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Accreditation of Biosafe Clinical-Grade Human Embryonic Stem Cells
According to Chinese Regulations

Abstract
Human embryonic stem cells (hESCs) are promising in regenerative medicine. Although several hESC-based
clinical trials are under way, a widely accepted standard of clinical-grade cells remains obscure. To attain a
completely xeno-free clinical-grade cell line, the system must be free of xenogenic components, the cells must
have a comprehensive set of functions, and good manufacturing practice conditions must be used. In this
study, following these criteria, we successfully derived two hESC lines, which were thereby considered
"clinical-grade embryonic stem cells". In addition to the primary capacity for pluripotency, these two cell lines
were efficiently differentiated into various types of clinical-grade progeny. Importantly, the cells were
recognized by the National Institutes for Food and Drug Control of China for further eligible accreditation.
These data indicate that we have established completely xeno-free clinical-grade hESC lines and their
derivatives, which will be valuable for the foundation of an international standard for clinical-grade cells for
therapy.
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SUMMARY

Human embryonic stem cells (hESCs) are promising in regenerative medicine. Although several hESC-based clinical trials are under way,

a widely accepted standard of clinical-grade cells remains obscure. To attain a completely xeno-free clinical-grade cell line, the system

must be free of xenogenic components, the cells must have a comprehensive set of functions, and good manufacturing practice condi-

tions must be used. In this study, following these criteria, we successfully derived two hESC lines, which were thereby considered ‘‘clin-

ical-grade embryonic stem cells’’. In addition to the primary capacity for pluripotency, these two cell lines were efficiently differentiated

into various types of clinical-grade progeny. Importantly, the cells were recognized by the National Institutes for Food and Drug Control

of China for further eligible accreditation. These data indicate that we have established completely xeno-free clinical-grade hESC lines

and their derivatives, which will be valuable for the foundation of an international standard for clinical-grade cells for therapy.

INTRODUCTION

Human embryonic stem cells (hESCs), after directed differ-

entiation, are valuable in regenerative medicine. However,

clinical trials using hESC-derived cells remain scarce pri-

marily because hESC lines available worldwide are mostly

of nonclinical grade. To generate clinical-grade cells, good

manufacturing practices (GMPs), which cover operating

procedures and product quality control, must be employed

(Ausubel et al., 2011). GMP is a quality assurance system

that requires the traceability ofmaterials and the validation

of standard operating procedures (SOPs) (Unger et al.,

2008). Stem cells are a type of human cellular and tissue-

based product (HCT/P). In many countries, HCT/Ps are

regulated under guidelines such as 21 CFR 1270 and 21

CFR 1271 issued by the US Food and Drug Administration

(FDA) (FDA, 2012). Stem cell-based products must also

meet the requirements of other therapeutic products

including drugs, medical devices, xeno-transplants, and

biological products (Fink, 2009). Therefore, a number of

countries and professional associations (e.g., International

Society for StemCell Research) have issued preliminary reg-

ulatory policies for the clinical application of stem cells,

andGMP serves as the basic requirement for the generation

of clinical-grade hESCs (Fink, 2009; Hyun et al., 2008; Wil-

kerson et al., 2013). The existing guidelines incorporate

guidelines produced by the British Standards Institute for

cell-based clinical application (Ratcliffe et al., 2013).

Recently, in China, drafts of a stem cell-specific clinical

therapy quality control standard and management of

stem cell-based clinical experiments were implemented

by the China Food and Drug Administration (CFDA)

(http://www.sda.gov.cn) and National Health and Family

Planning Commission of the People’s Republic of China

(NHFPC) (http://www.nhfpc.gov.cn/). Each of these guide-

lines focuses on the efficacy, safety, and pharmaceutical

quality, which are influenced by the cell sources,

manufacturing systems, and specific therapeutic protocols

(George, 2011; Huang and Fu, 2014). In addition to vali-

dating the biosafety of the hESCs, the CFDA and FDA

both require rigorous testing of the donors’ eligibility,

thus differentiating these guidelines from the present

NIH guidelines on human stem cell research (George,

2011; Huang and Fu, 2014; Jonlin, 2014).

The generation of hESCs involves numerous reagents,

including growth factors, small molecules, and media. To

avoid infection by animal-sourced components, mouse

feeder cells can be substituted by human fibroblasts (Eller-

strom et al., 2006; Genbacev et al., 2005). Chemically

defined hESC culture media such as mTeSR1, mTeSR2,

and E8 have been developed to complement future hESC

clinical applications (Chen et al., 2011; Ludwig et al.,

2006a, 2006b). To facilitate and standardize the develop-

ment of safe and effective clinical-grade hESCs, most

clinical hESC studies have been reported as xeno-free or

clinical-grade; a summary of current globally available

xeno-free hESCs is listed in Table S1 (Crook et al., 2007;

Ilic et al., 2012; Klimanskaya et al., 2006; Rajala et al.,
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2010; Schwartz et al., 2012; Tannenbaum et al., 2012).

However, studies have only rarely demonstrated the

biosafety investigated by an accredited organization.

Here, we propose generation of clinical-grade hESCs with

the following requirements: (1) donor consent, (2) donor

eligibility requirements, (3) the use of completely xeno-

free reagents, (4) biosafety tests from authorized organi-

zations, and (5) stability, self-renewal characteristics, and

differentiation capability.

Two clinical-grade hESC lines (Q-CTS-hESC-1 and

Q-CTS-hESC-2) were successfully derived under GMP-

controlled conditions in completely xeno-free culture me-

dia. Both cell lines were pluripotent and passed biosafety

evaluations. For a further validation of their pluripotency

and biosafety, both cell lines were reviewed and deemed

eligible by the National Institutes for Food and Drug Con-

trol (NIFDC). Additionally the cell line Q-CTS-hESC-1 is

parthenogenetic. Theoretically, parthenogenetic cells ex-

press high level of homologous human leukocyte antigen

without recombination during meiosis I; thus, they have

low histocompatibility and are applicable to more allograft

recipients (Kim et al., 2007). Finally, the cell line Q-CTS-

hESC-2 was selected for direct differentiation and was

able to differentiate into clinical-grade cell types with

representatives of three germ layers (ectoderm: retinal

pigment epithelium [RPE] cells and neuronal progenitors;

mesoderm: cardiomyocytes; endoderm: hepatocytes).

Furthermore, clinical-grade neuronal progenitors differen-

tiated fromQ-CTS-hESC-2 cells survived and further differ-

entiated into tyrosine hydroxylase (TH)-positive mature

dopamine (DA) neurons after transplantation into Parkin-

son’s disease (PD) rat models. These results demonstrate

the value of these two clinical-grade hESC lines as sources

for future hESC-based clinical trials or therapies.

RESULTS

Procedures of Clinical-Grade hESC Derivation and

Clinical-Grade Human Foreskin Fibroblast Isolation

Figure 1 presents the flowchart for xeno-free clinical-grade

hESC derivation. The requirements for each step are

shown in the gray box. The study was approved by the

Animal and Medical Ethics Committee of the Institute of

Zoology, Chinese Academy of Sciences (Ethical No.

IOZ15033 and IOZ15038) (Supplemental Experimental

Procedures). To ensure safety, traceability, and re-

producibility, hESC generation must comply with GMP

throughout the process. One GMP-compliant laboratory

has been established (Supplemental Information and

Figure S1A) and tested by the Beijing Institute for Drug

Control (Beijing Center for Health Food and Cosmetics

Control) after a series of rigorous tests (Data S1, which is

the original report document). To trace the cell line, we

use a digital system to record the culture/passage and

characterization history (Figures S1B and S1C). The GMP-

compliant xeno-free reagentswere chosen for hESC deriva-

tion and differentiation (Table S2). For the supply of safe

cell sources for potential clinical applications, screening

for eligible embryos and tissue donors is necessary. The

embryos and foreskin donors signed informed consent

and underwent strict medical tests.

To establish a xeno-free human foreskin fibroblast (HFF)

culture method, we used FibroGRO Xeno-Free Human

Fibroblast Expansion Medium (SCFM) (Supplemental In-

formation and Figure S2). Karyotype analysis indicated

that the HFFs had normal chromosomes, and Ki-67 stain-

ing demonstrated that the feeder cells were unable to pro-

liferate (Figures S2D and S2E) as a result of g-irradiation,

which induces G2/M cell-cycle arrest (O’Connell et al.,

1998). After isolating and expanding a sufficient number

of HFFs from the donated foreskin tissues, a series of

biosafety-related experiments were performed according

to the ‘‘Guidelines for Human Somatic Cell Therapies and

Quality Control of Cell-based Products,’’ and the HFFs

were verified as safe. These were obtained by the NIFDC

in China (Table 1). At passages 8–10, the clinical-grade

HFFs were inactivated by g-irradiation and served as

clinical-grade feeder cells. After verifying the absence of

mycoplasma, endotoxin, and bacterial contamination,

the clinical-grade feeder cells were cryopreserved using

MesenCult ACF cryomedium for future clinical-grade

hESC derivation and culture.

Derivation of Clinical-Grade hESCs

Figure 2A outlines the hESC derivation procedure. Blasto-

cysts with a visible inner cell mass (ICM) were selected for

the derivation of hESC lines (Figure 2B, left). To avoid ani-

mal-related reagents commonly used in immunosurgery,

we separated the ICM from the blastocysts mechanically

and then inoculated it onto the clinical-grade feeder cells

(Figure 2B, right) in STEMedia. Two clinical-grade hESC

lines were derived: one from a parthenogenetic embryo

(Q-CTS-hESC-1) and the other from a fertilized embryo

(Q-CTS-hESC-2). These two hESC lines were morphologi-

cally similar to human pluripotent stem cells and could be

passaged for 40 generations on clinical-grade HFF feeder

layers (Figures 2C and 2D) or in the absence of feeder cells

(Figure2E). Thecellshadhigh levels of alkalinephosphatase

(Figures 2C–2E, right). Karyotype analysis confirmed the

preservation of normal karyotypes (44 normal chromo-

somes and two X chromosomes) in the two cell lines for

up to 40 passages (Figures 2F and 2G). Copy-number varia-

tion sequencing (CNV-seq) further indicated that there was

no chromosome aneuploidy and no loss or repeat greater

than10-Mbpsegments ineither cell line (Figures2Hand2I).
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Pluripotent Characterization of the Clinical-Grade

hESCs

To evaluate the pluripotency of the Q-CTS-hESC-1 and

Q-CTS-hESC-2 cells, we performed characterization at

several levels. Positive immunofluorescence staining of

the pluripotent markers OCT4 (POU5F1), SOX2, SSEA-4,

TRA-1-60, and TRA-1-81 indicated the pluripotency of

the two clinical-grade hESC lines (Figure 3A, Supplemental

Information and Figure S3A). In parallel, RT-PCR analysis

confirmed the expression of the pluripotent genes OCT4

(POU5F1), SOX2, NANOG, REX1, LIN28, and GDF3 in the

two cell lines (Figures 3B and S3B). The chemically defined

E8 medium has been reported to support feeder-free hESC

growth and reduce the risk of hESC culture instability

caused by variability between human serum albumbatches

(Villa-Diaz et al., 2013). At passages 8–10, both cell lines

were transferred to E8 medium and a feeder-free system,

and both lines grew well without obvious signs of differen-

tiation (Figure 2E). As further confirmation of the pluripo-

tency of the feeder-free hESCs, flow-cytometric analysis

demonstrated that more than 90% of the Q-CTS-hESC-2

and Q-CTS-hESC-1 cells expressed the pluripotent markers

OCT4 and SSEA-4 (Figure 3C) and OCT4 and SSEA-3 (Sup-

plemental Information and Figure S3C), respectively.

Figure 1. Process Flow and Require-
ments of Gold-Standard Clinical-Grade
hESC Derivation, Characterization, and
Biosafety Evaluation
The scheme indicates the steps for hESC
derivation. All processes were standard
operating procedures under GMP applica-
tion and all reagents were xeno-free. After
characterization and biosafety tests of each
cell line, they were approved to authorized
faculty NIFDC for accreditation. ICM, inner
cell mass.
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Table 1. Biological Safety Analysis of the Clinical-Grade Cellsa

Sterility and Pathogen HFFs Q-CTS-hESC-1 Q-CTS-hESC-2

Short tandem repeats (STRs) each STR locus has 1–2 alleles each STR locus has 1–2 alleles each STR locus has 1–2 alleles

Isozyme analysis B type of human origin B type of human origin B type of human origin

Species identification and cell cross-

contamination between species

– – –

Bacteria and fungi – – –

Mycoplasma – – –

Human papilloma virus (HPV) – – –

Human parvovirus B19 – – –

HIV-I – – –

HIV-II – – –

John Cunningham virus (JCV) – – –

Epstein-Barr virus (EBV) – – –

Human hepatitis C virus (HCV) – – –

Human hepatitis A virus (HAV) – – –

Human cytomegalovirus (HCMV) – – –

Human T-lymphotropic virus I (HTLV-I) – – –

Human hepatitis B virus (HBV) – – –

Human herpesvirus 6 (qPCR) – – –

Human herpesvirus 7 (qPCR) – – –

Human papillomavirus (molecular

hybridization)

– – –

Reverse transcriptase activity – – –

Bovine virus – – –

Porcine virus – – –

BSA residuals <5 ng/mL <5 ng/mL <5 ng/mL

Endotoxin level <0.5 EU/mL <0.5 EU/mL <0.5 EU/mL

Hemagglutination test of 9- to 11-day-old

chick embryo allantoic fluid

negative negative negative

Survival rate of 5- to 6-day-old chick embryos >90% >90% >90%

Intracerebral and intraperitoneal injections

in suckling mice

survival rate >90% survival rate >90% survival rate >90%

Intracerebral and intraperitoneal injections

in mice

survival rate >90% survival rate >90% survival rate >90%

Intraperitoneal injection in guinea pigs survival rate >90% survival rate >90% survival rate >90%

Intracutaneous and subcutaneous injections

in rabbits

survival rate >90% survival rate >90% survival rate >90%

aThis table is translated from NIFDC report with numbers SH201601178 for Q-CTS-hESC-1, SH201402035 for Q-CTS-hESC-2, and SH201402033 for HFFs.
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Figure 2. Derivation of Clinical-Grade hESCs
(A) Schematic overview of hESC generation from the isolation of the ICM to stable passage on feeders.
(B) Left: human blastocyst used for ESC derivation. Right: the feeder cells for ICM attachment. Scale bars, 100 mm.
(C) The cell line Q-CTS-hESC-1 derivation with alkaline phosphatase (AP) activity. Scale bars, 200 mm.
(D) The cell line Q-CTS-hESC-2 derivation with AP activity. Scale bars, 200 mm.
(E) Clinical-grade hESCs on a feeder-free plate with AP activity. Shown are examples from the Q-CTS-hESC-2 line. Scale bars, 200 mm.
(F) Representative chromosome spreads of Q-CTS-hESC-1 cells with 44 euchromosomes and two X chromosomes.
(G) Representative chromosome spreads of Q-CTS-hESC-2 cells with 44 euchromosomes and two X chromosomes.
(H and I) CNV-seq for the cell line Q-CTS-hESC-1 (H) and CNV-seq for the cell line Q-CTS-hESC-2 (I).
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The cells were also capable of differentiation into

embryoid bodies (EBs) in suspension cultures (Figures 3D

and S3D). After 8 days the EBs were collected, and RT-PCR

analysis confirmed the expression of all three germ layers:

the ectoderm (GAD1 and GFAP), mesoderm (ENOLASE

and OSTEONECTIN), and endoderm (NICASTRIN and

AMYLASE) (Figures 3E and S3E). Finally, the two cell lines

developed into teratomas 8 weeks after injection into the

testes of SCID mice. Histological analysis revealed that all

teratomas were composed of tissues of all three germ layers

(Figures 3F and S3G). These results validated the pluripo-

tency of the two clinical-grade hESC lines and their

capacity to differentiate into all three germ layers in vitro

and in vivo. Importantly, these results were reproduced

by NIFDC when these procedures were replicated (data

not shown).

Figure 3. Pluripotent Characterization of
Q-CTS-hESC-2 Cells
(A) Immunofluorescence analysis of Q-CTS-
hESC-2 cells. Positive nuclear transcription
factors OCT4 (purple) and SOX2 (green) and
clear expression of the ESC surface antigen
SSEA4 (red), TRA-1-60 (red), and TRA-1-81
(red) were observed. Nuclei were stained
with Hoechst 33342 (blue). Scale bars,
100 mm.
(B) RT-PCR analysis confirmed the expres-
sion of the ESC-specific genes (OCT4,
NANOG, SOX2, and REX1). H9 cells were used
as a positive control and water as the
negative control. GAPDH was used as a
housekeeping gene.
(C) Quantitative flow-cytometry analysis
indicating robust expression of intracellular
OCT4 and extracellular SSEA4 with almost
no SSEA1 in feeder-free Q-CTS-hESC-2 cells.
(D) Q-CTS-hESC-2 cells can form EBs after
suspension culture.
(E) RT-PCR of EBs showing transcripts for
ectoderm (GAD1 and GFAP), mesoderm
(ENOLASE and OSTEONECTIN), and endoderm
(AMYLASE and NICASTRIN, also named
NCSTN) markers.
(F) Teratoma formation. All three germ layer
tissues were present on the teratoma
dissection slices identified by staining with
H&E. The red arrows indicate endoderm with
glands (left), mesoderm with fat tissues
(middle), and ectoderm with nervous
tissues (right). Scale bars, 100 mm.
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Good Specialization of Clinical-Grade hESCs Reveals

Different Lineages

To verify the applicability of these hESCs under clinical

conditions, we differentiated the hESCs into specialized

cell types. We tested the differentiation capability of

Q-CTS-hESC-1 by inducing neural differentiation. When

grown in neural stem cell medium, the EBs attached to

the dish and differentiated into neuronal progenitor cells

expressing the precursor marker PAX6 (Figure S3F, top).

After further induction, the cells began to express TUJ1

(b-III tubulin antibody), a neuronal marker (Figure S3F,

bottom).

We used corresponding methodologies to derive RPE

cells, myocardial precursors, and hepatocyte precursors

from Q-CTS-hESC-2 cells. Xeno-free clinical-grade hESC

basic mediumwas used throughout the RPE differentiation

procedures (Table S2). Monolayer cuboidal-appearing RPE

cells were observed on day 28 of differentiation (Figure 4A,

top). The monolayers were sufficiently confluent for pas-

sage on days 40–60 of differentiation. The RPE markers

OTX2 and BEST1 were highly expressed, and the cells

were tightly connected as observed by immunofluores-

cence staining analysis (Figures 4A [bottom] and 4B) at pas-

sage three. To induce cardiomyocyte differentiation, we

used a temporal WNT signal activation and inhibition

method according to a previous report (Lian et al., 2013).

We developed a chemically defined medium for cardio-

myocyte differentiation (Tan et al., 2016). Cardiac meso-

derm was formed with the expression of MESP1 (Figures

4C [top] and 4D [top]), which patterned the mesoderm

into cardiac progenitors (Chan et al., 2013) on day 3 of dif-

ferentiation. Cardiomyocytes were derived, and most of

the cells expressed CTNT on day 14 (Figures 4C [bottom]

and 4D [bottom]). Hepatocyte differentiation involved

three stages: endoderm induction, hepatic initiation, and

maturation (Cai et al., 2007). The endoderm cell layer

was formed with expression of the endoderm marker

SOX17 (Figures 4E [top] and 4F [top]) on day 3, andmature

hepatocytes expressed liver marker HNF4a on day 9 (Fig-

ures 4E [bottom] and 4F [bottom]). The differentiation of

RPE and hepatocytes was further validated by flow-cytom-

etry analysis of MITF1 and HNF4a, respectively (Supple-

mental Information and Figure S3H).

Dopamine Neuronal Progenitor Cells Differentiated

from Q-CTS-hESC-2 Can Survive and Mature In Vivo

The survival andmaturity of transplanted cells are prerequi-

sites for their functions in vivo in cell replacement thera-

pies. To determine whether DA neuronal progenitors

specialized from Q-CTS-hESC-2 cells could survive and

mature in vivo, we transplanted them into the brains of

PD rat models according to a published method (Kriks

et al., 2011) (Supplemental Experimental Procedures).

However, the media used throughout the procedure were

xeno-free. Neural ectoderm cells emerged on day 11 of dif-

ferentiation, and short synapses were observed on day 22;

these synapses were further elongated on day 38, 53 and

56 (Figure 5A). TUJ1-positive neurons (Figure 5B) were

observed on day 38, and the cells expressed high levels of

theDA lineage factor LMX1a (Figure 5B) onday 53. TH-pos-

itive DA neurons were also observed (Figure 5B) on day 56.

Flow-cytometry analysis demonstrated greater than 90%

expression of the neural precursor marker NESTIN and

approximately 65% expression of the neuronal marker

TUJ1 on day 38 of differentiation (Figure 5C), which indi-

cated a high differentiation efficiency. Importantly, the

DAneurons fired spontaneous action potentials (Figure 5D,

left) and produced inward fast inactivating currents that

were sensitive to the Na+ and K+ channel blocker tetrodo-

toxin (TTX; Figure 5D, right). To assess the long-term sur-

vival and functions of the cells in vivo, we transplanted

the day 38-derived DA neuronal progenitors into PD rat

models that had lesions caused by 6-hydroxydopamine

(6-OHDA) (Deumens et al., 2002). One week later, cells

were observed at the transplanted site by nuclear magnetic

resonance (Figure 5E). Three months after transplantation,

the rats were euthanized and the brains were dissected (Fig-

ure 5F). Immunofluorescence staining of the brain slices

showed positive staining for human nuclear antigen

(HNA) and rhodamine that was specific to Molday ION-

containing cells (Figure 5G, top). However, HNA and

rhodamine could not be detected at the PBS-grafted site

Figure 4. Immunophenotyping of RPE, Cardiomyocytes, and Hepatocyte Differentiated from Q-CTS-hESC-2 Cells
(A and B) RPE derivation. (A) Photomicrograph of adherent cultures showing pigmented RPE-like cells by day 28 of differentiation (top);
the cells reacquire the morphology and pigmentation of RPE cells with high-density cultures after three passages (bottom). Scale bar,
200 mm. (B) Immunofluorescence staining showing that pigmented cells expressed the RPE markers BEST1 (green) and OTX2 (green).
Nuclei were stained with Hoechst 33342 (blue). Scale bar, 100 mm.
(C and D) Cardiomyocyte derivation. (C) Phase-contrast image of hESCs differentiated into cardiomyocytes on day 3 (D3, top) and day 14 (D14,
bottom). Scale bar, 200 mm. (D) Immunofluorescence staining showing cardiac mesoderm marker MESP1 (green) expression on day 3 (top)
and cardiomyocyte marker CTNT (red) expression on day 14 (bottom). Nuclei were stained with Hoechst 33342 (blue). Scale bar, 100 mm.
(E and F) Hepatocyte derivation. (E) Phase-contrast images showing sequential morphological changes from definitive endoderm (top) on
day 3 (D3) to hepatoblast (bottom) on day 9 (D9) of differentiation. Scale bars, 200 mm. (F) Immunofluorescence staining showing the
expression of SOX17 (green) as a definitive endoderm marker on day 3 and HNF4a (green) for hepatoblasts on day 9. Nuclei were stained
with Hoechst 33342 (blue). Scale bar, 100 mm.
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(Figure 5G, bottom). These results confirmed that the clin-

ical-grade DA neuronal progenitors survived and matured

in the PD rat models.

Clinical-Grade hESCs Are Sterile and Safe

The clinical-grade hESCs were subjected to a series of

biosafety evaluations according to the ‘‘Guidelines for Hu-

man Somatic Cell Therapies and Quality Control of Cell-

Based Products’’ (Food and Drug Administration, 1998),

the regulations and management approach on stem cell

clinical trials (CFDA and NHFPC) (Rosemann and Slee-

boom-Faulkner, 2016), and FDA-equivalent guidelines

from other countries (George, 2011). The NIFDC is the

only legal institution for drug and food safety evaluations

and is especially assigned by the CFDA. The NIFDC

biosafety test items include cell identification, fungal and

bacterial testing, mycoplasma testing, virus testing, and

endotoxin and BSA tests as summarized in Table 1. The re-

sults of short tandem repeats analysis indicated that

neither cell line was contaminated by other cells, and

isozyme analysis showed that the two cell lines were

B type of human origin. Furthermore, a series of tests

demonstrated that the two cell lines were negative for bac-

teria, fungi, mycoplasma, and serious pathogenic microor-

ganisms such as HIV and human papilloma virus (Table 1).

To detect unknown potential pathogenic microorganisms,

we injected the two cell lines into a sucklingmouse intrace-

rebrally and intraperitoneally, into a guinea pig intraperito-

neally, into a rabbit intracutaneously and subcutaneously,

and into the chorioallantoic membrane and yolk sac of

chicks according to the methods described in ‘‘Pharmaco-

poeia of the People’s Republic of China, Edition 2010, Vol-

ume III.’’ After an appropriate observation time, more than

90% of the animals remained alive (Table 1). Endotoxin

testing results showed that the endotoxin level of the

hESC culture medium met the requirements defined in

the ‘‘Pharmacopoeia of the People’s Republic of China, Edi-

tion 2010, Volume III’’ (Table 1). Moreover, BSAwas not de-

tected in the culture medium. All test results were verified

by NIFDC. One example of the original report document

for Q-CTS-hESC-2 is attached as Data S2 and is the basis

of the data presented in Table 1. Teratoma formation anal-

ysis of the differentiated cells, DA neuronal progenitors,

cardiomyocytes, and hepatocytes further supported the

safety of these cells for future cell therapy (Supplemental

Information and Figure S3I). These results confirmed that

the two clinical-grade hESC lines are biologically safe.

DISCUSSION

Clinical-grade hESCs have gained significant attention in

recent years due to their potential applications in cell ther-

apy. This study aimed to create an absolute clinical-grade

hESC standard and to generate hESCs by adhering to this

protocol.Xeno-free requirements cancompletely avoidhet-

erogenetic immunogenicity risks while producing high-

quality stem cells. In our study, we chose a number of com-

mercial CTS reagents, which are high-quality products in

the Clinical Therapy Systems from Life Technologies with

Drug Master Files (DMFs)(https://www.thermofisher.com/

cn/zh/home/life-science/bioproduction/bioproduction-

resources/regulatory-support/cell-culture-drug-master-files.

html), to minimize the burden of transition from research

to clinical application. The generation ofGMP-grade hESCs

within xeno-free systems has been reported previously as

shown in Table S1, but this report describes completely

xeno-free hESC production complete with biosafety valida-

tion.NIFDC is a subordinate agency ofCFDA, and its test re-

sults validate the pluripotency and biosafety of the hESCs;

these results can be used to support clinical applications

to theCFDA.Previously, three companieshaveused special-

izedhESCs for clinical trials, but not all components used in

the initial stages of hESC generation were xeno-free (Kli-

manskaya et al., 2006). In the present study all reagents

were xeno-free, the procedures compliedwith SOPs, the do-

nors passed safety tests, and the cells passed biosafety tests

with authorized certification.Human juvenile foreskin cells

were chosen as the feeders to support ICM outgrowth and

hESC passage. The STEMedia and E8 media were both

xeno-free. Although the two cell lines can be cultured in a

feeder-free environment such as on vitronectin-coated

Figure 5. Functional DA Neurons Derived from Q-CTS-hESC-2 Cells Engrafted in Rats with PD
(A) Bright-field images of the typical morphology of hESC differentiation at different stages. Scale bars, 200 mm.
(B) Immunofluorescence staining for the expression of TUJ1 (red) on day 38 and LMX1a (green) on day 53 (two top panels) and TH (green,
white arrowheads) on day 56 (bottom panel). Nuclei were stained with Hoechst 33342 (blue). Scale bars as indicated.
(C) Quantitative flow cytometry indicating the expression of NESTIN and TUJ1 on day 38.
(D) Electrophysiological analysis. Left: representative traces of evoked action potentials generated by neurons on day 56 of differenti-
ation. Right: cells were hyperpolarized before applying depolarizing pulses to elicit Na+ and K+ currents by TTX treatment.
(E) Magnetic resonance image of the transplantation site (white arrowhead).
(F) The removed brain with cell engraftment for tissue processing.
(G) Immunohistochemistry for the human-specific marker human nuclear antigen (HNA, purple) and rhodamine (red). The top panels are
the experimental group and the bottom panels the blank controls with PBS transplantation. Scale bars as indicated.
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plates (Figure 2E), the cells were maintained on feeder cells

to improve colony attachment and homogeneity. Two

different passages of hESCs for NIFDC were chosen for

testing each passage, consisting of 250 million cells. The

hESCs remained stable with restricted capabilities for self-

renewal and differentiation. During differentiation, all re-

agents used in a recently published protocol were replaced

with xeno-free reagents. Long-term engraftment in a PD

rat brain demonstrated the potential of the clinical-grade

hESC-derivedDAneuronal progenitors tomediate substan-

tial improvement of PD symptoms in vivo. These results

provide reasonable assurance of the efficacy of these cells

for administration in clinical trials.

Although our report mainly focuses on the generation

of clinical-grade hESCs, transplantation safety is also a

concern. For example, a 9-year-old boy was diagnosed

with a glioneuronal neoplasm after being transplanted

with neural stem cells derived from two donors (Amariglio

et al., 2009). Although we did not observe any teratoma

formation in the animal brain, more data are required to

define the safety of these cells for the treatment of PD.

Banking of clinical-grade hESCs is necessary for stem cell-

based therapies (Lin et al., 2009). Once a clinical-grade

cell line has been proved eligible based on its characteristics

and biosafety according to existing international and na-

tional regulations, it should be stored in at least three sub-

levels of cell banks (master cell bank, seed cell bank, and

working cell bank). The implementation of the Interna-

tional Stem Cell Banking Initiative (ISCBI) attempts to

harmonize banking, and a study has been released to

develop best practices for ensuring the quality of clinical-

grade pluripotent stem cells (Andrews et al., 2015). Storing

a sufficient number of clinical-grade hESC lines in a stem

cell bank is necessary to meet the demands of hESC-based

cell therapies in the future.

In conclusion, biosafety is the priority. We have devel-

oped a biosafe system to generate clinical-grade hESCs

and specialized cells differentiating from these hESCs.

Our report proposes strict procedures for the generation

of clinical-grade hESCs and provides appropriate analytical

evaluationmethods. We have obtained two absolute xeno-

free hESC lines, and our results will promote the develop-

ment of hESC-based products.

EXPERIMENTAL PROCEDURES

All reagents used for clinical hESC derivation and differentiation

are shown in Table S2.

Parthenogenetic Activation of Oocytes and Embryo

Culture
The parthenogenetic activation of oocytes and embryo culture

(both parthenogenetic and fertilized embryos) were conducted as

previously described (Mai et al., 2007), except for the culture envi-

ronment, which was 37�C, 5% CO2, and saturated humidity.

Derivation of HFFs and Feeder Cells
Juvenile foreskin tissues were collected in 50-mL centrifuge tubes

containing CTS-DPBS with 2,000 U/mL xeno-free penicillin-strep-

tomycin (P/S) and then transported to the laboratory on ice. After

washing three times with CTS-DPBS, adipose and connective tis-

sues were carefully removed from the foreskins, and the remaining

epithelial tissue was cut into small pieces of approximately about

1 mm3. These pieces were then immersed in FibroGRO Xeno-

Free Human Fibroblast ExpansionMedium (SCFM) and transferred

onto T25 tissue culture flasks pre-coated with MesenCult-XF Sup-

plement (MesenCult) attachment substrates. After 24 hr of in-

verted culture, 1.5mL of SCFMwas added to each flask. Fibroblasts

outgrew around the tissues after approximately 7 days of culture

and were subsequently passaged routinely. HFFs at passages 8–10

were inactivated by g-irradiation at a dosage of 5.5 Gy/min and a

total dose of 55 Gy at the School of Physics, Peking University, to

serve as ‘‘clinical-grade feeder cells’’.

Isolation and Culture of Clinical-Grade hESCs
Human blastocysts that reached hatching stage were used for clin-

ical-grade hESC derivation. The ICMof each blastocyst was isolated

mechanically as previously described (Ström et al., 2007). The ICMs

were then inoculated on clinical-grade feeder cells in NutriStem

XF/FF Culture Medium (STEMedia). After 5–9 days of culture at

37�C, 5% CO2, and saturated humidity, outgrowths were passaged

ontonewfeedercellsmechanically.Atearlierpassages, amechanical

methodwas used to passage the clinical-grade hESCs. Once the pro-

liferation of clinical-grade hESCs appeared to have been stabilized,

the clinical-grade hESCs were passaged using collagenase NB6. At

passages 8–10, the clinical-grade hESCs were transferred to feeder-

free culture conditions in Essential 8 Medium (E8) on vitronectin-

coated dishes as previously described (Ludwig et al., 2006b).

Embryoid Body Formation
With the exception of the use of clinical-grade collagenase NB6 for

cell dissociation and xeno-free hESC basic medium for EB culture,

the entire EB formation procedure was conducted as previously

described (Wanget al., 2013).Theclinical-gradehESCbasicmedium

was composed of CTS KnockOut DMEM (CTS-KO-DMEM), 20%

CTS KnockOut SR XenoFree Medium (CTS-KOSR), 100 mM nones-

sential amino acids (NEAA), 2 mM CTS GlutaMAX-I Supplement

(CTS-GlutaMAX), and 55 mM b-mercaptoethanol.

Neural Differentiation
The neural differentiation of Q-CTS-hESC-1 cells was performed as

previously described (Hu and Zhang, 2010; Zhang and Zhang,

2010). In brief, hESCswere cultured in suspension in clinical-grade

hESC basic medium for 4 days to form EBs and then cultured in

NIM (CTS-KO-DMEM/F12 with 1% CTS-N2) for an additional

3 days for neural induction. The round EBs attached to plates

pre-coated with 20 mg/mL laminin (Sigma, L6274). Rosette-like

neuroepithelial cells appeared after 2 weeks of differentiation.

The differentiation of Q-CTS-hESC-2 cells to DA progenitors was

performed according to the mononuclear differentiation method
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as previously described (Kriks et al., 2011), with the exception that

the reagentswere completely xeno-free (Table S2). In brief, clinical-

grade hESCs were dissociated into single cells using CTS-TrypLE

and plated on CTS CELLstart Substrate (CTS-CELLstart)-coated

dishes at a density of 4 3 105 cells per cm2 on day 0. Initially, the

differentiation medium was CTS-KO-DMEM supplemented with

15% CTS-KOSR, 100 mM NEAA, 2 mM CTS-GlutaMAX, and

55 mM b-mercaptoethanol. On day 5, the differentiation medium

was gradually changed to CTS-KO-DMEM supplemented with

1% CTS-N2 as described previously (Kriks et al., 2011). On day

11, the medium was replaced by CTS Neurobasal Medium (CTS-

Neurobasal) supplemented with 2% CTS B-27 Supplement (CTS-

B27). The concentrations of and duration of treatment with

growth factors and small molecules in the differentiation media

were according to previously described methods (Kriks et al.,

2011). The electrophysiology of differentiated neuronswas studied

as previously described (Sheng et al., 2012).

RPE Cell Differentiation
For RPE differentiation, hESCs were cultured in E8 medium on

vitronectin-coated dishes. Upon reaching 90% confluence, the

E8 medium was replaced by RPE differentiation medium, RPE-DM

(CTS-KO-DMEM supplemented with 20% CTS-KOSR, 2 mM

CTS-GlutaMAX, 100 mM NEAA, and 55 mM b-mercaptoethanol).

After 40–60 days of culture, monolayers containing primary RPE

cells appeared and were isolated for further passage and

characterization.

Cardiomyocyte Differentiation
Cardiomyocyte differentiation was conducted based on a previous

report (Lian et al., 2013) and with modifications to a chemically

defined xeno-free grade in our laboratory (Tan et al., 2016).

Confluent clinical-grade hESCs were digested into single cells by

StemPro Accutase Cell Dissociation Reagent (Accutase) and seeded

onto vitronectin-coated dishes at a density of 1.25 3 105 cells per

cm2. 10 mM Y27632 was added to the culture medium for one day

to improve the survival of single cells. After allowing the cells to

grow in E8 medium for 2–3 days to reach 90% confluence, the me-

diumwas replacedwith the chemically definedmediumCar-CDM,

whichwasprepared fromRPMI-1640supplementedwithself-modi-

fied chemically defined B27 (1 mg/L L-carnitine, 2 mg/L ethanol-

amine, 12mg/L putrescine, 0.016mg/L selenium, 1mg/L linolenic

acid, 1 mg/L linoleic acid, 5 mg/L transferrin, 50 mM N-acetylcys-

teine, and 200 mg/L L-ascorbic acid-2-phosphate). During dif-

ferentiation, 4 mM CHIR99021 was added on days 0–1. On day 2

of differentiation, the medium was changed to Car-CDM with the

additionof5mMIWR-1 (an inhibitorof thecanonicalWnt signaling

response, 4-(1,3,3a,4,7,7a-hexahydro-1,3-dioxo-4,7-methano-2H-

isoindol-2-yl)-N-8-quinolinyl-benzamide). The medium was then

replacedwith Car-CDMon day 5 of differentiation. On day 7 of dif-

ferentiation, themediumwas changed to Car-CDMplus 5 mg of in-

sulin. The medium was changed every 3 days thereafter.

Hepatic Cell Differentiation
Hepatic cell differentiationwas alsomodified frompreviously pub-

lished protocols (Si-Tayeb et al., 2010; Song et al., 2009). Three

types ofmediumwere used in this experiment: endodermdifferen-

tiation medium (EDM; RPMI-1640 supplemented with 100 ng/mL

activin A [R&D, 338-AC-050/CF] and50ng/mLWnt3a [R&D, 5036-

WN-010]); hepatic initiation medium (HIM; CTS-KO-DMEM/F12

supplemented with 20% CTS-KOSR, 2 mM CTS-GlutaMAX,

100 mM NEAA, 0.1 mM b-mercaptoethanol, and 1% DMSO), and

maturation medium (MM; Iscove’s modified Dulbecco’s medium

supplemented with 30 ng/mL oncostatin M, 50 ng/mL HGF, and

10 mM dexamethasone). On day 1 of differentiation, clinical-grade

hESCs were digested into single cells and plated onto 6-well plates

pre-coated with vitronectin in E8 medium. On day 3, when the

cells reached 60%–80% confluence, E8 medium was replaced

with EDM. On day 6 and day 10, the medium was changed to

HIM and MM, respectively.

Cryopreservation for Banking
Fibroblasts were banked in batches of 25–30 cryovials at passages

3 and 5 with 1.5 3 107 cells per vial. At passage 8, the fibroblasts

were mitotically inactivated by 55 Gy of g-irradiation. The feeders

were then banked in batches of 50–60 cryovials at two different

densities of 5 3 106 cells per vial and 1.5 3 107 cells per vial. The

cryomedium used to freeze the fibroblasts and feeders, MesenCult

ACF freezingmedium, is a defined, serum-free, and animal compo-

nent-free medium. hESC lines were harvested in batches of five

vials at early passages (5–8) with 2 3 106 cells per vial. Cultures

were then banked every five passages in batches of 10–15 vials

with 1 3 107 cells per vial in serum-free and animal component-

free cryomedia, STEM-CELLBANKER GMP (CELLBANKER). The

cell number was counted using a Cell Counter (Millipore, Scepter

2.0), and the vials were sealed with a label printer (BMP21-LAB,

Brady). After freezing in Nalge Nunc Cryo containers overnight

in a freezer at �80�C, the vials were transported in the gas phase

of a liquid nitrogen tank.

Karyotyping
When the clinical-grade hESCs reached 60%–70% confluence, kar-

yotype analysis and G-binding were conducted at the Chinese

Academy of Medical Science & Peking Union Medical College.

RT-PCR Analysis
Total RNA of clinical-grade hESCs and EBs was extracted using

TRIzol reagent (Life Technologies, 10296010), and RQ1 RNase-

free DNase (Promega, M6101) was used to remove residual

genomic DNA. The RNA was then reverse transcribed to cDNA us-

ing M-MLV reverse transcriptase and random primers (Promega,

M1701) according to the manufacturer’s instructions. RT-PCR

was performed as previously described (Wang et al., 2013). The se-

quences of the primers used in this study are shown in Table S3.

Alkaline Phosphatase Staining
Alkaline phosphatase staining was performed using the Alkaline

Phosphatase Assay Kit (Beyotime, P0321) as described by the

manufacturer.

Immunofluorescence Staining
Immunofluorescence staining was performed as previously

described (Gu et al., 2014). Cell samples were fixed with 4%
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(w/v) paraformaldehyde (PFA; P6148, Sigma) for 10 min and then

permeabilized with 0.5% Triton X-100 (Sigma) and blocked in 2%

BSA (Sigma) at 37�C for 10 min after rinsing. Samples were subse-

quently incubated with primary antibodies against OCT4 (Santa

Cruz Biotechnology, sc-8628, 1:200), SOX2 (Santa Cruz, sc-

17320, 1:200), TRA-1-60 (Millipore, MAB4360, 1:200), TRA-1-81

(Millipore, MAB4381A4, 1:200), SSEA4 (Millipore, MC-813-70,

1:200), BEST1 (Abcam, ab14929, 1:150), TH (Santa Cruz, sc-

14007, 1:200), PAX6 (Abcam, ab5790, 1:200), OTX2 (Millipore,

AB9566, 1:200), MESP1 (Aviva System Biology, OAAB09387,

1:50), CTNT (Abcam, ab8295, 1 mg/mL), TUJ1 (Cell signaling,

2125), LMX1a (Abcam, ab31006, 1:50), SOX17 (R&D Systems,

AF1924, 1:200), or HNF4a (Epitomics, 2803-1, 1:200) at 4�C over-

night. On day 2, the samples were rinsed and then incubated with

the appropriate secondary antibodies donkey-anti-mouse-cy5

(Jackson ImmunoResearch, 103856, 1:200), donkey-anti-goat-

Cy5 (Millipore, AP1805A6, 1:200), donkey-anti-rabbit-FITC (Jack-

son ImmunoResearch, 99320, 1:200), or donkey-mouse-cy3 (Jack-

son ImmunoResearch, 715-165-150, 1:200) for 1 hr at 37�C. Nuclei

were visualized by staining with Hoechst 33342 (10 mg/mL) or pro-

pidium iodide (5 mg/mL) for 10 min at room temperature.

Teratoma Formation
Upon reaching 80%–90% confluence, clinical-grade hESCs were

harvested using collagenase NB6 digestion and suspended in

CTS-DPBS at a density of 5 3 107 cells/mL. Then 20 mL of cell sus-

pension was carefully injected into each testis of 6- to 8-week-old

SCID mice using a sterile glass needle under a sterile stereo micro-

scope. Two months later, the mice were euthanized and the tera-

tomas were examined following the guidelines of the Institutional

Animal Care and Use Committee. The teratomas were then fixed,

sliced, and stained with H&E for histology analysis.

Flow Cytometry
Cells were dissociated into single cells and then fixed with 4% PFA

for 15 min at room temperature. After permeabilization in 0.1%

Triton X-100 for 30 min at room temperature, the cells were

stainedwith primary antibodies, followed by secondary antibodies

diluted in PBS plus 2%BSA. Data were collected on the flow cytom-

eter and analyzed using FlowJo software. For the antibodies used,

please refer to the Immunofluorescence Staining section. hESCs

treated only with secondary antibodies were used as a gating

control in the experiments of pluripotency characterization. Un-

differentiated hESCs treated with the same antibodies were used

as negative control for gating in differentiation experiments.

Generation of Rat Models of Parkinson’s Disease
Female Sprague-Dawley rats purchased from Beijing Vital River

Company with a body weight of 200–250 g were chosen to

generate the PD models. After anesthetizing the rat with chloral

hydrate, the head was fixed with the brain locator. The midline

head skinwas then sliced openwith a scalpel to expose the bregma.

With respect to bregma, the medial forebrain bundle’s position is

anteroposterior �4.3 mm, mediolateral +1.5 mm. A dose of 16 mg

of 6-OHDA base dissolved in 5 mL of saline solution was injected

into the medial forebrain bundle to produce unilateral lesions of

the left nigrostriatal pathway. The injection depth was dorsoven-

tral �7.5 mm with respect to the dura, and the injection rate was

1 mL/min. After injection, the needle remained in situ for a further

3min to prevent diffusion. Three to four weeks later, apomorphine

(0.5 mg/kg, Sigma)-induced rotation was tested. Five minutes after

apomorphine treatment, rats that showed a mean of >5 contralat-

eral turns per minute over a 25-min period were regarded as suc-

cessful models.

Biosafety Evaluation
The tested items are listed in Table 1. The ‘‘Pharmacopoeia of the

People’s Republic of China, Edition 2010, Volume III’’ was used

as a reference for the testing methods.
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