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Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen 

productivity indicator 

 

Abstract 

This study proposes a by-production Luenberger-Hicks-Moorsteen indicator that includes undesirable 

outputs, here CO2 emissions, in airline performance analysis. We use capital and staff as inputs and 

tonne-kilometres available as a desirable output to evaluate operation stage efficiency and productivity 

of the world’s major airlines between 2007 and 2013. Our results demonstrate European airlines are 

relatively stronger performers in terms of both pollution-adjusted operational efficiency and 

productivity. Middle-Eastern airlines have made gains in terms of output growth but perform poorly in 

terms of pollution-adjusted productivity, evidence that ETSs may produce greener airlines. 

Keywords: Data envelopment analysis, airlines, by-production, emissions, Luenberger-Hicks-

Moorsteen.  

JEL Classification: D21, C61, Q53 

 

1. Introduction 

The US Environmental Protection Agency (EPA) stated recently that ‘greenhouse gas emissions from 

airplanes are dangerous to human life’, and therefore should be subject to further emission-reducing 

regulations (EPA, 2015, p. 1). In addition to the immediate threat to human lives, the 

Intergovernmental Panel on Climate Change (IPCC) has forecast that aviation emissions will make an 

important contribution to the build-up of greenhouse gases (GHGs) in the atmosphere, heavily 

contributing to global warming in the next few decades (IPCC, 2007). Consequently, over the past few 

years, national and international attempts to curb climate change have forced governments to 

implement strategies to reduce anthropocentric CO2 (carbon dioxide) emissions in general, and by the 

aviation industry in particular. As significant users of fossil fuels, airline industries have been included 

in planned and operational emission trading schemes (ETSs) in several jurisdictions across the world. 

They were considered for inclusion in the first phase of the European ETS in January 2005. In January 

2012 it became the first trading scheme to cover CO2 emissions from air travel, quickly followed by 

Australia and New Zealand in July 2012. In China, the Shanghai ETS included six major airlines, 

making them subject to a price on carbon from November 2013 onwards. In January 2015, another 

Asian country, South Korea, started its ETS covering six GHGs with a 30 per cent reduction target 

until 2020 and planned to put a price on emission from airlines. In the US, the mandatory trading 

under the RGGI (Regional Greenhouse Gas Initiative) founded in 2009 has, since 2013, included in 

the voluntary trading within the Western Climate Initiative (WCI) with the potential inclusion of 

airlines in British Columbia, California, Manitoba, Ontario and Quebec. In 2012, the US EPA also 

announced that market-based measures (MGMs) against aviation emissions need to be taken, but left 
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the design of such measures to the International Civil Aviation Organization (ICAO).
1
 Currently, 

several other countries (such as Brazil, Chile, Japan, Mexico, Russia, Turkey, Ukraine and Vietnam) 

have also considered an ETS as a viable solution to reduce their carbon footprint, indicating a 

substantial growth in ETSs worldwide that put a price on GHGs emission and require airlines to 

surrender permits equivalent to their footprint (ICAP, 2015). Coinciding with the establishment of 

ETSs, increases in fuel prices have provided additional incentives for airlines to reduce their carbon 

footprints, because fuel is among the top three cost items faced by airlines, accounting on average for 

up to one-third of their operating costs in 2013 and 20 per cent in 2016 depending on the price of Jet 

A/A-1 fuel (IATA, 2013; 2016). Airlines may respond to these new higher cost regulatory and 

economic environments by upgrading their fleet and introducing more fuel-efficient models, and 

adjusting operating practices to reduce fuel consumption and thus ease the financial burden (Sgouridis 

et al., 2011). In this context, it is pertinent and timely to produce a precise measure of airline 

performance. This study proposes a novel productivity indicator to measure airline pollution-adjusted 

operational efficiency and productivity changes. This measure can provide crucial findings and help 

policy makers to better understand the environmental performance of their national carriers (vis-à-vis 

their rivals) and gain a deeper insight into the effectiveness of ETSs in reducing airline emissions in 

different regions. This new indicator can also assist airlines understand their relative pollution-

adjusted performance in order to eliminate existing shortcomings. Moreover, eco-conscious travelers 

may find our findings helpful to help them select services from more environmentally friendly airlines 

and so reduce their own carbon footprint. 

In the non-parametric framework of data envelopment analysis (DEA), a common approach to 

analysing the relationships between multiple inputs and outputs and evaluating the relative efficiency 

of decision-making units (here, airlines), many models have been developed to account for undesirable 

outputs.
2
 In these models, pollution has commonly been treated as an output under the weak 

disposability assumption, WDA (Färe et al., 1986; 1989). Although this approach has been widely 

used in both energy (Zhou et al., 2008; Chen, 2013a) and airline efficiency literature (e.g., Fukuyama 

et al., 2011; Chang et al., 2014; Li et al., 2016a), clear limits of this approach have been put forward in 

several studies (Førsund, 2009; Chen, 2013b). Among others, the WDA violates the materials balance 

principle which ensures every physical process occur within the limits of the laws of thermodynamics 

(Coelli et al., 2007). The by-production approach, introduced by Murty et al. (2012), is considered in 

the literature as a better alternative for avoiding such drawbacks (Chambers et al., 2014; Serra et al., 

2014). This approach posits that complex systems are made of several independent processes (Frisch, 

1965) and the global technology can be separated into sets of sub-technologies: one for the production 

                                                           
1 We would like to thank the anonymous reviewer for pointing out that non-market based solutions, e.g. technology 

standards, aircraft engine and technology improvements measures, had already been adopted by the US Government (FAA, 

2012).  

2 DEA was first introduced by Charnes et al. (1978), after Farrell (1957) proposed the original idea of efficiency evaluation. 
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of good outputs and one for the generation of bad outputs. In other words, the by-production approach 

draws on an explicit representation of the process that generates each type of output (good and 

detrimental outputs in this case). Then, the global technology implies interactions between several 

separate sub-technologies. Førsund (2017) has recently classified the by-production approach among 

the multi-equation modelling approaches and argued that an important advantage of this approach over 

other approaches (such as WDA, the strong disposability assumption and the slack-based models) is 

that it represents pollution-generating technologies by accounting for materials balance and therefore 

satisfies the physical laws. Discussing the limits of pollution-generating technologies, Dakpo et al. 

(2016) also confirmed that the by-production method offers some very promising opportunities, such 

as treating multiple types of outputs, in comparison to other existing approaches. Therefore, this study 

employs the by-production approach and also contributes to the efficiency analysis literature by 

offering a new by-production model which deals with the inclusion of undesirable outputs to provide a 

comprehensive analysis of operational performance of 33 major international airlines for the period 

2007 to 2013.  

In the area of productivity analyses, the Malmquist index is by far the most popular index for assessing 

the productivity of decision-making units (DMUs) over time, though it has several shortcomings 

(Arjomandi, 2011; Arjomandi & Seufert, 2014; Kerstens & Van de Woestyne, 2014; Arjomandi et al., 

2015). O’Donnell (2008) argues that an adequate productivity index must be multiplicatively or 

additively complete. That is, a total factor productivity index (TFP) should be written as the ratio of an 

aggregate output to an aggregate input (multiplicative completeness) or as the difference of these 

aggregate values (additive completeness). Besides, TFP indices must satisfy a certain number of 

axioms and tests; monotonicity, homogeneity, identity, dimensionality, proportionality, time-reversal, 

factor-reversal and circularity tests are among the 20 key tests listed by Diewert (1992). However, the 

Malmquist index fails to satisfy these conditions. The Hicks-Moorsteen (HM) index, discussed in 

Bjurek (1996) and Lovell (2003), is proven to be a complete index (O’Donnell, 2008; 2010; 2012).
3
 In 

this study, in addition to the above-mentioned contribution, we extend the Luenberger-Hicks-

Moorsteen (LHM) productivity indicator of Briec and Kerstens (2004) to account for undesirable 

outputs in the framework of the by-production approach. The directional distance function (DDF) used 

in this study has the advantage of allowing for simultaneous changes in both good and bad outputs 

(Chung et al., 1997). Moreover, unlike the Malmquist index, our difference-based indicator possesses 

the advantage of dealing with zero and negative variables and also inherits of the translation invariance 

property.  

In sum, this study develops a novel approach that incorporates undesirable outputs in the production 

technology modelling to measure DMU inefficiency and productivity changes in general, and airline 

                                                           
3 This HM index is based on the ratios of Malmquist output and input productivity indices. 
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performance in particular. This new indicator is inspired by the environmental performance index of 

Färe et al. (2004) which was presented as a ratio of a Malmquist good output quantity index over a 

Malmquist bad output quantity index. Our approach, however, is difference-based and we use the by-

production approach to model pollution-generating technologies and also avoid theoretical and 

practical issues of the WDA and the Malmquist productivity index as discussed above. Our developed 

by-production LHM productivity indicator also allows us to decompose the pollution-adjusted TFP 

more comprehensively into the good and the bad output components providing further insight into our 

understanding of airline operational performance. 

The paper is structured as follows: Section 2 outlines existing institutional and regulatory frameworks 

relevant to the study. Section 3 reviews the literature. The methodology and data are presented in 

Section 4. Section 5 discusses the results, followed by some concluding remarks in Section 6. 

 

2. Regulatory framework: international emission trading schemes 

On an international scale the ICAO (International Civil Aviation Organization) is in sole authority for 

setting out measures to reduce aviation emissions in a globally consistent and binding way. Directly 

after the ICAO rejected the Europeans’ attempts to put a price on emissions of the flights from and to 

Europe, the 38th assembly decided to introduce a cap-and-trade-based scheme for the aviation industry 

by 2020 in line with its voluntary goal to reduce aviation emissions by 50 per cent by 2050 (IATA, 

2016). The European emission trading scheme (EU ETS) included emissions from flights starting or 

landing in Europe including those beyond the EU territory, from 2012 onwards. However, opposition 

from China, India, Russia and the US amongst others forced the EU, in April 2013, to constrain the 

ETS operation to the flights within European countries only. 

In the US, there had been a voluntary trading program from 2003 to 2010, named the Chicago Climate 

Exchange. Besides this voluntary emission trading program, airlines faced mandatory inclusion in an 

ETS in 2007 when the Lieberman-Warner Climate Security Bill was approved by the US Senate 

Committee of Environment and Public Works. Although this Bill aimed to create an ETS across the 

country and included aviation industry emissions, it was aborted under pressure from the Republicans 

(Gössling et al., 2008). In November 2012, the then US President Obama signed a law opposing the 

EU-ETS with bilateral support as both parties considered the EU ETS an unilateral and illegitimate 

tax . Since the failure of the climate actions at a national level, regional cap and trade mechanisms 

were implemented in the US. Thus, the RGGI (Regional Greenhouse Gas Initiative) was founded in 

2009 as a mandatory ETS membered by Connecticut, Delaware, Maine, Maryland, Massachusetts, 

New Hampshire, New York, Rhode Island and Vermont. In addition, the Western Climate Initiative 

was founded as a voluntary ETS by California in 2007 and brings together British Columbia, 

California, Manitoba, Ontario and Quebec, and implemented an ETS in 2012 which started 2013. 

Even though the members of the WCI have high reduction goals, emissions from airlines have so far 
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been excluded in their schemes. In 2015, the Environmental Protection Agency (EPA) announced that 

greenhouse gas emissions from airplanes are a health hazard and should be regulated under the Clean 

Air Act. The EPA has not yet determined the design of an American ETS, but has deferred to ongoing 

deliberations by ICAO on the issue (EPA, 2015). At the same time the EPA has established domestic 

standards and limitations on exhaust emissions for any aircraft engines in the US which are enforced 

by the US Federal Aviation Administration (FAA).  

In the Asia-Pacific region, Australia introduced an ETS in July 2012 which also applied to domestic 

flights. But the change to a Liberal government also opened the way for legislation to abolish a price 

on carbon in July 2014 (Australian Government, 2014). China, currently the largest CO2 emitter, 

implemented an ETS in five cities and two provinces as pilot areas before the planned nationwide ETS 

comes into force in 2017. Out of these seven pilot ETSs, only the Shanghai ETS includes emissions 

from aviation sectors, which makes six major airlines subject to a price on CO2 (Yang & Zhao, 2015; 

Zhang, 2015). Japan also chose to implement an ETS in 2010. Initially, the Tokyo Metropolitan 

Government launched a mandatory ETS preceded by two phases of voluntary trading spanning 2002‒

2009. This ETS covers transportation emissions but until now it has not included the aviation sector, 

however, a national voluntary ETS aims to familiarise companies with emission trading (Bureau of 

Environment Tokyo Metropolitan Government, 2012). Finally, in January 2015, Korea introduced an 

ETS covering six GHGs and again, the aviation sector is not included (Cho, 2012; Reklev, 2015). A 

summary of the above-mentioned ETSs are provided in Table 1. 

Table 1. Summary of the planned and established ETSs  

Jurisdiction Milestones Obligation 

Europe (all 28 EU countries plus 

Iceland, Liechtenstein and 

Norway) 

 Phase 1 (2005−2007), during 2007 considerations to include 

aviation emission.  

Mandatory 

 Phase 2 (2008−2012), beginning of 2012 inclusion of aviation 

emission from domestic (within Europe) and international (start or 

landing in Europe) flights.  

Mandatory 

 Phase 3 (2013−2020), due to pressure from other nations, in April 

2013, the EU limits the ETS to flights with start and landing in 

Europe.  

Mandatory 

USA/North America  2003 to 2010, Chicago Climate Exchange Voluntary 

 2007 Lieberman-Warner Climate Security Bill – airlines face 

inclusion into an ETS; aborted in 2008 

Mandatory  

 2012 President Obama signs a law opposing the EU-ETS  

 2009 RGGI (Regional Greenhouse Gas Initiative) was founded 

(Connecticut, Delaware, Maine, Maryland, Massachusetts, New 

Hampshire, New York, Rhode Island and Vermont). Included the 

power sector only.  

Mandatory  

 2013 Western Climate Initiative, (British Columbia, California, 

Manitoba, Ontario and Quebec,)  

Voluntary  

 2015, the EPA announced that GHG emissions from airplanes are a 

health hazard and should be regulated under the Clean Air Act. 

 

Australia  2012 introduction of an ETS, also covering airlines Mandatory 

 2014 repeal of ETS  

China  7 pilot ETSs, only the Shanghai ETS includes emissions from 

aviation sectors 

Mandatory 

Japan  2010 introduction of an ETS not covering airlines Mandatory 

South Korea  2015 introduction of an ETS not covering airlines Mandatory 

Internationally  2020 introduction of an ETS, mandated by ICAO To be 

confirmed 
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Overall, there is a mix of mandatory and voluntary ETSs promoting airlines’ CO2 emissions reduction 

or waiting for an international solution by the ICAO. Depending on the respective national or regional 

context, there is also diverging pressure on airlines to either reduce or bear the cost of CO2 emissions. 

Consequently, it can be questioned whether airlines from different regions have improved their 

performance accordingly. 

 

3. Literature Review 

There exists a number of previous studies on airline efficiency and productivity which utilise different 

approaches to investigate airline performance. We first summarise the literature on analysing airline 

efficiency and then review studies on airline productivity.  

Most of the early studies on airline efficiency applied quantitative methods such as regression models 

(Morrell & Taneja, 1979), cost functions (e.g., Caves et al., 1981, 1984; Windle, 1991; Baltagi et al., 

1995) and stochastic frontier models (e.g., Schmidt & Sickles, 1984; Cornwell et al., 1990; Good et al., 

1993; Coelli et al., 1999). DEA-based methods became relatively more common in analysing airline 

performance after Schefczyk (1993) used a standard DEA for evaluating the efficiency of 15 

international airlines during period 1989–1992 (Cui et al., 2016b). Few airline studies, such as 

Capobianco and Fernandez (2004), Bhadra (2009), Hong and Zhang (2010), Ouellette et al. (2010) and 

Wang et al. (2011), directly applied such standard DEA models in their analyses of efficiency. A 

number of studies however employed DEA models along with other techniques to examine airline 

efficiency. Examples include Good et al. (1995) and Alam and Sickles (1998; 2000) which combined 

DEA with stochastic frontier approach, free disposal hull and full disposal hull, respectively. Chiou 

and Chen (2006), Barros and Peypoch (2009), Greer (2009; 2016), Merkert and Hensher (2011) and 

Lee and Worthington (2014) were also among the studies which used DEA analysis with a regression 

in the second stage to explain efficiency drivers.
4
 

In recent years, network DEA models of Li et al. (2015), Mallikarjun (2015), Li et al. (2016a), Cui and 

Li (2016) and Cui et al. (2016c), and dynamic models of Cui et al. (2016a; 2016b), Li et al. (2016b) 

and Wanke and Barros (2016) have been the core methods of assessing airline performance. With 

regard to network studies, Mallikarjun (2015) and Li et al. (2015) divided the network structure of 

airline efficiency into three stages: operations, services and sales. Mallikarjun (2015) applied a radial 

unoriented DEA network method to assess US airline performance in 2012. Li et al. (2015) applied the 

idea of virtual frontier to the network model and proposed a non-radial virtual frontier slack-based 

                                                           
4 An extended survey of airlines’ studies can be found in Table 1 in Li et al. (p.3, 2015) where the authors have also 

summarized the number of observations along with the methodology used. 



 

7 
 

measure to evaluate energy efficiency of 22 international airlines from 2008 to 2012. Li et al. (2016a) 

and Cui et al. (2016c) adopted the network slack based measure (SBM) and network range-adjusted 

measure, respectively, to investigate the impact of EU policies on airline performance. Cui and Li 

(2016) studied airline energy efficiency with network structure and divided the efficiency process into 

two operations and carbon abatement stages. They built a network SBM to evaluate these efficiencies. 

In the most recent study of network DEA models, Xu and Cui (2017) focused further on the internal 

process of the airline operation system using a four-stage network structure of airline energy efficiency 

(i.e. Operations Stage, Fleet Maintenance Stage, Services Stage and Sales Stage). They employed a 

new integrated approach with network epsilon-based measure and network SBM to evaluate the 

overall energy efficiency and divisional efficiency of 19 international airlines in period 2008 to 2014. 

With regard to dynamic models, Li et al. (2016b) developed the virtual frontier dynamic range 

adjusted measure (VDRAM) upon the classic DEA models and considered the capital stock as the 

dynamic factor or the carryover effect to be used. Wanke and Barros (2016) adopted the VDRAM of 

Li et al. (2016b) to measure efficiency of Latin American airlines. They also assessed the impact of 

different contextual variables related to cargo type, ownership type, and fleet mix on their efficiency 

levels. Cui et al. (2016a) improved the VDRAM of Li et al. (2016b) and introduced virtual frontier 

dynamic slack-based measure in order to measure airline energy efficiency and discuss the impacts of 

some external factors. Cui et al. (2016b) proposed two dynamic environmental DEA models to discuss 

the impacts of the emission limits on airline performance under circumstances that emissions are either 

regulated or unregulated.  

Among the previous studies on airline efficiency very few have taken aviation emissions into account. 

Arjomandi and Seufert (2014) used carbon dioxide equivalent (CO2-e) emission as an undesirable 

output in their DEA models to examine environmental efficiency of the world’s major airlines 

between 2007 and 2010. They employed bootstrapped DEA models with a strong disposability 

assumption to rank the airlines. Chang et al. (2014) examined the environmental efficiency of 27 

global airlines in 2010 using a slacks-based measure DEA model with the weak disposability 

assumption. Cui and Li (2015), proposed the virtual frontier benevolent DEA cross efficiency model 

(VFB-DEA) to calculate the energy efficiencies of 11 airlines in period 2008 to 2012 They used a CO2 

emissions decrease index as a proxy for undesirable output in their VFB-DEA model assuming strong 

disposability. Using the network SBM and network range-adjusted measure with both weak and strong 

disposability assumptions and considering greenhouse gas emissions as an undesirable output, Cui et 

al. (2016c) and Li et al. (2016a) found weak disposability results more reasonable in the aspect of 

distinguishing airline efficiency and establishing airlines ranking. Therefore, in their two-stage 

operating framework, Cui and Li (2016) used weak disposability to examine airline energy efficiency 

employing the network SBM. Cui et al. (2016b) also followed the finding of Cui et al. (2016c) and Li 

et al. (2016a) and utilised the weak disposability assumption in their new dynamic environmental 
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DEA models. However, the weak disposability assumption, as underlined earlier, has been criticised 

by several studies for its disadvantages.
5
  

Early analyses on airline productivity applied approaches such as the multilateral TFP index (Caves et 

al., 1981; Windle, 1991; Oum and Yu, 1995), decompositions/developments of TFP growth (Bauer, 

1990; Ehrlich et al., 1994) and Fisher productivity index (Ray and Mukhrejee, 1996). The Malmquist 

TFP index, which is a DEA-based approach allowing for the measurement of changes in productivity 

of decision making units over time has been by far the most popular method adopted in the literature 

on airlines’ TFP. Distexhe and Perelman (1994) were the first who employed the Malmquist TFP 

index and reported the productivity change and its two decompositions (efficiency change and 

technological change) for 33 US and European airlines over period 1977−1988. Subsequently, the 

Malmquist index was employed by Sickles et al (2002) and Greer (2008) to examine productivity 

change of 16 European airlines and eight US airlines, respectively. In addition, Chow (2010) used the 

Malmquist index to measure productivity changes in Chinese private and state-owned airlines and Cui 

and Li (2015) adopted this index to calculate the civil aviation safety efficiency of ten Chinese airlines. 

Assaf (2011) employed the bootstrapped Malmquist index for measuring the changes in efficiency and 

productivity of 18 major UK airlines between 2004 and 2007. Recently, Yang and Wang (2016) also 

applied the bootstrapped Malmquist index to assess airlines in four different regions in Europe. Barros 

and Couto (2013) used Malmquist TFP index as well as the Luenberger productivity indicator to 

evaluate productivity changes of European airlines from 2000 to 2011. Lee et al. (2015) has measured 

productivity growth of airlines when undesirable output production is incorporated into the model 

using the Malmquist–Luenberger productivity index. They argued that “pollution abatement activities 

of airlines lowers productivity growth, which suggests that the traditional approach of measuring 

productivity growth, which ignores CO2 emissions, overstates ‘true’ productivity growth” Lee et al. 

(2015, p.338). More recently, Lee et al. (2016) have used the Luenberger indicator to measure and 

decompose productivity of 34 worldwide airlines companies in the presence of CO2 emissions. Bad 

outputs are considered under the WDA in this latter study. 

Yu (2016, p.11) conducted a survey of alternative methodologies and empirical analyses for airline 

performance and concluded that “environmental efficiency now becomes an important area of airline 

productivity and efficiency studies, focusing on CO2 emission as a negative or undesirable output.” 

This paper builds upon this body of literature by offering additional insights on the inclusion of 

undesirable output in the efficiency and productivity measurement of airlines. For this aim we propose 

a by-production Luenberger-Hicks-Moorsteen productivity indicator. The Hicks-Moorsteen TFP index 

is proven to be more accurate than the popular Malmquist TFP index which is widely used in the 

literature. In a comprehensive comparison of the Malmquist index and Hicks–Moorsteen index, 

                                                           
5 See Dakpo et al. (2016) for a thorough discussion on these limits. 
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Kerstens and Van de Woestyne (2014, p.756) clearly state: “As to the question whether the Malmquist 

and Hicks–Moorsteen indices are empirically indistinguishable or not, the differences between both 

primal productivity indices turn out to be significantly different for all flexible returns to scale 

technology specifications.” Kerstens and Van de Woestyne (2014, p.756) also state that “if one wants 

to be on the safe side, then one conclusion is that in case the interest centers on TFP measurement it is 

probably wise to immediately opt for the Hicks–Moorsteen index.” In regard to modelling pollution-

generating technologies, the by-production method of including undesirable output is also argued to be 

better and more reliable than those methods which are assuming strong or weak disposability 

assumptions. This study is the first applying such a comprehensive indicator which is a combination of 

both the by-production approach and the Hicks-Moorsteen productivity index using Luenberger 

directional distance functions. 

Overall, this study contributes to the efficiency and productivity literature in general, and airline 

performance analysis in particular, by introducing a new indicator and including an undesirable output 

in the Hicks–Moorsteen TFP index. In addition, we have decomposed this indicator into good and bad 

output components which allow us to measure the combined effect of good and bad efficiency change. 

Therefore, in this paper, instead of focussing on classical decomposition of TFP indicators into 

technical and efficiency change, our decomposition stresses the changes in the different outputs, the 

goods and the bads. This choice is guided by the aim at providing a direct decomposition of a 

pollution-adjusted productivity indicator. The good output component provides information on the 

managerial ability of DMUs (here airlines) in producing more desirable outputs given their input 

consumption, and the bad output provides insights into the possibility of decreasing detrimental 

outputs like pollution based on inputs and states of the environment (in terms of policy for instance). 

Practically this decomposition can help us identifying companies that take advantage of both or only 

one of the components.  

 

4. Methodology and data 

4.1. Methodology 

Formally, let 𝑥 represents a vector of inputs (𝑥 ∈ ℝ+
𝐾), y a vector of good outputs (y ∈ ℝ+

Q), 𝑏 denotes 

a vector of bad outputs 𝑏 ∈ ℝ+
𝑅 , and 𝑁 the number of DMUs. To work it out, Murty et al. (2012) split 

the input vector into two groups: non-pollution causing inputs (𝑥1) and pollution-generating inputs 

(𝑥2). 

The by-production technology 

The global technology is the intersection of the following two sub-technologies: production of good 

outputs and generation of bad outputs. 
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Ψ = Ψ1 ∩ Ψ2 

(1)  

In the non-parametric framework of DEA the different sub-technologies can be represented under 

variable returns to scale (VRS) as: 

 

Ψ1 = [(𝑥1, 𝑥2, 𝑦, 𝑏) ∈ ℝ𝐾+𝑄+𝑅 |  ∑ 𝜆𝑛𝑥1𝑛

𝑁

𝑛=1

≤ 𝑥1; ∑ 𝜆𝑛𝑥2𝑛

𝑁

𝑛=1

≤ 𝑥2;  ∑ 𝜆𝑛𝑦𝑛

𝑁

𝑛=1

≥ 𝑦 ; ∑ 𝜆𝑛

𝑁

𝑛=1

= 1] 

(2)  

and  

 
Ψ2 = [(𝑥1, 𝑥2, 𝑦, 𝑏) ∈ ℝ𝐾1+𝐾2+𝑄+𝑅 |  ∑ 𝜇𝑛𝑥2𝑛

𝑁

𝑛=1

≥ 𝑥2 ;  ∑ 𝜇𝑛𝑏𝑛

𝑁

𝑛=1

≤ 𝑏 ; ∑ 𝜇𝑛

𝑁

𝑛=1

= 1] 
(3)  

Then Murty et al. (2012) propose to represent the global technology as follows: 

 

Ψ = [(𝑥1, 𝑥2, 𝑦, 𝑏) ∈ ℝ𝐾1+𝐾2+𝑄+𝑅 |  ∑ 𝜆𝑛𝑥1𝑛

𝑁

𝑛=1

≤ 𝑥1; ∑ 𝜆𝑛𝑥2𝑛

𝑁

𝑛=1

≤ 𝑥2 ;  ∑ 𝜆𝑛𝑦𝑛

𝑁

𝑛=1

≥ 𝑦 ; ∑ 𝜆𝑛

𝑁

𝑛=1

= 1 ; ∑ 𝜇𝑛𝑥2𝑛

𝑁

𝑛=1

≥ 𝑥2 ;  ∑ 𝜇𝑛𝑏𝑛

𝑁

𝑛=1

≤ 𝑏 ; ∑ 𝜇𝑛

𝑁

𝑛=1

= 1 ] 

(4)  

In model (4) the two sub-technologies are represented with two distinct intensity (structural) variables 

(𝜆, 𝜇). These variables are the weights assigned to each DMU in the benchmark (reference set) of a 

DMU under evaluation. For global technology, the good outputs and the non-pollution-causing inputs 

verify the free (strong) disposability assumption; that is, if any non-pollution-causing input is 

increased (whether proportionally or not), (good) outputs do not decrease. On the good outputs side, 

the strong disposability states that it is possible to produce less with the same levels of inputs. The bad 
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outputs satisfy the assumption of “costly disposability”, which implies that it is possible to pollute 

more with the same levels of polluting inputs.
6
 

Luenberger-Hicks-Moorsteen (LHM) pollution-adjusted productivity indicator 

Given the particular nature of the by-production approach, we need to adapt the LHM index to 

properly fit with the existence of two independent sub-technologies. Following the work of Briec and 

Kerstens (2004), we propose an indicator that is output oriented and measures the difference between 

two Luenberger quantity indicators. For the period 𝑡 we have 

 𝐿𝐻𝑀𝑡 = 𝐿𝐺𝑡 − 𝐿𝐵𝑡 (5)  

In Equation (5) we define the pollution-adjusted LHM indicator as the difference between the 

Luenberger productivity indicator for the good outputs (𝐿𝐺) and the Luenberger productivity indicator 

for the bad outputs (𝐿𝐵). 

𝐿𝐺𝑡 is defined in Equation (6) as the changes in good outputs production from year 𝑡 to 𝑡 + 1 using 

the inputs and bad outputs levels of period 𝑡. When 𝐿𝐺𝑡 > 0, it means that from 𝑡 to 𝑡 + 1, using the 

inputs and bad outputs levels of period 𝑡, the DMU under evaluation has improved its efficiency: 

 
𝐿𝐺𝑡 = 𝐷𝑡(𝑥𝑡, 𝑦𝑡 , 𝑏𝑡; (0, 𝑔𝐺

𝑡 , 0)) − 𝐷𝑡 (𝑥𝑡 , 𝑦𝑡+1, 𝑏𝑡; (0, 𝑔𝐺
𝑡+1, 0)) 

(6)  

Similarly, on the bad output side we have 

 𝐿𝐵𝑡 = 𝐷𝑡 (𝑥2
𝑡 , 𝑦𝑡, 𝑏𝑡+1; (0, 0, 𝑔𝐵

𝑡+1)) − 𝐷𝑡(𝑥2
𝑡, 𝑦𝑡 , 𝑏𝑡; (0, 0, 𝑔𝐵

𝑡 ) (7)  

Here, values greater than zero expresses productivity losses, while values lower than zero corresponds 

to productivity gains. 

In Equations (6) and (7) 𝑔𝐺
𝑡  , 𝑔𝐵

𝑡  are directional vectors used to assess the inefficiency. 

Similarly, the LMH can also be estimated for period 𝑡 + 1: 

                                                           
6 See Murty (2010) for more discussion on this assumption. 
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 𝐿𝐺𝑡+1 = 𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡, 𝑏𝑡+1; (0, 𝑔𝑂
𝑡 , 0)) − 𝐷𝑡+1 (𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1; (0, 𝑔𝑂

𝑡+1, 0)) (8)  

and  

 
𝐿𝐵𝑡+1 = 𝐷𝑡+1 (𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1; (0, 0, 𝑔𝐵

𝑡+1)) − 𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡; (0, 0, 𝑔𝐵
𝑡 ) 

 

(9)  

From Equations (6) to (9) we can derive the total factor pollution-adjusted productivity change as an 

arithmetic mean of each period LHM quantity indicator. Thus, we have the following: 

 
𝐿𝐻𝑀𝑡,𝑡+1 =

1

2
(𝐿𝐻𝑀𝑡 + 𝐿𝐻𝑀𝑡+1) 

𝐿𝐻𝑀𝑡,𝑡+1 =
1

2
(𝐿𝐺 − 𝐿𝐵) 

(10)  

where 𝐿𝐺 =
1

2
(𝐿𝐺𝑡 + 𝐿𝐺𝑡+1) and 𝐿𝐵 =

1

2
(𝐿𝐵𝑡 + 𝐿𝐵𝑡+1). 𝐿𝐺  is the good-output TFP change, while 

𝐿𝐵 is the bad-output TFP change from 𝑡 to 𝑡 + 1. LHM Values greater than zero express productivity 

gains, while values below zero reflect productivity losses. 

Use of data envelopment analysis 

All the previous quantity indicator indicators can be estimated using DEA. For simplicity and paper 

length issues, we will only present two of the eight models that need to be solved to compute TFP in 

Equation (10). The good-output inefficiency in period 𝑡 given the other variable in the same period is 

presented in Equation (11). 

 

𝐷𝑡(𝑥𝑡, 𝑦𝑡 , 𝑏𝑡; (0, 𝑔𝑂
𝑡 , 0)) = max

𝛽,𝜆,𝜇
𝛽0

𝑡 

𝑠. 𝑡.  ∑ 𝜆𝑛
𝑡 𝑥𝑘𝑛

𝑡

𝑁

𝑛=1

 ≤ 𝑥𝑘0
𝑡   ;   ∑ 𝜆𝑛

𝑡 𝑦𝑞𝑛
𝑡

𝑁

𝑛=1

≥ 𝑦𝑞0
𝑡 + 𝛽0

𝑡𝑔𝑞𝑜
𝑡  ;  ∑ 𝜆𝑛

𝑡

𝑁

𝑛=1

= 1 

∑ 𝜇𝑛
𝑡 𝑥𝑘2𝑛

𝑡

𝑁

𝑛=1

≥ 𝑥𝑘20
𝑡   ;   ∑ 𝜇𝑛

𝑡 𝑏𝑟𝑛
𝑡

𝑁

𝑛=1

≤ 𝑏𝑟0
𝑡    ;   ∑ 𝜇𝑛

𝑡

𝑁

𝑛=1

= 1 

(11)  

Similarly, the good output inefficiency in period 𝑡 + 1 using as reference inputs and bad outputs of 

period 𝑡 can be assessed using model in Equation (12). 

 

𝐷𝑡 (𝑥𝑡, 𝑦𝑡+1, 𝑏𝑡; (0, 𝑔𝑂
𝑡+1, 0)) = max

𝛽,𝜆,𝜇
𝛽0

𝑡 

𝑠. 𝑡.  ∑ 𝜆𝑛
𝑡 𝑥𝑘𝑛

𝑡

𝑁

𝑛=1

 ≤ 𝑥𝑘0
𝑡   ;   ∑ 𝜆𝑛

𝑡 𝑦𝑞𝑛
𝑡

𝑁

𝑛=1

≥ 𝑦𝑞0
𝑡+1 + 𝛽0

𝑡𝑔𝑞𝑜
𝑡+1 ;  ∑ 𝜆𝑛

𝑡

𝑁

𝑛=1

= 1 

(12)  
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∑ 𝜇𝑛
𝑡 𝑥𝑘2𝑛

𝑡

𝑁

𝑛=1

≥ 𝑥𝑘20
𝑡   ;   ∑ 𝜇𝑛

𝑡 𝑏𝑟𝑛
𝑡

𝑁

𝑛=1

≤ 𝑏𝑟0
𝑡    ;   ∑ 𝜇𝑛

𝑡

𝑁

𝑛=1

= 1 

    

As discussed earlier, some of the recent studies in the literature have also considered the internal 

structure of these companies by focusing on different stages of their production system. Although in 

this paper a single-stage by-production model is presented for the sake of simplicity and consistency 

with the previous by-production models, our model can easily be extended to network and dynamic 

analyses as conducted in the previous studies. All the previous analyses of airline productivity change 

(such as Barros & Couto, 2013; Cui and Li, 2015; Yang & Wang, 2016; Lee et al., 2015; 2016) have 

also employed a single-stage analysis but with different views of the production system. This study 

focuses on the operation stage or the flight business only, which is a crucial stage of the production 

network system and can directly be affected by the inclusion of CO2 emissions. Hence, we avoid 

airline behavioral adjustments (marketing functions) such as cost minimization or profit maximisation 

(Barros, 2008). As underlined in Mallikarjun (2015), the operation stage reflects the ‘supply capacity’ 

of an airline, as measured by available seat miles (ASM), available seat kilometer (ASK) or TKA in 

several studies, and corresponds to our primal quantity of technical production whereas other 

production stages, often measured by factors such as revenue passenger miles and operating revenues, 

represent the ‘service demand’ and ‘revenue generation’ of airlines (Mallikarjun, 2015). The latter 

stages in fact reflect the airline strategy to maximize revenues and profits by operating with some 

‘supply capacity’—an economic behavior rather than the technology of generating ASM, ASK or 

TKA which is the focus of this paper. In addition, given the sensitivity of non-parametric measures 

such as DEA to sample size and the number of variables, the discrimination power between different 

DMUs can be seriously affected (Daraio and Simar, 2007).  

Our model discussed here does not account for a dynamic framework for different reasons. As 

described in the literature (Li et al., 2016b; Cui et al., 2016a; 2016b), the dynamic approach is based 

on the work of Färe and Grosskopf (1996) where some storable inputs and intermediate outputs used 

or produced in one period serve as inputs for the next period. In the airline literature, capital is treated 

as a storable input. This approach requires data describing investment levels and capital depreciation, 

which we do not have access to for this paper.
7
 

4.2. Data 

It is crucial for efficiency and productivity analyses to select the appropriate mix of inputs and outputs 

(Boussofiane et al., 1991; Dyson et al., 2001). Airlines face different prices on their inputs; for 

example, Asian countries have comparatively lower labour costs, Middle Eastern airlines likely benefit 

                                                           
7 Depending on data availability, both network and dynamic approaches will be interesting leads for future research.  
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from lower costs on fuel and tax rates vary across jurisdictions. These different prices could produce 

different input units (Greer, 2009). To overcome these differences and ensure comparability, only 

physical inputs and outputs were considered for this study. RDC Aviation provided all data, which 

were cross-referenced with annual reports and other publicly available data to ensure accuracy.
8
 The 

research period covers the years 2007 to 2013 which allows comparison with other recent similar 

studies and also avoids biases from including commercial flights using biofuels from 2014.  

Cui and Li (2015 ; 2016), Li et al. (2016a) and Cui et al. (2016c) considered the period from 2008 to 

2012 and Cui et al. (2016b) and Xu and Cui (2017) used the years 2008 to 2014 as reference period to 

evaluate performance of major international airlines from different aspects. There is a consensus 

among all these studies that our selected period can be seen as appropriate. Cui et al. (2016b, p.989) 

states “since the EU declared in 2008 that aviation will be included in the EU ETS in 2012, the years 

after 2008 can be considered a buffer period for global airlines. Although the policy is suspended for 

non-EU airlines, the EU firmly believes that the act can decelerate airline emissions and will continue 

to push it in future.” Li et al. (2016a), Cui et al. (2016c), Cui and Li (2016) also argue that it is 

meaningful to study the efficiencies of major international airlines during period 2008−2012 which is 

included in our selected period. In addition, as mentioned earlier, the first commercial flights fuelled 

by 50 per cent biofuels (such as Lufthansa) took place in 2014. This would place additional 

requirements on the model however the data on how much biofuel was used by each airline to estimate 

their CO2-e was not available. Therefore, the period 2007−2013 is considered in this study. 

Thirty-three full-service carriers (FSCs) are considered in this study with eight European, one Russian, 

four North American, one Latin American, twelve Chinese or North Asian, three Asia-Pacific and four 

Middle Eastern carriers. We focused on the world’s major FSCs (not low-cost carriers and so on) to 

ensure comparability of business models. 

The selection of data is well grounded in the existing literature (for example, Barla & Perelman, 1989; 

Charnes et al., 1996; Greer, 2006; Inglada et al., 2006; Arjomandi & Seufert, 2014). We identified 

labour and capital as major inputs. As asserted by Coelli et al. (1999) and Greer (2008), labour is 

measured by the annual average of full-time equivalent, and can be divided into two categories: pilots 

and flight attendants, which directly relate to the core business of airlines. This paper focuses on the 

flight operations and we deliberately excluded auxiliary services using ground staff such as catering 

and maintenance as these can and are often outsourced. As such figures of staff other than FTE pilot 

and flight attendants are very likely to be distorted. This study follows the Coelli et al. (1999, p. 262) 

definition of capital, which is the “sum of the maximum take-off weights of all aircraft multiplied by 

the number of days the planes have been able to operate during a year (defined as the total number of 

                                                           
8 RDC Aviation (www.rdcaviation.com) is one of the leading aviation advisory and data analysis providers.  

http://www.rdcaviation.com/
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flying hours divided by average daily revenue hours)”. This definition avoids performance biases due 

to maintenance or other external impacts, and was also employed because of the high degree of 

complementarity between fuel consumption and capital (this correlation is above 0.95 in our case) 

when the consistency of fuel consumption data is a concern (Barla and Perelman,1989; Coelli et al., 

1999; Ray 2008). We have considered the same inputs (capital and labour) under both sub-

technologies. 

To reflect the outputs of airlines, we chose tonne–kilometres available (TKA) and CO2-e emissions. 

TKA is the measure of desirable output for this study, following the logic of Barla and Perelman 

(1989), Coelli et al. (1999), Inglada et al. (2006) and Arjomandi and Seufert (2014) that TKA is not a 

marketing but capacity indicator (Greer, 2009). As Greer (2009, p. 779) asserts “the conversion of an 

airline’s produced inventory of ASMs into revenue passenger-miles is a marketing function, not part 

of the airline’s production process.” As such this study uses TKA defined as the number of tonnes 

available for the carriage of revenue load (passengers, freight and mail) on each flight multiplied by 

the flight distance which includes ASMs as well. RDC provides estimated CO2-e data based on 

specific airline-aircraft configurations and the served sector to translate the estimated fuel 

consumption into CO2-e based on the widely accepted IPCC factor. These modelled CO2-e data have 

specific benefits of CO2-e extracted from annual reports or other publicly available sources: there is 

consistency of data because they come from one, rather than multiple sources. This is in line with the 

standardisation of external factors, weather, pilots’ decisions on the choice of route, or airport-related 

factors that could impact CO2-e emission. In this paper we assume that production technologies 

available to airlines are homogeneous and the differences in business environment lead to different 

choices in technology not to differences in the technologies available to them. Descriptive statistics for 

all the inputs and outputs and the list of selected airlines, ordered by the size of capital, are provided in 

Tables 2 and 3, respectively. 

Table 2. Descriptive statistics of the inputs and outputs 

Variable  Mean Std. Dev. Minimum Maximum 

The inputs 

    
Number of employees 9.78 6.79 1.66 32.9 

Capital  8.55 6.50 1.91 38.70 

The outputs 

    
TKA    105.10 78.41 22.84 458.86 

CO2-e 10.58 7.96 2.44 42.20 

Notes: Number of Employees is measured as full time equivalent staff (in thousands). Capital is the sum of the 

maximum take-off weights of all aircraft multiplied by the number of days the planes have been able to operate 

during a year (defined as the total number of flying hours divided by average daily revenue hours) and is divided 

by 10
12

. TKA is the number of tonnes available for the carriage of revenue load (passengers, freight and mail) on 

each flight multiplied by the flight distance and is divided by 10
12

. Estimated CO2-e represents the Carbon 

Dioxide equivalent (in millions of tonnes) emitted by each airline for their flight business. RDC employed the 

specified model to estimate CO2-e which is a conversion from fuel, based on the IPCC’s conversion factor. 
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Table 3. Selected airlines and regions 

Airline Region Region Abbreviation  

Delta Air Lines US and Canada USC 

American Airlines US and Canada USC 

United Airlines US and Canada USC 

Emirates Middle East ME 

Lufthansa Europe and Russia EURU 

British Airways Europe and Russia EURU 

Cathay Pacific Airways China and North Asia CHNA 

Air France Europe and Russia EURU 

Singapore Airlines China and North Asia CHNA 

Korean Air China and North Asia CHNA 

KLM Royal Dutch Airlines Europe and Russia EURU 

Air Canada US and Canada USC 

Air China China and North Asia CHNA 

Qantas Asia Pacific AP 

Thai Airways International Asia Pacific AP 

China Southern Airlines China and North Asia CHNA 

China Airlines China and North Asia CHNA 

China Eastern Airlines China and North Asia CHNA 

Japan Airlines International China and North Asia CHNA 

Iberia Europe and Russia EURU 

Turkish Airlines (THY) Europe and Russia EURU 

Eva Air Asia Pacific AP 

Virgin Atlantic Airways Europe and Russia EURU 

Asiana Airlines China and North Asia CHNA 

Etihad Airways Middle East  ME 

All Nippon Airways China and North Asia CHNA 

Malaysia Airlines China and North Asia CHNA 

TAM Linhas Aereas Latin America LA 

Air India China and North Asia CHNA 

Saudi Arabian Airlines Middle East  ME 

Qatar Airways Middle East  ME 

Aeroflot-Russian Airlines Europe and Russia EURU 

Alitalia Europe and Russia EURU 

 

 

5. Empirical results 

For the empirical application, the directional vectors used are equivalent to the observed values of the 

different variables (Chung et al., 1997). For instance, 𝑔𝑞𝑜
𝑡 = 𝑦𝑞0

𝑡 . We start with the efficiency results 

and thereafter discuss productivity changes. Table 4 lists several measures related to the by-production 

pollution-adjusted inefficiency (By-production inefficiency), good-output inefficiency (G.O. 

inefficiency) and bad-output inefficiency (B.O. inefficiency) of the individual airlines. For the sake of 

saving space, the inefficiency estimates of only three individual years (2007, 2010 and 2013) for all 

airlines are presented in Table 4. The table also includes each airline’s ranking based on its by-

production, good-output and bad-output inefficiencies.
9
  

                                                           
9 The results of years 2008, 2009, 2011, and 2012 can be provided upon request. 
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Based on the results listed in Table 4, interested readers can identify the best and worst individual 

performers in the sample: United Airlines is consistently found to be the most efficient airline because 

its by-production, good-output and bad-output inefficiencies all equal zero in all years. Emirates is 

also found to be a top performer, because it is ranked among the top five performers based on its by-

production inefficiency in all reported years. Air India was a ‘fully’ efficient airline in the period 2007 

to 2010 as well, but lost this position to other airlines, such as Eva Air, Singapore Airlines, Alitalia 

and Emirates in 2011 to 2013. Delta Airlines, Qatar Airways and Korean Air also show considerable 

ranking improvements in terms of pollution-adjusted efficiency (by-production) in 2011 to 2013. In 

fact, Delta Airlines and Qatar Airways were among the worst performers in 2007 to 2010, but were 

among the top 10 performers in 2011 to 2013. All Nippon Airways and Air China consistently ranked 

among the five worst performers in 2007 to 2013. 

Focusing on the regions, airlines from the Europe region, except Turkish Airlines, were found to be 

better ranked than the 10 least efficient airlines in the last five studied years (by not falling into this 

category in the period 2009 to 2013). Turkish Airlines is by far the most inefficient airlines of the 

region, and its by-production inefficiency is mainly attributable to its bad-output management.
10

 

Alitalia, Lufthansa and Air France can be seen as the region’s most efficient airlines. It is worth 

mentioning that Alitalia was ranked 27th in the first year of our analysis, but managed to become one 

of the fully efficient airlines between 2011 and 2013. Airlines in China and northern Asia were found 

to be at very different stages of by-production efficiency: Air India and Singapore Airlines were 

among the world’s most efficient airlines and All Nippon and Air China are positioned in the opposite 

position. None of the Chinese airlines were found to be in the top 10 most technically efficient 

airlines.
11

 China Southern Airlines performed very well in terms of bad-output management; however, 

its very poor good output efficiency ranked it about 15 across different years. Some airlines’ rankings, 

such as those of Japan Airlines and Asiana Airlines, substantially worsened over time. The Asia-

Pacific region includes three airlines: Eva Air, a Taiwanese airline which was found to be in the 

world’s top three most efficient airlines in all years (except for 2009 in which it was ranked the ninth); 

Qantas, which is not as efficient as Eva Air in terms of pollution-adjusted efficiency, but still among 

the top third of the best performers; and Thai Airways, which in this study never ranked better than 

21st during the studied period. This was mainly because of its poor performance on bad output 

controlling. In fact, this airline was constantly among the five globally most pollution-adjusted 

inefficient airlines. 

                                                           
10 It should be mentioned that although Turkish Airlines is classified by ICAO as part of the Europe region, Turkey itself is 

neither part of the European Union nor a participant in the EU ETS, and hence does not need to consider an imposed price on 

CO2-e (ICAO, 2015). 

11 Note that China Airlines has its headquarters in Taiwan, and hence is not considered as a mainland China airline. China 

Airlines was in fact among the top ten best performers in 2007, 2011 and 2012. 
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Table 4. By-production, good-output and bad-output efficiency scores, 2007, 2010, and 2013 

 

Airlines 

 2007  2010  2013      

Region By-prod. 

ineff. 

G.O. 

ineff. 

B.O. 

ineff. 

By- 

prod. 

rank 

G.O. 

rank 

B.O 

rank 

 By-

prod. 

ineff. 

G.O. 

ineff. 

B.O. 

ineff. 

By- 

prod. 

rank 

G.O. 

rank 

B.O 

rank 

 By-

prod. 

ineff. 

G.O. 

ineff. 

B.O. 

ineff. 

By- 

prod. 

rank 

G.O. 

rank 

B.O 

rank 

Delta Air Lines USC 0.208 0.124 0.291 24 16 19  0.196 0.175 0.217 20 22 12  0.031 0.028 0.034 5 4 3 

American Airlines USC 0.050 0.101 0.000 6 13 1  0.235 0.118 0.353 28 18 23  0.024 0.049 0.000 3 7 1 

United Airlines USC 0.000 0.000 0.000 1 1 1  0.000 0.000 0.000 1 1 1  0.000 0.000 0.000 1 1 1 

Emirates ME 0.046 0.006 0.086 5 3 4  0.084 0.000 0.169 5 1 9  0.000 0.000 0.000 1 1 1 

Lufthansa EURU 0.093 0.061 0.124 10 11 7  0.118 0.066 0.170 10 14 10  0.025 0.050 0.000 4 8 1 

British Airways EURU 0.196 0.000 0.393 21 1 26  0.146 0.016 0.276 15 2 18  0.158 0.034 0.282 18 5 22 

Cathay Pacific Airways CHNA 0.101 0.034 0.169 11 6 9  0.148 0.038 0.258 16 6 16  0.088 0.066 0.111 8 13 7 

Air France EURU 0.029 0.058 0.000 4 10 1  0.115 0.067 0.164 9 15 7  0.064 0.040 0.088 6 6 5 

Singapore Airlines CHNA 0.088 0.000 0.176 9 1 10  0.069 0.000 0.139 4 1 5  0.013 0.003 0.023 2 2 2 

Korean Air CHNA 0.251 0.061 0.441 30 12 27  0.216 0.055 0.378 26 9 29  0.141 0.059 0.223 15 10 18 

KLM Royal Dutch Airlines EURU 0.107 0.027 0.188 12 4 12  0.141 0.032 0.250 13 3 15  0.120 0.061 0.179 13 12 14 

Air Canada USC 0.213 0.139 0.286 25 17 17  0.216 0.118 0.313 25 19 20  0.226 0.149 0.304 27 17 23 

Air China CHNA 0.238 0.146 0.331 29 18 23  0.241 0.153 0.329 29 20 21  0.221 0.179 0.263 26 19 20 

Qantas AP 0.068 0.004 0.132 8 2 8  0.100 0.041 0.158 7 7 6  0.112 0.054 0.170 12 9 13 

Thai Airways International AP 0.198 0.052 0.344 22 8 24  0.209 0.057 0.361 22 11 25  0.164 0.060 0.267 21 11 21 

China Southern Airlines CHNA 0.140 0.281 0.000 16 24 1  0.143 0.286 0.000 14 25 1  0.133 0.265 0.000 14 27 1 

China Airlines CHNA 0.065 0.033 0.097 7 5 5  0.136 0.045 0.226 11 8 14  0.107 0.143 0.071 11 16 4 

China Eastern Airlines CHNA 0.157 0.261 0.053 18 23 3  0.192 0.294 0.090 18 26 3  0.216 0.293 0.140 25 28 9 

Japan Airlines International CHNA 0.135 0.168 0.101 15 21 6  0.302 0.218 0.386 32 23 30  0.311 0.231 0.391 30 24 26 

Iberia EURU 0.199 0.105 0.294 23 14 20  0.091 0.081 0.101 6 16 4  0.159 0.118 0.201 20 15 15 

Turkish Airlines (THY) EURU 0.234 0.153 0.315 28 19 21  0.262 0.175 0.349 30 21 22  0.169 0.169 0.170 23 18 12 

Eva Air AP 0.004 0.000 0.009 2 1 2  0.028 0.000 0.056 3 1 2  0.000 0.000 0.000 1 1 1 

Virgin Atlantic Airways EURU 0.178 0.000 0.357 19 1 25  0.155 0.000 0.310 17 1 19  0.106 0.000 0.212 10 1 16 

Asiana Airlines CHNA 0.124 0.000 0.247 14 1 15  0.136 0.057 0.215 12 10 11  0.167 0.187 0.148 22 20 10 

Etihad Airways ME 0.000 0.000 0.000 1 1 1  0.198 0.035 0.361 21 4 24  0.158 0.099 0.217 19 14 17 

All Nippon Airways CHNA 0.286 0.305 0.267 31 25 16  0.290 0.317 0.263 31 27 17  0.228 0.210 0.246 28 23 19 

Malaysia Airlines CHNA 0.023 0.047 0.000 3 7 1  0.212 0.063 0.361 23 13 26  0.152 0.000 0.305 16 1 24 

TAM Linhas Aereas LA 0.221 0.241 0.201 26 22 13  0.196 0.224 0.168 19 24 8  0.153 0.191 0.116 17 21 8 

Air India CHNA 0.000 0.000 0.000 1 1 1  0.000 0.000 0.000 1 1 1  0.104 0.207 0.000 9 22 1 

Saudi Arabian Airlines ME 0.151 0.119 0.182 17 15 11  0.233 0.098 0.368 27 17 28  0.194 0.241 0.148 24 25 11 

Qatar Airways ME 0.188 0.054 0.322 20 9 22  0.213 0.059 0.367 24 12 27  0.064 0.023 0.105 7 3 6 

Aeroflot-Russian Airlines EURU 0.118 0.000 0.236 13 1 14  0.109 0.000 0.217 8 1 13  0.295 0.255 0.335 29 26 25 

Alitalia EURU 0.226 0.163 0.288 27 20 18   0.019 0.038 0.000 2 5 1   0.000 0.000 0.000 1 1 1 
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With regard to the Middle-Eastern airlines, Emirates was by far the most efficient airline. Qatar 

managed to improve its rank from 24st in 2010 to seventh in 2012‒2013. Saudi Arabian Airlines and 

Etihad Airways were mostly ranked in the second third. TAM Linhas Aereas from Latin America was 

also in a position similar to Saudi Arabian Airlines and Etihad Airways. In the US and Canada region, 

United Airlines and Air Canada were found to be respectively the region’s best and the worst 

performers. Another highlight from this region was Delta Air Lines, which showed a remarkable 

improvement in the years 2011 to 2013, compared to the previous period of study; its pollution-

adjusted efficiency rank changed from 24th in 2007 to about fourth in the years 2011 to 2013. 

Based on these pollution-adjusted measures, the findings of Table 4 reveal that: 1) United Airlines was 

the most efficient airline; 2) All Nippon Airways and Air China
12

 were across the years among the 

least efficient airlines; 3) no European airline (from the EU) was found to be among the 10 least 

efficient airlines
13

 after 2009; 4) no Chinese airline was found to be among the world’s most efficient 

airlines; 5) airlines from almost all regions were found to be among the top 10 best performers. 

The results on the LHM TFP (pollution-adjusted productivity) change, considering both good and bad 

outputs, can now give us a more in-depth understanding of airline performance. Any airline with high 

values of LG and LB (see Tables 5 and 6) can be seen as a good performer in managing both good- 

and bad-output productivities. However, as can be seen in Tables 5 and 6, there are not many airlines 

with positive LGs and LBs (positive productivity change), and there are many airlines that performed 

well based on one productivity component (LG or LB), but not on the other. Let us consider the period 

2007 to 2008 to describe this better. Based on Table 5, Air India, with the highest LB but a negative 

LG, had the highest LHM TFP (pollution-adjusted productivity) change, and hence is ranked first in 

the list. In the same way, but with highest levels of LG, Qatar and TAM Linhas Aereas managed to be 

the second and third, respectively, in terms of the LHM TFP change in 2007 to 2008. Of special note 

is Etihad Airways, which had the largest positive change of LG (0.279); but because its LB was by far 

the poorest in comparison with others (˗0.322), its LHM TFP change is ranked 29th. Eva Air and 

Malaysia Airlines were found to show the least productive changes in the period 2007 to 2008 (based 

on their LHM TFP values), because both their LGs and LBs were highly negative and largely lower 

than their rivals’. On the other hand, the LG and LB values of Iberia and Delta Airlines in the period 

2007–2008 were both positive, indicating they experienced progress in terms of maximising TKA (LG) 

and also in terms of solely environmental performance (LB). However, because these are not the 

largest values in comparison with those of other airlines, they are ranked, respectively, fourth and fifth 

among all airlines. 

                                                           
12 Using a dynamic model and total revenue as desirable output, Cui et al. (2016b) also found similar results for Air China 

and stated that this airline should exert more effort in controlling its emission volume. They suggested the fleet upgrade as an 

important tool for this aim.  

13 This finding is also in line with those of network SBMs in Cui and Li (2016) and Li et al. (2016a) which also showed that 

the average efficiency of European airlines was higher that of non-European airlines. 
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Table 5. By-production LHM TFP change and its components, 2007–2008, 2008–2009, and 2009–2010 

Airlines 

 2007–2008  2008–2009  2009–2010 

Region LHM LG ˗LB LHM 

rank 

LG 

rank 

LB 

rank 

 LHM LG -LB LHM 

rank 

LG 

rank 

LB 

rank 

 LHM LG -LB LHM 

rank 

LG 

rank 

LB 

rank 

Delta Air Lines USC 0.112 0.043 0.069 5 10 4   ˗0.019 ˗0.102 0.083 21 26 9   ˗0.110 ˗0.056 ˗0.053 31 30 23 

American Airlines USC ˗0.027 ˗0.086 0.059 27 30 7  ˗0.001 ˗0.110 0.110 18 29 5  0.020 0.019 0.001 8 17 9 

United Airlines USC 0.005 ˗0.055 0.060 23 28 5  0.002 ˗0.032 0.034 17 16 16  0.035 0.047 ˗0.011 7 12 14 

Emirates ME 0.009 0.099 ˗0.090 22 6 31  0.012 0.076 ˗0.064 16 6 29  ˗0.089 0.079 ˗0.168 29 8 32 

Lufthansa EURU 0.014 0.031 ˗0.018 19 16 21  0.090 ˗0.013 0.104 7 13 8  ˗0.002 0.020 ˗0.022 20 16 17 

British Airways EURU 0.047 ˗0.032 0.078 8 24 3  0.063 ˗0.045 0.108 10 17 6  0.003 ˗0.014 0.017 17 22 4 

Cathay Pacific Airways CHNA 0.060 0.108 ˗0.048 6 5 25  ˗0.053 ˗0.053 ˗0.001 27 19 20  0.011 0.032 ˗0.021 12 15 16 

Air France EURU 0.022 0.031 ˗0.009 15 17 17  0.070 ˗0.048 0.118 9 18 4  ˗0.015 ˗0.027 0.012 21 24 5 

Singapore Airlines CHNA 0.053 0.078 ˗0.025 7 7 23  0.046 ˗0.104 0.150 14 27 2  ˗0.042 ˗0.028 ˗0.014 25 25 15 

Korean Air CHNA 0.040 0.040 0.000 10 14 11  0.077 0.056 0.021 8 8 17  ˗0.051 ˗0.053 0.002 27 29 8 

KLM Royal Dutch Airlines EURU 0.029 0.042 ˗0.013 13 11 19  0.014 ˗0.063 0.077 15 21 10  0.039 0.051 ˗0.011 5 10 13 

Air Canada USC 0.039 0.042 ˗0.003 11 12 13  0.048 0.004 0.044 13 12 13  0.047 0.083 ˗0.036 4 7 21 

Air China CHNA 0.018 0.030 ˗0.012 18 19 18  ˗0.044 0.014 ˗0.058 24 10 28  0.037 0.098 ˗0.061 6 5 24 

Qantas AP ˗0.019 ˗0.015 ˗0.004 25 22 14  ˗0.024 ˗0.068 0.044 22 23 14  0.009 ˗0.001 0.009 14 19 6 

Thai Airways International AP ˗0.043 ˗0.037 ˗0.006 28 25 16  ˗0.047 ˗0.112 0.065 25 30 11  0.017 0.039 ˗0.022 10 14 18 

China Southern Airlines CHNA 0.020 0.005 0.015 16 21 10  0.102 0.168 ˗0.067 4 2 30  0.051 0.166 ˗0.116 3 2 31 

China Airlines CHNA ˗0.063 ˗0.099 0.037 31 32 9  ˗0.087 0.010 ˗0.097 30 11 32  0.004 ˗0.033 0.037 16 26 3 

China Eastern Airlines CHNA 0.002 0.018 ˗0.016 24 20 20  ˗0.002 0.085 ˗0.087 19 5 31  ˗0.017 0.078 ˗0.095 22 9 28 

Japan Airlines International CHNA ˗0.055 ˗0.053 ˗0.002 30 27 12  ˗0.141 ˗0.108 ˗0.033 31 28 24  ˗0.174 ˗0.297 0.123 32 33 1 

Iberia EURU 0.122 0.062 0.060 4 9 6  0.117 ˗0.031 0.148 3 15 3  ˗0.018 ˗0.012 ˗0.005 23 21 10 

Turkish Airlines (THY) EURU 0.032 0.109 ˗0.077 12 4 29  0.146 0.180 ˗0.033 1 1 25  0.010 0.098 ˗0.087 13 6 27 

Eva Air AP ˗0.094 ˗0.061 ˗0.033 32 29 24  ˗0.055 ˗0.016 ˗0.040 28 14 26  0.002 ˗0.007 0.009 18 20 7 

Virgin Atlantic Airways EURU 0.011 0.030 ˗0.020 20 18 22  ˗0.017 ˗0.066 0.049 20 22 12  0.002 ˗0.045 0.047 19 28 2 

Asiana Airlines CHNA 0.009 0.066 ˗0.056 21 8 27  0.145 0.039 0.105 2 9 7  0.016 0.049 ˗0.033 11 11 20 

Etihad Airways ME ˗0.043 0.280 ˗0.323 29 1 33  0.051 0.149 ˗0.098 12 3 33  0.052 0.150 ˗0.098 1 3 29 

All Nippon Airways CHNA 0.028 0.034 ˗0.005 14 15 15  ˗0.048 ˗0.058 0.010 26 20 18  ˗0.041 ˗0.035 ˗0.006 24 27 11 

Malaysia Airlines CHNA ˗0.213 ˗0.052 ˗0.161 33 26 32  ˗0.177 ˗0.155 ˗0.022 33 33 23  ˗0.065 ˗0.059 ˗0.007 28 31 12 

TAM Linhas Aereas LA 0.137 0.190 ˗0.053 2 3 26  0.092 0.137 ˗0.045 5 4 27  0.017 0.133 ˗0.115 9 4 30 

Air India CHNA 0.146 ˗0.094 0.240 1 31 1  ˗0.148 ˗0.137 ˗0.011 32 31 21  0.008 0.040 ˗0.032 15 13 19 

Saudi Arabian Airlines ME 0.019 ˗0.031 0.050 17 23 8  ˗0.078 ˗0.081 0.003 29 24 19  ˗0.044 0.006 ˗0.051 26 18 22 

Qatar Airways ME 0.123 0.210 ˗0.087 3 2 30  0.058 0.075 ˗0.017 11 7 22  0.051 0.233 ˗0.182 2 1 33 

Aeroflot-Russian Airlines EURU ˗0.025 0.040 ˗0.065 26 13 28  ˗0.043 ˗0.083 0.040 23 25 15  ˗0.215 ˗0.131 ˗0.083 33 32 26 

Alitalia EURU 0.043 ˗0.161 0.204 9 33 2   0.092 ˗0.150 0.242 6 32 1   ˗0.089 ˗0.018 ˗0.071 30 23 25 

Note: LB values are multiplied by ˗1 for the sake of interpretation convenience. ‘‒LB’ instead of ‘LB’ is provided in the table. 
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Table 6. By-production LHM TFP change and its components, 2010–2011, 2011–2012, and 2012–2013 

Airlines 

 2010–2011  2011–2012  2012–2013 

Region LHM LG ˗LB LHM 

rank 

LG 

rank 

LB 

rank 

 LHM LG -LB LHM 

rank 

LG 

rank 

LB 

rank 

 LHM LG -LB LHM 

rank 

LG 

rank 

LB 

rank 

Delta Air Lines USC 0.245 0.625 -0.380 4 1 31   0.004 ˗0.038 0.042 18 25 5   -0.024 0.005 -0.029 27 24 18 

American Airlines USC 0.000 0.005 -0.005 23 31 2  ˗0.025 ˗0.039 0.014 26 26 13  0.134 0.563 -0.428 2 1 33 

United Airlines USC -0.160 0.379 -0.539 32 4 33  ˗0.103 ˗0.129 0.026 32 31 10  -0.098 -0.115 0.017 32 32 9 

Emirates ME 0.090 0.216 -0.126 8 8 28  0.007 0.154 ˗0.147 16 4 32  0.069 0.138 -0.069 7 7 23 

Lufthansa EURU 0.014 0.096 -0.082 19 15 24  0.013 ˗0.021 0.034 14 22 8  0.001 -0.019 0.019 21 26 8 

British Airways EURU -0.018 0.029 -0.047 28 29 15  ˗0.019 0.006 ˗0.026 25 19 19  -0.005 0.016 -0.022 23 19 17 

Cathay Pacific Airways CHNA 0.018 0.095 -0.077 18 16 21  0.029 0.088 ˗0.060 10 11 24  0.078 0.005 0.073 6 23 2 

Air France EURU 0.045 0.086 -0.041 12 17 11  0.017 0.001 0.016 13 21 12  0.044 0.009 0.036 9 22 6 

Singapore Airlines CHNA 0.070 0.139 -0.069 10 11 19  0.000 0.056 ˗0.055 20 12 22  -0.009 0.009 -0.018 25 21 15 

Korean Air CHNA 0.141 0.186 -0.045 7 9 12  0.023 0.053 ˗0.030 12 14 20  0.019 0.017 0.002 15 18 11 

KLM Royal Dutch Airlines EURU -0.014 0.039 -0.053 27 25 17  ˗0.025 ˗0.024 ˗0.001 27 23 14  0.008 0.003 0.005 19 25 10 

Air Canada USC 0.012 0.035 -0.023 20 27 4  ˗0.001 0.003 ˗0.004 21 20 15  -0.035 -0.023 -0.012 29 27 14 

Air China CHNA 0.036 0.065 -0.029 13 20 6  0.062 0.045 0.018 3 16 11  -0.036 0.059 -0.095 30 15 26 

Qantas AP 0.036 0.061 -0.025 14 22 5  ˗0.047 ˗0.078 0.031 29 27 9  -0.050 -0.086 0.036 31 31 5 

Thai Airways International AP 0.033 0.051 -0.019 16 24 3  0.012 ˗0.027 0.039 15 24 6  0.025 0.088 -0.063 14 11 22 

China Southern Airlines CHNA -0.013 0.069 -0.082 26 18 23  0.056 0.140 ˗0.084 4 5 26  0.014 0.123 -0.110 17 9 27 

China Airlines CHNA 0.004 0.037 -0.034 22 26 9  0.003 0.049 ˗0.046 19 15 21  0.034 0.043 -0.009 12 17 13 

China Eastern Airlines CHNA 0.035 0.113 -0.079 15 14 22  0.045 0.139 ˗0.093 6 6 28  0.083 0.196 -0.113 5 4 28 

Japan Airlines International CHNA -0.063 -0.076 0.014 31 33 1  0.045 0.053 ˗0.008 7 13 17  0.044 0.084 -0.040 10 13 21 

Iberia EURU 0.075 0.120 -0.046 9 13 13  ˗0.013 ˗0.093 0.080 23 28 2  -0.246 -0.382 0.136 33 33 1 

Turkish Airlines (THY) EURU 0.397 0.563 -0.166 2 3 30  0.034 0.168 ˗0.134 9 2 31  0.095 0.245 -0.150 3 2 31 

Eva Air AP -0.002 0.033 -0.035 24 28 10  ˗0.037 0.024 ˗0.061 28 17 25  0.016 0.045 -0.029 16 16 19 

Virgin Atlantic Airways EURU -0.009 0.024 -0.033 25 30 8  ˗0.002 0.009 ˗0.010 22 18 18  -0.010 -0.043 0.033 26 28 7 

Asiana Airlines CHNA 0.007 0.059 -0.051 21 23 16  0.040 0.099 ˗0.059 8 10 23  0.134 0.171 -0.036 1 6 20 

Etihad Airways ME 0.060 0.131 -0.070 11 12 20  0.006 0.114 ˗0.107 17 9 29  0.052 0.172 -0.121 8 5 29 

All Nippon Airways CHNA 0.169 0.237 -0.068 6 7 18  0.110 0.117 ˗0.007 2 7 16  0.034 0.111 -0.077 13 10 24 

Malaysia Airlines CHNA -0.035 -0.004 -0.030 29 32 7  ˗0.015 ˗0.120 0.105 24 30 1  0.002 0.127 -0.124 20 8 30 

TAM Linhas Aereas LA -0.040 0.061 -0.101 30 21 27  0.117 0.529 ˗0.412 1 1 33  -0.006 -0.078 0.071 24 30 3 

Air India CHNA -0.249 0.145 -0.394 33 10 32  ˗0.048 ˗0.096 0.049 30 29 4  0.040 0.059 -0.020 11 14 16 

Saudi Arabian Airlines ME 0.241 0.328 -0.088 5 6 25  ˗0.070 ˗0.136 0.066 31 32 3  0.009 0.015 -0.005 18 20 12 

Qatar Airways ME 0.269 0.358 -0.089 3 5 26  0.028 0.117 ˗0.088 11 8 27  -0.004 0.088 -0.092 22 12 25 

Aeroflot-Russian Airlines EURU 0.425 0.569 -0.144 1 2 29  0.050 0.162 ˗0.112 5 3 30  0.087 0.241 -0.154 4 3 32 

Alitalia EURU 0.022 0.069 -0.047 17 19 14   ˗0.143 ˗0.180 0.037 33 33 7   -0.030 -0.074 0.043 28 29 4 

Note: LB values are multiplied by ˗1 for the sake of interpretation convenience. ‘‒LB’ instead of ‘LB’ is provided in the table. 
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Focusing on the regions, in the Middle East, one may not see any obvious highlights by looking at the 

LHM TFP results; however, when the LG and LB changes are compared, the findings are very 

interesting (Tables 5 and 6). Emirates, Etihad Airways and Qatar Airways have constantly shown very 

high and positive LG changes in any of the periods, but when it comes to the LB changes, we see the 

opposite: all the values are highly negative with no exceptions in all periods. Therefore, they are 

ranked among the most productive airlines in terms of good-output productivity change, but positioned 

as the worst performers when it comes to changes in environmental productivity. This may indicate 

that the Middle Eastern airlines are focusing on marketing strategies more than fuel/CO2 reduction. 

Chinese airlines were found to be somewhat similar to their Middle Eastern rivals. Air China and 

China Southern Airlines show high and positive LGs, but negative LBs. China Eastern improved its 

LHM TFP substantially over time. But this was again due to its LG improvements over time only. Its 

LB values were always negative and even worsened over time. Hence, a similar conclusion as for the 

Middle Eastern airlines may also be drawn for Chinese airlines as well as airlines such as Aeroflot-

Russian Airlines (from the Russian region), All Nippon Airways, Asiana, China Airlines, Cathay 

Pacific Airways and Japan Airlines (from the north Asia region), TAM Linhas Aereas (from the Latin 

America region) and Turkish Airlines (from the European region), which also show very similar LG 

and LB changes in most of the periods. On the other hand, European airlines show significant 

improvements in their LB values, and thus in 2012–2013, all the EU airlines, except British Airways, 

showed positive LBs.  

With regard to LG changes, European airlines are ranked in the middle third among all airlines, but 

when it comes to exclusive environmental productivity change, they performed relatively better. See, 

for example, the performance of Iberia, Air France, Alitalia and Lufthansa in different years. With 

regard to the North American airlines, the good- and bad-output TFP changes vary over time.  

 

6. Conclusions 

This paper analyses the pollution-adjusted efficiency and productivity of the world’s major airlines 

using innovative and recent DEA by-production models covering the period 2007 to 2013. Unlike the 

traditional Hicks-Moorsteen total factor productivity index, our indicator includes undesirable outputs 

using a representation of polluting technologies (by-production). The flexibility offered by this multi-

technology approach allows us to decompose the global TFP into good- and bad-output components, 

thus providing insights into pollution-adjusted productivity change sources. As recently identified in 

some of the aforementioned literature (Dakpo et al., 2016; Førsund, 2017), other models considering 

pollution as an input under the strong disposability assumption or as an undesirable output under the 

WDA fail both to represent the production process that generates pollution in terms of trade-offs and 

to satisfy thermodynamic laws. 
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Based on the findings of this study, one may argue that ETSs can trigger an environmental awareness 

or (cost) pressure for airlines to take their carbon footprint more seriously into account in their 

business strategy. That is, airlines facing either inclusion or the direct cost of an ETS are more likely 

to consider their environmental efficiency. Also, our findings suggest that, for our period of research, 

Middle Eastern airlines were less concerned about their environmental performance, most likely 

because fuel was cheaper and they were less concerned about the cost impact of higher fuel 

consumption. In contrast, European Airlines (those which are part of the EU ETS) show high 

pollution-adjusted efficiency and improvements in LHM productivity, which can be due to cost 

pressures and a potential higher environmental awareness of their passengers. Turkish Airlines, which 

has not been part of the EU ETS, might be a good counter example to show that a lack of incentive 

directly leads to a lack of LB improvements. Similarly, it can be argued that since Japan’s regional and 

national ETSs did not include aviation emissions and they did not pose a threat to their financial 

bottom line, resulting in the airlines behaving as though they do not need to comply with an ETS at all. 

Future research could take other aspects, such as marketing, costs and profit, into account to provide a 

more detailed picture of airline business operations. For this aim, the network and dynamic by-

production approaches can provide interesting insights into the performance of the airlines. While we 

considered the uniformity of CO2-e data by RDC compelling, more comprehensive actual data could 

provide additional insights into the eco-efficiency and eco-effectiveness changes of airlines’ ground 

and other operational activities.  

As fuel costs are not directly included in our model, regional differences in fuel costs for airlines do 

not have a direct bearing on our results. Future studies could also investigate the relative significance 

of regional differences in fuel costs compared with the impact of the EU ETS by considering altered 

sets of inputs and outputs or utilising a different type of undesirable output. This could be a valuable 

investigation of airlines’ performance, as an ETS or any other factor that results in higher fuel prices 

(or even higher price volatility) may trigger airlines to improve fuel efficiency in order to minimise 

operating costs, thereby reducing exhaust emissions. Future studies could also extend the study period 

beyond 2013 and include the effect of biofuels on airline technical and environmental efficiency and 

productivity. 
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