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A λ-Cut and Goal-Programming-Based Algorithm
for Fuzzy-Linear Multiple-Objective

Bilevel Optimization
Ya Gao, Guangquan Zhang, Jun Ma, and Jie Lu

Abstract—Bilevel-programming techniques are developed to
handle decentralized problems with two-level decision makers,
which are leaders and followers, who may have more than one
objective to achieve. This paper proposes a λ-cut and goal-
programming-based algorithm to solve fuzzy-linear multiple-
objective bilevel (FLMOB) decision problems. First, based on the
definition of a distance measure between two fuzzy vectors using
λ-cut, a fuzzy-linear bilevel goal (FLBG) model is formatted, and
related theorems are proved. Then, using a λ-cut for fuzzy coef-
ficients and a goal-programming strategy for multiple objectives,
a λ-cut and goal-programming-based algorithm to solve FLMOB
decision problems is presented. A case study for a newsboy problem
is adopted to illustrate the application and executing procedure of
this algorithm. Finally, experiments are carried out to discuss and
analyze the performance of this algorithm.

Index Terms—Bilevel programming, decision making, fuzzy
sets, goal programming, multiple-objective linear programming,
optimization.

I. INTRODUCTION

B ILEVEL-PROGRAMMING techniques, which are initi-
ated by Von Stackelberg [39], are mainly developed to

solve decentralized management problems when decision mak-
ers are in a hierarchical organization, with the upper termed as
the leader and the lower termed as the follower [4]. In a bilevel
problem, the control of decision factors is partitioned among
the leader and the follower who seek to optimize their individ-
ual objective functions, and the corresponding decisions do not
control, but affect that of the other level [1]. A leader attempts
to optimize his or her objective; however, he or she must antic-
ipate all possible responses from the follower [22]. A follower
observes the leader’s decision and then responds to it in a way
that is individually optimal. Because the set of feasible choices
available to either decision makers is interdependent, a leader’s
choice will affect the follower’s decision, and vice versa. The
investigation of bilevel problems is strongly motivated by real-
world applications, and bilevel-programming techniques have
been applied with remarkable success in different domains, such
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as decentralized resource planning [41], electronic power mar-
ket [16], logistics [43], civil engineering [2], and road-network
management [14].

A large part of the research on bilevel problems has centered
on their linear version, i.e., the linear bilevel problems [40].
Nearly two dozen algorithms [5], [9], [13], [25], [34]–[36] for
linear bilevel problems have been proposed. These computation
algorithms can be roughly classified into three categories: the
vertex-enumeration-based algorithms [5], [34], which use the
important characteristic that, at least, one global optimal solution
is attained at an extreme point of the constraints set; the Kuhn–
Tucker algorithms [9], [35], [36], in which a bilevel problem
is transferred into a single-level problem that solves the upper
level’s problem while including the lower level’s optimality
conditions as extra constraints; and the heuristics [13], [25],
which are known as global optimization techniques based on
convergence analysis.

When using bilevel techniques to model real-world cases, two
practical issues are frequently confronted.

First, when formulating a bilevel problem, the coefficients
of objective functions and constraints are sometimes obtained
through experiments or experts’ understanding of the nature
of those coefficients. It has been observed that, in most situ-
ations, the possible values of these coefficients are often only
imprecisely or ambiguously known to the experts and cannot
be described by precise values. With this observation, it would
certainly be more appropriate to interpret the experts’ under-
standing of the coefficients as fuzzy numerical data that can
be represented by means of fuzzy sets [42]. Linear bilevel pro-
gramming in which the coefficients are characterized by fuzzy
numbers is called fuzzy-linear bilevel programming [44].

Lai [22] and Shih et al. [38] first applied a fuzzy approach to
bilevel programming, although the bilevel problems addressed
do not involve fuzzy coefficients. Sakawa et al. [33] have
adopted the method suggested by Zimmermann [47] to make
an overall satisfactory balance between both levels and devel-
oped an interactive fuzzy algorithm. This algorithm derives a
satisfactory solution and updates the satisfactory degrees of de-
cision makers with considerations of overall satisfactory balance
among all levels. In our research laboratory, an approximation
algorithm has been developed [15], [44], which is based on the
framework building and models formatting [26], [27]. Solutions
can be reached by solving associated multiple-objective bilevel
(MOB) decision problem under different λ-cuts.

Second, for a bilevel decision problem, the decision makers
from either level may have several objectives to be considered

1063-6706/$26.00 © 2009 IEEE
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simultaneously. Often, these objectives may be in conflict with
each other, with any improvement in one achieved only at the
expense of others. While multiobjective optimization has been
well-studied in single-level decision making [3], [11], [12], [29],
little research has been conducted in two levels’ situations [40].
In a bilevel decision model, the selection of a solution by a leader
is affected by the follower’s optimal reactions at the same time.
Therefore, a solution for a leader, who has multiple objectives,
needs to consider both the solution for the leader’s multiple
objectives and the follower’s decision.

For bilevel multiobjective problems, Shi and Xia [37] have
presented an interactive algorithm. It first sets goals for a leader’s
objectives and then obtains many solutions those are close
enough to the goals, which are set to be larger than some certain
“satisfactoriness.” Fixing the preferences from a leader, the fol-
lower’s response will be obtained one by one. The final solution
can be obtained once a follower’s choice is near enough to that
of the leader. In this method, to set a suitable “satisfactoriness”
would be critical: If it were too big, there would be no solution
at all, while a value that is too small would cause huge computa-
tion. However, to set a suitable “satisfactoriness” is neither easy,
nor direct, which requires preliminary knowledge and profound
understanding of the original problem.

When both these two practical issues are involved in bilevel
decision making, the problems become fuzzy multiobjective
bilevel decision problems for which only extremely limited re-
search has been done. Zhang et al. [45] developed an algo-
rithm to fuzzy-linear MOB (FLMOB) problems by using a λ-cut
method to defuzzify fuzzy coefficients and a weighting method
to combine multiple objectives into only one. As straightfor-
ward to understand and easy to implement as the weighting
method is, setting a suitable weight to every individual objec-
tive is sometimes difficult. Usually, it is more rational and fea-
sible for decision makers to set certain goals for their objectives
than allocate weighting numbers to them. In such a situation,
goal programming would be a suitable technique for FLMOB
problems.

Goal programming, which was originally proposed by
Charnes and Cooper [6] for a linear model, has been further
developed by Charnes and Cooper [7], Ignizio [18], [19], and
Lee [23]. For recent research on goal programming, see [17],
[24], [28], [30], and [31]. Goal programming requests a decision
maker to set a goal for the objective that he/she wishes to attain.
A preferred solution is then defined to minimize the deviation
from the goal. Therefore, goal programming seems to yield a
satisfactory solution rather than an optimal one.

This research applies the idea of goal programming to
FLMOB problems. Based on the formulation of an FLBG de-
cision problem, it is proved that the solutions can be obtained
by solving the corresponding linear bilevel decision problem,
which can be handled easily by Kuhn–Tucker and simplex al-
gorithms. Therefore, it is possible for the algorithm, which is
developed in this research, to deal with FLMOB problems stably
and effectively.

This paper is organized as follows. Following the introduction
in Section I, Section II introduces related definitions and for-
mulations. In Section III, after defining a λ-cut-based distance

measure between two fuzzy vectors and modeling an FLMOB
decision problem, a λ-cut and goal-programming-based algo-
rithm for FLMOB decision problems is presented. A case study
for a newsboy problem is illustrated, and experiments are an-
alyzed in Section IV. Conclusions and further studies are dis-
cussed in Section V.

II. PRELIMINARIES

In this section, some definitions and formulations used in
subsequent sections are presented.

Throughout this paper, R represents the set of all real num-
bers, Rn is a n-dimensional Euclidean space, and F ∗(R) and
(F ∗(R))n are the set of all finite fuzzy numbers and the set of
all n-dimensional finite fuzzy numbers on Rn , respectively. A
finite fuzzy number is a fuzzy number whose 0-cut is an interval
where ends are finite numbers.

In a bilevel decision problem, we suppose that the leader con-
trols the vector x ∈ X ⊆ Rn , while the follower has the control
over y ∈ Y ⊆ Rm . The leader moves first by selecting an x in an
attempt to minimize his or her objective function F (x, y), which
is subject to certain constraints. Then, the follower observes the
leader’s action and reacts by choosing a y to minimize his or her
own objective function f(x, y) under some constraints as well.
Thus, a bilevel decision problem is formatted as follows [4].

Definition 1: For x ∈ X ⊂ Rn , y ∈ Y ⊂ Rm , a bilevel deci-
sion problem is defined as

min
x∈X

F (x, y) (1a)

s.t. G(x, y) ≤ 0 (1b)

min
y∈Y

f(x, y) (1c)

s.t. g(x, y) ≤ 0 (1d)

where F : Rn × Rm → Rs , G : Rn × Rm → Rp , f : Rn ×
Rm → Rt , and g : Rn × Rm → Rq .

Definition 2 [32]: The λ-cut of a fuzzy set Ã is defined as an
ordinary set Aλ so that

Aλ = {x|µÃ (x) ≥ λ} , λ ∈ [0, 1].

If Aλ is a nonempty bounded closed interval, it can be denoted
by

Aλ =
[
AL

λ, AR
λ

]

where AL
λ

and AR
λ

are the lower and upper bounds of the interval,
respectively.

Definition 3 [46]: For any n-dimensional fuzzy vectors ã =
(ã1 , . . . , ãn ), b̃ = (b̃1 , . . . , b̃n ), ãi , b̃i ∈ F ∗(R), under a certain
satisfactory degree α ∈ [0, 1], we define

ã �α b̃, iff aL
iλ ≤ bL

iλ and aR
iλ ≤ bR

iλ

i = 1, . . . , n ∀λ ∈ [α, 1]. (2)

Definition 3 means that when comparing two fuzzy numbers,
all values with membership grades smaller than α are neglected.
When two fuzzy numbers cannot be compared under a certain
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α by this ranking method, we can adjust α to a larger degree to
achieve the comparison.

III. λ-CUT AND GOAL-PROGRAMMING-BASED ALGORITHM

FOR FUZZY-LINEAR MULTIPLE-OBJECTIVE BILEVEL PROBLEMS

A. Definitions and Theorems

Based on the fuzzy-ranking method in Definition 3, an
FLMOB decision problem is defined as follows.

Definition 4: For x ∈ X ⊂ Rn , y ∈ Y ⊂ Rm , F : X × Y →
(F ∗(R))s , and f : X × Y → (F ∗(R))t

min
x∈X

F (x, y) = (c̃11x + d̃11y, . . . , c̃s1x + d̃s1y)T (3a)

s.t. Ã1x + B̃1y �α b̃1 (3b)

min
y∈Y

f(x, y) = (c̃12x + d̃12y, . . . , c̃t2x + d̃t2y)T (3c)

s.t. Ã2x + B̃2y �α b̃2 (3d)

where c̃h1 , c̃i2 ∈ (F ∗(R))n , d̃h1 , d̃i2 ∈ (F ∗(R))m , h =
1, 2, . . . , s, i = 1, 2, . . . , t, b̃1 ∈ (F ∗(R))p , b̃2 ∈ (F ∗(R))q ,
Ã1 = (ãij )p×n , B̃1 = (b̃ij )p×m , Ã2 = (ẽij )q×n , and B̃2 =
(s̃ij )q×m , ãij , b̃ij , ẽij , s̃ij ∈ F ∗(R).

To build an FLBG model, a distance measure between two
fuzzy vectors is needed. There are many important measures
to compare two fuzzy numbers, such as Hausdorff distance [8],
Hamming distance [10], Euclidean distance [10], and maximum
distance [21]. In this paper, a certain number of λ-cuts will
be used to approximate a fuzzy number. A final solution is
considered to be reached when solutions under two adjacent
λ-cuts are near enough. To help implement this strategy, a new
distance measure between two fuzzy vectors by using λ-cuts is
defined as follows.

Definition 5: Letting ã = (ã1 , ã2 , . . . , ãn ), b̃ = (b̃1 ,
b̃2 , . . . , b̃n ) be n-dimensional fuzzy vectors, Φ = {α ≤ λ0 <
λ1 < · · · < λl ≤ 1} be a division of [α, 1], the distance between
ã and b̃ under φ is defined as

D(ã, b̃)


=

1
l + 1

n∑
i=1

l∑
j=0

{
|aL

iλj
− bL

iλj
| + |aR

iλj
− bR

iλj
|
}

(4)

where α is a predefined satisfactory degree.
In this fuzzy-distance definition, a satisfactory degree α is

used to give more flexibility to compare fuzzy vectors. It is
possible that two fuzzy vectors might not be compared by
Definition 5. For example, when we compare two fuzzy vec-
tors ã and b̃, if some of the left λ-cuts of ã are less than those of
b̃, while some right λ-cuts of ã are larger than those of b̃, there
is no ranking relation between ã and b̃.

To solve this problem, we can enhance the aspiration levels
of the attributes, i.e., we can adjust the satisfactory degree α to
a point where all incomparable parts are discarded. It can be
understood as a risk taken by a decision maker who neglects
all values with the possibility of occurrence smaller than α. In
such a situation, a solution is supposed to be reached under this
aspiration level. Therefore, normally, we take the same α for
both objectives and constraints in one bilevel problem.

Lemma 1: For any n-dimensional fuzzy vectors ã, b̃, and c̃,
fuzzy distance D defined earlier satisfies the following
properties.

1) D(ã, b̃) = 0, if ãi = b̃i , i = 1, 2, . . . , n.
2) D(ã, b̃) = D(b̃, ã).
3) D(ã, b̃) ≤ D(ã, c̃) + D(c̃, b̃).
Goals set for the objectives of a leader (g̃L ) and a follower

(g̃F ) in (3) are defined as

g̃L = (g̃L1 , g̃L2 , . . . , g̃Ls)T (5a)

g̃F = (g̃F 1 , g̃F 2 , . . . , g̃F t)T (5b)

where g̃Li , i = 1, . . . , s, g̃F j , j = 1, . . . , t, are fuzzy numbers
with membership functions of µg̃L i

and µg̃F j
.

Our concern is to make the objectives of both a leader and the
follower as near to their goals as possible. Using the distance
measure defined in (4), we format an FLBG problem as follows.

For x ∈ X ⊂ Rn , y ∈ Y ⊂ Rm , F : X × Y → (F ∗(R))s ,
and f : X × Y → (F ∗(R))t , we have

min
x∈X

D(F (x, y), g̃L ) (6a)

s.t. Ã1x + B̃1y �α b̃1 (6b)

min
y∈Y

D(f(x, y), g̃F ) (6c)

s.t. Ã2x + B̃2y �α b̃2 (6d)

where Ã1 = (ãij )p×n , B̃1 = (b̃ij )p×m , Ã2 = (ẽij )q×n , B̃2 =
(s̃ij )q×m , ãij , b̃ij , ẽij , s̃ij ∈ F ∗(R), and α is a predefined satis-
factory degree.

From Definitions 3 to 5, we transfer problem (6) into

min
x∈X



=

1
l + 1

s∑
h=1

l∑
j=0

{∣∣∣cL
h1λj

x + dL
h1λj

y − gL
Lhλj

∣∣∣

+
∣∣∣cR

h1λj
x + dR

h1λj
y − gR

Lhλj

∣∣∣} (7a)

s.t. A1
L
λj

x + B1
L
λj

y ≤ b1
L
λj

A1
R
λj

x + B1
R
λj

y ≤ b1
R
λj

j = 0, 1, . . . , l (7b)

min
y∈Y



=

1
l + 1

t∑
i=1

l∑
j=0

{∣∣∣cL
i2λj

x + dL
i2λj

y − gL
F iλj

∣∣∣

+
∣∣∣cR

i2λj
x + dR

i2λj
y − gR

F iλj

∣∣∣} (7c)

s.t. A2
L
λj

x + B2
L
λj

y ≤ b2
L
λj

A2
R
λj

x + B2
R
λj

y ≤ b2
R
λj

j = 0, 1, . . . , l (7d)

where Φ = {α ≤ λ0 < λ1 < · · · < λl ≤ 1} is a division of
[α, 1].

For a clear understanding of the idea that is adopted, let us
define

vL−
h1 =

1
2

[∣∣∣∣∣
l∑

j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj

∣∣∣∣∣



4 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 1, FEBRUARY 2010

−
(

l∑
j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj

)]

vL+
h1 =

1
2

[∣∣∣∣∣
l∑

j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj

∣∣∣∣∣

+

(
l∑

j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj

)]

vR−
h1 =

1
2

[∣∣∣∣∣
l∑

j=0

cR
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gR
Lhλj

∣∣∣∣∣

−
(

l∑
j=0

cR
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gR
Lhλj

)]

vR+
h1 =

1
2

[∣∣∣∣∣
l∑

j=0

cR
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gR
Lhλj

∣∣∣∣∣

+

(
l∑

j=0

cR
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gR
Lhλj

)]

h = 1, 2, . . . , s

vL−
i2 =

1
2

[∣∣∣∣∣
l∑

j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gL
F iλj

∣∣∣∣∣

−
(

l∑
j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gL
F iλj

)]

vL+
i2 =

1
2

[∣∣∣∣∣
l∑

j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gL
F iλj

∣∣∣∣∣

+

(
l∑

j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gL
F iλj

)]

vR−
i2 =

1
2

[∣∣∣∣∣
l∑

j=0

cR
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gR
F iλj

∣∣∣∣∣

−
(

l∑
j=0

cR
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gR
F iλj

)]

vR+
i2 =

1
2

[∣∣∣∣∣
l∑

j=0

cR
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gR
F iλj

∣∣∣∣∣

+

(
l∑

j=0

cR
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gR
F iλj

)]

i = 1, 2, . . . , t (8)

where vL−
h1 and vL+

h1 are deviational variables representing the
underachievement and overachievement of the hth goal for a
leader under the left λ-cut. Terms vR−

h1 and vR+
h1 are deviational

variables representing the underachievement and overachieve-

ment of the hth goal for a leader under the right λ-cut. Terms
vL−

i2 , vL+
i2 , vR−

i2 , and vR+
i2 are for a follower, respectively.

Associated with the linear bilevel problem (7), we now con-
sider the following bilevel problem.

For (vL−
11 , vL+

11 , vR−
11 , vR+

11 , . . . , vL−
s1 , vL+

s1 , vR−
s1 , vR+

s1 ) ∈ R4s ,
X ′ ⊆ X × R4s , (vL−

12 , vL+
12 , vR−

12 , vR+
12 , . . . , vL−

t2 , vL+
t2 , vR−

t2 ,
vR+

t2 ) ∈ R4t , Y ′ ⊆ Y × R4t , letting x = (x1 , . . . , xn ) ∈ X ,
x′ = (x1 , . . . , xn , vL−

11 , vL+
11 , vR−

11 , vR+
11 , . . . , vL−

s1 , vL+
s1 , vR−

s1 ,
vR+

s1 ) ∈ X ′, y = (y1 , . . . , ym ) ∈ Y , y′ = (y1 , . . . , ym , vL−
12 ,

vL+
12 , vR−

12 , vR+
12 , . . . , vL−

t2 , vL+
t2 , vR−

t2 , vR+
t2 ) ∈ Y ′, and v1 , v2 :

X ′ × Y ′ → R.

min
x ′∈X ′

v1 =
s∑

h=1

(vL−
h1 + vL+

h1 + vR−
h1 + vR+

h1 ) (9a)

s.t.
l∑

j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y + vL−
h1 − vL+

h1 =
l∑

j=0

gL
Lhλj

l∑
j=0

cR
h1λj

x +
l∑

j=0

dR
h1λj

y + vR−
h1 − vR+

h1 =
l∑

j=0

gR
Lhλj

vL−
h1 , vL+

h1 , vR−
h1 , vR+

h1 ≥ 0

vL−
h1 · vL+

h1 = 0, vR−
h1 · vR+

h1 = 0

h = 1, 2, . . . , s

A1
L
λj

x + B1
L
λj

y ≤ b1
L
λj

A1
R
λj

x + B1
R
λj

y ≤ b1
R
λj

j = 0, 1, . . . , l (9b)

min
y ′∈Y ′

v2 =
t∑

i=1

(vL−
i2 + vL+

i2 + vR−
i2 + vR+

i2 ) (9c)

s.t.
l∑

j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y + vL−
i2 − vL+

i2 =
l∑

j=0

gL
F iλj

l∑
j=0

cR
i2λj

x +
l∑

j=0

dR
i2λj

y + vR−
i2 − vR+

i2 =
l∑

j=0

gR
F iλj

vL−
i2 , vL+

i2 , vR−
i2 , vR+

i2 ≥ 0

vL−
i2 · vL+

i2 = 0, vR−
i2 · vR+

i2 = 0

i = 1, 2, . . . , t

A2
L
λj

x + B2
L
λj

y ≤ b2
L
λj

A2
R
λj

x + B2
R
λj

y ≤ b2
R
λj

j = 0, 1, . . . , l. (9d)

Theorem 1: Letting (x′∗, y′∗) = (x∗, vL−∗
11 , vL+∗

11 , vR−∗
11 ,

vR+∗
11 , . . . , vL−∗

s1 , vL+∗
s1 , vR−∗

s1 , vR+∗
s1 , y∗, vL−∗

12 , vL+∗
12 , vR−∗

12 ,
vR+∗

12 , . . . , vL−∗
t2 , vL+∗

t2 , vR−∗
t2 , vR+∗

t2 ) be the optimal solution
to bilevel problem (9), (x∗, y∗) is the then optimal solution to
the bilevel problem defined by (7).

Proof: See the proof of Theorem 1 in the Appendix.
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Adopting weighting method, (9) can be further transferred as
follows:

min
x ′∈X ′

v−
1 + v+

1 (10a)

s.t. c1x + d1y + v−
1 − v+

1 =
s∑

h=1

l∑
j=0

(
gL

Lhλj
+ gR

Lhλj

)

v−
1 , v+

1 ≥ 0

v−
1 · v+

1 = 0

A1
L
λj

x + B1
L
λj

y ≤ b1
L
λj

A1
R
λj

x + B1
R
λj

y ≤ b1
R
λj

j = 0, 1, . . . , l (10b)

min
y ′∈Y ′

v−
2 + v+

2 (10c)

s.t. c2x + d2y =
t∑

i=1

l∑
j=0

(
gL

F iλj
+ gR

F iλj

)

v−
2 , v+

2 ≥ 0

v−
2 · v+

2 = 0

A2
L
λj

x + B2
L
λj

y ≤ b2
L
λj

A2
R
λj

x + B2
R
λj

y ≤ b2
R
λj

j = 0, 1, . . . , l (10d)

where v−
1 =

∑s
h=1(v

L−
h1 + vR−

h1 ), v+
1 =

∑s
h=1(v

L+
h1 + vR+

h1 ),
v−

2 =
∑t

i=1(v
L−
i2 + vR−

i2 ), v+
2 =

∑t
i=1(v

L+
i2 + vR+

i2 ), c1 =∑s
h=1

∑l
j=0 (cL

h1λj
+ cR

h1λj
), d1 =

∑s
h=1

∑l
j=0 (dL

h1λj
+

dR
h1λj

), c2 =
∑t

i=1
∑l

j=0(c
L
i2λj

+ cR
i2λj

), and d2 =
∑t

i=1∑l
j=0(d

L
i2λj

+ dR
i2λj

). In this formula, v−
1 and v+

1 are devi-

ational variables representing the underachievement and over-
achievement of goals for a leader, and v−

2 and v+
2 are deviational

variables representing the underachievement and overachieve-
ment of goals for a follower, respectively.

The nonlinear conditions of v−
1 · v+

1 = 0, and v−
2 · v+

2 = 0
need not be maintained if the Kuhn–Tucker algorithm [35]
together with the simplex algorithm are adopted, since only
equivalence at an optimum is required. For further explana-
tion, see [6]. Thus, problem (10) is further transformed into the
following.

For (v−
1 , v+

1 ) ∈ R2 , X̄ ′ ⊆ X × R2 , (v−
2 , v+

2 ) ∈ R2 , Ȳ ′ ⊆
Y × R2 , letting x = (x1 , · · ·, xn ) ∈ X , x̄′ = (x1 , · · · , xn , v−

1 ,
v+

1 ) ∈ X̄ ′, y = (y1 , . . . , ym ) ∈ Y , ȳ′ = (y1 , . . . , ym , v−
2 , v+

2 ) ∈
Ȳ ′, and v1 , v2 : X̄ ′ × Ȳ ′ → F ∗(R)

min
(x,v−

1 ,v+
1 )∈X̄ ′

v1 = v−
1 + v+

1 (11a)

s.t. c1x + d1y + v−
1 − v+

1 =
s∑

h=1

l∑
j=0

(
gL

Lhλj
+ gR

Lhλj

)

A1
L
λj

x + B1
L
λj

y ≤ b1
L
λj

A1
R
λj

x + B1
R
λj

y ≤ b1
R
λj

j = 0, 1, . . . , l (11b)

min
(y ,v−

2 ,v+
2 )∈Ȳ ′

v2 = v−
2 + v+

2 (11c)

s.t. c2x + d2y =
t∑

i=1

l∑
j=0

(
gL

F iλj
+ gR

F iλj

)

A2
L
λj

x + B2
L
λj

y ≤ b2
L
λj

A2
R
λj

x + B2
R
λj

y ≤ b2
R
λj

j = 0, 1, . . . , l. (11d)

Problem (11) is a standard linear bilevel problem that can be
solved by the Kuhn–Tucker algorithm [35].

B. λ-Cut and Goal-Programming-Based Algorithm

Based on the previous analysis, the λ-cut and goal-
programming-based algorithm is detailed as follows.

[Step 1] (Input):
Obtain relevant coefficients, which include
1) coefficients of (3);
2) coefficients of (5);
3) satisfactory degree: α;
4) ε > 0.
[Step 2] (Initialize):
Letting k = 1, which is the counter to record current loop.
In (7), where λj ∈ [α, 1], letting λ0 = α, and λ1 = 1, respec-

tively, then each objective will be transferred into four nonfuzzy
objective functions, and each fuzzy constraint is converted into
four nonfuzzy constraints.

[Step 3] (Compute):
By introducing auxiliary variables v−

1 , v+
1 , v−

2 , and v+
2 , we

obtain the format of (11).
The solution (x, v−1 , v+

1 , y, v−
2 , v+

2 )2 of (11) is obtained by
the Kuhn–Tucker algorithm.

[Step 4] (Compare):
IF (k = 1)

THEN (x, v−1 , v+
1 , y, v−

2 , v+
2 )1 = (x, v−1 , v+

1 , y, v−
2 , v+

2 )2 ;
goto [Step 5];

Else
IF ‖(x, v−1 , v+

1 , y, v−
2 , v+

2 )2 − (x, v−1 , v+
1 , y, v−

2 , v+
2 )1‖ < ε

THEN goto [Step 7];
EndIf
[Step 5] (Split):
Suppose there are (L + 1) nodes λj , (j = 0, 1, . . . , L) in the

interval [α, 1], insert L new nodes δt (t = 1, 2 . . . , L) in [α, 1]
so that δt = (λt−1 + λt)/2.

[Step 6] (Loop):
k = k + 1;
goto [Step 3].

[Step 7] (Output):
(x, y)2 is obtained as the final solution.
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IV. CASE STUDY AND EXPERIMENTS

In this section, we apply the λ-cut and goal-programming-
based algorithm proposed in this paper on a real-world “newsboy
problem” to illustrate its operation and application. Experiments
are then carried out on some numerical examples with different
scales to test the algorithm’s performance.

A. Case Study

A classical newsboy problem is to find a newspaper’s or-
der quantity to maximize the profit of a newsboy (newspaper
retailer) [20]. In a real-world situation, both a newspaper man-
ufacturer and a retailer have more than one concern. Using an
FLMOB model, a newsboy problem is expressed as follows:
The leader, which is a manufacturer, controls the decision vari-
able of the wholesale price (x), while the follower, which is a
retailer, decides his or her order quantity (y). The manufacturer
has two main objectives: to maximize the net profits, which is
represented by F1(x, y), and to maximize the newspaper qual-
ity, by F2(x, y), but subject to some constraints, including the
requirements of material, marketing cost, and labor cost. The
retailer also has two objectives to achieve: to minimize his or
her purchase cost, which is represented by f1(x, y), and to min-
imize the working hours, by f2(x, y) under his own constraints.
Meanwhile, both the manufacturer and the retailer will set goals
(gL1 , gL2 , gF 1 , gF 1 ) for each of their two objectives.

When modeling this multiobjective bilevel decision problem,
the main difficulty is to establish coefficients of the objectives
and constraints for both the leader and the follower. We can
only estimate some values for material cost, labor cost, etc.,
according to our experience and previous data. For some items,
the values can only be assigned by linguistic terms as about
$1000. This is a common case in any organizational decision
practice. By using fuzzy numbers to describe these uncertain
values in coefficients, an FLMOB model can be established for
this decision problem.

To illustrate the λ-cut and goal-programming-based algo-
rithm, which is introduced in Section III, this newsboy problem
will be solved step by step as follows.

[Step 1] (Input the relevant coefficients):
1) Coefficients of (3).
The newsboy problem is formatted as

Leader : max
x∈X

F1(x, y) = 6̃x + 3̃y

max
x∈X

F2(x, y) = −̃3x + 6̃y

s.t. −̃1x + 3̃y ≤ 2̃1

Follower : min
y∈Y

f1(x, y) = 4̃x + 3̃y

min
y∈Y

f2(x, y) = 3̃x + 1̃y

s.t. −̃1x−̃3y ≤ 2̃7

where x ∈ R1 , y ∈ R1 , and X = x ≥ 0, Y = y ≥ 0.

The membership functions for this FMOLB are as follows:

µ6̃ (x) =




0, x < 5

x2 − 25
11

, 5 ≤ x < 8

1, x = 6

64 − x2

28
, 6 < x ≤ 8

0, x > 8

µ3̃ (x) =




0, x < 2

x2 − 4
5

, 2 ≤ x < 3

1, x = 3

25 − x2

16
, 3 < x ≤ 5

0, x > 5

µ−̃3(x) =




0, x < −4

16 − x2

7
, −4 ≤ x < −3

1, x = −3

x2 − 1
8

, −3 < x ≤ −1

0, x > −1

µ4̃ (x) =




0, x < 3

x2 − 9
7

, 3 ≤ x < 4

1, x = 4

36 − x2

20
, 4 < x ≤ 6

0, x > 6

µ1̃ (x) =




0, x < 0.5

x2 − 0.25
0.75

, 0.5 ≤ x < 1

1, x = 1

4 − x2

3
, 1 < x ≤ 2

0, x > 2

µ−̃1(x) =




0, x < −2

4 − x2

3
, −2 ≤ x < −1

1 x = −1

(x2 − 0.25)/0.75 −1 < x ≤ −0.5

0 x > −0.5
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µ2̃1 (x) =




0, x < 19

x2 − 361
80

, 19 ≤ x < 21

1, x = 21

625 − x2

184
, 21 < x ≤ 25

0, x > 25

µ2̃7 (x) =




0, x < 25

x2 − 625
104

, 25 ≤ x < 27

1, x = 27

961 − x2

232
, 27 < x ≤ 31

0, x > 31.

2) Let us suppose that the membership functions of the fuzzy
goals set for the leader are

µg̃L 1 (x) =




0, x < 15

x2 − 225
175

, 15 ≤ x < 20

1, x = 20

900 − x2

500
, 20 < x ≤ 30

0, x > 30

µg̃L 2 (x) =




0, x < 4

x2 − 16
48

, 4 ≤ x < 8

1, x = 8

225 − x2

161
, 8 < x ≤ 15

0, x > 15.

The membership functions of the fuzzy goals set for the follower
are

µg̃F 1 (x) =




0, x < 10

x2 − 100
225

, 10 ≤ x < 15

1, x = 15

400 − x2

175
, 15 < x ≤ 20

0, x > 20

µg̃F 2 (x) =




0, x < 7

x2 − 49
32

, 7 ≤ x < 9

1, x = 9

121 − x2

40
, 9 < x ≤ 11

0, x > 11.

3) Satisfactory degree: α = 0.2.
4) ε = 0.15.
[Step 2] (Initialization): Letting k=1. Associated with this

example, the corresponding MOBλ problem is given by

min
x∈X

|
√

11λ + 25x +
√

5λ + 4y −
√

175λ + 225|

+ |
√

64 − 28λx + 25 −
√

25 − 16λy −
√

900 − 500λ|
min
x∈X

| −
√

16 − 7λx +
√

11λ + 25y −
√

48λ + 16|

+ | −
√

8λ + 1 +
√

64 − 28λ −
√

225 − 161λ|
s.t. −

√
4 − 2λx +

√
5λ + 4y ≤

√
80λ + 361

−
√
−0.75λ + 0.25x +

√
25 − 16λy ≤

√
625 − 184λ

min
y∈Y

|
√

7λ + 9x +
√

5λ + 4y −
√

225λ + 100|

+ |
√

36 − 20λx + 25 −
√

25 − 16λy −
√

400 − 175λ|
min
y∈Y

| −
√

5λ + 4x +
√

0.75λ + 0.25y −
√

32λ + 49|

+ | −
√

25 − 16λx +
√

4 − 3λy −
√

121 − 40λ|
s.t.

√
0.75λ + 0.25x +

√
5λ + 4y ≤

√
104λ + 625

√
4 − 3λx +

√
25 − 16λy ≤

√
901 − 232λ

where λ ∈ [0.2, 1].
Referring to the algorithm, only λ0 = 0.2, and λ1 = 1 are

considered initially. Thus, four nonfuzzy objective functions
and four nonfuzzy constraints for the leader and follower are
generated, respectively, as follows:

min
x∈X

1
4
{|
√

27.2x +
√

5y −
√

260| + |6x + 3y − 20|

+ |
√

58.4x +
√

21.8y − 20
√

2| + |6x + 3y − 20|

+ | −
√

14.6x +
√

27.2y −
√

25.6| + | − 3x + 6y − 8|

+ | −
√

2.6 +
√

58.4y −
√

192.8| + | − 3x + 6y − 8|}

s.t. −
√

3.4x +
√

5y ≤
√

377

− x + 3y ≤ 21

−
√

0.4 +
√

5y ≤
√

645.8

− x + 3y ≤ 21

min
y∈Y

1
4
{|3x + 2y − 12.04| + |4x + 3y − 19.1|

+ |6x − 5y − 7.4| + |4x − 3y − 10.63|
+ | − 2x + 0.5y − 18.03| + | − 3x + y − 15|
+ | − 5x + 2y − 9| + | − 3x + y − 9|}

s.t.
√

0.4x +
√

5y ≤
√

645.8

x + 3y ≤ 27
√

3.4x +
√

21.8y ≤
√

914.6

x + 3y ≤ 27
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TABLE I
SUMMARY OF THE RUNNING SOLUTION

[Step 3] (Compute):
By introducing auxiliary variables v−

1 , v+
1 , v−

2 , and v+
2 , we

have

min
(x,v−

1 ,v+
1 )∈X̄ ′

v−
1 + v+

1

s.t. 3.083x + 20.076y + v−
1 − v+

1 = 54.73

− 1.8x + 2.2y ≤ 19.4

− x + 3y ≤ 21

− 0.6x + 4.7y ≤ 24.3

− x + 3y ≤ 21

min
(y ,v−

2 ,v+
2 )∈Ȳ ′

v−
2 + v+

2

s.t. 16.498x + 8.205y + v−
2 − v+

2 = 51.337

0.6x + 2.2y ≤ 25.4

x + 3y ≤ 7

1.8x + 4.7y ≤ 30.2

x + 3y ≤ 27.

Using branch-and-bound algorithm [5], the current solution
is (1.901,0,0, 2.434,0,0).

[Step 4] (Compare): Because k = 1, goto [Step 5].
[Step 5] (Split): By inserting a new node λ1 = (0.2 + 1)/2 =

0.6, there are a total of three nodes of λ0 = 0.2, λ1 = 0.6, and
λ2 = 1. Then, a total of six nonfuzzy objective functions for the
leader and follower, together with six nonfuzzy constraints for
the leader and follower, respectively, are generated.

[Step 6] (Loop): Because k = 1 + 1 = 2, goto [Step 3],
and a current solution of (2.011,0,0, 2.356,0,0) is ob-
tained. As |2.011 − 1.901| + |2.356 − 2.434| = 0.188 > ε =
0.15, the algorithm continues until the solution of (1.957,0,0,
2.388,0,0) is obtained. The computing results are listed in
Table I.

[Step 7] (Output): As |1.957 − 1.872| + |2.388 − 2.2.446| =
0.14 < ε = 0.15, (x∗, y∗) = (1.957, 2.388) is the final solution
of this FLMOB problem. The objectives for the leader and
follower under (x∗, y∗) = (1.957, 2.388) are




F1(x∗, y∗) = F (1.957, 2.388) = 1.957 ˜c11 + 2.388d̃11

F2(x∗, y∗) = F (1.957, 2.388) = 1.957 ˜c12 + 2.388d̃12

f1(x∗, y∗) = F (1.957, 2.388) = 1.957 ˜c21 + 2.388d̃21

f2(x∗, y∗) = F (1.957, 2.388) = 1.957 ˜c22 + 2.388d̃22 .

Under this solution, the membership functions for the leader’s
objectives are shown in Fig. 1, and the membership functions
for the follower’s objectives are shown in Fig. 2.

These fuzzy values shown in Figs. 1 and 2 describe the
achievements of objectives from both the manufacturer and the
retailer under the solutions. From Fig. 1, we can see that if the
manufacturer chooses his or her decision variable as 1.957, the
most possible net profit will be 18.9025, which is very close to
the goal set for this objective. The other objective values can be
interpreted in the same way.

B. Experiments and Evaluation

The algorithm, which is proposed in this study, was imple-
mented by Visual Basic 6.0, and run on a desktop computer
with CPU Pentium 4 2.8-GHz, RAM 1 G, and Windows XP. To
test the performance of the proposed algorithm, the following
experiments are carried out.

1) To test the efficiency of the proposed algorithm, we em-
ploy ten numerical examples and enlarge the problem
scales by changing the numbers of decision variables, ob-
jective functions, and constraints for both leaders and fol-
lowers from two to ten simultaneously. For each of these
examples, the final solution has been obtained within 5 s.

2) To test the performance of the fuzzy-distance measure in
Definition 5, we adjust the satisfactory degree values from
0 to 0.5 on the ten numerical examples again. At the same
time, we change some of the fuzzy coefficients in the con-
straints by moving the points whose membership values
equal 0 by 10% from the left and right, respectively. Ex-
periments reveal that, when a satisfactory degree is set as
0, the average solution will change by about 6% if some
of the constraint coefficients are moved, as discussed ear-
lier. When we increase satisfactory degrees, the average
solution change decreases. At the point where satisfac-
tory degrees are equal to 0.5, the average solution change
is 0.

From experiment 1), we can see that this proposed algorithm
is quite efficient. The reason is the fact that final solutions can be
reached by solving corresponding linear bilevel-programming
problems, which can be handled by the Kuhn–Tucker and the
simplex algorithms.

From experiment 2), we can see that if we change some co-
efficients of fuzzy numbers within a small range, solutions will
be less sensitive to this change under a higher satisfactory de-
gree. The reason is that, when the satisfactory degree is set to 0,
every λ-cut of fuzzy coefficients from 0 to 1 will be considered.
Thus, the decision maker can certainly be influenced by minor
information.

For a decision-making process involved with fuzzy coef-
ficients, decision makers may sometimes make small adjust-
ment on the uncertain information about the preference or cir-
cumstances. If the change occurs to the minor information,
i.e., with smaller satisfactory degrees, there should normally
be no tremendous change to the final solution. For exam-
ple, when estimating future profit, the manufacturer may ad-
just the possibility of $5000 profit from 2% to 3%, while the
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Fig. 1. Membership functions of F1 (x∗, y∗) and F2 (x∗, y∗).

Fig. 2. Membership functions of f1 (x∗, y∗) and f2 (x∗, y∗).

possibility of $100 000 profit remains 100%. In such a situ-
ation, there should be no outstanding change for his or her
final decision on the device investment. Therefore, to increase
the satisfactory degrees is an acceptable strategy for a feasible
solution.

From the earlier analysis, the advantages and disadvantages
of the algorithm proposed in this study are as follows.

1) This algorithm is quite efficient, as it adopts strategies
to transform a nonlinear bilevel problem into a linear
problem.

2) When pursuing optimality, the negative effect from con-
flicting objectives can be avoided, and a leader can finally
reach his or her satisfactory solution by setting goals for
the objectives.

3) The information of the original fuzzy numbers are con-
sidered adequately by using a certain number of λ-cuts to
approximate the final precise solution.

4) In some situations, this algorithm might suffer from ex-
pensive calculation, as the size of λ-cuts will increase
exponentially with respect to iteration counts.
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V. CONCLUSION AND FUTURE STUDY

Many organizational decision problems can be formulated
by bilevel decision models. In a bilevel decision model, the
leader and/or the follower may have more than one objective
to achieve, which is different from simple bilevel optimization
problems. This kind of bilevel decision problem was studied
by goal programming in this paper. Meanwhile, we take into
consideration the situation where coefficients to formulate a
bilevel decision model are not precisely known to us. Fuzzy-set
method was applied to handle these coefficients.

This paper proposed a λ-cut and goal-programming-based
algorithm for FLMOB decision problems and presented a real
case study on a newsboy problem to explain this algorithm.
Experiments reveal that the algorithm is quite effective and
efficient. In the future, we will focus on situations that involve
multiple followers.

APPENDIX

The model of a general bilevel decision problem with multiple
objectives for both the leader and follower is given in [37], which
is reformulated in this paper as follows.

For x ∈ X ⊂ Rn , and y ∈ Y ⊂ Rm , an MOB model is given
by

min
x∈X

F (x, y) (12a)

s.t. G(x, y) ≤ 0 (12b)

min
y∈Y

f(x, y) (12c)

s.t. g(x, y) ≤ 0 (12d)

where F : Rn × Rm → Rs , G : Rn × Rm → Rp , f : Rn ×
Rm → Rt , and g : Rn × Rm → Rq .

Associated with the MOB problem (12), some definitions are
listed as follows.

Definition 6:
1) Constraint region of the MOB (12) is given by

S


= {(x, y) : x ∈ X, y ∈ Y,G(x, y) ≤ 0, g(x, y) ≤ 0}.

It refers to all possible combination of choices that the
leader and follower may make.

2) Projection of S onto the leader’s decision space is given
by

S(X)


= {x ∈ X : ∃y ∈ Y,G(x, y) ≤ 0, g(x, y) ≤ 0}.

3) The feasible set for the follower ∀x ∈ S(X) is given by

S(x)


= {y ∈ Y : (x, y) ∈ S}.

4) The follower’s rational reaction set for x ∈ S(X) is given
by

P (x)


= {y ∈ Y : y ∈ argmin[f(x, ŷ) : ŷ ∈ S(x)]}

where argmin[f(x, ŷ) : ŷ ∈ S(x)] = {y ∈ S(x) : f(x, y)
≤ f(x, ŷ), ŷ ∈ S(x)}.
The follower observes the leader’s action and reacts by
selecting y from his or her feasible set to minimize his or
her objective function.

5) The inducible region is given by

IR


= {(x, y) : (x, y) ∈ S, y ∈ P (x)}

which represents the set over which a leader may optimize
his or her objectives.

To ensure that (12) is well posed, it is assumed that S is
nonempty and compact and that for all decisions taken by the
leader, the follower has some room to respond, i.e., P (x) �= ∅.

Thus, in terms of the previous notation, the MOB can be
written as

min{F (x, y) : (x, y) ∈ IR}. (13)

Proof of Theorem 1: By Definition 6, let the notations asso-
ciated with problem (7) be denoted by

S =
{

(x, y) : Ak
L
λj

x + Bk
L
λj

y ≤ bk
L
λj

Ak
R
λj

x + Bk
R
λj

y ≤ bk
R
λj

k = 1, 2, j = 0, 1, . . . , l,
}

(14a)

S(X) =
{

x ∈ X : ∃y ∈ Y,Ak
L
λj

x + Bk
L
λj

y ≤ bk
L
λj

Ak
R
λj

x + Bk
R
λj

y ≤ bk
R
λj

k = 1, 2, j = 0, 1 . . . , l,
}

(14b)

S(x) = {y ∈ Y : (x, y) ∈ S} (14c)

P (x) = {y ∈ Y : y ∈ argminΨ} (14d)

where

Ψ = (1/(l + 1))
t∑

i=1

l∑
j=0

{∣∣∣cL
i2λj

x + dL
i2λj

ŷ − gL
F iλj

∣∣∣

+
∣∣∣cR

i2λj
x + dR

i2λj
ŷ − gR

F iλj

∣∣∣, ŷ ∈ S(x)
}

IR = {(x, y) : (x, y) ∈ S, y ∈ P (x)}. (14e)

Problem (7) can be written as

min
x∈X

1
l + 1

s∑
h=1

l∑
j=0

{∣∣∣cL
h1λj

x + dL
h1λj

y − gL
Lhλj

∣∣∣

+
∣∣∣cR

h1λj
x + dR

h1λj
y − gR

Lhλj

∣∣∣} (15)

s.t. (x, y) ∈ IR (16)

and those of problem (9) are denoted by

S ′ =

{
(x′, y′) : Ak

L
λj

x + Bk
L
λj

y ≤ bk
L
λj

(17a)

Ak
R
λj

x + Bk
R
λj

y ≤ bk
R
λj

, k = 1, 2, j = 0, 1 . . . , l

l∑
j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y + vL−
h1 − vL+

h1 =
l∑

j=0

gL
Lhλj
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l∑
j=0

cR
h1λj

x +
l∑

j=0

dR
h1λj

y + vR−
h1 − vR+

h1 =
l∑

j=0

gR
Lhλj

vL−
h1 , vL+

h1 , vR−
h1 , vR+

h1 ≥ 0 (17b)

vL−
h1 · vL+

h1 = 0

vR−
h1 · vR+

h1 = 0

h = 1, 2, . . . , s

l∑
j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y + vL−
i2 − vL+

i2 =
l∑

j=0

gL
F iλj

l∑
j=0

cR
i2λj

x +
l∑

j=0

dR
i2λj

y + vR−
i2 − vR+

i2 =
l∑

j=0

gR
F iλj

vL−
i2 , vL+

i2 , vR−
i2 , vR+

i2 ≥, 0

vL−
i2 · vL+

i2 = 0

vR−
i2 · vR+

i2 = 0

i = 1, 2, . . . , t,

}

S(X ′) =

{
x′ ∈ X ′ : ∃y′ ∈ Y ′, Ak

L
λj

x + Bk
L
λj

y ≤ bk
L
λj

Ak
R
λj

x + Bk
R
λj

y ≤ bk
R
λj

k = 1, 2, j = 0, 1 . . . , l

l∑
j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y + vL−
h1 − vL+

h1 =
l∑

j=0

gL
Lhλj

l∑
j=0

cR
h1λj

x +
l∑

j=0

dR
h1λj

y + vR−
h1 − vR+

h1 =
l∑

j=0

gR
Lhλj

vL−
h1 , vL+

h1 , vR−
h1 , vR+

h1 ≥ 0

vL−
h1 · vL+

h1 = 0

vR−
h1 · vR+

h1 = 0

h = 1, 2, . . . , s

l∑
j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y + vL−
i2 − vL+

i2 =
l∑

j=0

gL
F iλj

l∑
j=0

cR
i2λj

x +
l∑

j=0

dR
i2λj

y + vR−
i2 − vR+

i2 =
l∑

j=0

gR
F iλj

vL−
i2 , vL+

i2 , vR−
i2 , vR+

i2 ≥ 0

vL−
i2 · vL+

i2 = 0

vR−
i2 · vR+

i2 = 0

i = 1, 2, . . . , t,

}
(17c)

S(x′) = {y′ ∈ Y ′ : (x′, y′) ∈ S ′} (17d)

P (x′) =

{
y′ ∈ Y ′ :

y′ ∈ argmin

[
t∑

i=1

(v̂L−
i2 + v̂L+

i2 + v̂R−
i2 + v̂R+

i2 ) : ŷ′ ∈ S(x′)

]}

(17e)

IR′ = {(x′, y′) : (x′, y′) ∈ S ′, y′ ∈ P (x′)}. (17f)

Problem (9) can be written as

min
x ′∈X ′

{
l∑

h=1

(vL−
h1 + vL+

h1 + vR−
h1 + vR+

h1 ) : (x′, y′) ∈ IR′

}
.

(18)
As (x′∗, y′∗) is the optimal solution to problem (9), from (18),

it can be seen that ∀(x′, y′) ∈ IR′, we have

l∑
h=1

(vL−
h1 + vL+

h1 + vR−
h1 + vR+

h1 )

≥
l∑

h=1

(vL−∗
h1 + vL+∗

h1 + vR−∗
h1 + vR+∗

h1 ).

As
∑l

j=0 cL
h1λj

x +
∑l

j=0 dL
h1λj

y + vL−
h1 − vL+

h1 =
∑l

j=0

gL
Lhλj

, and vL−
h1 · vL+

h1 = 0, h = 1, 2, . . . , s, we have

v−
h1 + v+

h1 =

∣∣∣∣∣
l∑

j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj

∣∣∣∣∣

vL−∗
h1 + vL+∗

h1 =

∣∣∣∣∣
l∑

j=0

cL
h1λj

x∗ +
l∑

j=0

dL
h1λj

y∗ −
l∑

j=0

gL
Lhλj

∣∣∣∣∣
for h = 1, 2, . . . , s.

Similarly, we have

vR−
h1 + vR+

h1 =

∣∣∣∣∣
l∑

j=0

cR
h1λj

x +
l∑

j=0

dR
h1λj

y −
l∑

j=0

gR
Lhλj

∣∣∣∣∣

vR−∗
h1 + vR+∗

h1 =

∣∣∣∣∣
l∑

j=0

cR
h1λj

x∗ +
l∑

j=0

dR
h1λj

y∗ −
l∑

j=0

gR
Lhλj

∣∣∣∣∣
for h = 1, 2, . . . , s.

Therefore, ∀(x′, y′) ∈ IR′

∣∣∣∣∣
l∑

j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj

∣∣∣∣∣

+

∣∣∣∣∣
l∑

j=0

cR
h1λj

x +
l∑

j=0

dR
h1λj

y −
l∑

j=0

gR
Lhλj

∣∣∣∣∣

≥
∣∣∣∣∣

l∑
j=0

cL
h1λj

x∗ +
l∑

j=0

dL
h1λj

y∗ −
l∑

j=0

gL
Lhλj

∣∣∣∣∣
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+

∣∣∣∣∣
l∑

j=0

cR
h1λj

x∗ +
l∑

j=0

dR
h1λj

y∗ −
l∑

j=0

gR
Lhλj

∣∣∣∣∣
h = 1, 2, . . . , s. (19)

We now prove that the projection of S ′ onto the X × Y space,
which is denoted by S ′|X,Y , is equal to S.

On the one hand, ∀(x, y) ∈ S ′|X,Y , from constraints
Ak

L
λj

x + Bk
L
λj

y ≤ bk
L
λj

, Ak
R
λj

x + Bk
R
λj

y ≤ bk
R
λj

, k = 1, 2,

j = 0, 1 . . . , l, in S ′, we have (x, y) ∈ S; therefore, S ′|X,Y ⊆ S.
On the other hand, ∀(x, y) ∈ S, by (8), we can always find

vL−
11 , vL+

11 , vR−
11 , vR+

11 ,. . ., vL−
s1 , vL+

s1 , vR−
s1 , vR+

s1 , vL−
12 , vL+

12 ,
vR−

12 , vR+
12 , . . . , vL−

t2 , vL+
t2 , vR−

t2 , and vR+
t2 , which satisfies the

constraints of (9b) and (9d). Together with the inequations
of Ak

L
λj

x + Bk
L
λj

y ≤ bk
L
λj

, and Ak
R
λj

x + Bk
R
λj

y ≤ bk
R
λj

, k =

1, 2, j = 0, 1 . . . , l, requested by S, we have (x, vL−
11 , vL+

11 , vR−
11 ,

vR+
11 ,. . ., vL−

s1 , vL+
s1 , vR−

s1 , vR+
s1 , y,vL−

12 , vL+
12 , vR−

12 , vR+
12 , . . . , vL−

t2 ,
vL+

t2 , vR−
t2 , vR+

t2 ) ∈ S ′, thus (x, y) ∈ S ′|X,Y , S ⊆ S ′|X,Y .
Therefore, we can prove that

S ′|X,Y = S. (20)

Similarly, we have

S(x)′|X,Y = S(x) (21a)

S(X)′|X,Y = S(X). (21b)

In addition, from

l∑
j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y + vL−
i2 − vL+

i2 =
l∑

j=0

gL
F iλj

and

vL−
i2 · vL+

i2 = 0

for i = 1, 2, . . . , t, we have

vL−
i2 + vL+

i2 =

∣∣∣∣∣
l∑

j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gL
F iλj

∣∣∣∣∣ (22a)

for i = 1, 2, . . . , t. Similarly, we have

vR−
i2 + vR+

i2 =

∣∣∣∣∣
l∑

j=0

cR
i2λj

x +
l∑

j=0

dR
i2λj

y −
l∑

j=0

gR
F iλj

∣∣∣∣∣ (22b)

for i = 1, 2, . . . , t.
Thus

P (x′) = {y′ ∈ Y ′ : y′ ∈ argmin Ψ′} (23)

where Ψ′ =
∑t

i=1
∑l

j=0{|cL
i2λj

x + dL
i2λj

ŷ − gL
F iλj

| + |cR
i2λj

x + dR
i2λj

ŷ − gR
F iλj

|, ŷ ∈ S(x′)}.

From (20) and (23), we have

P (x′)|X×Y = P (x). (24)

From (14e), (17f), (20), and (24), we have

IR′|X×Y = IR (25)

which means, in X × Y space, the leaders of problem (7) and
(9) have the same optimizing space.

Thus, from (19) and (25), it can be obtained that
∀(x, y) ∈ IR, we have

1
l + 1

s∑
h=1

l∑
j=0

{∣∣∣cL
h1λj

x + dL
h1λj

y − gL
Lhλj

∣∣∣

+
∣∣∣cR

h1λj
x + dR

h1λj
y − gR

Lhλj

∣∣∣}

≥ 1
l + 1

s∑
h=1

l∑
j=0

{∣∣∣cL
h1λj

x∗ + dL
h1λj

y∗ − gL
Lhλj

∣∣∣

+
∣∣∣cR

h1λj
x∗ + dR

h1λj
y∗ − gR

Lhλj

∣∣∣}.

Therefore,(x∗, y∗) is the optimal solution of the problem
(7). �
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