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Abstract— The ultimate goal of systems biology research area 

is to accurately predict the behavior of biological systems 

through the construction of computational models, using the 

related molecular-level data as the input, especially when the 

structural information of such biological system is available. 

Combining the three-dimensional (3D) structural information 

of the cohort of macromolecules underpinning the biological 

system, the researchers are poised with an unprecedented 

opportunity to gain a full understanding on how the molecules 

interact with each other, particularly for an interaction 

network, e.g. protein-protein interaction networks. Specifically, 

there are currently a limited number of studies focused on the 

reconstruction and modelling of the structural interaction 

networks (SIN) between hosts-pathogens protein-protein 

interaction networks. In this paper, we will survey the SIN on 

protein-protein interactions network, in which we focus on the 

interactions between pathogen and host species (PHPPI). As 

one of the most important component of inter-species PPI 

study, in-depth study of PHPPI at atomic-resolution level 

would reveal novel insights into the underlying principles of 

the organization and complexity of host-pathogen PPI 

networks. Several related sub areas are discussed, and the 

related typical Big Data methods including machine learning 

methodologies and statistics models will also be discussed. This 

paper contributes to a new, yet challenging, research area in 

applying data analytic and machine learning technologies in 

bioinformatics. 

Keywords: host-pathogen protein-protein interactions; 

structural interaction network; bioinformatics 

I.  INTRODUCTION 

Owing to the development of advanced high-throughput 
technologies, an overwhelming avalanche of experimental 
data has been rapidly accumulated in recent years and 
accordingly this phenomenon has propelled hypothesis-
driven biomedical research into the ‘big data’ driven era. The 
availability of large-scale multi-omics data, including 
proteomics data from The European Bioinformatics Institute 
(EBI) [1, 2, 3] and genomics data from The Cancer Genome 
Atlas (TCGA) [4], provides an unprecedented opportunity to 
transform the biomedical research onto system-level, 
mechanistic studies aimed at a comprehensive and holistic 
understanding of biological systems [5]. The combination of 
experimental data and systems biology techniques present a 
more promising and more precise modeling alternative 
option for researchers. Although there are still challenges for 
systems biology, e.g., specialized domain knowledge and 
data issues, this data-driven work to gain deep understanding 

of biological systems from huge amount of raw data is 
currently in the spotlight of both the academia and industry 
[ 6 ]. In this paper, we focus on the proteomics data, 
specifically on host-pathogen protein-protein interactions 
data, to present a comprehensive survey towards structural 
principles analytics. 

Given a set of interacting molecules, systems biology 
aims to understand and further predict the behavior of 
biological systems [7]. Thus, systems biology consists of 
studies on functional genomics and molecular biology. There 
are several researches focusing on genomics data since a 
nearly complete map of human and other species had been 
provided with the development of genome-sequencing 
projects [7]. These studies provided the insights towards 
understanding gene-related networks. Basically, a full 
understanding of how the set of molecules interact with each 
other requires heterogeneous data [8]. Among these data, 
three-dimensional (3D) structures of these molecules are the 
most critical ones.  

Proteomics is an important area in bioinformatics, in 
which the interaction network and structural information 
researches remain as hot topics for decades. However, due to 
the limited availability of proteomics data, most of the 
researches were carried out within the same species, which is 
called “intra-species PPIs”. Recently, several studies have 
shown their improvements in PPIs between different species, 
which are concerning “inter-species PPIs”. This kind of PPIs 
offers important information for further analysis of infectious 
mechanisms between different species. In this paper, we 
focus on the PPIs between the host and pathogen, in which 
we benefit from the identified data collected via open 
databases [9]. These PHPPIs are experimentally verified and 
manually recorded in systems. They include the information 
of the infection pathways in their interactions network and 
they can reveal much more information in the infection 
mechanisms between hosts and pathogens.  

In one of our recent work [9], a basic sequence 
information based survey of PHPPI was presented to exploit 
the online available and experimentally verified PHPPIs data. 
Beyond classifying pairs of proteins as interacting or not, in 
this paper we further reach out to a comprehensive study on 
building structural interaction network for PHPPIs, since 
systems biology might provide a highly convincing network 
analysis and also bring trustworthy statistics in cooperation 
with the corresponding structural information and domain 
data, on top of the atomic resolution level networks.  

Structural interaction network (SIN) is an atomic-
resolution protein-protein interaction network with structural 



                        
Figure 1.  The 3D structure of the Protective Antigen                                         

(UniProt ID: Protein: P13423) 

 

detail by combining the structural information of each of the 
proteins [ 10 ]. The structural information of proteins is 
another main experimentally determined 3D structural data 
that has been published already. Since there are few studies 
based on 3D structural detail to provide an atomic 
mechanism view of PHPPIs, we hope to take stock of the 
progress that biologists have made in bioinformatics area, 
including the well-maintained 3D structural databases and 
analysis based on these structural information, and further 
help readers navigate through the gap between biology 
analysis and computational model building. 

Thus, this paper contributes to a comprehensive survey 
on: 

1) Review on current protein structure prediction task 

targeting on secondary and teritary structure and also the 

domain-domain interaction prediction task based on 

machine learning technologies; 

2) Review on structural interaction network, including 

the building process and statistical analysis. 
The rest of this paper is organized as follows: Section II 

describes the 3D structure and domain information of 
proteins; Section III introduces the related public databases; 
Section IV discusses a variety of machine learning 
algorithms that have been developed and applied in protein  
3D structure and domain prediction, while Section V 
describes a detailed process to layer curated 3D structural 
models on top of traditional interaction network, and also 
provides the linking domain knowledge between model and 
analysis; latter the challenges for building structural 
interaction model are discussed in Section VI. We conclude 
this paper in Section VII. 

II. PROTEIN STRUCTURE  

Since both structure and domain data are usually difficult 
for bioinformatics researchers to fetch, they are currently two 
hot topics and remains much for future researches. To build 
SIN, a good and complete understanding on domain-domain 
interactions is also important. In this section, we first present 
the biological meaning for both structural information and 
domain-domain interactions. 

A. Structural Information 

It is well known that amino acids are the basic units to 
build the protein. Their direct concatenate string becomes the 
sequence information of proteins. In [9], we give a detailed 
discussion of the 20 different proteinogenic kinds of amino 
acids and the sequence information of proteins. However, we 
have identified that there are 25 different expressions of 
amino acids existing in the human and pathogens protein 
sequence information in our PHPPI researches. The other 
five expressions of amino acids are Sec (Selenocysteine/U), 
Pyl (Pyrrolysine/O), Asx (Aspartate or Asparagine/B), Glx 
(Glutamate or Glutamine/Z) and an unknown (X). There are 
20 different kinds of amino acids from [11].  

There are four distinct structural stages for protein 
sequence, which are primary structure, secondary structure, 
tertiary structure and quaternary structure respectively. Since 
the protein sequences have various lengths, for those which 

are composed of less than 50 amino acids, regularly only the 
primary level information available. This kind of protein 
sequence is called polypeptide. For the secondary structure, 
it is recognized as regions in which the sequence forms the 
most common structures: alpha helices (α-helix) and beta 
sheets (β-strand). Another structure is called random coil (C) 
which is not a secondary structure. But it is also included as 
one of the features to present the absence of regular 
secondary structure for proteins. Upon folding, a secondary 
structure subunit transforms into a tertiary structure. For 
some proteins, they consist of more than one polypeptide, 
which means there is more than one tertiary structure. This 
context information of how these polypeptides fit together 
along their subunits is called quaternary structure. 

Among these four distinct structural stages, each stage is 
highly related to its prior stage. Understanding protein 
structures is critical for protein analysis. Meanwhile the 
ongoing experiments to determine these structures keep 
increasing the known protein structures for biologist and 
biochemists. However, these experiments, which are 
normally conducted by using X-ray crystallography, NMR 
spectroscopy and even cryo-electron microscopy, are 
extremely time-consuming and expensive. It is reported that 
so far only about less than 0.5% of all sequencing proteins 
structures have been known due to these limitations of 
biological experiments methods [12]. Hence, the researches 
on protein structures took place first on secondary structure 
prediction decades ago. Because the secondary structure 
could be analyzed with the efficient sequence information 
from primary structure, it has been a hot topic till now. As 
shown in Figure 1, it is an illustration of secondary structure 
for Protective Antigen protein (the UniProt ID is ‘P13423’). 
As mentioned earlier, the secondary structure is pre-defined 
with three types: α-helix, β-strand and coli, which is called 
Q3 accuracy in the prediction task [13, 14, 15, 16]. Ranging 
from statistics models to machine learning methods, Q3 
accuracy has been intensively improved from 65% to 80%. 
Recently a more challenging problem targeting on eight 
categories prediction (Q8) for secondary structure is drawing 
the researchers’ attention. The eight categories refine the 
secondary structure to more elements: 310-helix, α-helix, π-
helix, β-strand, β-bridge, β-turn, bend and loop/irregular [17, 
18]. 

To achieve a result with better accuracy on secondary 
structure, it requires not only an efficient model but also 



               
Figure 2.  Tertiary structure of the Protective Antigen 

(UniProt ID: Protein: P13423) 

        

Figure 3.  Domain-Domain Interaction 

 

sufficient feature representation from sequence information. 
The involved models will be introduced in Section IV. The 
key challenge to predict secondary structure is the prediction 
for those proteins which have no close homologs, which in 
turn have experimental verified 3D structures. 

To achieve sufficient feature representations for the 
secondary structure prediction, most studies introduce the 
protein sequence information, amino acid profile information, 
local and global information of sequence [14,16,19,20]. In 
this paper, we first focus on eight categories secondary 
structure prediction, which has been intensively studied 
recently due to its complexity. 

Figure 2 provides an example of the tertiary structure of 
the Protective Antigen protein (UniProt ID: P13423). Aside 
from secondary structure prediction, prediction for this level 
structure normally falls on homology modeling method [21]. 
The homology modeling is also known as comparative 
modeling, in which the main result candidate comes from the 
amino acid sequence alignment by mapping the amino acid 
between different sequences. The reason on introducing 
homology modeling method into tertiary structure prediction 
is that, the evolutionary results show similar protein in amino 
acids sequence share similar tertiary structure to accomplish 
related biological function [22].  

The structure information is requisite for structural 
interaction network since they provide the atom level 
information of protein sequences. In section III, we will 
detail the related databases to acquire such information. 

B. Domain- Domain Interactions 

Given a protein sequence, protein domains are distinct 
functional or structural subunits. Most of the protein domains 
build independently stable and folded 3D structures, with 
which the domains could be combined into different 
arrangements to form a unique protein with different 
functions [23]. Therefore, the binary PPI networks can be 
further considered at the domain level, especially when the 
interacting protein has an extremely long length. Although 
most proteins consist of multi domains, a pair of protein-
protein interactions often involves only one pair of domain-
domain interaction.  

The domain level interaction provides a global view of 
the binary PPIs network. For PHPPIs researches, it reveals 
the actual interacting location for pathological interactions 

and can help to facilitate the drug development targeting on 
infectious diseases. To acquire the comprehensive 
understanding of how interactions between domains are 
mediated, the primary method is to analyze every single 
interacting protein with their experimentally determined 3D 
structures. However, this kind of information remains only a 
small fraction for proteins, which means the domain level 
PPIs interaction data are not readily fully accessible. 

There are several existing databases, i.e. 3did [24] and 
iPfam [25]. They provide domain-domain interactions by 
identifying them based on experimentally determined 3D 
structures. Also, there are other databases providing 
combined interactions, in which part of them are from 
experimentally determined data and the rest are from 
computational predicted result. For example, DOMINE [26] 
includes both 3D structure-based and predicted domain-
domain interactions datasets. Moreover, DOMINE indicates 
the predicted domain-domain interactions with three 
different levels, namely ‘High’, ‘Middle’ and ‘Low’. Two 
primary methods, which are association method [26] and 
maximum likelihood estimation [27], are introduced in this 
domain-domain interaction prediction task. The essential 
information utilized in these models includes the domain 
information from protein sequence and binary protein-
protein interaction information. 

In order to provide a general understanding of domain-
domain interactions associated with binary protein-protein 
interactions, Figure 3 shows a basic diagram for domain-
domain interaction prediction task from [28]. ‘Protein A’ is 
interacting with ‘Protein B’ while ‘Protein C’ is not 
interacting with ‘Protein D’. Several different domains types 
are identified using the related databases; mostly we would 
choose Protein Data Bank (PDB) [29] as most of the 
literature suggested so. Later we will compare the difference 
between these two groups of domain-domain relationships to 
identify the exactly interacting domains between two 
different proteins, in this example they are the purple box 
and yellow triangle. 

III. RELATED DATABASES 

Ranging from protein sequence information to their 
structure data, several different databases are available on the 
Web and they are also well maintained. These databases 
include host-pathogen protein-protein interactions databases, 



                    
Figure 4.  3D Virsulization of of the Protective Antigen (UniProt 

ID: Protein: P13423) 

 

structure databases, protein families and domain databases, 
as well as domain-domain interactions databases.  

A. Host-Pathogen Protein-Protein Interactions Databases 

Although several different standardized formats for the 
host-pathogen protein-protein interactions are published by 
different organizations, these databases contain the most 
important binary information for PHPPIs researches. Some 
popular repositories are initially built by universities, which 
include HPRD by Johns Hopkins University and the Institute 
of Bioinformatics, PATRIC by University of Chicago, 
PHISTO by Boğaziҫi University, VirHostNet by Université 
de Lyon. The highly credible positive PHPPIs pairs are 
manually recorded in these systems and updated periodically. 
The details of these databases could be found in [9]. 

B. Structure Databases 

Protein Data Bank (PDB) [29] is the primary database for 
the structural information of proteins, which is managed by 
the worldwide Protein Data Bank (wwPDB) international 
collaboration.. The PDB database contains all experimentally 
determined protein structure ranging in different resolutions 
and different detection methods.  

PDB is currently updated weekly. It has its own file 
format standard, which is strictly defined to provide protein 
and nucleic acid structure details. A standard PDB file 
should contains atomic coordinates, observed sidechain 
rotamer, secondary structure assignments and atomic 
connectivity information. Beside the critical information, 
abbreviation content about the corresponding literatures is 
mandatory in PDB file, which is listed as Header. Several 
other specific columns are: HEADER (The ID NO., date of 
publication), OBSLTE (mark for obsolete or not), TITLE 
(details about the related experimental methodology), 
COMPND (molecular components of the complexes), 
SOURCE (the source of the complexes), EXPDTA (the 
experimental method for determining the structure), 
AUTHOR (the authors), SPRSDE (the modification and 
revocation records), and REMARK (including the related 
literatures, the maximum resolution and other statistic).  

To illustrate a lively picture for the corresponding PDB 
file in 3D vision, we present a simple example of the 
Protective Antigen (UniProt ID: P13423) using PyMOL [30]. 

However, it costs lots of efforts and time to acquire an 
experimental determined structure for protein, and currently 
not every protein has its corresponding structural information 
available. How to determine those proteins without PDB data 
is crucial for building SIN. 

C. Protein Families and Domain Databases 

Acting as an important database of protein domains and 
families, Pfam provides a complete map for protein domains 
and families searching [31, 32]. It is regularly updated and 
the latest version is Pfam 31.0 released in March 2017. It 
contains more than 16,712 protein families. 

Although amino acids are the elements to compose a 
protein sequence, the actual function execution takes place 
with multi sequential amino acids, which is called domain. 
Different combinations of domains result in various 
functions of proteins. Identifying these domains in proteins 
would give deep details and insights for their function 
mechanism. 

With structural information, the bond of interactions 
between proteins is more concrete along the sequences than 
the binary PHPPIs network provided in PHPPIs databases. 
Therefore, iPfam is introduced in SIN study to acquire 
domain-domain interactions between proteins [25]. iPfam is 
developed by Howard Hughes Medical Institute, and 
currently it hosts more than 9,500 domain-domain 
interactions. iPfam is based on two continuously updating 
databases, PDB and Pfam. Both are well established for their 
3D structure and domain information purposes. Most of the 
structural information in PDB also contains multiple 
domains. 3did is another domain-domain interaction 
databases for 3D interacting domains between proteins. It is 
a collection of protein interactions from which high-
resolution 3D structures are known [24, 33].  

By introducing iPfam and 3did to achieve domain level 
resolution of PHPPIs, SIN considers proteins in their precise 
spatial relationships by layering domain-domain interactions 
on the top of conventional protein-protein interactions 
network. As protein sequence information are accumulated 
in a staggering rate, these data depict its characteristics with 
high volume, high velocity, high variety, high value and high 
veracity (5V). It brings a joint possibility by adopting big 
data analytics, including machine learning technologies, to 
tackle the structural and domain-domain interaction 
prediction problems. In the next section, we will introduce 
the related computational models or methods for SIN 
construction, among them machine learning methodologies 
are mostly utilized recently. 

IV. MACHINE LEARNING METHODOLOGIES 

Before we can layer the domain-domain interactions 
upon the traditional PHPPIs network, the structural 
information of corresponding proteins is requisite. However, 
only a few proteins have experimentally determined structure, 
specifically with high resolution scale. Thus, we herein 
present the related studies for structure prediction, and also 
domain-domain interactions prediction in this section. Firstly, 
to input the related information, which are mainly from 
sequence information, proper data processing for protein is 
required. Given a protein sequence denoted as  X =
𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, 𝑥𝑖 presents each amino acid in this sequence. 

1) Sequence Information: The amino acid information is 

essential to protein sequence. Normally, 𝑥𝑖  could be a l-

dimensional feature vectors which is one-hot sparse vector (l 



denotes the amino acid types considered in the related 

projects). In our previous study [9], the protein sequence is 

decomposed into a 25*n dimension vector. In [18], the 

utilized database was from PISCES Cull PDB server and the 

ultimate datasets was filtered based on non-homologous 

principles. Their sequence information is with 22*n 

dimension while in [16] the dimension is 21*n. This one-hot 

sparse vector representation method is widely used in recent 

structure prediction researches. Another type of feature 

representation based on sequence information is the 

evolutionary information as position-specific scoring matrix 

(PSSM). PSI-BLAST[34] is one of the most frequently used 

tools to derive PSSM from protein sequences. The generated 

matix is also with 𝑏 ∗ 𝑛 dimension, in which b is the types of 

amino acids considered in the protein sequence. 

2) Global/Local Information: The global information 

from the whole protein sequence is also crucial to improve 

the accuracy [18], although protein sequence information is 

considered as the main feature for secondary structure 

prediction. Before folding to build a tertiary structure, the 

secondary structure remains in a two-dimensional space, 

which is stabilized by hydrogen bonds between different 

amino acids located in different locations in the protein 

sequence. The local information could also be generated by 

dividing protein sequence into several segments. Thus 

capturing this kind of global/local information is resonable 

and widely believed to improve the eight categories 

accuracy. 

Beyond the data processing, different data query 

procedures are required to collaborate with the specific 

domain knowledge. However, most of the datasets are built 

with the sequence information. To deal with these datasets, 

mostly statistics analytics and machine learning methods are 

utilized. In the following we will present the most relevant 

machine learning methods through their typical sample 

applications in detail. 

A. Bayesian Statistics 

The earliest studies on protein secondary structure 
prediction mainly focused on Bayesian statistics method 
[35,36,37]. Basically, the Bayesian statistics described this 
problem by: 

I(S; R) = log [𝑃(𝑆|𝑅)/𝑃(𝑆)]              (1)   
where P(S|R) is the conditional probability for observing a 
conformation S when a residue (amino acid) R is present, and 
P(S)  is the probability of observing  S . According to the 
conditional probabilities definition, P(S|R) = 𝑃(𝑆, 𝑅)/𝑃(𝑅). 
P(S, R)  is the joint probability of S and R. Via (1), an 
estimation of I(S; R)  from a database of known protein 
sequences and corresponding secondary structures could be 
achieved.  

In such methods, the cooperation with information theory 
to project the known twenty amino acids types for each 
specific secondary structure could achieve a Q3 accuracy of 
73.5%. Specifically, in [36] the GOR method (Garnier-
Osguthorpe-Robson) is based on the information theory, 

which uses a 17-amino-acid sequence window to extract 
properties from protein sequence.  The GOR method in [36] 
presented the observed frequencies of single, then pairs of 
residues on a local sequence of 17 residues to build the 
Bayesian model, then to estimate the probabilities for the Q3 
structures. This method increased the accuracy from 55% up 
to 64.4%. 

B. Support Vector Machine (SVM) 

The debut to predict protein secondary structure was 
firstly introduced in 2001 [ 38 ], though support vector 
machine was proposed in 1995 [ 39 ]. It is not the first 
machine learning approach for protein secondary structure 
prediction, yet by then it achieved the best performance 
overall on Q3 task by its first use of the SVM approach. 

Similar to earlier research with neural network based 
method [40], the encoding scheme for input layer is called 
local coding scheme. It denotes every amino acid with a 21-
dimensional orthogonal binary vector as follows: 

 (1,0, … ,0)𝑜𝑟 (0,1, … ,0), 𝑒𝑡𝑐  
In the output layer, Q3 task was first considered as binary 

classifier later combined into a tertiary classifier.  
[38] considered SVM as a superior model by then with 

its attractive characteristics, including the effective 
avoidance of overfitting and the ability to handle large 
feature spaces. In details, the authors [38] selected the radial 
basis function (RBF) as the kernel function to train the SVM. 
Their result on Q3 task is 73.5%. 

C. Artificial Neural Network 

To the best of our knowledge, artificial neural network 
was first introduced in protein secondary structure prediction 
in [40] with the fully connected three-layer network. The 
learning algorithm is Back-Propagation algorithm. Later, the 
authors in [41] used a two-tier architecture to deploy neural 
network for prediction. However, the improvement for Q3 
accuracy has been stalled since then. 

Recently, Q8 accuracy has come into the spotlight of 
academia and industry, which aims to apply deep learning 
techniques to improve the performance. In [42], probabilistic 
graphical models, which combine conditional neural fields 
(CNFs) with neural network, were deployed to improve the 
Q8 accuracy. The features are extracted from PSSM 
(position-specific score matrix) and the physico-chemical 
property of the amino acids. According to [42], both the 
complex relationship between sequence and secondary 
structure information, and the interdependency relationship 
among secondary structure types of adjacent amino acids 
were studied using the CNFs model.  

In [18], generative stochastic networks (GSN) model was 
utilized to learn a generative model of data distribution 
without explicitly specifying a probabilistic graphical model. 
Specifically, this supervised extension of GSN is deployed 
via learning a Markov chain to sample from a conditional 
distribution for training on protein structure prediction task. 
They presented this model with deep learning techniques to 
tackle Q8 problem for protein secondary structure prediction. 
The empirical design for the data preprocessing step in their 
work was to choose 700 lengths as the cutoff threshold value 



              

Figure 5.  An Example for Domain-Domain Interactions Analysis [49] 

 

to balance the efficiency and coverage of protein sequence. 
The main features extracted included the evolutionary 
information (PSSM feature) and the sequence information 
(one-hot binary vector feature). The model achieved 66.4% 
accuracy on Q8 problem. 

The most recent result on Q8 accuracy task was reported 
in [16], which proposed a deep convolutional and recurrent 
neural network. The feature to encoding the protein sequence 
remains partially the same as local coding scheme. In this 
network model, a feature embedding layer was deployed to 
map sequence information and profile feature (by PSI-
BLAST) to a denser matrix. Later on, multi CNN layers and 
stacked bidirectional RNN layers were included to learn both 
local context information and global context information 
from the denser matrix. A fully connected and softmax layers 
were layered on the top of the model to build the classifier 
for prediction task.  

D. Random Forests 

Apart from predicting secondary structure, domain-
domain interaction is also crucial to build our SIN. Random 
forests model was introduced to build multi classifiers to 
vote a final decision for a dataset with 1050-dimensional 
feature [43]. Also in [44] an ensemble model of random 
forests and SVM was presented to predict the domain 
interacting sites. 

Derived from decision trees model, random forest 
leverages the power of randomization to increase the model 
performance [45,46]. Random forest is able to deal with 
imbalanced data problems via the voting mechanism, whilst 
its random feature selection method may benefit the model 
from high dimensional data. 

Various models have been discussed in this section for 
these problems; however we would mainly aim to stack these 
different types of data on the top of traditional PHPPIs 
network to achieve a structural principles analysis. In the 
next section, we will discuss the structural interaction 
network. 

V. STRUCTURAL INTERACTION NETWORK 

Since the principles analysis of protein interactions 
between pathogen and host still remain poorly understood, 
an ensemble network of traditional binary PHPPIs network 
and structural information gives an efficient option for 
mining these knowledges with a systems biology approach.  

In [47], altogether 3,949 genes, 62,663 mutations and 
3,453 associated disorders are analyzed based on a three-
dimensional, structurally resolved human interactome 
network. Integrating the data from iPfam, 3did and Human 
Gene Mutation Database (HGMD) [ 48 ], authors of [47] 
successfully built a high-quality binary PPIs network with 
the atomic-resolution interfaces. This network provides some 
deep insights including in-frame mutations locations and the 
disease specificity for different mutations of the same gene, 
which could not be acquired on a low-resolution network. 
The original interactions network obtained from literature-
curated databases in [47] have 82,823 pairs; however, after 
filtering out the proteins without experimentally determined 
structures, only 4,222 structurally resolved interactions 

between 2,816 proteins are kept. To build a structural 
interaction network still requires much more efforts on the 
structure experimental determination or computational 
prediction since only a tiny fraction of these binary PPIs can 
be analyzed with their corresponding structure information.  

Fortunately, in [10] we have witnessed that several 
possible structural principles analyses had been obtained 
within the human-virus protein-protein interaction network. 
The SIN approach in human-virus PPIs network reveals 
atomic resolution, mechanistic patterns, and gives systematic 
comparison with the human’s endogenous interactions. 
Figure 5 is an example from [10, 49] to details how to layer 
the structure and domain-domain interaction information on 
top of the traditional PPIs network. 

Figure 5 reveals a high-resolution relationship between 
the protein “Microbe” and the protein “Human2” as some 
overlapping area is detected. This kind of information could 
not be observed in the binary PPI network. Further analysis 
reveals that protein “Microbe” is mimicking the action of 
protein “Human2”.  

The experimental host-pathogen PPI networks provide 
not only specific pathogen protein functions but also global 
analyses, which reveal the critical proteins in the networks 
[49]. Although Figure 5 provides some essential mappings 
via domain-domain interactions, annotating the experimental 
host-pathogen PPI networks with 3D structural information 
may provide further information, because the protein-protein 
interactions can be interacted between two globular domains 
and also between one short linear motif (a short functional 
segment considered on secondary structure) and globular 
domains.  

Several methods to assemble structural information with 
binary PHPPIs network could be: 

1) Using only the experimentally determined structural 

information 

2) Using both the experimentally determined and 

computationally predicted structural information 

3) Using only the computationally inferred structural 

information 
In [10] the computationally predicted structural 

information mainly comes from the homology modeling 
method which is widely used in bioinformatics area, because 
it is widely understood that the structure and function of 
protein are mostly determined by their sequence information. 

Typically, for host-pathogen protein-protein interactions, 
hypothesis always exhibits that imitating the binding actions 



between proteins is the main infectious mechanism. Given a 
SIN, there are several statistics data could help us to propose 
and support this hypothesis. As a specific example between 
virus and host PPI networks, [10] analyzed the exogenous 
and endogenous interactions in the human-virus SIN.  
Meanwhile, the overlapping ratio of protein interactions 
involved in exogenous interface and protein interactions 
involved in endogenous interface indicate the potential 
infectious targets, though the mapping of endogenous 
interfaces in [10] is not guaranteed to be complete.  

To achieve a better understanding of the mimicry 
mechanism, which provides possible explanation for virus 
infectious procedure, a similarity statistical analysis can be 
carried out by z-score [50] and E-value [51] level. Since the 
mimicry action occurs between host protein and pathogen 
protein, similarity statistics may help to bring up insightful 
findings.  

Overall, SIN on the top of binary protein-protein 
interactions exhibits many advantage with precise analysis 
based on the statistics from 3D structural and domain 
information.  

VI. CHALLENGES 

While the boom if big data research looks promising, 
when dealing with both the structural information and 
domain-domain interactions, there are several challenges to 
build SIN for PHPPI.  

A. Feasible and Efficient Feature Representation 

For the computational model, especially for protein 
sequence researches, feature representation remains a hot and 
challenge topic. Various methods for feature representation 
already exist [9, 13, 15, 17, 19, 20, 34]. One reason for us to 
reconsider this problem is that currently more and more 
protein sequence information are experimentally determined. 
Meanwhile, more and more models based on deep learning 
techniques present end-to-end frameworks for learning from 
big data sets. The automatic feature extraction process could 
be a promising option for protein sequence researches. 

Prior to inputting data into machine learning models, 
several traditional feature representation methods, which 
include one-hot vector method, PSSM feature, and 
global/local information transformation method, are widely 
used. Recently, deep learning techniques are also first 
introduced in protein secondary structure prediction task in 
[16, 18]. In terms of feature representation, deep learning 
techniques could harness the power of a rich and high 
dimensional data in large volume. This could be a good 
opportunity for us to obtain more feature information and 
further improve the model performance. 

B. Imbalanced Data 

For both structure prediction and domain-domain 
interaction problems, the imbalanced ratio between different 
classes is also crucial to improve the models performance. In 
[43], the ratio of non-interface interactions to interface 
interactions is about 9:1. In structure prediction task, the 
ratios in both Q3 and Q8 tasks are also different and 
imbalanced between different protein families. 

With the continuous expansion of structural information 
and domain data being available, the imbalanced data issue 
in biology area becomes more intensive. A possible solution 
could be either from consideration at data level or via 
innovative algorithm design. 

VII. CONCLUSIONS 

In this paper, we present a review as for building 
structural interaction network (SIN) for host-pathogen 
protein-protein interactions to analyze the network in a 
systems biology approach. Several multidisciplinary but 
related areas are reviewed, including protein structure 
prediction, domain-domain interaction prediction and 
machine learning methods applied in these prediction tasks. 

For PHPPI researches, building SIN with the atomic level 
data can provide insights on the high-resolution interactions 
based on protein structures and further present high-quality 
analysis of interactions targeting the infection mechanisms. 
To the best of our knowledge, currently there are still a lot of 
efforts to be accomplished in this area.  
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