

This technique is mainly used as an alternative to the traditional cavity-backed 

model. Hong et al. [55] outline a new technique to reduce the size of cavity-

backed slot antennas (CBSA) by substituting the traditional cavity structure with a 

series of miniaturized transmission line type resonators. The main idea is to design 

the slot antenna using a finite width metallic strip connected to a number of 

parallel short-circuited micro-strip lines that have the same physical and electrical 

length as the width of the ground plane. This reduces the physical length of micro-

strip lines while retaining their electrical length. They achieve a size reduction of 

approximately 65%. Furthermore, despite its reduced physical dimensions, the 



Literature Review                                                                                                                                37 

  

     

 

antenna has a gain of 3.7 dB with excellent impedance matching, and high 

radiation efficiency.  

The foregone twelve slot antenna designs aim to achieve beam steerability, high 

gains, small size, and wide bandwidth. As Table 2.3 shows, all these designs achieve 

gains ranging from 1.7 to 12.45 dB, with an antenna size ranging from 

3.7×1.61×0.078 cm3 to 16×17×0.68 cm3. Moreover, they work in the UHF, L, S, C 

and X frequency bands (0.3 – 8.8 GHz). In terms of gain, bandwidth and size, all 

these designs are suitable for pico-satellites communications. 

Table 2.3. Different slot antenna designs and their performance 

Reference Gain (dB) Size (cm) Band (GHz) 

Sievenpiper et al. [54] 4 6.3×6.3×0.03 S-band (2.34) 

Razavi et al. [52] 4.8 3.7×1.61×0.078 X-band (8.8) 

Row et al. [64] 4.5 11×10×0.22 L-Band A (1.67), B (1.77) and C (1.9) 

Tu et al. [70] 12.45 16×17×0.68 S-band (2.45) 

Liao et al. [45] 5 6×6×0.08 S-band (2.45 and 3.15) 

Behdad et al. [47] 1.7 5.73×5.94×0.05 UHF-band (0.848, 0.85 & 0.86) 

Row [53] 3.3 5.4×5.4×0.16 S-band (2.695) 

Azadegan et al. [63] 4.5 10×8×0.0787 UHF-band (0.336) and L-band (1.3) 

Wong et al. [60] 3.5 8×8×0.16 L-Ban (1.5) and (1.720) 

Lee et al. [69] 3 10×10×0.16 L-band (1.58) and S-band (2.59) 

Azadegan et al.[49] 3 5.5×5.5×0.0787 UHF-band (0.3) 

Azadegan et al. [50] 2.7 5.327×5.327×0.05 UHF-band (0.337) 

Ghosh et al. [68] 2.3 12×12×0.254 S-band (2.3 and 3.26) 

Hong et al. [55] 3.7 5.3×4.6×0.685 S-band (2.25) 

2.2 Qualitative Evaluation 

This section provides a qualitative comparison of planar antenna designs and their 

suitability for use on pico-satellites. Table 2.4 summarizes their features and 

performance in terms of mass, size, gain, beam steerability, type of polarization, 

operating frequency band, and return loss. Most designs are relatively small, light, 

have small return loss and provide CP. Amongst all antenna designs listed in Table 

2.4, only the designs in [6, 57, 61, 62, 65] and [54] have steering capability. On the 

other hand, non-steerable designs require external circuits and arrays in order to 

become steerable; this, however, adds extra cost and complexity to the design. 

Moreover, the design in [65] achieves the highest gain of 18 dB at a wide bandwidth 

of 47.8% (2.95 GHz); however, its size is very large, i.e., exceeds 10 cm, and is not 

suitable for pico-satellites. In terms of bandwidth, the designs of [46] and [56] 
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demonstrate a significant bandwidth enhancement of 98% (3.57-10.46 GHz) and 

76.18% (3.43-7.45 GHz) respectively. As set out in Table 2.4, the following criteria 

is used to determine the most suitable antenna designs for use on pico-satellites: 

small physical size at the lower end of operating frequencies, wide bandwidth, small 

return loss (< -10 dB), steerability and relatively high gain. The most important 

factor is antenna size. The best designs that address most of the pico-satellite’s 

challenges are to be found in [45, 46] and [56]. They achieve wide bandwidth, are 

small and have high gains at lower end of operating frequencies. Their main 

limitation is their lack of steering capability. In chapter 3, the designs in [45, 46] and 

[56] will be evaluated on a common platform.   
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 Table 2.4. Comparison between all types of planar antennas 

Ref Method Gain 

(dB) 

Volume 

(cm3) 

Mass 

 

Beam Steerability 

and type 

Polarization & 

Bandwidth (BW) 

Freq. 

(GHz) 

Return Loss  

(dB) 

Suitability 

for CubeSats 

[6] Sequential phase-

rotation 

6.9 9 × 9 × 0.5 162g Electronic using 

digital phase 

shifter 

CP 5.8 -25 ✓ 

[61] Sequential phase-

rotation 

     CP=7.1   

LP = 7.5 

15×15 × 0.96 Light  Electrically 

steerable  

CP or LP with BW= 

3.4% 

2.37 -35  

 

[65] Sequential phase-

rotation 

18 16 × 16 × 0. 35  

 

Light  Electrically 

steerable  

CP & 47.8% with 

AR<1 dB 

6.175 -27  

[62] Retrodirective  6.25 10×10×0.16 Light  Self-steering CP 10.5 n/a ✓ 

[57] Beam forming 

algorithm 

4.8 10×10×0.16 

 

heavy  Electrically 

steerable  

CP 2.45 n/a ✓ 

[66] PBG structures  5.02 12×16.8×2.5 Light  Not steerable CP = 5.4 % 14.15 -12  

[67] Transparent mesh line 

geometry 

n/a 8.01×8.01×2.25 Light  Not steerable CP & 80 MHz 2.40 -20 ✓ 

[59] Single proximity 

coupled feed 

6 7 ×7 × 0.16 Light Not steerable CP 

 

1.525 -40 ✓ 

[42] Agile polarization  CP = 4 and 

LP = 6.2 

2.77×2.77×0.0892 Light  Not steerable  CP or LP & 3.8% 

 

3.5 -34 ✓ 

[58] Cavity model 5.9 8.8 × 8.8 × 2.5  Light  Not steerable  CP 4.32 -12 ✓ 

[41] U-slot and L-slit 

geometries 

U-slot = 2.58 

L-slit = 2.4  

U-slot = 

5.4×5.4×0.7 

 L-slit = 4×4×0.7 

Light Not steerable  U-slot – CP & 

53.54% 

  L-slit –  CP & 

45.12%  

U-slot = 

4.5 

L-slit = 5.5 

U-slot = -15 

  L-slit = -

24.3 

✓ 

[46] Folded-patch feed 1st   4.9 

2nd   3.9 

1st   = 2.8×1×0.7 

2nd =1.8×1.5×0.7 

Light Not steerable 1st   = CP with 94.17% 

2nd = CP with 98.22% 

1st   = 5 

2nd = 4.2 

1st   = -23.69 

2nd = -34.15 

✓ 

[44] Meandering  n/a 2.21 × 2.21 × 1.5 Light Not steerable   1st with 2.98% 

  2nd with 1.15% 

1st = 1.575 

2nd = 0.869 

1st = -28 

2nd = - 30.5 

✓ 

[51] Meta-material 

 

5.96, 4.86, & 

4.23 
3.14 × 𝑟2 × 0.078  

 r =1.2, 0.8, and 

0.6  

Light  Not steerable  Cross polarization 2.45 -26 ✓ 
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[48] Cylindrical skirts with 

shorting pins 

n/a 3.14 × 2.72 × 1.37 Light  Not steerable Cross polarization 

with 4.7% (116.34 

MHz) 

2.45 -30.5 ✓ 

[40] Sequential phase-

rotation 

5.9  3.97×1.2×0.20 Light Not steerable CP with 1500MHz 2.45 -25 ✓ 

[43] Artificial magnetic 

conductor 

1.53 3.8×3.8×0.32 Light Not steerable CP with 4.08%  

(100 MHz)  

2.45 -13 ✓ 

[54] Cavity-backed model 4 6.3 × 6.3 × 0.03  Light Steerable CP  2.34 -12 ✓ 

[52] Half mode substrate 

integrated waveguide.  

RHCP= 4.8 

LHCP= 4.2 

3.7 × 1.61 × 0.078  

 

Light  Not steerable RHCP with 1.7% 

LHCP with0.66% 

8.67 RHCP=-33 

LHCP= -20 

✓ 

[64] Quasi-lumped 

quadrature coupler 

CP = 4.5 

LP = 4 

11 × 10 × 0.22  Light  

 

Not steerable  CP or LP CP = 1.67 

LP = 1.9 

CP = -23 

LP = -16.5 

✓ 

[70] Parasitic patch and 

windowed metallic 

superstrate 

12.45 16×17×0.68 Light Not steerable  CP 

BW= 80 MHz 

 

(2.45) -15  

[45] Coplanar waveguide 

(CPW) feed 

5 6 × 6 × 0.08  Light  Not steerable CP 

BW= 1500 MHz 

3.45 -17 ✓ 

[47] Series inductive 

elements 

1.7 5.73 × 5.94 × 0.05  Light  Not steerable CP with 21 MHz 0.848 -35 ✓ 

[53] Series feed 

configuration 

3.3 5.4× 5.4 × 0.16 Light Not steerable CP, BW=6.1% 2.695 -34 ✓ 

[63] Folded and self-

complementary 

structures 

1st = 4.5 

     2nd = 1.3 

1st = 10 × 8× 

0.0787  

2nd = 4×4×0.0787 

Light Not steerable Cross polarization 

with 1.1-2.1 % 

1st = 0.336 

  2nd = 1.3 

1st = -26.5 

    2nd = - 28 

✓ 

[60] Asymmetry structure 3.8 8 × 8 × 0.16 Light Not steerable CP 1.72 n/a  ✓ 

[69] Distributed and lump 

elements 

3 10 × 10 × 0.16  Light Not steerable CP 1.58 

 

-10 ✓ 

[49] Inductive Load 3 5.5 × 5.5 × 0.0787  Light Not steerable Cross polarization  0.3 -25 ✓ 

[50] Physical aperture 

expansion 

2.7 5.327×5.327× 

0.05  

Light Not steerable Cross polarization 0.337 -30 ✓ 

[68] Loading wires  2.3 12×12×0.254  Light Not steerable Cross polarization 3.26 -18  

 

[55] Series parallel strip lines 3.7 5.3×4.6×0.685 Light Not steerable CP 2.25 -30 ✓ 
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 [56] Shorting Pins 5, 6.3 and 8 3.4×1.4×0.7 Light Not steerable n/a 4.74, 6.13 

and 6.73 

-24, -28.5, 

and -22 

✓ 
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2.3 Summary 

This chapter has presented a comprehensive survey of small micro-strip patch and 

slot antennas. These antennas are light, small in size and achieve circular and cross 

polarization. Thus, they are most suited for use on pico-satellites. This chapter also 

presented an extensive qualitative comparison of antenna designs in terms of their 

features, design challenges, limitations, advantages and performance.  Amongst all 

previous S-band planar antennas, the most suitable designs that address most of the 

CubeSat challenges are shorted patch, CPW-feed square slot and asymmetric E-

shaped antennas.  

A number of open problems are identified. First, most current designs are non-

steerable. Second, current micro-strip patch antennas that are suitable for CubeSats 

have a maximum gain of only 5.9 dB at 2.45 GHz. Third, current slot antennas have 

low gains and narrow bandwidth due to their bidirectional radiation pattern. One 

solution is to use quarter wave depth cavities to redirect the back-radiation pattern 

forward and hence increase the total gain. However, this cavity incurs additional 

weight, is expensive to construct and is difficult to integrate with planar circuits. 

Another technique is to use a metallic reflector [108]. However, the distance between 

the reflector and the slot antenna is high, i.e., 30.5 mm for 2.45 GHz. This makes it 

unsuitable for CubeSats. Fourth, existing micro-strip patch and slot antennas that are 

suitable for CubeSats have not been evaluated on a common platform. In particular, 

their performance at 2.45 GHz in the presence of a CubeSat’s body is unknown.  

To address the aforementioned limitations, Chapter 3 provides a quantitative 

evaluation of shorted patch, CPW-feed square slot and asymmetric E-shaped 

antennas. In particular, Chapter 3 evaluates the effect of a 2U CubeSat body on the 

performance of the said antennas. Then Chapter 4 outlines a repurposed shorted 

patch and CPW-feed square slot antenna for use on the 2.45 GHz frequency band. 

Apart from that, from Table 2.4, it can be seen that most of the reviewed designs are 

non-steerable. To this end, Chapter 5 and 6 propose to use a CPW-fed slot antenna 

configuration by placing a single antenna on each face of a CubeSat to achieve beam 

steering. Furthermore, Table 2.4 shows that the maximum gain of current patch 

antennas that are suitable for use on a CubeSat is only 5.9 dB. Thus, Chapter 4 
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presents a wideband F-shaped patch antenna for S-band CubeSats 

communications.  The results show that it has a high gain of 8.5 dB with a wide 

bandwidth of 1121 MHz. Table 2.4 also shows that slot antennas have low gain due 

to their back-lobe radiation. To address this problem, Chapter 5 and 6 present a 

unidirectional high gain CPW-fed slot antenna. The main idea is to use metasurface 

substrate and a CubeSat’s body to redirect the back-lobe radiation forward and hence 

achieve a superior gain. The next chapter provides a quantitative evaluation and 

comparison of the most suitable existing patch and slot antennas for CubeSats.  
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Chapter 3 

 

MICRO-STRIP AND SLOT ANTENNAS FOR CUBESATS 

 

To date, no works have compared existing micro-strip patch and slot antennas and 

evaluated their suitability for CubeSat communications. Therefore, this chapter 

addresses this gap. It compares and evaluates the most suitable micro-strip patch and 

slot antennas on a common platform. Critically, it studies how their performance is 

affected by a 2U CubeSat body, and present their performance in terms of volume, 

gain at 2.45 GHz, bandwidth, return loss, robustness, beam steerability and cost.   

3.1 Quantitative Evaluation 

As mentioned in Chapter 2, the designs of [45, 46] and [56] address most of the pico-

satellite challenges listed in Table 1.2 and they provide good radiation performance 

as compared to all other reviewed planar antenna designs. However, their 

performance in the presence of a satellite body is unknown.   

This section first presents the CPW-feed square, shorted patch, and asymmetric E-

shaped micro-strip patch antenna designs. Then it presents results from experiments, 

conducted using HFSS version 16 [107], concerning each antenna design with and 

without the effect of a 2U (10cm×10cm×20cm) CubeSat body. The section 

concludes with comments on the suitability of the aforementioned antennas for 

CubeSat communications.  

3.1.1 CPW-feed square slot antenna [45]  

Figure 3.1 (b) shows the square slot antenna model under study. The antenna has a 

total size of 60×60 mm2; it is fabricated on a FR4 substrate that is 0.8 mm thick. The 

coplanar wave guide feed line technique is used with a fixed width of a single strip; 

i.e., 4.2 mm and the gap between the line and ground plane is 0.3 mm in length in 

order to achieve 50 Ω matching. To enlarge the CP bandwidth, the ground plane has 
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two symmetrical F-shaped slits. This CP bandwidth can be further enhanced by 

varying the dimensions of the lightening-shaped feedline. The evaluated antenna 

operates at resonant frequencies of 2.45 and 3.2 GHz; see Figure 3.4. It shows that 

the obtained resonant frequency 3.2 GHz is slightly lower than the resonant 

frequency obtained by the authors of [27], i.e., 3.45 GHz. This margin of error is 

acceptable as both frequencies are located within the operating -10 dB bandwidth 2.3 

to 3.8 GHz. To observe the effect of the satellite body on the antenna's performance, 

the CPW-feed square slot antenna is mounted on the 2U CubeSat face; see Figure 3.1 

(a).  

3.1.2 Shorted patch antenna using folded-patch techniques [46] 

Figure 3.2 (b) shows the tested shorted patch antenna model. The upper and lower 

patches have dimensions 18×15 and 7.5×6.5 mm2 respectively. These patches are 

connected together via a folded ramp-shaped part. Also, they are connected to a 

30×30 mm2 ground plane through shorting pins and probe feed. Moreover, in order 

to obtain wider bandwidth, air substrate and folded ramp-shaped part are used to 

decrease the quality factor (Q) and inductive reactance of the probe feed. The main 

purpose of using shorting pins at the edges of the upper patch is to achieve 

miniaturization at wide impedance bandwidth. In addition, the centre pin on the 

upper patch is used to broaden the impedance bandwidth by generating resonances at 

4.45 and 7 GHz. Figure 3.2 (a). shows the shorted patch antenna on a 2U CubeSat. 

3.1.3 Miniaturized asymmetric E-shaped micro-strip patch antenna with folded-

patch feed [56] 

Figure 3.3(b) shows a 3D model of a miniaturized asymmetric E-shaped micro-strip 

patch antenna. The upper patch resembles an asymmetric 'E' with a total size of 

34×13 mm2. The folded-patch feed or lower patch has a rectangular shape with size 

23×5 mm2. The upper and lower patches are connected to the ground plane through 

shorting pins. Air is assumed to be the supporting substrate. The shorting pins are 

used to decrease the physical antenna size by increasing its electrical length. 

Moreover, the unequal arms of the asymmetric E-shaped patch (upper patch) are 
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designed to produce three different resonant frequencies to enlarge the antenna’s 

bandwidth. Figure 3.3 (a) shows the implementation on a 2U CubeSat body.  
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Figure 3.1. A CPW-feed square slot antenna: (a) installation on a 2U CubeSat face, 

and (b) geometry 
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Figure 3.2. Geometry of a shorted patch antenna (a) with a CubeSat, and (b) without 

a CubeSat. 
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Figure 3.3. Geometry of an asymmetric E-shaped patch antenna (a) with a 2U 

CubeSat, and (b) without a 2U CubeSat. 
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3.2 Simulation Results 

• CPW-feed square slot antenna  

Figure 3.4 shows the return loss over different frequencies for the CPW-feed 

square slot antenna with and without the effect of a CubeSat body. The CubeSat 

body has a significant effect on the return loss; it recorded increases from -27.5 to 

-10 dB. This means most of the power is reflected back to the antenna instead of 

being radiated into the space. Moreover, the operating frequency increases from 

3.2 to 4.1 GHz. As shown in Figure 3.4, the -10 dB bandwidth without a CubeSat 

is 1600 MHz (2.3-3.9 GHz).  

 

Figure 3.4. Return losses (S11) of a CPW-feed square slot antenna. 

Figure 3.5 shows the axial ratio of the CPW-feed square slot antenna with and 

without the effect of the 2U CubeSat body. Without the CubeSat, the antenna 

achieved a wide 3 dB axial ratio bandwidth of about 1120 MHz, ranging from 

2.28 to 3.4 GHz. The CubeSat’s surface has a significant effect on the axial ratio. 



Micro-strip and Slot Antennas for CubeSats                                                                                    51 

  

 

   

In particular, placing the CPW-feed square slot antenna on the 2U CubeSat body 

reduces the 3 dB axial ratio bandwidth from 1120 MHz (without CubeSat) to 174 

MHz (with CubeSat). 

Figure 3.6 presents the peak gain of the CPW-fed square slot antenna. In the 

presence of a CubeSat body, the antenna achieves a gain of about 1.4 dB at 3.2 

GHz. The maximum gain with and without the effect of the CubeSat body is 2.7 

and -5 dB respectively at frequencies of 3.6 and 3 GHz respectively; see Figure 

3.6. The 3D gains at 3.2 GHz are shown in Figure 3.7 (a) and (b). It shows that 

for the CubeSat case, the antenna has a higher gain.  

 

Figure 3.5. The axial ratio of the CPW-feed square slot antenna. 
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Figure 3.6. 2D gain of a CPW-feed square slot antenna. 

 

 

Figure 3.7. 3D gain of a CPW-feed square slot antenna at 3.2 GHz: (a) without, and 

(b) with a CubeSat. 
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• Shorted patch antenna  

Figure 3.8 depicts the return losses of the shorted patch antenna with and without 

the effect of a CubeSat body. The satellite body has a significant effect on the 

return loss; it decreases (or improves) from -26.5 to -43.3 dB. This means more 

power is radiated into space and less power is reflected. Moreover, there is a 

slight shift of 0.2 GHz in the first resonant frequency and 0.5 in the second 

resonant frequency. Compared to the shorted patch antenna without a CubeSat, 

the shorted patch antenna with a CubeSat has less bandwidth; i.e., 7150 MHz and 

much smaller return loss; i.e., -43.3 dB at 4.3 GHz; see Figure 3.8.    

 

Figure 3.8. Return loss (S11) of the tested shorted patch antenna. 

This chapter now studies the effect of a 2U CubeSat body on the axial ratio and 

gain of the shorted patch antenna. Figure 3.9 shows the simulated axial ratio of 

the shorted patch antenna with and without a CubeSat as a function of frequency. 

It shows that the axial ratio for the CubeSat case has a smaller CP bandwidth; i.e., 

650 MHz. The CubeSat body also has a significant effect on the shorted patch 

antenna gain. Without the CubeSat, the gain increased by 2.1 dB over the 2 to 4.5 

GHz frequency range and decreased by 1 dB over the 5.2-9 GHz range when the 
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antenna is placed on the 2U CubeSat; see Figure 3.10. The peak gain of the 

shorted patch antenna with and without a CubeSat is 4 and 6.2 dB respectively at 

4.3 GHz. This is because the aluminium surface of the CubeSat reflects some of 

the back lobe radiation forward. Hence, this yields further improvement in gain.   

Figure 3.11 shows a 3-D plot of the shorted patch antenna far field radiation 

pattern. Without the CubeSat, the antenna has a maximum gain of 4.0 dB as 

compared to 6.22 dB when used on the CubeSat. The radiation pattern of the 

shorted patch antenna for the without CubeSat case is uniform. In contrast, it is 

non-uniform and the maximum gain is not at the broadside direction (Z direction) 

when the antenna is used on a CubeSat.  

 

Figure 3.9. The axial ratio of the shorted patch antenna. 
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Figure 3.10. 2D gain of tested shorted patch antenna. 

 

 

 

Figure 3.11. 3D gain of the tested shorted patch antenna at 4.3 GHz: (a) without, and 

(b) with CubeSat. 
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• Asymmetric E-shaped patch antenna 

Figure 3.12 shows the simulated return losses of the asymmetric E-shaped patch 

antenna with and without the effect of the CubeSat body. It shows that for both 

tested cases, the antenna has a similar resonant frequency of 6.5 GHz. When the 

antenna operates on the CubeSat, it achieves a wide impedance bandwidth; i.e., 

2300 MHz. On the CubeSat body, its bandwidth increased by about 100 MHz. 

Also, the return loss at the resonant frequency of 6.5 GHz decreases (or 

improves) slightly from -14 to -15.2 dB. 

 

Figure 3.12. Return losses (S11) of the asymmetric E-shaped patch antenna. 

Figure 3.13 shows the simulated axial ratio of the asymmetric E-shaped patch 

antenna with and without the effect of the 2U CubeSat body. On the CubeSat, the 

antenna's axial ratios are 0.9, 0.15 and 1.85 dB at frequencies of 2.3, 5.35 and 6.3 

GHz, respectively. The achieved 3-dB axial ratio bandwidths are 200 MHz (2.2-

2.4 GHz) and 1400 MHz (5-6.4 GHz). Without the CubeSat case, the asymmetric 

E-shaped patch antenna has an axial ratio of 3.07 dB at 5.15 GHz. This means the 
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CubeSat body causes axial ratios of less than 3 dB and enlarges the 3-dB axial 

ratio bandwidth; i.e., 1400 MHz (5-6.4 GHz).  

Figure 3.14 shows the gain of the asymmetric E-shaped patch antenna versus 

varying frequencies. It shows that the CubeSat body affects the E-shaped patch 

antenna by increasing its gain over the frequency range of 3 to 6.7 GHz and 

decreasing its gain for frequency ranging from 6.7 to 9 GHz. The gain of the 

antenna at resonant frequencies of 4.6 and 6.5 GHz is increased by 0.8 dB when 

used on the CubeSat; see Figure 3.14. The peak gain of the E-shaped patch 

antenna on the 2U CubeSat is 8.4 dB at a resonant frequency of 5.8 GHz. 

Figure 3.15 illustrates the simulated 3D gains of the asymmetric E-shaped patch 

antenna with and without the 2U CubeSat body at 4.75 GHz. Compared to the 

without CubeSat case, the antenna with CubeSat has a higher 3D gain; i.e., 7.3 

dB.  However, the radiation pattern of the antenna with a CubeSat is non-

uniform. 

 

Figure 3.13. The axial ratio of the tested asymmetric E-shaped patch antenna. 
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Figure 3.14. 2D gain of asymmetric E-shaped patch antenna. 

 

 

 

Figure 3.15. 3D gains of asymmetric E-shaped patch antenna at 4.75 GHz: (a) 

without, and (b) with a CubeSat. 
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3.3 Comparison of All Three Designs 

This section now provides a comparison between the three antenna designs. In 

particular, it compares the effects of a 2U CubeSat body on their return losses, axial 

ratios (AR) and gains. Figure 3.16 plots the return losses of the shorted patch, 

asymmetric E-shaped micro-strip patch and CPW-feed square slot antennas. 

Compared to the asymmetric E-shaped patch antenna and CPW-feed square slot 

antenna, the shorted patch antenna has a smaller return loss; i.e., -43.3 dB at 4.3 

GHz, and a much wider -10 dB bandwidth; i.e., 6900 MHz (3.8-10.7 GHz). In terms 

of resonant frequency, only the shorted patch antenna operates close to the S-band 

(2-4 GHz) with a resonant frequency of 4.3 GHz (with CubeSat); see Figure 3.16. 

However, this resonant frequency; i.e., 4.3 GHz, does not belong to the 2.4-2.5 GHz 

unlicensed Industrial, Scientific and Medical (ISM) band, which is preferred for 

CubeSat communications. Therefore, the operating frequency of the shorted patch 

antenna needs to be shifted to 2.45 GHz. Moreover, the CPW-feed square slot 

antenna has very high return loss when used on a CubeSat; i.e., -10 dB and a small 

non-uniform bi-directional radiation pattern. This is because the attached side of the 

antenna is not a ground plane and hence the satellite body acts as a ground plane and 

significantly affects the antenna’s performance. One solution is to insert a PVC 

plastic sheet between the antenna and the CubeSat body [108]. Another solution is to 

keep some distance (air gap) between the antenna and the satellite body. This gap 

should be set such that there is no capacitance between the dielectric and the CubeSat 

body. Consequently, the satellite body will act as a reflector, and leads to higher 

gains.  
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Figure 3.16. Return losses of the shorted patch, asymmetric E-shaped patch and 

CPW-feed square slot antennas on a 2U CubeSat body. 

Figure 3.17 shows the axial ratios of the shorted patch, asymmetric E-shaped micro-

strip patch and CPW-feed square slot antennas. All three antennas have an axial ratio 

less than 3 dB at different operating frequencies. Compared to the shorted patch and 

CPW-feed square slot antennas, the asymmetric E-shaped patch micro-strip patch 

antenna has a wider 3 dB axial ratio bandwidth; i.e., 1400 MHz, and a smaller axial 

ratio; i.e., 0.14 dB. In the S-band frequencies (2-4GHz), the shorted patch antenna 

has a wider 3 dB axial ratio bandwidth than that of asymmetric E-shaped patch and 

CPW-feed square slot antennas; see Figure 3.17. In terms of gain, the asymmetric E-

shaped patch antenna has the highest peak gain of 8.39 dB at 5.8 GHz as compared 

to shorted patch and CPW-feed square slot antennas; see Figure 3.18. The peak gain 

of the shorted patch, asymmetric E-shaped micro-strip patch and CPW-feed square 

slot antennas in the 2.4-2.45 GHz band is 3, 4.4 and -6.3 dB, respectively. Further 

improvement in gain is needed for CPW-feed square slot antenna if it is to be used 

on pico-satellites. 
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The simulated radiation patterns of all three antennas on two planes (𝑥𝑧: 𝜑 =

0° 𝑎𝑛𝑑 𝑦𝑧: 𝜑 = 90°) are illustrated in Figure 3.19. Their radiation patterns are rather 

symmetric in the xz and yz planes. The maximum radiation of the E-shaped patch 

and CPW-feed square slot antennas occur exactly at the boresight direction (𝜃 = 0°). 

Compared to CPW-feed square slot and shorted patch antennas, the E-shaped micro-

strip patch antenna has the widest Half Power Beam Width (HPBW); e.g., 760 (xz-

plane), and the highest peak gain at its boresight direction; e.g., 5.17 dB.   

 

Figure 3.17. The axial ratio of the shorted patch, asymmetric E-shaped patch and 

CPW-feed square slot antennas on a 2U CubeSat body. 
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Figure 3.18. A comparison of gain of the tested shorted patch, asymmetric E-shaped 

patch and CPW-feed square slot antennas on a 2U CubeSat body 

 

 

Figure 3.19. Simulated radiation patterns of an (a) E-shaped patch, (b) CPW-feed 

square slot, and (c) shorted patch antennas. 
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Table 3.1 compares all three candidate antennas in terms of volume, gain, bandwidth, 

return loss, robustness, beam steerability, and affordability. It shows that all three 

designs are relatively small, have wide bandwidth, and are cheap. These antennas, 

however, are non-steerable and are not designed to operate at 2.45 GHz. The 

asymmetric E-shaped patch antenna design has a superior gain over the shorted patch 

and CPW-feed square slot antennas. This is important as it enables long distance 

communications. This means fewer CubeSats will be required to participate in a 

swarm. Alternatively, they allow a swarm to operate over large areas. Another 

advantage of the asymmetric E-shaped patch antenna design is its very small return 

loss, meaning more power is radiated into space and less power is reflected.  

Shorted patch, asymmetric E-shaped micro-strip patch and CPW-feed square slot 

antennas can have different placement configurations on a 2U CubeSat. For satellite 

to ground station communications, placing an antenna on only one CubeSat face is 

sufficient. One example is to use an array on one face of the CubeSat for ground 

station communications [40]. This antenna should always be pointed to the ground 

station. This can be achieved by orienting the CubeSat using magnetic torqueing. 

Another configuration enables satellite-to-satellite (cross-link) communications. This 

will require more than one antenna on multiple faces of a CubeSat. As an example, 

the authors of [57] propose to place an individual antenna on each face of a 3U 

CubeSat.  

Table 3.1. Evaluation of the most suitable planar antenna designs for inter CubeSat 

communications 

 
Shorted patch 

antenna [46]  

Asymmetric E-shaped 

patch antenna [56] 

CPW-feed square slot 

antenna [45] 

Volume Small Medium Small 

Gain  Low High low 

BW Wide Wide small 

S11 Small Very small Very high 

Robustness Weak Weak Strong 

Beam steerability Not steerable Not steerable Not steerable 

Affordability (cost) Cheap Cheap Cheap 
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3.4 Conclusion 

This chapter has presented an evaluation of the following antennas on a common 

platform: shorted patch, CPW-feed square slot and asymmetric E-shaped antennas. 

In particular, it evaluates the effect of a 2U CubeSat body on their performance. The 

results show that the performance of the CPW-feed square slot antenna is affected 

significantly by the 2U CubeSat body if due care is not taken. It also finds that the 

asymmetric E-shaped patch antenna design achieved a high gain of 7.3 dB at 4.75 

GHz with a bandwidth of 2300 MHz. Its main limitation, however, is its high 

operating frequency of 4.75 GHz. To lower its operating frequency, its overall size 

needs to be increased. Finally, the shorted patch and CPW-feed square slot antennas 

have a small size and operates at lower operating frequencies as compared to the E-

shaped antenna. 

Both shorted patch and CPW-feed square slot antennas do not operate at the desired 

CubeSat ISM operating frequency of 2.4-2.5 GHz band. Therefore, the next chapter 

presents shorted patch and CPW-feed square slot antennas that operate at 2.45 GHz. 

Then it compares these antennas and their performance when they operate on a 2U 

CubeSat. In addition, the next chapter also presents a newly designed wideband F-

shaped patch antenna.  
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Chapter 4 

 

S-BAND PLANAR ANTENNA DESIGNS FOR CUBESATS  

 

As mentioned in Chapter 3, the designs in [46] and [45] do not operate in the 2.45 

GHz (S-band). This band is important because most of the antennas for pico satellites 

are designed to work in the 2.4-2.5 GHz unlicensed ISM band. Thus, the resulting 

swarm of CubeSats do not need a government permit to operate. To this end, this 

chapter presents the required improvements to shift the operating frequencies of the 

antennas in [45, 46] to 2.45 GHz (S-band) without critically effecting their 

performance. Then it compares their performance in the presence of a CubeSat body. 

The main findings are that the new S-band shorted patch and CPW-fed square slot 

antennas have narrow bandwidths and low gains. Specifically, the -10 dB bandwidth 

of shorted patch antenna is reduced from 6900 to 870 MHz and the gain is reduced 

by about 1 dB when its frequency is shifted to 2.45 GHz. As for the new CPW-fed 

square slot antenna, its bandwidth reduced from 1600 to 530 MHz and its gain from 

3.2 to 2 dB. Henceforth, to address the aforementioned limitations, this chapter also 

proposes a newly designed wideband F-shaped patch antenna that operates in the 

unlicensed ISM band (2.45 GHz), has a wide bandwidth and achieves a superior 

gain.  

4.1 Evaluation and Improvements of Shorted Patch and CPW-fed Square Slot 

Antennas  

4.1.1 New shorted patch antenna 

Figure 4.1 shows a simulation model of the shorted patch antenna in [46]. It consists 

of upper and lower patches with dimensions of 1.8×1.5 and 0.75×0.65 cm2 

respectively. These patches are connected together via a folded ramp-shaped part. 

Also, they are connected to a 3×3 cm2 ground plane through shorting pins and probe 

feed. Moreover, in order to use a short probe length, it uses the air substrate and the 
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folded ramp-shaped part. This leads to a decrease in both quality factor (Q) and the 

inductive reactance of the probe and hence enhancement of the bandwidth. The main 

purpose of using shorting pins at the edges of the upper patch is to achieve 

miniaturization at wide impedance bandwidth. In addition, the centre pin at the upper 

patch is used to broaden the impedance bandwidth by generating resonances at 4.4 

and 6.95 GHz.  

 

Figure 4.1. Geometry of the shorted patch antenna in [46]. 

The aforementioned shorted patch antenna design operates at 4.4 GHz. However, the 

target frequency is 2.45 GHz. Hence a frequency shift is required for the shorted 

patch antenna design in [46]. A frequency shift is possible by increasing the size of 

the antenna subject to the size and weight constraints of CubeSats. To this end, the 

Quasi-Newton method provided by the HFSS simulator [109] is used to re-dimension 

the antenna. The Quasi Newton method works on the basis of finding the minimum 

or maximum of a cost function by varying the variables to meet the operating 

frequency of 2.45 GHz (constraint). In this design’s case, the decision variable is the 
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length of the antenna’s dimensions with range 0.653 (minimum) to 1.959 mm 

(maximum). The aim is to achieve a minimum return loss (design parameter) at an 

operating frequency of 2.45 GHz (constraint). Therefore, the Quasi-Newton method 

minimizes the value of return loss (S11) by varying the antenna lengths 100 times 

(iterations) from 0.653 to1.959 mm by the following minimum and maximum step 

size: 0.013 and 0.13 mm. The results show that the antenna size must be increased by 

a factor of 1.3 mm to achieve a minimum return loss of -27.6 dB at an operating 

frequency of 2.45 GHz. 

4.1.2 New CPW-feed square slot antenna  

Figure 4.2 depicts the structure of the square slot antenna model in [45]. This antenna 

has a total size of 60×60 mm2; it is fabricated on a FR4 substrate with a thickness of 

0.8mm. The CPW feed line technique is used with a fixed width of 4.2 mm over a 

single strip. To achieve a good impedance matching between the 50 Ω transmission 

line and the impedance at the antenna, the gap between the CPW-feed line and 

ground plane is found to be 0.3 mm using HFSS. In addition, the CPW-feed square 

slot antenna operates at 3.2 and 9.1 GHz; see Figure 4.5. Its initial operating 

frequency of 3.2 GHz is shifted to 2.45 GHz (S-band) by re-dimensioning the entire 

antenna parameters. In particular, the Quasi Newton optimization method is used to 

re-dimension the antenna to achieve an operating frequency of 2.45 GHz. The 

resulting antenna size is 1.25 mm and has a return loss S11 of -25 dB at an operating 

frequency of 2.45 GHz.  
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Figure 4.2. Geometry of CPW-feed square slot antenna in [45]. 
 

4.1.3 Evaluation  

This section first compares the original design of [45] and [46] in terms of return 

loss, bandwidth, gain and antenna size. It also studies the effect of a 2U CubeSat 

Aluminium body on the performance of the antenna designs; see Figure 4.3 and 4.4. 

Figure 4.5 plots the return losses of the shorted patch and CPW-feed square slot 

antennas with and without a CubeSat body. It shows that the CubeSat body has a 

significant effect on the shorted patch antenna performance and very small effect on 

the CPW-feed square slot antenna’s performance; see Figure 4.5 and 4.6. The return 

loss of shorted patch antenna is dramatically improved (decreased) from -26.3 to -

43.3 dB when it is placed on a CubeSat surface. This is important as more power is 

radiated into space and less power is reflected.  

As shown in Figure 4.6, the peak gain of the shorted patch antenna at 4.3 GHz is 4 

dB without a CubeSat and 6.2 dB with a CubeSat. Moreover, the peak gain of the 

CPW-feed slot antenna has slightly improved; i.e., 1.93 dB, when the antenna is 

place on a CubeSat’s surface. The peak gain of the CPW-feed square slot antenna is 
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2.8 dB without a CubeSat and 3.1 dB with a CubeSat. Compared to the CPW-feed 

square slot antenna, the shorted patch antenna has wider bandwidth; i.e., 1600 MHz, 

and higher gains; i.e., 4 dB (without CubeSat) and 6.2 dB (with CubeSat). This is 

important for CubeSats as it provides longer communication distance and therefore 

decreases the number of CubeSats to be used in a swarm.  

 

Figure 4.3. Geometry of shorted patch antenna on a 2U CubeSat body. 
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Figure 4.4. Geometry of CPW-feed square slot antenna on a 2U CubeSat body. 

 

Figure 4.5. The simulated return loss of shorted patch and CPW-feed square slot 

antennas with and without a CubeSat. 
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Figure 4.6. The simulated 2D gain of shorted patch and CPW-feed slot antenna with 

and without a CubeSat body. 

• New shorted patch and CPW-feed square slot antennas 

This section now presents and compares the results of the re-dimensioned shorted 

patch and CPW-feed square slot antennas. Figure 4.7 depicts the simulated return 

losses of the 2.45 GHz shorted patch and CPW-feed square slot antennas with 

and without a CubeSat. Both modified antennas operate at 2.45 GHz as their 

resonance frequency has been shifted to 2.45 GHz. The simulated fractional 

impedance bandwidth of the modified shorted patch antenna is 870 MHz.  It is 

530 MHz for the modified CPW-feed square slot antenna.   

Figure 4.7 plots the return loss over different frequencies for the new shorted 

patch and CPW-feed square slot antennas. Compared to the new S-band CPW-

feed square slot antenna, the new S-band shorted patch antenna has smaller return 

loss of about -27.5 dB at 2.45 GHz and wider -10 dB bandwidth; i.e., 870 MHz 

(2.13-3 GHz). In terms of total gain, the new shorted patch antenna achieves 
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higher gain of 5.3 dB at an operating frequency of 2.45 GHz; see Figure 4.8. 

However, the modified shorted patch antenna has larger physical size; i.e., 83×83 

mm2, as compared to the modified CPW-feed square slot antenna. The main 

limitation of the modified CPW-feed square slot antenna is its low gain at 2.45 

GHz. Hence, further improvements are proposed and applied in order to enhance 

its total gain in the following section.  

 

Figure 4.7. Simulated return losses of re-dimensioned shorted patch and CPW-fed 

slot antennas on 2U CubeSat. 
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Figure 4.8. The simulated 2D gain of the modified shorted patch and CPW-feed slot 

antenna. 

Table 4.1. Return loss, BW, gain and size of modified antennas 

Antenna Frequencies 

(GHz) 

BW 

(MHz) 

 

Gain 

(dB) 

Size 

(mm2) 

Modified Shorted Patch Antenna 2.45 870 5.3 83×83 

Modified CPW-feed Square Slot Antenna 2.45 530 2.00 75×75 

 

• Gain enhancement of the new CPW-feed square slot antenna 

Figure 4.9 shows the new structure of the re-dimensioned CPW-feed square slot 

antenna after removing the F-shaped slits and creating a square slot. F-shaped 

slits were embedded in the design of [45] to enlarge its bandwidth, i.e., 

1600MHz. However, removing F-shaped slits from the antenna structure leads to 

a significant decrease in bandwidth, i.e., 530 MHz, and hence increases the total 

antenna gain from 2.00 to 2.52 dB; see Figure 4.10. Moreover, the resulting 
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bandwidth reduced from 1600 to 530 MHz but remains sufficiently wide for 

CubeSat communications.  

 

Figure 4.9. Geometry of the re-dimensioned CPW-feed square slot antenna without 

F-shaped slits. 

As shown in Figure 4.11, the length of the horizontal tuning stub Lt has a great 

effect on the impedance bandwidth and the total gain. Figure 4.11 shows that 

with decreasing Lt the operating frequency increases and return loss (S11) 

decreases.  Hence, the resulting antenna has better impedance matching. The best 

Lt value is 7.5 mm. This value shifts the operating frequency to 2.45 GHz with a 

small return loss, i.e., -27.5 dB, wide -10 dB bandwidth, i.e., 730 MHz (1.9-2.63 

GHz), and achieved total gain of 2.52 dB. An immediate future work is to apply 

further gain enhancement and size miniaturization techniques such as the 
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Metasurface Superstare (MSS) [110-112] to increase gain and using series of 

parallel strip lines [55] or loading wires [68] to achieve further miniaturization.  

 

 

Figure 4.10. Total 3D gain of the re-dimensioned CPW-feed square slot antenna 

without F-shaped slits. 
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Figure 4.11. Simulated return loss against frequency for the various Lt values. 

4.2 Newly Designed Wideband High Gain F-shaped Patch Antenna  

There are many approaches that can be employed to widen the bandwidth of patch 

antennas. One common technique is to use U-slot and L-slit patch antenna 

geometries. The main idea is to incorporate a folded inner small patch within a larger 

patch. The authors of [41] reported a bandwidth enhancement of 53.54% (3.57-6.18 

GHz) at the resonant frequency of 4.5 GHz and 45.12% (4.26-6.75 GHz) at 5.5 GHz. 

However, the resulting antenna has a low gain of about 2.5 dB. Another approach is 

by interleaving two patch antennas [113]. The main idea is to use a folded ramp-

shaped feed and one pin in the centre of the upper patch to increase bandwidth. The 

authors also used shorting pins between the patches and the ground plane to 

miniaturize the antenna’s size. Although the modified S-band shorted patch antenna 

presented in [113] has a wideband of 320 MHz (2.200-2.520 GHz), its size is 

reasonably large at 83×83 mm2, making it unsuitable for used on CubeSats. 

This section proposes a wideband 2.45 GHz F-shaped patch antenna for CubeSats 

communications. The main idea is to feed the resonance arms of the upper F-shaped 
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patch by a folded ramp-shaped patch. This generates two resonant frequencies and 

hence achieves a wide bandwidth. Moreover, three shorting pins between the edges 

of the upper patch (F-shaped patch) and the ground plane are used to increase the 

effective electrical length of the patch and hence reduces its physical size. In 

addition, shorting pins are also used to lower the resonant frequency and widen 

bandwidth. Compared to all previous S-band planar antennas, see the survey in [37] 

and listed in Table 4.2 for convenience, the wide band F-shaped patch antenna design 

achieves a higher gain, i.e., 8.51 dB, has a wider bandwidth of 1121 MHz (1.606-

2.727 GHz) and has small size of 33.8×88.4 mm2, which means less surface area on a 

CubeSat; i.e., 29.8% for 1U and 14.9% for 2U. 

Table 4.2. A comparison between S-band patch antennas for CubeSats and the 

proposed antenna 

Ref. Antenna Type Gain  

[dB] 

Bandwidth 

[MHz] 

Size 

[mm2] 

[61] Four-element microstrip patch array  7.1 320 15×15 

[113] Shorted patch antenna 3.51 320 83×83 

[67] Patch antenna  n/a 80 80×80 

[51] Circular patch antennas  5.96 50 3.14 × 1.22 

[48] Wire patch antenna n/a 116.34 3.14 × 2.72 

Proposed antenna F-shaped patch  8.51 1121 33.8×88.4 

4.2.1 Antenna design and structure  

Figure 4.12 shows the structure of the proposed antenna. It consists of an upper F-

shaped patch, a folded patch feed and three shorting pins. The antenna uses the 

CubeSat’s surface as a ground plane with air substrate; see Figure 4.12 (a). It is fed 

by a 50 Ω coaxial probe at (x0, y0) and supported by the three shorting pins that are 

connected between the upper F-shaped patch and ground plane. These shorting pins 

generate low resonant frequencies and hence increases bandwidth and help reduce 

the size of the antenna. The diameter of the shorting pins that provides the optimal 

antenna bandwidth is 3.64 mm. Moreover, to reduce the coaxial probe length and 

inductance at the feed section, the folded patch technique from [88] is used and fed at 

a height of h1= 18.4 mm. The length of the arm L1 and the width of the slot W2 is 

studied using HFSS to obtain their optimal value. These parameters play a significant 

role in enhancing the antenna’s performance; i.e., bandwidth, resonant frequency and 
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return loss. They also produce two resonant frequencies and hence improve 

bandwidth. The Quasi Newton method which is available in HFSS software is used 

to obtain the optimal dimensions that provide the best performance of the proposed 

antenna. The optimal parameter values of the proposed antenna are as follows: h1= 

18.4 mm, h2= 9.5 mm, L=33.8 mm, W= 88.4 mm, W1= 20.8, W2= 15.6, W3= 36.4 

mm, L1= 20.8 mm, L2= 23.4 mm, L3= 10.4 mm, L4= 13 mm, x0= 0 mm and y0= 10.4 

mm.  
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Figure 4.12. Configuration of the wideband F-shaped patch antenna. (a) a 3D view 

of the proposed antenna in HFSS on a 3U CubeSat, (b) top view, and (c) side view. 
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4.2.2 Results and discussion  

The simulation results are obtained using the HFSS simulator. Figure 4.13 shows the 

simulated return losses of the F-shaped patch antenna with the following L1 lengths: 

18.8, 20.8 and 22.8 mm. Other parameters are fixed. It shows that the second 

(fundamental) resonant frequency increases when L1 increases while the first 

resonant frequency is barely affected. The required resonant frequency of 2.45 GHz 

is obtained at L1=20.8. Moreover, when L1 is set to 18.8 mm, the F-shaped patch 

antenna becomes a dual-band antenna rather than wideband. The most suitable length 

is L1= 20.8 mm as it provides wide bandwidth; i.e., 1121 MHz, and small return loss 

of -32.85 dB at resonant frequency 2.45 GHz. This means good impedance matching.  

 

Figure 4.13. Simulated return loss against frequency for various L1 values. 

 

Figure 4.14 shows the simulated return loss of the proposed antenna with different 

slot width values and L1 =20.8 mm. The width W2 is varied from 8.6 to 22.6 mm. 
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The slot width W2 has no effect on the resonant frequency and the bandwidth of the 

F-shaped patch antenna. However, the return loss S11 increases when the width W2 

decreases. In addition, when W2 is set to 22.6 mm, a dual band resonant mode is 

obtained. Hence, small -10 dB impedance bandwidth, i.e., 600 MHz (2.12 – 2.72 

GHz) is achieved. The most suitable width is W2 = 15.6 mm as it provides an 

impedance bandwidth of 1121 MHz (1.606-2.727 GHz) and a small return loss of -

32.85 dB at resonant frequency 2.45 GHz. This means large bandwidth, high bitrate, 

low reflected power and good impedance matching; see Figure 4.14 and 4.17.  

 

Figure 4.14. Simulated return loss against frequency for various W2 values. 

Figure 4.15 and 4.16 show the 3D and 2D simulated radiation pattern at the resonant 

frequency of 2.45 GHz. The back lobe is significantly reduced because of the large 

ground plane, namely the CubeSat’s surface, and hence a unidirectional pattern is 

achieved. This is important as it increases the total gain and decreases the 
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interference with the electronics inside the CubeSat. The maximum achieved gain is 

about 8.51 dB with a 200 elevation tilt and HPBW of 98.340 at a resonant frequency 

of 2.45 GHz.  

 

Figure 4.15. 3D gain at 2.45 GHz. 
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Figure 4.16. Simulated radiation pattern of the proposed F-shaped patch antenna at 

2.45 GHz. 

Figure 4.17 depicts the simulated input impedance (real and imaginary parts) of the 

F-shaped patch antenna in the 1 – 3.5 GHz frequency bands. Good impedance 

matching is obtained at 2.45 GHz with almost 50 Ω real part and zero imaginary 

parts (inductance). The input impedance (real and imaginary parts) is 50+j0 Ω at the 

resonant frequency of 2.45 GHz. This means very small reflection with most power 

radiated into space.  
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Figure 4.17. Input impedance of the proposed F-shaped patch antenna. 

4.3 Conclusion  

This chapter has studied and compared repurposed shorted patch and CPW-feed 

square slot antennas that are suitable for CubeSat communications; i.e., they operate 

on the 2.45 GHz band and can be mounted on a 2U CubeSat body. Simulation results 

show that the modified shorted patch and CPW-feed square slot antennas have return 

losses that are well below -10 dB and achieve impedance bandwidth of 870 and 530 

MHz respectively. This chapter also presented a gain enhancement of the modified 

CPW-feed square slot antenna by changing its geometry. In particular, the F-shaped 

slits are replaced with a square slot. This improved CPW-feed square slot antenna 
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has a resonance frequency of 2.45 GHz and provides a total gain of 2.52 dB at 2.45 

GHz.  

To address the problems of narrow bandwidth and low gain of the new shorted patch 

and CPW-fed slot antennas, this chapter also proposed a wideband F-shaped patch 

antenna for S-band CubeSats communications. Its simulated return loss is below -10 

dB from 1.606-2.727 GHz (a bandwidth of 1121 MHz). The antenna size is small; 

i.e., 33.8×88.4 mm2. Simulated results show it has a resonant frequency of 2.45 GHz, 

a small return loss of -32.85 dB, a high gain of 8.51 dB and good impedance 

matching of 50 Ω.  

As mentioned, the main limitation of the new CPW-fed slot and shorted patch 

antennas is their low gain. This is because of their bidirectional radiation pattern. 

Therefore, the next chapter presents a unidirectional high gain S-band CPW-fed slot 

antenna using a MSS technique.  
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Chapter 5 

 

HIGH GAIN S-BAND CPW-FED SLOT ANTENNA FOR CUBESATS  

 

As mentioned in Chapter 4, the new shorted patch and CPW-fed slot antennas have 

narrow bandwidth and low gains. Ideally, CubeSats should employ an antenna with 

wide coverage while at the same time has a high gain. However, the limited size and 

low mass of CubeSats pose real challenges to any antenna design. Another challenge 

is that CubeSats cannot be repositioned after deployment, and thus may be oriented 

poorly for communications.  

To address the aforementioned challenges, this chapter proposes a high gain coplanar 

waveguide (CPW)-fed slot antenna that operates at 2.45 GHz (S-band). A key feature 

is the use of a MSS [114] as a resonant cavity model. This allows the proposed 

antenna to have high gains because the MSS redirects the back radiation pattern 

forward [115]. Advantageously, its use allows the proposed antenna to occupy less 

space than using a reflector as in [116].  

Table 5.1 compares the proposed CPW-fed slot antenna against competing designs. 

Observe that the designs of [6] and [57] achieve beam steering using phase shifters 

and beam forming algorithms. However, this adds extra cost and complexity. The 

design in [21] is a simple monopole antenna that provides wide directivity without 

the need for beam steering techniques. It, however, has a low total gain. Another 

drawback of [21] is its deployment mechanism that incurs extra cost and complexity. 

Also, there is a risk it might not deploy, which contributes to the likelihood of 

mission failure. In terms of size, the antenna in [117] has the smallest area of 75 

mm×75 mm but its main limitation, as pointed out by the authors, is the resulting low 

gain, i.e., 1.53 dB, because of its bi-directional radiation [118]. To solve this 

problem, one common approach is to redirect the back radiation pattern forward by 

placing a backing metallic reflector that is λ0/4 away from the antenna [116]. Its main 

drawback, however, is its large profile structure due to the λ0/4 spacing between the 
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reflector and the antenna. Moreover, the authors of [119] propose to place two S-

band patch antennas on two faces of the CanX-4 and CanX-5 CubeSats to achieve 

omni-directional coverage and a data rate of 10 kbps. In another example, the authors 

of [6] propose to use a square patch antenna array. The antenna array is fed at four 

different angles, i.e, 00, 900, 1800, and 2700, to achieve beam steerability using a 

phase shifter. In contrast, the proposed antenna design achieves a superior gain of 

9.71 dB at 2.45 GHz. This is important as it enables long distance communications. 

Consequently, fewer CubeSats will be required to operate in a swarm. Moreover, it 

further reduces the cost related to manufacturing and placing a satellite into orbit. 

Moreover, as the proposed CPW-fed slot antenna design uses a MSS to suppress 

back radiation, there is less interference with components inside a CubeSat. Note that 

other types of antennas are not considered because they have a large profile, require 

deployment mechanisms and occupy a large area [37]. 
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Table 5.1. Comparison between antennas for CubeSat communications and proposed antenna 

Ref. Type of Antenna CubeSat Type Frequency 

[GHz] 

Gain [dB] Volume 

[mm3] 

Beam Steering 

Proposed 

antenna 

CPW-fed slot antenna 3U 2.45 8.48 90×90 ×10.5 Not required 

[117] A square slot antenna 1U 2.45 1.53 75×75 ×1.6 Not required 

[6] Phased patch antenna array with 900 hybrid 1U 5.8 5.1  90×90×5 Electronic pointing 

(using phase shifter) 

[119] Patch antenna 1U s-band N/A N/A Not required 

(Omnidirectional) 

[57] Six individual patch antennas placed on different 

faces of a CubeSat 

3U 2.45 4.8 N/A Beam-forming algorithm 

[21] Four monopole antennas 2U and 3U 0.437 N/A N/A Not required 

(Omnidirectional) 

 



High Gain S-band CPW-fed Slot Antenna for CubeSats                                                                 89 

 

 

5.1 Antenna Configuration  

Figure 5.1 shows the geometry of the proposed CPW-fed slot antenna. The slot and 

the feed line are etched on a square FR4 substrate with a dielectric constant of 4.4 

and a substrate thickness of 1.6 mm. This FR4 substrate is commonly used in 

antenna designed for CubeSats [6]. The antenna is fed by a 50-Ω CPW with a strip 

line width Wf = 3.4 mm and is separated from the ground plane by two gaps with 

width g = 0.45 mm and T = 1.65 mm. The lightening-shaped feedline is formed by 

extending the signal strip of the CPW in the -y direction to the lower left corner of 

the slot (the horizontal feed section). This lightening-shaped feed-line has horizontal 

and slanted (S) feed sections with the same width of Ws = 3.75 mm and an angle of 

45o. It is used to enhance the AR bandwidth. The horizontal feed section is separated 

from the lower and left edges of the slot by two gaps of width T and g, respectively. 

Moreover, the tuning stub, with a width of Wn, and a length of Ln, is embedded in the 

feed-line structure to enhance the impedance bandwidth and to achieve good 

impedance matching. As shown in Figure 5.1 (a), the vertical tuning stub is formed 

by extending Ln along the CPW’s signal line, whereas the horizontal tuning stub is 

formed by extending the horizontal feed section to the right by Lt=7.5 mm as 

measured from the right edge of the centre signal line of the CPW. 

Figure 5.1 (b), (c) and (d) show a MSS that is comprised of a 7×6 Double Closed-

Square Resonator (DCSR) array. It is printed on an inexpensive 0.8 mm thick (h2) 

FR-4 material. This MSS has dimension 90mm×78mm and is placed above the slot 

antenna. The physical parameters of DCSR are as follows: P = 10 and b = 9 mm. 

More details about the physical parameters of MSS can be found in reference [115]. 

The square-shaped metasurface elements have been selected because they provide 

better performance and results; see reference [120] for details.  

 

 

 

 

 

 



High Gain S-band CPW-fed Slot Antenna for CubeSats                                                               90 

  

 

   

 

Figure 5.1. Configuration of the proposed CPW-fed slot antenna with a MSS (a) the 

proposed CPW-fed slot antenna, (b) MSS, (c) a cross section view, and (d) the model 

in HFSS. 

5.2 Results and Discussion  

This section outlines a parametric study that aims to identify factors that affect 

antenna performance; i.e., return loss, impedance bandwidth, gain and radiation 

pattern. Moreover, Section 5.2.2 compares simulated and experimental results.  

5.2.1 Parametric study  

This chapter now presents various parametric analyses conducted using HFSS. It 

focuses on the best return loss, impedance matching, and gain at the operating 

frequency of 2.45 GHz. Table 5.2 lists the optimal parameters of the proposed 

antenna.  
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Table 5.2. Optimal parameters of the proposed antenna 

Parameters Values (mm) 

G 90 

L 60 

W 60.3 

Wn 2.15 

Ws 3.75 

Ln 12.8 

Lt 7.5 

ha 8.1 

T 1.65 

g 0.45 

Wf 3.4 

S 55.8 

 

• Design frequency and initial parameters 

The target operating frequency is ft=2.45 GHz which is commonly used by the 

CubeSats community due to its high bit-rate and is within the 2.4-2.5 GHz ISM 

band [121]. The antenna operating frequency is varied by controlling its size as 

per F=f0/ft, where f0 is the obtained resonant frequency over the specified 

dimensions. The aim is to achieve a minimum return loss (S11) at the target 

operating frequency of ft=2.45 GHz. Therefore, the antenna size needs to be 

increased (or decreased) by F in order to operate at the desired resonant 

frequency of ft. In order to determine the best value of F, the Quasi Network 

method is used.  

• Effect of Wn and Lt 

Figure 5.2 (a) illustrates the return loss (S11) with the following widths (Wn): 1.8, 

2.15 and 3.15 mm. Other parameters are fixed. It shows that the width Wn of the 

tuning stub has an effect on impedance matching, operating frequency and 

impedance bandwidth. When the width Wn increases, e.g., exceeds 2.15 mm, the 

return loss increases and the impedance bandwidth (BW) improves; it is observed 

that BW increases proportionally with Wn. Also, the operating frequency is 

slightly increased when Wn increases and vice-versa; The best value of Wn is 2.15 

mm, which gives good impedance matching and hence low reflected power at the 

target resonant frequency of 2.45 GHz.  
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Figure 5.2 (b) presents the simulated return loss of the proposed CPW-fed slot 

antenna for the following Lt lengths: 6.5, 7.5 and 8.5 mm. It shows that Lt also 

has a significant effect on the operating frequency and return loss. As the length 

of the horizontal feed section increases, the return loss decreases and the 

operating frequency increases. The smallest return loss is achieved at Lt = 6.5 

mm. However, the operating frequency shifts to 2.55 GHz. The most suitable Lt 

value is 7.5 mm. This value shifts the operating frequency from 2.55 to 2.45 GHz 

with a return loss of -27.5 dB and bandwidth of 730 MHz (1.9 – 2.63 GHz). 

• Effect of Ln 

With the width of the tuning stub fixed at Wn = 2.15 mm and the length of the 

horizontal feed section set to Lt = 7.50 mm, this section presents a study of the 

following Ln values: 11.80, 12.80 and 13.80 mm. Referring to Figure 5.3, the 

length Ln has a significant effect on the return loss and the impedance bandwidth. 

As the value of Ln increases, so does the return loss. This means more power is 

reflected instead of being radiated into space. Moreover, the BW decreases 

proportionally with Ln. The smallest return loss is achieved at Ln=11.8 mm. 

However, the operating frequency is not at the required operating frequency of 

2.45 GHz. The most suitable length is Ln= 12.80 mm as it provides small return 

loss (S11 = -27 dB), and wide bandwidth of 750 MHz at the required operating 

frequency of 2.45 GHz. 
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Figure 5.2. Simulated return loss against frequency for various (a) Wn, and (b) Lt 

values. 
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Figure 5.3. Simulated return loss against frequency for various values of Ln. 

• Effect of metasurface starting positions 

Figure 5.4 shows (a) the simulated return loss (S11) and (b) the simulated 2D gain 

for the following MSS positions: 0, 6, and 12 mm from the feed line. Other 

parameters are fixed. MSS positions have a significant effect on the return loss. 

The return loss (S11) increases and the gain decreases when the MSS starting 

position is close to the feed line, e.g., 0 and 6 mm. There is almost no change to 

the resonant frequency of 2.45 GHz. Therefore, the starting position of 12 mm 

from the feed-line in the -x direction yields the best result. This is because it gives 

the smallest return loss, e.g., -36.5 dB, and highest gain, e.g., 5.20 dB, at the 

required operating frequency of 2.45 GHz.  
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Figure 5.4. The effect of the starting edge of the MSS position on (a) the reflecting 

coefficient S11, and (b) antenna gain. 
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• Effect of metasurface array element sets  

As shown in Figure 5.5 the array element sets of the MSS have a significant 

effect on the return loss and hence, impedance matching. As the number of 

elements increases, the operating frequency approaches the operating frequency 

of 2.45 GHz and return loss decreases. Different array element sets have been 

tested. The most important sets that have a significant effect on the return loss are 

7x2, 7x4 and 7x6. Thus, these sets are considered from here onwards. Figure 5.5 

shows that a 7×6 array element set is ideal because it achieves the smallest return 

loss; i.e., -36.5 dB at an operating frequency of 2.45 GHz. 

 

Figure 5.5. The influence of MSS element sets over the return loss (S11) of the 

proposed antenna. 

A. Effect of metasurface height 

Next is an evaluation of the effect of MSS height on the impedance matching.  The 

MSS’s height is varied from 4.1 to 10.1 mm; see Figure 4.6. Heights of ha= 4.1 and 

6.1 mm result in higher return loss as compared to ha = 8.1 and 10.1 mm. In the case 

of ha = 8.1 mm, the obtained impedance bandwidth (VSWR ≤ 2) is wide, i.e., 130 
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MHz (2383 – 2513 MHz), and the return loss is very small, i.e., -36.8 dB. This 

means large bandwidth, low reflected power and good impedance matching.   

 

Figure 5.6. The MSS height, i.e., ha, as a function of (a) the return loss and (b) 

VSWR of the proposed antenna. 
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• Effect of MSS 

This section now studies the effect of MSS on antenna gain. It fixes the width of 

the tuning stub at Wn = 2.15 mm, the length of the horizontal feed section at Lt = 

7.50 mm, the length of the tuning stub at Ln = 12.8 mm, the MSS array set has 

7×6 elements and the MSS height is set, i.e., ha, to 8.1 mm. Figure 5.7 shows the 

total gain of the CPW-fed slot antenna with and without the use of MSS. It shows 

that the use of the MSS dramatically increases the antenna’s gain from 2.52 to 

5.67 dB. Moreover, the amount of back lobe radiation has been further reduced 

from -9.9 to -8.7 dB. This is important as it increases the total antenna gain. This 

section concludes that MSS has a significant effect on the antenna gain. The 

results also indicate decreases in the back lobe pattern. In turn, this dramatically 

increases (improves) the proposed antenna total gain.    

 

Figure 5.7. The total gain of the proposed CPW-fed slot antenna (a) without MSS, 

and (b) with the MSS.  

 

• Effect of CubeSat’s body  

The proposed antenna is placed on a 3U CubeSat as shown in Figure 5.8 and 

Figure 5.11 (b). Note, the antenna can have different placement configurations on 

a 3U CubeSat. Specifically, for satellite to ground station communications, 

placing it on only one CubeSat face is sufficient [37]; magnetic torqueing can be 
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used to ensure it is always pointed at a ground station. For inter-satellite (cross-

link) communications, placing an individual antenna on each face of a CubeSat 

will be required [122].  

 

Figure 5.8. A CPW-fed slot antenna on a 3U CubeSat. 

To avoid direct contact between the backside (dielectric) of the antenna and the 

satellite body, a distance (air gap) of 8.5 mm is kept between the antenna and the 

satellite body. Consequently, the satellite body will act as a reflector that leads to 

higher gains. The 3U CubeSat body has no effect on the operating frequency. 

However, the return loss increased from -36.8 to -21.5 dB; see Figure 5.9(a). 

Moreover, the total antenna gain increased from 5.67 to 9.71 dB; see Figure 5.9 

(b). This is because the Aluminium surface of the CubeSat acts as a reflector and 

reflects some of the back-lobe radiation forward.  
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Figure 5.10 illustrates the simulated radiation pattern on the xy-plane. It shows 

that the proposed CPW-fed slot antenna achieves a maximum gain with a 200 

elevation tilt and Half Power Beamwidth (HPBW) of 330 at 2.45 GHz. It also 

shows that the radiation is in the direction almost normal to the substrate (z-axis). 

 

Figure 5.9. Simulated results of proposed antenna on the CubeSat's body (a) return 

loss and (b) total gain at 2.45 GHz. 
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Figure 5.10. Simulated radiation pattern of the proposed antenna on a CubeSat's 

body at 2.45 GHz. 

5.2.2 Experimental verification  

In order to verify the simulated results, the proposed CPW-fed slot antenna is 

fabricated with a MSS array set of 7×6 elements; see Figure 5.11 (a) and (b) for a 

photograph. The experiments consider the case with and without a 3U CubeSat 

model. The antenna’s characteristics is measured using Keysight’s M9370A vector 
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network analyzer (VNA). The antenna is attached to port one of the VNA using a 

ridged interconnect featuring male SMA connectors on both ends. The test setup was 

calibrated with a Rohde & Schwarz ZV-Z270 50Ω calibration kit and a characterized 

female SMA to male N-connector adapter. The system is de-embedded to the 

reference plane of the SMA connector on the antenna. The VNA is set to sweep from 

1.5 to 3.5 GHz using a resolution bandwidth of 100 kHz and an output power of -5 

dBm.  

 

Figure 5.11. A photograph of the fabricated prototype CPW-fed slot antenna: (a) 

geometry, and (b) its installation on a 3U CubeSat model face. 
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The simulated and measured return losses (S11) with and without the 3U CubeSat 

model are depicted in Figure 5.12; all are in agreement with the simulation results 

from HFSS as they have the same shape and same resonance frequency at their 

smallest S11. Compared to the simulated return loss of the proposed antenna on the 

CubeSat’s body, the measured and simulated (individual) return losses of the 

proposed antenna without the CubeSat’s body have smaller reflection coefficients. 

Moreover, both simulation (solid line and long dashed line) and measured (dashed 

line) results of S11 indicate that the CPW-fed slot antenna is well matched at the 

desired operating frequency; e.g., 2.45 GHz with S11 < -10 dB. The simulated and 

measured fractional impedance bandwidth of the CPW-fed slot antennas is 710 MHz 

(1940 – 2650 MHz) and 940 MHz (1820 – 2760 MHz) respectively. These negligible 

discrepancies between the measured and simulated results are caused by the limited 

accuracy of the etching process used and the antenna testing set up. Figure 5.13 

shows the simulated and measured input impedances of the proposed antenna in the 

frequency bands 1.900 – 2.630 and 1.819 – 2.787 GHz respectively. The simulated 

and measured input impedance at 2.45 GHz is 43.97Ω and 48.59Ω, respectively.  
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Figure 5.12. Simulated and measured return losses (S11) of the proposed antenna. 

 

Figure 5.13. Simulated and measured input impedance of the proposed antenna. 
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Figure 5.14 compares the simulated and measured patterns on the plane parallel to 

the satellite axis, which contains the antenna itself. The plane includes the direction 

of the maximum radiation, as discussed earlier in Section 5.2.1. The radiation pattern 

is quite similar with a small rotation in the pointing angle. This can be due to the 

mounting of the antenna during measurement, see the inset of Figure 5.14, as the 

centre of the rotation is different with respect to the phase centre of the antenna. 

 

Figure 5.14. Simulated and measured radiation pattern of the proposed antenna on a 

CubeSat's body at 2.45 GHz (inset: Antenna under measurement). 

Figure 5.15 shows the measured and simulated gains versus varying frequencies of 

the proposed antenna with CubeSat. We see that there is a reasonable agreement 

through the entire band. The peak gains of simulated and measured gains are 9.71 

and 8.8 dBi at 2.45 GHz respectively. The minor discrepancy can be mostly 

attributed to the fabrication error and measurement uncertainties. 

 



High Gain S-band CPW-fed Slot Antenna for CubeSats                                                               106 

  

 

   

 

Figure 5.15. Simulated (continuous line) and measured (dashed line) gain of the 

proposed antenna with CubeSat. 

5.3 Conclusion  

This chapter has proposed the design and the realization of a high gain CPW-fed slot 

antenna for CubeSat communications. It also obtained the optimal parameters of the 

proposed antenna and the optimal element sets of MSS. Moreover, a MSS is 

designed and used to significantly increase the gain from 2.52 to 5.67 dB. This gain 

further improved to 9.71 dB when the CPW-fed slot antenna is placed on the 

Aluminium CubeSat’s surface. Simulation and measured results show that the 

proposed antenna has a return loss that is well below -10 dB at the operational 

frequency of 2.45 GHz, and achieves an impedance bandwidth of 730 MHz. 

However, the proposed antenna is only suitable for 3U CubeSats due to its relatively 

large size and hence it is not suitable for 1U and 2U CubeSats as it occupies a large 

percentage of a CubeSat’s surface area; i.e., 81% for 1U and 40.5% for 2U CubeSats. 

To this end, the next chapter present a low profile high gain CPW-fed slot antenna 

using cavity backed technique. 
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Chapter 6 

 

A LOW PROFILE HIGH GAIN, CAVITY-BACKED CPW-FED SLOT 

ANTENNA  

 

The main limitation of the proposed high gain CPW-fed slot antenna design in 

Chapter 5 is its large size, which exceeds 90x90 mm2. Consequently, it is not suitable 

for 1U and 2U CubeSats. This chapter proposes a low profile, high gain, cavity-

backed CPW-fed slot antenna that operates at 2.45 GHz. The main idea is to use a 

part of the CubeSat’s body as a low profile cavity reflector to redirect the back lobe 

pattern forward. This proposed antenna design is more robust and occupies less 

surface area on CubeSats; i.e., 12.96% for 1U and 6.48% for 2U as compared to 

using a MSS. The proposed CPW-fed cavity backed slot antenna has a small size of 

36mm×36mm and a total gain of 8.6 dB; in contrast, amongst all previous S-band 

planar antennas that are suitable for CubeSats, the best gain is only 5.96 dB and the 

smallest size is 38×38×3.2 mm3 at 2.45GHz [37]. In addition, this chapter also 

proposes a unique configuration of the proposed low profile CPW-fed slot antenna. 

This is important as it provides communication in all three directions and hence, 

achieves a cross link communication between CubeSats in a swarm.    

6.1 Geometry of the Proposed Antenna 

Figure 6.1 (a) shows that the proposed antenna has two parts. One part is the square 

slot and a 50-Ω CPW-feed line etched on the square Rogers RO3010 substrate with a 

dielectric constant of 10.2 and thickness of 1.280 mm. Roger substrates are easy to 

fabricate and have a tight dielectric constant and thickness control. The other part is 

the metallic cavity reflector with a depth (h2) of 6.44mm (λ0/19). This cavity reflector 

forms part of the CubeSat’s body that helps to redirect the back lobe radiation 

pattern. The total size of the cavity reflector is 50×50 mm2. The overall dimension of 

the antenna is 36×36×6.44 mm3. The lightening-shaped feed-line is used to enhance 

the AR bandwidth and to achieve circular polarization. It consists of a horizontal 

feed section that extends the CPW’s strip in the y direction and the slanted feed 
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section (S) with an inclined angle of 450 with respect to the x-axis. The strip line of 

the CPW has a width Wf, gap of P and is extended in the positive y axis direction by 

a horizontal feed section with a length of Lt. This horizontal feed section is used to 

attain a resonant frequency of 2.45 GHz and to enhance impedance matching. The 

gap between the strip line and the ground plane is T. In addition, the tuning stub with 

a width wn and a length Ln is embedded in the CPW feeding line to widen the 

impedance bandwidth. Moreover, the matching between the CPW-fed line and the 

slot antenna is achieved by adjusting the slot width W and substrate thickness h1. 

Figure 6.1 (b) shows the proposed antenna on a 2U CubeSat as modelled in HFSS. 

The characteristics of the proposed CP antenna have been simulated Using HFSS. In 

order to design the high performance broadband CP square slot antenna, a detailed 

parametric study of the antenna is made. The effects of adjusting the length Ln of the 

tuning stub on return loss are first studied. Fig. 2 exhibits the return loss of the 

antenna with different Ln. The lengths Ln with four different widths, 7.2, 8.2, 9.2 and 

10.2mm, are analyzed while other parameters are fixed. It can be seen from Fig. 2 

that the length of the tuning stub Ln has a great effect 
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Figure 6.1. Configuration of the CPW-fed slot antenna with a cavity backed 

reflector. The (a) proposed cavity backed CPW-fed slot antenna, and (b) a 2U 

CubeSat with the proposed antenna as modelled in HFSS. 
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6.2 Analysis of the CPW-fed Slot Antenna 

This section studies the antenna’s resonant frequency, return loss, impedance 

bandwidth and the total gain in the boresight direction.  The optimal parameter 

values, as found using HFSS, are as follows: G = 36 mm, W= 24 mm, S = 21.29 mm, 

Ws = 1.68 mm, Lt = 3.27 mm, Ln = 5.12 mm, Wn = 0.51 mm, Wf = 1.36 mm, P= 0.18 

mm, T = 0.65 mm, and h2 = 6.44 mm. It is important to note that when deriving the 

foregone values, except for the value of interest, other parameter values are fixed. 

Figure 6.2 (a) and (b) show the 3D and 2D simulated radiation patterns of the 

proposed CPW-fed slot antenna with and without the cavity reflector at 2.45 GHz. 

Without the cavity reflector, the proposed antenna radiates bi-directionally and has a 

total gain of 3.68 dB; see Figure 6.2 (a). The bidirectional pattern is undesirable as it 

results in a low total gain and causes interference with the electronics inside the 

CubeSat. Using a low profile metallic cavity reflector with a depth of h2= 6.44 mm, 

see Figure 6.2 (b), it shows that the back lobe radiation pattern is redirected forward. 

Consequently, there is a dramatic increase in total gain. Specifically, the total gain 

without cavity is 3.68 dB and with cavity it is 8.62 dB. 
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Figure 6.2. Comparison of radiation pattern at 2.45 GHz: (a) without cavity, and (b) 

with cavity. 

• Cavity Depth  

The cavity-backed antenna is modelled and designed using HFSS. The proximity 

of the metallic cavity structure causes parallel-plate capacitance between itself 

and the ground plane of the antenna. The increased capacitance will decrease the 

characteristic impedance of the slot dimensions. To decrease the cavity effects on 

the impedance, the Quasi Newton method which is available in HFSS is used. 

Figure 6.3 shows the effect of cavity depth on the return loss (S11). With the 

substrate thickness set to h1=1.270, the following h2 values: 4.08 mm (λ0/30), 

5.10 mm ((λ0/24), 5.56 mm ((λ0/22), and 6.44 (λ0/19) are studied. When the depth 
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is set to 5.56 mm (λ0/22), the obtained return loss is -16 dB with a bandwidth of 

80 MHz at the resonant frequency of 2.43 GHz. As h2 becomes less than 6.44 

mm, e.g., 4.08 mm, the return loss increases and thus the antenna has poor 

impedance matching. This is due to the energy and radiation leakage between the 

reflector and the substrate [123]. In the case of h2= 4.08 mm (λ0/30), the obtained 

return loss is very high, i.e., -8.5 dB at a resonant frequency of 2.38 GHz. The 

most suitable depth is h2= 6.44 mm (λ0/19) as it provides the smallest return loss 

of -30 dB at a resonant frequency of 2.45 GHz. The obtained -10 dB impedance 

bandwidth is 109 MHz (2.391-2.50 GHz). Moreover, from the radiation pattern 

measurements for various h2 depth values, the optimal distance between the 

cavity and the slot antenna that provides the maximum gain with minimum side 

lobes and small return loss at 2.45 GHz is 6.44mm (λ0/19); see Figure 6.4. 

 

Figure 6.3. Return loss for various depth values. 
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Figure 6.4.  Radiation patterns for depths different h2 values. 

• Substrate Thickness 

The next concern is the thicknesses of the Rogers RO3010 substrate and its 

impact on impedance matching and resonant frequency. The available thicknesses 

are as follows: 0.254, 0.635, 1.270, 1.905 and 2.54 mm. As shown in Figure 6.5, 

for thicker substrates, resonant frequency decreases and return loss increases. The 

best h1 value is 1.27 mm, which gives very good impedance matching with a 

smallest return loss of -30 dB at 2.45 GHz and an impedance bandwidth of 109 

MHz (2.391-2.50 GHz). Moreover, in the case of h1= 2.540 mm, the obtained 

return loss is very high, i.e., -7.12 dB at 2.18 GHz. 
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Figure 6.5.  Return loss for various substrate thickness h1. 

Figure 6.6 depicts the input impedance (real and imaginary parts) of the CPW-fed 

slot antenna with a cavity backed reflector. At 2.13 GHz, the real and imaginary 

parts of the input impedance increase dramatically. The imaginary part of the 

input impedance has small variation around zero from 2.39 to 2.47 GHz. The real 

part starts to decrease at 2.5 GHz and drops to very a small value of 11.5 Ω and 

hence achieves very high reflection at frequencies ranging from 2.70 to 2.80 

GHz. The input impedance (real and imaginary parts) is 50+j1.9 Ω at the resonant 

frequency of 2.45 GHz; see Figure 6.6. This means good impedance matching. 

The inductance of the CPW-fed line is compensated by the capacitance between 

the antenna and the cavity reflector. Hence, good impedance matching is 

achieved. Moreover, the simulated axial ratio of the proposed antenna is shown in 

Figure 6.7. It has a CP 3-dB AR bandwidth of 160 MHz from 2.38 to 2.52 GHz. 

Very small axial ratio of 0.18 dB is obtained at a resonant frequency of 2.45 GHz.  
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Figure 6.6 Input impedance. 

 

Figure 6.7.  Axial ratio. 
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6.3 CPW-fed Slot Antenna array 

This section now presents a unique configuration of three small CPW-fed slot 

antennas. Each individual CPW-fed slot antenna is placed at the top corner of each 

face of a 2U CubeSat. The placed antennas thus provide communication in all three 

directions; see Figure 6.8. Moreover, they only occupy 6.48% of the total surface 

area on each CubeSat’s face. Hence, the remaining real estate, i.e., 93.52%, is 

sufficient to mount solar cells.  

By changing the phase of the input feeding signals of each antenna, different 

radiation patterns can be achieved and the direction of these radiation patterns can be 

controlled. The antenna thus facilitates cross-link communications amongst CubeSats 

operating in a swarm.   

 

Figure 6.8. Proposed ACM antenna configuration. 
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6.4 Conclusion 

This chapter has described a low profile, high gain CubeSat antenna. 

Advantageously, it uses part of the CubeSat body as a cavity reflector to dramatically 

increase the total gain from 3.68 dB (without cavity reflector) to 8.62 dB (with cavity 

reflector). The space between the antenna and the cavity reflector is small, e.g., 6.44 

mm and hence, giving the antenna a reasonably low profile. The total antenna size 

including the cavity reflector has dimension 36×36×6.44 mm3. Moreover, simulation 

results show that the proposed antenna has a return loss of -30 dB at a resonant 

frequency of 2.45 GHz, -10 dB impedance bandwidth of 109 MHz (2.391-2.50 GHz) 

and a CP bandwidth of 160 MHz. 
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Chapter 7 

 

CONCLUSIONS   

 

CubeSats require antennas that are small, have high gains and wide bandwidth. 

These features help maximize space for solar panels and ensure the communication 

links with ground stations and other CubeSats have high data rates. In addition, 

CubeSats require antennas that operate in the unlicensed ISM band. Henceforth, this 

thesis presents the first comprehensive study and survey of existing micro-strip and 

patch antennas for CubeSats. Critically, among micro-strip patch and slot antennas 

that are suitable for use on CubeSats, they have low gains and narrow bandwidth. 

Moreover, this thesis has conducted a comprehensive quantitative evaluation of the 

most suitable micro-strip and patch antennas on a common platform; i.e., HFSS. 

These antennas include shorted patch [46], CPW-feed square slot [45] and 

asymmetric E-shaped [56] antennas. The evaluation metrics include their volume, 

gain, bandwidth, return loss, robustness, beam steerability and cost. The key findings 

are that the most suitable shorted patch [46], CPW-fed square slot [45] and 

asymmetric E-shaped antennas operate at a resonant frequency higher than the 

desired CubeSat ISM operating frequency of 2.4-2.5 GHz band. This means to lower 

their operating frequency to 2.45 GHz, their overall size needs to be increased, 

meaning they will occupy a larger area; a key concern as CubeSats have limited real 

estate. Other findings are that the tested shorted patch and CPW-fed square slot 

antennas have low gains. Consequently, they can only be used for short distance 

communications; this means in a swarm, more CubeSats will be required. Lastly, a 

CubeSat’s body has a significant impact on the gain, return loss and bandwidth; a 

key factor neglected by prior works.  

Based on the said findings, Chapter 4 first reports two new antennas that operate at 

2.45 GHz (S-band). In particular, the said antennas are based on the shorted patch 

antenna in [46] and the CPW-feed square slot antenna in [45]. A key change is that 
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the F-shapes of the new S-band CPW-feed square slot antenna are replaced with a 

square slot to improve its gain. HFSS simulation results show that the gain of the 

modified CPW-feed square slot antenna is improved by 0.6 dB. Moreover, the new 

S-band shorted patch and CPW-fed square slot antennas have small -10 dB return 

losses of -27.5 and 20.5 dB at 2.45 GHz, respectively. However, the main limitation 

of the modified shorted patch antenna is its narrow bandwidth and low gain. To 

address the aforementioned problems, this chapter also presented a novel high gain 

wideband F-shaped patch antenna design that operates at 2.45 GHz. It achieves a 

high gain; i.e., 8.51 dB and a wide bandwidth of 1121 MHz. On the other hand, the 

repurposed CPW-fed square slot antenna has very low gains due to its bidirectional 

radiation pattern.  

 Chapter 5 outlines the design and the realization of a high gain CPW-fed slot 

antenna that is suitable for use on a 3U CubeSat. The main idea is to use MSS to 

redirect the back radiation pattern lobe forward, resulting in gain enhancement. The 

simulation and measured results show that the proposed CPW-fed slot antenna 

achieved a superior gain of 9.71 dB and a wide bandwidth of 730 MHz. However, 

the proposed antenna is only suitable for 3U CubeSats because of its relatively large 

size.  

Lastly, Chapter 6 presents a small size, high-gain, cavity-backed, CPW-fed slot 

antenna for use on 2U CubeSats. It operates in the unlicensed ISM band (2.45 GHz). 

A key feature is to use a part of a CubeSat’s body to redirect the back radiation 

forward. The proposed antenna has a small size; i.e., 36×36 mm2 and it occupies only 

12.96% of a 1U CubeSat’s surface and 6.48% of a 2U CubeSat’s surface. The 

simulation results show that the proposed antenna achieves a superior gain of 8.62 

dB and a -10 dB impedance bandwidth of 109 MHz. This chapter also proposes a 

unique configuration to facilitate cross-link communications between CubeSats in a 

swarm.  

All proposed antenna designs are cheap, easy to fabricate and do not require a 

deployment mechanism. Moreover, the proposed CPW-fed square slot and F-shaped 

patch antennas have high gains and wide bandwidth. However, their radiation 

patterns are not steerable. This is important to CubeSats as they are not able to re-
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orient themselves after deployment. Thus, a key future research direction is to design 

antenna arrays to facilitate steerable radiation patterns. Of particular interest is its 

feeding network. An example is the corporate feed network, which is used for 

passive antenna arrays. However, it occupies a large area. Another example is to 

combine phase shifters with a feed network; a common approach used by active 

antenna arrays. This approach, however, adds cost and complexity. To this end, a 

promising future research direction is to design a simple and feeding network for the 

proposed antenna array in Chapter 6. 
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