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ABSTRACT	

	

There	 has	 been	 a	 growing	 interest	 in	machine-based	 recognition	 of	 emotions	

from	 body	 gait	 and	 posture,	 and	 its	 combination	 with	 other	 modalities.	

Applications	such	as	human	computer	 interaction,	 social	 robotics,	and	security	

have	 been	 the	 driving	 force	 behind	 such	 trend.	 The	majority	 of	 the	 previous	

work	in	automatic	affect	perception	deploys	only	either	local	features	or	global	

features.	 Whilst	 a	 combination	 of	 both	 types	 of	 features	 are	 deployed	 in	

applications	such	as	object	recognition	and	facial	recognition,	the	literature	does	

not	 reveal	any	study	 in	affect	 recognition	 from	body	 language	using	combined	

global	and	local	features.	In	this	thesis,	such	gap	is	addressed	by	examining	how	

deploying	 a	 combination	 of	 local	 and	 global	 features	 can	 improve	 the	

recognition	rate	in	automatic	classification	of	emotions	using	gait	and	posture.		

	

The	motion	data	used	in	the	study	comprising	kinematic	parameters	associated	

with	 the	gait	and	posture	of	a	number	of	actors	expressing	a	 set	of	emotions,	

were	 recorded	 electronically	 using	 an	 inertia	 motion	 capture	 system.	 A	

combination	 of	 local	 and	 global	 features	 proposed	 by	 Kapur	 et	 al.	 and	

Zacharatos	 et	 al.,	 respectively,	 were	 used	 in	 the	 classification	 process	 using	

WEKA	 classification	 system.	 Additional	 global	 features	 of	 shape	 flow	 and	

shaping,	 horizontal	 and	 vertical	 symmetry	 were	 added	 to	 the	 combination	

feature	set	to	increase	the	performance	of	the	classifier.	

	



 v 

The	results	obtained	in	the	analysis	demonstrate	that	deploying	a	combination	

of	 local	 and	 global	 features	 leads	 to	 a	 more	 robust	 and	 reliable	 method	 for	

automatic	affect	recognition	from	body	language	as	it	improves	accuracy	across	

a	range	of	classifiers.	This	research	also	demonstrates	that	the	 inclusion	of	the	

additional	 features,	 which	 represent	 additional	 Laban	 Movement	 Analysis	

components,	 increases	 the	 maximum	 classification	 accuracy	 from	 88.5%	 to	

92.3%.		

	

Achieving	 better	 automatic	 affect	 recognition	 rates	 can	 lead	 to	 increased	

application	of	the	approach,	improved	usefulness	and	reliability	of	such	systems.	
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1 INTRODUCTION	

1.1 Problem	Statement	and	Rational	

I. Affect	Recognition	

	

We	constantly	rely	on	our	ability	to	recognise	emotions	in	body	language,	facial	

expressions,	and	vocal	sounds.	The	perceived	emotions	form	our	judgement	of	

how	people	communicate	with	us	and	how	we	respond	to	them.	Over	the	 last	

few	decades,	many	researchers	have	been	exploring	how	such	capability	can	be	

built	 into	 machine.	 Machine	 based	 affect	 recognition	 has	 the	 potential	 to	

enhance	 both	 human-robot	 and	 human-computer	 interactions.	 It	would	 allow	

machines	 to	 be	more	 effective	 in	 the	 area	 of	 social	 robotics	 and	 create	more	

entertaining	 interactions	 in	 the	 computer	 gaming	 industry.	 The	 ability	 of	 the	

intelligent	machines	to	recognise	and	respond	to	the	user’s	behaviour	allows	for	

more	 acceptance	 of	 a	 computer	 or	 robot,	 and	 engagement	with	 them.	 It	 can	

also	 enable	 security	 cameras	 to	 anticipate	potential	 threats	 and	 inappropriate	

behaviours.		

	

II. Body	Movements	and	Emotion	

A. Human	Recognition	

	

There	is	a	growing	amount	of	literature	that	indicates	our	body	movements	can	

communicate	 a	 large	 amount	of	 information.	 Kozlowski	 et	 al.	 [4]	 showed	 that	

viewers	can	determine	the	sex	of	an	individual	by	viewing	only	Point	Light	(PL)	
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displays	 on	major	 joints	 of	 the	 body.	 Cutting	 and	 Kozlowski	 [5]	 demonstrated	

that	subjects	can	identify	themselves	and	their	friends	by	observing	PL	displays	

as	shown	 in	Figure	1.	Body	posture	has	also	been	demonstrated	 to	be	a	more	

reliable	method	of	decoding	affect	at	a	distance	than	facial	expressions	[6].			

	

	

Figure	1	-	Point	Light	Display	of	Posture	[5]	

	

It	 has	 also	 been	 shown	 that	 our	 body	 language	 can	 reveal	 our	 emotions.	

Brownlow	 et	 al.	 [7]	 found	 that	 observers	 were	 able	 to	 distinguish	 between	

happy	and	sad	dance	movements	by	observing	only	PL	displays.	

	

De	 Meijer	 [8]	 showed	 85	 adult	 subjects	 96	 recordings	 of	 body	 movements	

performed	 by	 three	 actors.	 The	 subjects	 rated	 each	 recording	 based	 on	 the	

emotional	 categories	 it	 conveyed.	 There	 were	 12	 emotional	 categories	

comprising	of	joy,	grief,	anger,	fear,	surprise,	disgust,	interest,	shame,	contempt,	
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sympathy,	 antipathy	 and	 admiration.	 De	 Meijer	 concluded	 that	 body	

movements	revealed	specific	emotional	states.	This	was	not	 just	based	on	one	

specific	 movement	 such	 as	 raising	 a	 fist,	 but	 a	 combination	 of	 movements	

performed	by	various	body	segments.			

	

Walbot	 [9]	 also	 examined	 the	 connection	 between	 patterns	 of	 the	 body	

movements	 and	 postures,	 and	 the	 emotions	 portrayed.	 The	 study	 deployed	 a	

coding	schema	to	analyse	224	video	recordings	of	six	actors	and	concluded	that	

in	fact	there	were	body	movement	and	posture	characteristics	specific	to	certain	

emotions.		

	

The	work	conducted	by	Johansson	[10]	represents	an	early	study	of	gait	analysis	

for	body	motion	identification.	Light	markers	were	mounted	on	joints,	as	shown	

in	Figure	2,	to	recognise	the	movement	of	different	body	parts	and	to	determine	

the	 number	 of	 sensors	 needed	 to	 recognise	 the	 body	movement.	 The	 subject	

was	correctly	identified	by	using	reflective	dot	markers	on	ten	different	points	of	

the	body	and	tracking	the	markers	using	a	TV	camera.	Only	five	reflective	points	

were	utilised	 to	 identify	 leg	motion.	 This	 study	demonstrated	 that	patterns	of	

different	 joints	 provided	 all	 the	 essential	 information	 for	 immediate	

identification	of	human	motion.	
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Figure	2	-	Light	Point	Displays	used	to	analyse	walking	and	running	[10]	

	

	

The	work	 conducted	by	Atkinson	et	 al.	 [11]	 is	 another	 early	 study	of	 humans’	

ability	 to	 recognise	 emotion	 through	 gait.	 Ten	 trained	 but	 unrehearsed	 actors	

expressed	 the	 emotions	 of	 happiness,	 sadness,	 fear,	 anger	 and	 disgust.	 The	

actors	 were	 covered	 in	 black	 with	 13	 two-centimetre-wide	 strips	 of	 white	

reflective	 tape	placed	on	 their	 bodies.	 They	were	 given	 the	workspace	of	 two	

large	paces	around	them	and	were	given	freedom	to	walk	in	any	direction	whilst	

being	 filmed.	 Two	 versions	were	 created:	 a	 full	 video	 or	 Full	 Light	 (FL),	 and	 a	

white	 strip	 information	 video	 or	 PL.	 Emotions	 were	 identified	 from	 PL	

information,	 but	 the	 FL	 video	 had	 a	 higher	 recognition	 accuracy	 than	 PL	
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observations.	 The	 authors	 then	 compared	 the	 effectiveness	 of	 moderate	

intensity	 of	 emotions	 against	 exaggerated	 and	much	 exaggerated	 emotions	 in	

affect	recognition.	They	concluded	that	the	more	exaggerated	the	emotion,	the	

more	easily	it	could	be	identified.	

	

Gross	et	al.	[12]	also	studied	human	ability	to	recognise	emotions,	investigating	

two	 factors	 that	 could	 be	 used	 to	 qualitatively	 detect	 emotions:	 effort-shape	

and	body-limb	movements.	A	motion	capture	system	was	deployed	utilising	31	

lightweight	spherical	markers	taped	over	anatomical	 landmark	points	recorded	

by	a	high-speed	camera.	Sixteen	actors’	front	and	side	views	were	recorded,	as	

they	 displayed	 sad,	 angry,	 joyous,	 content	 and	 neutral	 emotions	 while	 they	

walked.	 A	 series	 of	 emotion	memories	 were	 utilised	 to	 induce	 the	 emotional	

response	in	the	actors	prior	to	walking.	In	stage	one,	untrained	observers	were	

able	to	identify	the	same	emotional	memories	through	gait	observations	with	an	

accuracy	of	76%.	Stage	two	demonstrated	that	each	emotion	communicated	a	

unique	combination	of	the	effort	shape	analysis	features.		

	

Other	 psychological	 studies	 [13],	 [14],	 [15]	 also	 confirm	 the	 human	 ability	 to	

recognise	affective	states	by	observing	the	body	movements.	
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B. Machine	Recognition	

	

The	 literature	 reveals	 interest	 in	 the	 study	 of	 automatic	 affect	 perception	 in	

applications	such	as	human	computer	interaction,	social	robotics,	and	security.	

	

There	 has	 been	 a	 large	 amount	 of	 research	 conducted	 on	 recognition	 of	

emotions	through	facial	expressions.	According	to	de	Gelder	[16],	 in	2009	95%	

of	the	literature	on	emotion	in	humans	had	been	focused	on	facial	expressions.	

As	 discussed	 in	 section	 1.IIA,	 emotions	 are	 not	 only	 conveyed	 through	 facial	

expressions,	but	also	through	body	expression.	There	is	now	a	growing	interest	

in	automatic	gait	analysis	due	to	its	wide	range	of	potential	applications	in	areas	

such	as	personal	identification	[17],	deception	recognition	[18],	and	detection	of	

illnesses	 such	 as	 multiple	 sclerosis	 [19].	 Niewiadomski	 et	 al.	 [20]	 also	

demonstrated	 that	 laughter	 can	 be	 identified	 by	 analysing	 the	 full	 body	

movement.		

	

In	 their	 survey	 paper,	 Kleinsmith	 and	 Bianchi-Berthouze	 [21]	 discussed	 the	

conflicting	views	that	were	reported	in	the	literature	on	the	importance	of	facial	

expressions	versus	body	expressions	 in	 communicating	emotions.	They	 cited	a	

study	 by	 Ekman	 and	 Friesen	 [22]	which	 studied	 emotional	 deception	 in	 facial	

expressions	 and	 body	 movements.	 Ekman	 and	 Friesen	 used	 the	 term	 “non-

verbal	 leakage”	 to	 describe	 clues	 towards	 deception	 that	 was	 unintentionally	

conveyed.	Ekman	and	Friesen	concluded	that	 facial	expressions	were	easier	 to	
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conceal	this	leakage	and	therefore	people	could	lie	about	their	emotions.	Since	

it	 is	 easier	 to	 hide	 deception	 in	 facial	 expressions,	 body	 expressions	 are	

identified	as	potentially	a	better	media	for	emotion	recognition.	Kleinsmith	and	

Bianchi-Berthouze's	paper	also	suggested	that	analysing	body	expressions	could	

provide	 clues	 into	 understanding	 facial	 expressions,	 leading	 to	 higher	

recognition	accuracy.	

	

In	Gross	et	al.’s	study	[12]	on	affect	recognition	from	gait,	kinematic	analysis	of	

the	data	obtained	 from	the	motion	capture	 systems	was	deployed	 to	quantify	

both	body	and	limb	motions	during	walking.	Differences	were	shown	in	the	gait	

measurements	and	 joint	movement	between	different	emotions.	For	example,	

sad	emotions	typically	contained	slower	movement	and	less	movement	of	arms	

and	elbow	joints,	and	less	trunk	rotation.	Angry	walkers	also	had	a	more	flexed	

trunk	 and	 elevated	 shoulders	 than	 joyful	 or	 content	walkers,	 even	when	 they	

had	 a	 similar	walking	 speed.	 Nevertheless,	 there	were	many	movements	 that	

were	 common	 to	 different	 emotions	 that	 could	 lead	 to	 difficulties	 in	

discriminating	 between	 them.	 Careful	 selection	 of	 features	 could	 help	 reduce	

the	number	of	false	positives	on	selected	emotions.	Gross	et	al.	also	suggested	

that	the	effort-shape	might	provide	more	information	when	combined	with	the	

kinematics	data.		
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III. Cross	Cultural	Similarities	and	Differences	in	Emotion	

	

Ekman	 and	 Friesen	 studied	 whether	 emotions	 conveyed	 by	 facial	 expressions	

were	 culture	 specific	 [23].	 The	 subjects	 selected	 had	 limited	 contact	 with	

western	 culture,	 hence,	 they	were	not	 influenced	by	media	 and	did	not	 know	

the	meaning	of	various	gestures	in	western	culture.	Happiness,	sadness,	anger,	

surprise,	 disgust	 and	 fear	 were	 explored.	 In	 order	 to	 overcome	 the	 language	

barrier	and	equivalent	words	for	emotions	not	existing	in	the	subject’s	culture,	a	

story	expressing	an	emotion	was	 read	 to	 the	 subjects	and	 they	were	asked	 to	

point	 to	 one	 of	 the	 three	 face	 pictures	 that	 best	 represented	 the	 emotions	

portrayed	 in	 the	story.	The	 results	 for	adults	and	children,	males	and	 females,	

showed	 support	 for	 the	 hypothesis	 that	 particular	 facial	 behaviours	 were	

universally	associated	with	particular	emotions	irrespective	of	culture.	

	

Kleinsmith	 et	 al.	 [24]	 tested	 the	 cross-cultural	 similarities	 and	 differences	 of	

emotion	perception	through	body	postures	of	people	from	Japan,	Sri	Lanka	and	

the	 United	 States	 of	 America.	 They	 deployed	 13	 actors	 (11	 Japanese,	 one	 Sri	

Lankan	 and	 one	 American)	 who	 adopted	 a	 posture	 to	 represent	 anger,	 fear,	

happiness	and	sadness.	These	postures	were	 recorded	using	a	motion	capture	

system	with	32	markers	on	the	actor’s	body	utilising	eight	cameras.	Non-gender,	

non-culture	 specific	 computer	 avatars	 without	 facial	 expressions	 were	 then	

created	from	the	captured	motions.	The	108	affective	postures	were	presented	

to	observers	in	a	different	randomised	order	for	each	participant.	The	observers	
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(25	Japanese,	25	Sri	Lankan	and	20	Caucasian	Americans)	were	asked	to	rate	the	

intensity	 of	 the	 emotions	 they	 perceived	 and	 to	 identify	which	 emotion	 label	

best	 represented	 the	posture.	 For	each	emotion	 they	had	 two	nuances	of	 the	

same	 emotion,	 i.e.	 anger	 (angry,	 upset),	 fear	 (fearful	 and	 surprise),	 happiness	

(happy,	 joy)	 and	 sadness	 (sad,	 depressed).	 When	 postures	 from	 all	 three	

cultures	 were	 combined,	 the	 observers	 were	 able	 to	 recognise	 the	 emotions	

with	accuracy	between	54%	and	56%	for	each	of	 the	three	different	groups	of	

observers.	 When	 they	 only	 observed	 members	 of	 their	 own	 culture,	 the	

Japanese	 had	 a	 success	 rate	 of	 90%,	 the	 Sri	 Lankans	 88%	 and	 the	 Americans	

78%.	Therefore,	although	there	were	differences	in	the	way	cultures	expressed	

emotions	 in	 their	 body	 movement,	 there	 was	 still	 a	 moderate	 level	 of	

agreement	between	them.	

	

1.2 Aim,	Objectives	and	Hypothesis	

	

The	 primary	 aim	 of	 this	 thesis	 was	 to	 develop	 a	 more	 effective	 approach	 to	

machine	based	affect	recognition	using	human	gait.	According	to	the	literature,	

gait	analysis	was	applied	in	affect	recognition	by	a	number	of	research	groups,	

but	the	majority	of	the	methods	proposed	deployed	only	either	local	features	or	

global	 features.	 Local	 features	 are	 the	 characteristics	 associated	 with	 specific	

locations	in	a	pattern	or	an	image.	Global	features,	on	the	other	hand,	represent	

the	characteristics	associated	with	all	the	points	in	a	pattern	or	an	image.	In	this	
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research,	 we	 examined	 how	 using	 a	 combination	 of	 local	 and	 global	 features	

could	improve	the	recognition	rate.		

	

The	motion	data	used	 in	 the	study	was	obtained	by	an	 inertia	motion	capture	

system.	The	 raw	 joint	data	was	 imported	 into	Matlab	and	processed	 to	derive	

the	required	features.	A	combination	of	local	and	global	features	were	deployed	

to	recognise	emotions	expressed	by	actors	in	a	series	of	experiments.	The	global	

features	were	suggested	by	Zacharatos	et	al.	 [25],	and	the	 local	 features	were	

the	same	as	the	featured	used	by	Kapur	et	al	[26].	Additional	global	features	of	

Shape	flow	and	shaping	[8],	horizontal	and	vertical	symmetry	 [10]	were	added	

to	 the	 combination	 feature	 set	 to	 increase	 the	 performance	 of	 the	 classifier.	

Once	 the	 features	 were	 generated	 four	 different	 feature	 data	 sets	 were	

developed	for	the	following	scenarios:	

1. Local	Features	only	

2. Global	Features	only	

3. Local	and	Global	Features	

4. Local,	Global	and	Additional	features.		

These	four	feature	data	sets	were	imported	into	the	WEKA	classification	system	

[27]	and	run	using	a	variety	of	algorithms	proposed	 in	previous	 literature.	The	

results	were	critically	analysed	and	compared.		

	

Overall,	 the	 results	 showed	 that	 a	 combination	 of	 local	 and	 global	 features	

outperformed	the	affect	recognition	rate	against	scenarios	in	which	either	local	

features	 or	 global	 features	 were	 deployed.	 The	 addition	 of	 additional	 global	
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features	further	increased	the	accuracy	of	the	classifier.		

	

1.3 Contributions	of	the	Work	and	Research	Outcomes	

	

This	thesis	represents	a	systematic	and	thorough	study	of	machine-based	affect	

recognition	 using	 gait	 analysis	 within	 the	 scope	 of	 a	 Master	 of	 Philosophy	

degree.	 While	 the	 degree	 offered	 the	 candidate	 numerous	 opportunities	 to	

acquire	generic	skills	on	how	to	systematically	manage	and	conduct	a	research	

and	 thoroughly	 apply	 scientific	 method	 to	 infer	 facts	 from	 observations	 and	

experimental	work,	it	has	resulted	in	a	number	of	tangible	outcomes	that	can	be	

listed	as	the	contribution	of	this	work:	

a) A	 rigorous	 and	 systematic	 literature	 review	 on	 machine-based	 affect	

recognition	using	gait	analysis	and	posture	was	conducted.	The	literature	

review,	 broad	 in	 its	 scope	 and	 rich	 in	 its	 depth,	 represents	 a	 unique	

collection	 of	 the	 previous	work	 in	 this	 area	 and	 proved	 to	 be	 a	major	

source	of	learning	and	training	for	the	candidate.		

b) A	 critical	 comparison	 of	 various	 methods	 of	 machine-based	 affect	

recognition	 using	 local	 features	 obtained	 in	 gait	 analysis	 and	 posture	

recognition	 was	 conducted.	 The	 data	 used	 in	 the	 study	 was	 obtained	

using	an	inertial	motion	capture	suit,	described	later	in	the	thesis.	

c) A	similar	study	was	conducted	on	global	features	using	our	database.	

d) As	the	major	contribution	of	this	work,	a	combination	of	global	and	local	

features	 was	 applied	 to	 the	 gait	 data	 and	 showed	 that	 the	 affect	
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recognition	rate	can	be	 improved	using	this	novel	approach.	The	global	

features	were	suggested	by	Zacharatos	et	al.	[25],	and	the	local	features	

were	the	same	as	the	featured	used	by	Kapur	et	al	[26].	Additional	global	

features	of	Shape	flow	and	shaping	[8],	horizontal	and	vertical	symmetry	

[10]	 were	 added	 to	 the	 combination	 feature	 set	 to	 increase	 the	

performance	of	the	classifier.	

	

The	thesis	has	produced	the	following	publications	that	are	currently	under	

review:	

The	 results	 of	 the	 literature	 review	 were	 compiled	 as	 a	 survey	 paper	 and	

submitted	to	Journal	of	Social	Robotics	and	is	currently	under	review.	

- Automatic	Affect	Perception	Based	on	Body	Gait	and	Posture:	A	Survey	

(Benjamin	Stephens-Fripp,	Fazel	Naghdy,	David	Stirling,	Golshah	Naghdy)	

	

The	methodology,	 results	 and	 analysis	 of	 combining	 local	 and	 global	 features	

into	 a	 single	 classifier	 was	 compiled	 as	 an	 article	 and	 submitted	 to	 to	 IEEE	

Transactions	of	Affective	Computing	and	is	currently	under	review.		

- Combining	Local	and	Global	Features	in	Automatic	Affect	Recognition	from	

Gait	(Benjamin	Stephens-Fripp,	Fazel	Naghdy,	David	Stirling,	Golshah	Naghdy)	
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1.4 Outline	and	Structure	of	Thesis	

	

This	thesis	is	structured	in	six	chapters		

Chapter	 1	 provides	 a	 background	 and	 rational	 on	 the	 study.	 It	 spells	 out	 the	

primary	aim	of	the	project	and	provides	an	overview	of	the	approach	deployed.	

The	contributions	of	the	work	are	highlighted	in	this	chapter	and	the	structure	

of	the	thesis	is	described.	

	

Chapter	2	presents	a	literature	review	of	the	previous	work	that	employs	body	

language	 in	 automatic	 affect	 recognition.	 The	 characteristics	 of	 each	 study	

comprising	data	collection	method,	features	and	classifiers	used,	testing	method	

and	accuracy	are	provided.		

	

Chapter	 3	 provides	 the	 theoretical	 framework	 behind	 our	 research.	 A	

background	 on	 the	 Laban	Movement	 Analysis	model	 deployed	 in	 this	work	 is	

provided,	 alongside	 a	 justification	 of	 combining	 local	 features	 into	 a	 single	

classifier.	 We	 present	 the	 methods	 that	 our	 approach	 is	 based	 upon,	 and	

describe	 the	 classification	 algorithms	 and	 performance	 validation	 techniques	

deployed	in	this	project.			

	

Chapter	4	describes	the	experimental	set	up	deployed	in	this	study,	outlining	the	

data	 collection	 process,	 including	 the	 software	 and	 hardware	 utilised.	 The	
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software	 packages	 and	methods	 deployed	 to	 export	 the	motion	 data,	 extract	

features	and	run	classification	algorithms	are	also	presented.	

	

Chapter	5	outlines	validation	process	and	the	results	of	classification	using	each	

of	 the	 different	 feature	 sets	 with	 a	 variety	 of	 algorithms	 and	 tenfold	 cross	

validation.	 A	 comparison	 of	 our	 results	 is	 then	 made	 against	 similar	 results	

reported	in	the	literature.	

	

Chapter	6	discusses	the	impact	of	the	outcomes	produced	in	this	work	and	their	

significance.	The	limitations	of	our	research	is	then	presented	and	the	potential	

future	work	is	discussed.		
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2 LITERATURE	REVIEW	

2.1 Introduction	

	

In	 this	chapter	 the	results	of	 the	 literature	review	conducted	to	 identify	major	

previous	 work	 in	 affect	 recognition	 using	 body	 language	 are	 reported.	 The	

database	 and	 keywords	 used	 and	 the	 constraints	 imposed	 on	 our	 literature	

search	 are	 outlined	 in	 section	 2.2.	 In	 section	 2.3	 different	 methods	 of	 data	

collection	 for	 machine	 based	 affect	 recognition	 are	 outlined.	 2.4	 to	 2.7	 are	

mainly	 focussed	 on	 utilising	 machine	 based	 affect	 recognition	 from	 gait.	 For	

each	 method,	 the	 source	 of	 the	 data	 used,	 data	 and	 features	 extraction	

methods,	the	processing	techniques	and	classifiers	deployed	are	studied	and	the	

results	 produced	 are	 compared	 against	 other	 methods.	 Common	 trends	

between	the	studies	and	gaps	in	literature	are	finally	identified	in	Section	2.8.	

	

2.2 Scope	of	Literature	Review	

	

In	 order	 to	 identify	 the	 relevant	 literature,	 a	 search	 was	 performed	 on	 three	

databases:	 IEEE	Xplore,	 Scopus	and	Web	of	Science.	Different	 combinations	of	

combinations	 of	 words	 (emotion/affect,	 recognition/detect,	

gait/posture/body/gestures)	were	used	as	keywords.		

	

Results	 were	 refined	 to	 only	 include	 studies	 concerned	 with	 machine-based	

affective	 recognition	 from	 body	 language	 in	 human	 beings;	 as	 opposed	 to	
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recognising	emotions	in	robots.	For	the	purpose	of	this	research,	body	language	

was	 defined	 as	 visual	 cues	 other	 than	 facial	 recognition	 alone.	 Gestures	 from	

hands	and	arms	were	therefore	included	within	the	category	of	body	language.	

For	projects	using	a	multimodal	approach,	the	review	was	limited	to	studies	that	

deployed	body	gait,	posture	or	gestures	as	one	of	the	information	sources.	For	

each	relevant	publication,	the	references	cited	within	them	were	also	examined	

in	addition	to	the	other	publications	by	the	authors	of	those	papers.		

	

Nayak	et	al.	[28]	classify	a	simple	activity	in	recognition	as	one	which	involves	a	

single	 person	 with	 minimal	 background	 noise.	 Currently,	 emotion	 detection	

studies	are	limited	to	recognising	emotions	as	simple	activities.	That	is,	they	are	

restricted	 to	 viewing	 one	 person,	 generally	 within	 a	 controlled	

environment/background.	A	 long-term	goal,	however,	 is	to	recognise	emotions	

within	 any	 environment	with	 the	 ability	 to	 take	 into	 account	 interaction	with	

other	people.		

	

2.3 Data	Collection	Methods	

	

In	the	studies	cited	in	this	chapter,	various	instruments	are	deployed	to	capture	

the	data	used	in	the	analysis	such	as	video	cameras,	optical	and	inertia	motion	

captures,	Kinect	sensors	and	walking	pressure	sensors.	Collected	motion	data	is	

then	fed	into	a	classifier	as	either	raw	data	or	pre-processed	data.	Pre-processed	

data	 takes	 the	raw	data	and	either	performs	an	algorithm	to	 identify	key	data	
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points,	 combine	 data	 points	 and/or	 to	 give	 extra	 weighting	 to	 key	 data.	 The	

classifier	 is	 designed	 and	 trained	 to	 identify	 the	 key	 features	 representing	 a	

particular	emotion.	The	classifiers	used	are	further	explained	in	Section	2.4.	

	

In	 recent	 years,	 there	 has	 been	 a	 growing	 number	 of	 studies	 exploring	 the	

effectiveness	 of	 local	 features	 (raw	 data	 points)	 in	 automatic	 recognition	 of	

human	 emotions	manifested	 in	 gait	 and	 body	movement.	 The	 data	 collection	

methods	 used	 can	 be	 broadly	 categorised	 into	 two	 groups:	 perceptive	 and	

responsive	systems.	The	responsive	systems	use	sensors	such	as	motion	capture	

suits	 to	 capture	 joint	 movements,	 whereas	 the	 perceptive	 systems	 do	 not	

require	the	subject	to	wear	any	specialised	equipment.	Examples	of	perceptive	

systems	include	image	processing	from	video	cameras,	gait	force	measurement	

from	pressure	plates,	and	the	Kinect	depth	camera	systems.	Responsive	systems	

capture	 as	much	 data	 as	 possible,	 but	 since	 they	 require	 the	 subject	 to	wear	

multiple	sensors	they	are	impractical	in	natural	real	world	environments,	such	as	

security	 camera	 analysis	 and	 HRI	 situations.	 Perceptive	 systems	 are	 more	

suitable	for	these	real	world	scenarios,	but	they	generate	 less	data	than	active	

systems.	

	

The	detection	methods	used	within	the	literature	are	video	detection,	Microsoft	

Kinect	 system,	 optical	 motion	 capture	 system	 and	 force	 platform.	 These	

techniques	are	explained	below.		
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I. Video	Detection	

	

In	 the	 FABO	database	 created	by	Gunes	 and	Picardi	 [29],	 body	postures	were	

obtained	from	video	recordings.	They	utilise	a	series	of	single	frames	rather	than	

treating	it	as	a	time	series	of	multiple	frames.	Only	the	major	points	in	the	body,	

such	 as	 head,	 shoulder	 and	 hands	 are	 tracked.	 The	 CamShift	 technique	 [30],	

shown	in	Figure	3,	is	one	way	of	tracking	these	points.		

	

Figure	3	-	Body	Posture	from	Video	using	Camshift	[29]	

	

An	overview	of	the	studies	reviewed	that	utilise	video	recognition	are	outlined	

in	Table1
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Authors	 Emotions	Studied	 Dataset	 Classifier	 Truth	
Comparison	

Success	Rate	 Sensors	

Gunes	 &	

Picardi	[29]	

anger,	anxiety,	boredom,	disgust,	fear,	happiness,	negative	

surprise,	 positive	 surprise,	 uncertainty,	 puzzlement,	 and	

sadness	

10	Actors	 Feature	 level	 fusion:	 Adaboost	 with	

Random	forest	of	ten	trees	

	

Decision	Level	Fusion:		

Face	-	Adaboost	with	C4.5	

Body	–	Random	forest	of	ten	trees	

Intended	

Emotion	

Feature	 level	 fusion	 –	

82.65%	

	

	

Decision	 level	 fusion	 –	

78%	

Two	 video	 cameras,	

Face	&	Body	

Shan	 et	 al.	

[31]	

anger,	anxiety,	boredom,	disgust,	joy,	puzzle	and	surprise	 23	Actors	 SVM	

	

Combined	with	CCA	

Intended	

Emotion	

Face	-79.2%	

Body	-72.6%	

Combined	–	88.5%	

Two	 video	 cameras,	

Face	&	Body	

Chen	 et	 al.	

[32]	

anger,	anxiety,	boredom,	disgust,	fear,	happiness,	negative	

surprise,	 positive	 surprise,	 uncertainty,	 puzzlement,	 and	

sadness	

FABO	

database	

using	 284	

videos	

SVM	with	RBF	kernel	 Intended	

Emotion	

Combined	–	73%	 1	 Camera	 on	 face	 &	

body	

Chen	 &	 Tian	

[32]	

anger,	anxiety,	boredom,	disgust,	fear,	happiness,	negative	

surprise,	 positive	 surprise,	 uncertainty,	 puzzlement,	 and	

sadness	

FABO	

database	

using	 255	

videos	

One	vs	one		

	

	

	

	

	

Intended	

Emotion	

Combined	-	77.3%	 1	 Camera	 on	 face	 &	

body	

Kessous	 et	

al.	[33]	

anger,	 despair,	 interest,	 pleasure,	 sadness,	 irritation,	 joy	

and	pride	

Ten	 non-

actor	

subjects	

Bayes	Net	(WEKA)	 Intended	

Emotion	

Facial	–	48.3%	

Body	–	67.1%	

Voice	–	57.1%			

Combined	–	74.6%	

Two	 video	 cameras,	

Face	 &	 Body,	

microphone	on	shirt	

Park	 et	 al.	

[34]	

Happy,	Angry,	Surprised,	Sad	 4	

Professional	

Dancers	

Time	Delayed	MLP	 Intended	

Emotion	

73%	 Video	Camera	

Sanghvi	et	al.	

[35]	

Engaged	&	Not	Engaged	 5	eight	year	

olds	

Various	 tested	 but	 best	 results	 from	

ADTree	and	OneR	classifiers	

3	Trained	Human	

Coders	

82%	 2	 Video	 Cameras	

(Frontal	&	Lateral)	

Table	1	-	Studies	using	Video	Analysis	
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II. Kinect	System	

	

Microsoft	 Kinect	 utilises	 a	 video	 camera	 and	 a	 depth	 sensor.	 This	 provides	

greater	 accuracy	 and	 ability	 to	 track	 joints	 compared	 to	 using	 a	 video	 signal	

alone.	3D	location	of	joints	can	then	be	extracted	by	the	Kinect	system,	shown	in	

Figure	4	[36].	A	summary	of	the	studies	utilising	Microsoft	Kinect	and	reviewed	

is	this	chapter	are	outlined	in	Table	2.	

	

	

Figure	4	-	Feature	Extraction	from	Kinect	system	[36]		
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Authors	

Emotions	Studied	 Dataset	 Classifier	 Truth	

Comparison	

Success	Rate	 Sensors	

Woo	 Hyan	 et	

al.	[37]	

Rejoicing	 &	

Lamenting	

1	Participant	 N/A	 N/A	 Two	 graphs	 of	 Space,	

Weight	 and	 Time	

were	 easily	

distinguishable	 for	

entire	frames		

Kinect	

McColl	 et	 al.	

[38]	

Valence	&	Arousal	 8	 elderly	

individuals	

WEKA	 toolbox	 using	

various	 classifiers,	

best	 individual	

performances	were:	

RBFN,		

Adaptive	 Boosting	

with	Naïve	Bayes	

Human	

Observer	

V	-	77.9%,		

A	–	91.4%	

	

	

V	–	70.0%	

A	93%	

Kinect	

Garber-Barron	

and	Si	[39]	

Triumph,	

Concentration,	

Defeat	 and	

Frustration	

Eleven	

participants	

playing	Wii	

Bagging	Predictor	 Human	

Observers	

66.5%	 joint	 &	 limb	

rotation,	 &	 body	

posture		

55%	joint	rotation	

61%	limb	rotation	

62%	body	posture		

Kinect	System	

Xiao	et	al.	[40]	 have	 question,	

object,	 praise,	 stop,	

succeed,	 weakly	

agree,	 call,	 drink,	

read	and	write	

Twenty	 three	

subjects	

kNN	 Intended	

Emotion	

97%	 Kinect	 System	

with	

cyberglove	II	

Table	2	-	Studies	using	Kinect	
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IV. Optical	Motion	Capture	System	

	

Optical	Motion	 Capture	 Systems	 utilise	multiple	 light	markers	 attached	 to	 the	

body,	 as	 shown	 in	 Figure	 5,	 which	 are	 tracked	 via	 infrared	 cameras.	 These	

additional	required	sensors	make	these	setups	impractical	in	natural	real	world	

scenarios	 such	as	 security	 camera	 systems	and	HRI,	but	 they	provide	accurate	

data	 points	 for	 testing	 and	 comparing	 feature	 extraction	 and	 classification	

methods.	Video	Cameras	alone	often	rely	on	crude	methods	of	tracking,	such	as	

silhouette	extraction,	that	don’t	provide	data	on	individual	joints.	Using	infrared	

cameras	 in	Optical	Motion	Capture	system,	however,	make	 it	possible	 to	track	

individual	 joints	 in	the	x,	y	and	z	axes	and	therefore	obtain	more	detailed	data	

on	body	motion.		

	

Figure	5	-	Optical	Motion	Capture	System	[41]	

A	summary	of	the	reviewed	works	using	optical	motion	capture	systems	is	

provided	in	Table	3.
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Authors	 Emotions	Studied	 Dataset	 Classifier	 Truth	Comparison	 Success	Rate	 Sensors	
Venture	et	al.	[42]	 Neutral,	Joy,	Anger,	Sadness	 4	Professional	Actors		 Similarity	index	 20	Human	Observers	

90%	Agreement	except	Joy	
78%	for	an	individual,	69%	for	the	group	 Motion	Capture		

Kapur	et	al.	[26]	 Sadness,	Joy,	Anger,	Fear	 5	 Participants	 (2	
Professional	
Dancers)	

Logistic	 regression,	
naïve	 bayes,	 decision	
tree,	 multilayer	 neural	
network,	SVM	

10	 Human	 Observers	 93%	
Agreement	

85.6%-91.8%	depending	on	classifier	used	 Motion	Capture		

Samadani	et	al.	[43]	 Sadness,	 Happiness,	 Fear	 and	
Anger		

13	Demonstrators	
	
	

HMM	 to	 calculate	 FS	
representations,	 which	
are	used	in	k-NN		

Actor’s	Intended	Emotion		 77%	 Motion	Capture		

Samadani	et	al.	[44]	 Sadness,	 Happiness,	 Fear	 and	
Anger	

13	Demonstrators	 FSCPA-GRBF	 Actor’s	Intended	Emotion	 53.6%	 Motion	Capture		

Xu	and	Sakazawa	[45]	 Neutral,	Happy,	Angry,	Sad	 30	Demonstrators	 SVM	 with	 weighted	
segments	

Actor’s	Intended	Emotion	 77%	 Motion	Capture		

Bernhardt	 and	 Robinson	
[46]	

Neutral,	Happy,	Angry,	Sad	 30	 Demonstrators	
hand	knocking	

SVM	 with	 polynomial	
kernels	 with	 weighting	
of	limb	speeds	

Actor’s	Intended	Emotion	 50%	without	weighting	
81%	with	weighting	

Motion	Capture		

Kleinsmith	[47]	 Concentration,	 Defeat,	
frustration	 (removed	 from	
results),	triumph	

Eleven	 participants	
playing	Wii	

MLP	 8	 Human	Observers	 on	 an	
avatar	replication		

66.7%	 Inertial	 Motion	
Capture		

Karg	et	al.	[48]	 Neutral,	Happy,	Angry,	Sad	
	
	
	
Displeased,	 Content,	 Bored,	
Excited	and	Obedient		

13	Actors	 SVM	 Intended	emotion	 69%	(compared	to	human	success	of	63%)	
95%	 if	 individual	 person	 is	 taken	 into	
account	
	
Pleasure	–	88%	
Arousal	–	97%	
Dominance	–	96%	

Optical	Tracking		

Zacharatos	et	al.	[25]	 Concentration,	 Meditation,	
Excitement	&	Frustration	

13	Actors	 WEKA	–	MLP	 4	Human	Observers	 85.27%	 Motion	
Capture	

Lim	and	Okuno	[49]	 Happiness,	 Sadness,	 Fear,	
Anger	

10	 speech	
participants	 &	 28	
ankle	participants	

SciKit	Learn	Toolkit	 Human	Observers	 63%	-	trained	on	voice	in	SIRE	
72%	-	trained	on	gait	in	SIRE	

Voice	 &	 motion	
capture	 data	 on	
ankle	

Table	3	-	Studies	utilising	Motion	Capture	
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V. Force	Platform	Sensor	

	

A	 force	 platform	 can	 be	 used	 to	 measure	 the	 ground	 reaction	 forces	 from	 gait	 along	 a	

designated	path.	The	force	platform	setup	used	by	Janssen	et	al.	[50]	is	shown	in	Figure	6.	

Data	 obtained	 from	 the	 force	 platform	 can	 be	 analysed	 both	 independently	 and	 in	

conjunction	with	kinematic	analysis	of	the	markers	mounted	on	the	body	of	the	subject.		

	

	

	

Figure	6	-	Force	Platform	Setup	[50]	

	

2.4 Affect	Recognition	Based	on	Raw	Data	

	

I. Using	Motion	Capture	

	

Bianchi-Berthouze	 and	 Kleinsmith	 [51]	 explored	 the	 use	 of	 an	 associative	 neural	 network	

called	 Categorisation	 and	 Learning	Model	 (CALM)	 to	 learn	 over	 time.	 The	 VICON	motion	

capture	 system	 captured	 data	 on	 twelve	 subjects	 performing	 angry,	 happy	 and	 sad	

emotions	 freely.	 A	 total	 of	 138	 gestures	 were	 collected.	 Emotional	 category	 labels	 were	
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collected	showing	an	avatar	based	on	motion	capture	data	to	114	Japanese	observers.	The	

most	frequently	used	emotion	label	was	chosen	for	each	of	the	gestures.	Eighteen	features	

were	used,	focusing	on	upper	body	gestures	based	upon	the	sphere	of	movement	used	in	

dance,	 consisting	 of	 normalized	 displacement	 of	 entire	 arm,	 normalized	 displacement	 of	

forearm,	normalized	extension	of	body	and	face	orientation.	The	order	of	presentation	was	

changed	 ten	 times,	 with	 each	 configuration	 repeated	 with	 five	 different	 sets	 of	 initial	

conditions.	The	average	error	was	0.043%	with	a	standard	deviation	of	0.002.		

	

Kapur	 et	 al.	 [26]	 demonstrated	 the	 high	 potential	 of	 automatically	 detecting	 emotions	

through	the	use	of	body	movements.	A	VICON	Motion	System	captured	14	reference	point	

markers	 placed	 on	 five	 different	 subjects.	 The	 participants	 acted	 out	 four	 basic	 emotions	

(sadness,	joy,	anger	and	fear).	To	serve	as	a	comparison	against	cognitive	recognition,	point	

light	 display	on	 fourteen	 reference	points	were	 recorded	 and	 shown	 to	 ten	 subjects.	 The	

subjects	 identified	 emotions	 from	 the	 markers	 with	 an	 accuracy	 of	 93%.	 Five	 different	

classifiers:	 logic	 regression,	 naïve	 bayes,	 decision	 tree,	 artificial	 neural	 network,	 and	 a	

support	 vector	machine,	were	 applied	 to	 the	data.	 The	 classifiers	 identified	 the	emotions	

with	 success	 rates	 between	 85.6%	 and	 91.8%.	 Artificial	 neural	 network	 and	 the	 support	

vector	 machine	 both	 produced	 the	 most	 accurate	 recognition	 rate.	 These	 rates	 were	

comparable	 to	 that	 of	 a	 human	 observer	 judging	 emotion	 based	 off	 point	 light	 displays.	

However,	 the	study	was	 limited	 to	 four	acted	emotions,	and	 the	deployment	of	a	motion	

system	that	utilises	six	cameras;	this	not	practical	in	real	life	scenarios.	

	

Venture	et	 al.	 [42]	proposed	 the	use	of	 vector	 analysis	 and	Principal	Component	Analysis	

(PCA)	decomposition	to	detect	emotions	from	gait.	Four	professional	actors	were	recorded	
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displaying	 four	 basic	 emotions	whilst	walking	 in	 a	 straight	 line	 through	 a	motion	 capture	

system’s	space.	The	affective	states	of	neutral,	 joy,	anger	and	sadness	were	repeated	 five	

times	by	each	actor	and	were	recorded	via	a	motion	capture	system	and	video	recording.	A	

comparison	 was	 made	 between	 the	 detected	 emotion	 and	 one	 identified	 by	 20	 human	

observers	 viewing	 animations	 to	 determine	 the	 accuracy.	 Vector	 analysis,	 as	 well	 the	

animations	 produced	 from	 the	 performed	 emotions,	 indicate	 that	 the	 lower	 torso,	 waist	

rotations	and	head	movements	are	the	most	important	features	in	affect	perception	as	leg	

and	arm	data	can	bias	the	recognition	process.	Hence,	in	the	emotions	recognition	process	

Venture	 et	 al.	 only	 deployed	 six	 Degrees	 of	 Freedom	 (DOF)	 to	 describe	 the	 lower	 torso,	

three	DOF	to	describe	waist	and	three	DOF	to	describe	the	head	movements.	Venture	et	al.	

then	 used	 a	 similarity	 index	 computation	 to	 test	 similarity	 between	 test	 data	 and	 the	

training	 data.	 Through	 the	 animation	 study	 they	 concluded	 that	 some	movements	 better	

conveyed	emotion	than	others.	For	this	reason,	they	applied	a	weighting	to	joints	that	had	

more	 impact	 in	 conveying	 emotions,	 resulting	 in	 overall	 improvement	 in	 their	 results.	

Weighting	resulted	in	an	improved	detection	rate	for	all	emotions	except	for	sadness,	which	

had	 the	 lowest	 accuracy.	 For	 a	 given	 subject,	 Venture	 et	 al.	 detected	 emotions	 with	 an	

average	success	of	78%.	A	global	database	was	developed	from	a	combination	of	data	from	

all	 participants	 and	 fed	 into	 their	 classifier.	 As	 a	 result,	 joy	 and	 anger	 had	 a	 decrease	 in	

performance,	there	was	no	effect	on	the	neutral	emotion	and	improvement	was	observed	

in	 the	 recognition	 rate	of	 sadness.	The	global	database,	however,	had	an	overall	negative	

effect	on	inter-subject	recognition	of	emotions	with	an	average	total	recognition	of	69%.	In	

that	study	only	a	relatively	small	number	of	subjects	were	used	and	there	is	a	possibility	that	

deployment	of	more	subjects	might	produce	a	different	result.	Both	male	and	female	actors	
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were	 used	 in	 the	 study	 with	 no	 difference	 in	 recognition	 rates.	 The	 false	 negative	

classification	seems	to	be	for	neutral	states	rather	than	the	other	emotions.	

	

Lim	 and	Okuno	 [49]	 developed	 a	 robot	 to	 study	multimodal	 emotional	 intelligence	 (MEI)	

and	trained	it	to	recognise	emotions	in	voice,	gesture	and	gait	from	voice	training	alone.	A	

unified	model	 for	all	 three	modalities	was	deployed	by	 considering	 the	 four	properties	of	

speed,	 intensity,	 irregularity	 and	 extent	 (SIRE)	 so	 that	 the	 emotional	 recognition	 was	 no	

longer	 context	 specific.	 Lim	 and	 Okuno	 assumed	 that	 human	 beings	 developed	 their	

recognition	 of	 affect	 displayed	 in	 body	 language	 by	 matching	 it	 to	 the	 corresponding	

emotion	 conveyed	 in	 the	 subject’s	 voice.	 This	 principle	 was	 applied	 in	 training	 their	MEI	

robot.	Lim	and	Okuno	suggested	that	SIRE	systems	could	be	trained	to	recognise	gait	using	

the	voice	alone.	Recognition	of	happiness,	sadness,	fear	and	anger	was	performed	using	the	

Sci	Learn	Toolkit.	Only	ankle	joint	data	was	used	for	the	gait	modality.	A	recognition	rate	of	

63%	was	achieved	using	voice	only	training,	compared	to	72%	when	gait	data	was	used	in	

both	 the	 training	 and	 testing	 process.	 Potential	 errors	 were	 identified	 when	 actors	

whispered	whilst	expressing	fear.	This	study	showed	potential	for	use	of	high-level	feature	

analysis	 instead	 of	 low	 level	 feature	 analysis	 to	 detect	 emotions,	 particularly	 when	 high	

success	rate	body	language	data	is	used.	

	

A	 number	 of	 studies	 on	 affective	 recognition	 from	 body	 posture	 and	movement	 rely	 on	

acted	 emotions.	 In	 contrast,	 Garber-Barron	 and	 Si	 [39]	 attempted	 to	 classify	 emotions	 in	

non-acted	scenarios.	They	used	the	UCLIC	Affective	Body	Posture	and	Motion	database	that	

contained	information	from	eleven	participants	playing	the	Nintendo	Wii	sports	game	for	a	

minimum	of	30	minutes.	This	database	contained	the	rotational	angles	of	 the	 joints	along	
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the	x,	y	and	z	axes.	Triumph,	concentration,	defeat	and	frustration	were	recognised	with	an	

accuracy	of	66.5%,	using	a	combination	of	joint	rotation	data,	limb	rotation	data	and	body	

posture	cues.	The	success	rate	decreased	by	7%	and	4%	when	using	only	joint	rotation	data	

and	only	limb	rotation	data,	respectively.		

	

Kleinsmith	et	al.	 [47]	also	explored	the	 feasibility	of	 recognising	affective	states	of	players	

from	 non-acted	 scenarios	 while	 playing	 a	 video	 game.	 Participants	 played	 Nintendo	 Wii	

Tennis	for	30	minutes	while	their	body	movements	were	recorded	using	a	motion	capture	

system.	Three	university	students	selected	103	usable	affective	body	movements	from	the	

recording	by	viewing	the	movements	as	a	simplistic	avatar.	Triumph,	defeat,	frustration	and	

concentration	examined	utilising	a	Multilayer	Perceptron	(MLP)	for	automatic	classification.	

Recorded	movements	were	converted	into	a	faceless,	non-gender	specific	computer	avatar	

to	remove	any	bias	when	evaluated	by	eight	human	observers.	Each	observer	evaluated	all	

of	the	postures	five	times.	The	observer’s	views	were	divided	into	three	subsets	to	compare	

human	 recognition	 of	 emotions	 against	 machine	 recognition.	 Subsets	 one	 and	 two	 were	

used	 to	 compare	 the	agreement	between	 the	human	observations,	 and	 subset	 three	was	

used	as	the	training	data	and	subsequently	tested	against	subset	one.	An	agreement	rate	of	

66.7%	was	found	between	the	two	views	of	human	observation	and	machine	recognition.	

There	 was	 difficulty	 with	 the	 recognition	 of	 frustration	 in	 the	 automatic	 classification;	

perhaps	because	of	the	small	amount	of	training	data	available.	With	the	frustration	 label	

removed,	the	method	achieves	a	recognition	rate	of	66.3%.	It	is	noted,	however,	that	since	

there	was	no	neutral	category,	concentration	was	often	used	as	a	fall	back	emotion	when	

the	observers	feel	that	there	was	no	other	appropriate	category.	
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II. Application	of	Video	Detection	

	

Barakova	and	Lourens	[52]	detected	movements	that	express	emotions.	They	examined	the	

Laban	 sections	 of	 weight,	 time	 and	 flow;	 then	 translated	 combinations	 of	 these	 into	

sadness,	 joy,	 fear	 and	 anger.	 Fifteen	 20	 second	 recordings	 of	 waving	 patterns	 that	

demonstrated	happiness,	anger,	sadness	and	nervousness	were	captured	via	two	cameras.	

A	Neural	gas	algorithm	was	deployed	and	42	children	were	used	to	determine	the	ground	

truth.	 Barakova	 and	 Lourens	 achieved	 an	 overall	 accuracy	 of	 63.8%	 in	 their	 machine	

recognition.	

	

III. Application	of	Kinect	

	

Xiao	et	 al.	 [40]	 studied	 the	use	of	upper	body	gestures	 in	 the	 context	of	 virtual	 reality.	A	

wearable	 immersion	 cyberglove	 II	 captured	 hand	 gesture	 data	 and	 a	 Microsoft	 Kinect	

captured	 data	 on	 the	 arm	 and	 head	 posture.	 The	 action	 and	 gestures	 of	 confident,	 have	

question,	 object,	 praise,	 stop,	 succeed,	 weakly	 agree,	 call,	 drink,	 read	 and	 write	 were	

studied.	 Twenty-three	 subjects	were	used,	 each	expressing	 the	eleven	 gestures.	 The	data	

was	split	into	training	and	testing	set	randomly,	repeated	5	times	and	the	average	result	and	

was	compared	to	the	intended	emotion.	An	accuracy	of	97%	was	achieved	by	using	a	kNN	

classifier.	

	

McColl	et	al.	[53]	studied	the	context	of	social	robotics	to	determine	the	level	of	accessibility	

based	on	the	non-verbal	interaction	and	states	analysis	(NISA)	scale.	One	expert	in	the	scale	

was	used	 to	 code	a	 comparison	 truth.	Kinect	 system	generated	a	3D	ellipsoid	model	of	 a	
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person’s	 static	 pose	 using	 the	 trunk	 and	 arm	 orientation	 towards	 the	 robot.	 Weka	 data	

mining	software	was	utilised	with	ten-fold	cross	validation.	Naïve	Bayes,	logistic	regression,	

random	 forest,	 k-nearest	 neighbour,	 Adaboost	 with	 Naïve	 Bayes,	 multilayer	 perceptron,	

support	 vector	 machine	 classifiers	 were	 used	 on	 300	 static	 poses	 from	 11	 different	

individuals.	 Adaboost	 technique	with	 Naïve	 Bayes	 base	 classifier	 performed	 best	 with	 an	

accuracy	of	99.3%.		

	

IV. Application	of	Force	Platform	

	

Janssen	et	al.	deployed	neural	networks	to	recognise	emotions	using	gait	data	[50].	 In	the	

first	 experiment,	 the	 emotions	 of	 sadness,	 anger	 or	 happiness	 were	 prompted	 in	 their	

subjects	 by	 asking	 them	 to	 remember	 a	 time	 when	 they	 felt	 the	 emotion.	 The	 ground	

reaction	force	in	x,	y	and	z	dimensions	was	recorded	whilst	the	Subjects	walked	through	the	

test	zone.	This	data	was	then	fed	into	a	three-layer	neural	network.	The	system	was	trained	

on	 two	 thirds	 of	 the	 data	 and	 tested	 on	 the	 remaining	 third.	 For	 each	 individual	 they	

identified	 the	 emotion	 felt	 with	 an	 accuracy	 of	 80%.	 In	 the	 second	 experiment,	 subjects	

listened	to	either	calming	or	exciting	music,	or	no	music,	and	then	walked	through	the	test	

zone.	The	aim	was	to	identify	the	emotion	triggered	by	music.	In	this	experiment,	the	same	

kinetic	 data	 was	 utilised	 as	 their	 first	 experiment,	 with	 the	 addition	 of	 kinematic	 data	

obtained	from	a	vision	system	measuring	the	angles	and	angular	velocities	of	the	arm,	hip,	

knee	and	ankle.	Both	the	kinetic	and	kinematic	data	were	fed	into	the	same	neural	network.	

For	a	given	individual,	the	proposed	algorithm	could	recognise	emotions	at	a	rate	of	77.8%	

for	 kinetic	 data	 and	 73%	 for	 kinematic	 data,	 which	 they	 proposed	 were	 not	 statistically	

significantly	different.		
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2.5 Affect	Recognition	Based	on	Processed	Data	

	

I. Dimensional	Reduction	

	

Data	 obtained	 from	 motion	 capture	 technology	 can	 be	 particularly	 large.	 This	 is	

computationally	difficult	and	may	contain	data	that	is	irrelevant	and	potentially	misleading	

the	classifier.	Dimensional	reduction	techniques	are	usually	applied	to	this	type	of	data	to	

simplify	its	structure.	As	stated	by	Samadani	et	al.,	“Statistical	dimensionality	reduction	(DR)	

techniques	transform	high-dimensional	data	to	a	lower-dimensional	subspace”	[44]	.	

	

Samadani	et	al.	[43]	proposed	a	method	of	identifying	emotions	through	low-level	features.	

Data	recorded	by	a	motion	capture	system	was	used	to	both	train	and	test	 the	system.	A	

Fisher	Score	(FS)	Representation	of	each	of	the	moments	was	calculated	after	the	training	

was	performed	through	Hidden	Markov	Models.	The	FSs	were	 then	transformed	to	 find	a	

lower	 dimensional	 subspace	 by	 using	 Supervised	 Principle	 Component	 Analysis	 (SPCA).	

Affective	states	were	then	detected	using	the	k-Nearest	Neighbour	algorithm.	The	algorithm	

was	trained	and	tested	on	the	emotional	states	of	sadness,	happiness,	fear	and	anger	and	

was	applied	to	both	the	full	body	set,	and	a	hand	and	arm	model.	The	full	body	dataset	was	

collected	 from	 a	motion	 capture	 system	 and	 thirteen	 demonstrators.	 The	 hand	 and	 arm	

dataset	 was	 collected	 independently	 from	 the	 full	 body	 data	 to	 prevent	 any	 confusion	

between	 them.	University	 of	Waterloo	 collected	 this	 data	 using	 a	motion	 capture	 system	

with	eight	cameras.	When	the	subject	was	part	of	the	training	data,	the	system	achieved	a	

success	rate	of	77%	for	the	full	body	set	and	79%	for	the	hand	and	arm	model.	In	the	leave-
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one-subject-out	cross	validation	procedure,	the	result	was	dropped	slightly	to	a	success	rate	

of	72%	which	was	a	high	success	rate	with	unseen	candidates.	In	their	studies,	the	authors	

did	 not	 combine	 the	 hand/arm	 model	 with	 the	 full	 body	 data	 set,	 and	 they	 did	 not	

incorporate	any	high-level	motion	analysis.	

	

Samadani	et	al.	[44]	 investigated	the	use	of	statistical	dimensionality	reduction	techniques	

in	emotion	recognition	from	body	movement.	A	fixed	length	representation	of	the	features	

was	obtained	 from	sequential	observations	using	 the	Basis	Function	Expansion	method.	A	

variety	 of	 dimensionality	 reduction	 techniques	 such	 as	 PCA,	 Fischer	 Discriminate	 Analysis	

(FDA),	 Functional	 supervised	 PCA	 (FSPCA)	 (with	 both	 a	 linear	 kernel	 and	 Gaussian	 radial	

basis	function	(GRBF)),	and	Functional	Isomap	was	then	applied.	Samadani	et	al.	tested	their	

algorithm	 against	 a	 hand	movement	 dataset	 and	 full	 body	movement	 dataset.	 The	 hand	

movement	 was	 a	 small	 dataset	 consisting	 of	 opening	 and	 closing	 hand	 movements	

displaying	sad,	happy	and	angry	emotions	with	 five	trials	on	the	 left	hand	and	five	on	the	

right	hand.	The	full	body	motion	data	contained	183	movements	from	13	actors	conveying	

sadness,	happiness,	fear	and	anger.	Different	techniques	produced	a	large	range	of	results	

with	 the	 Linear	 FSPCA	 producing	 the	 highest	 recognition	 rate	 of	 96.7%	 on	 the	 hand	

movement.	The	algorithm	did	not	perform	as	well	on	full	body	motion	data	with	the	highest	

recognition	 accuracy,	 produced	 by	 FSPCA-GRBF,	 being	 only	 53.6%	when	 using	 the	 leave-

one-out	cross	validation	method.		
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II. Using	Temporal	Segmentation	

	

Motion	time	series	can	be	broken	down	into	stages,	such	as	different	stages	of	a	knocking	or	

walking.	When	analysing	motion,	not	all	stages	of	the	motion	will	equally	contribute	to	the	

classification	process.	Both	Xu	and	Sakazawa	[45]	and	Bernhardt	and	Robinson	[46]	explored	

the	idea	of	segmenting	motion.	In	their	studies,	knocking	motion	data	was	segmented	into	

different	 stages,	 but	 then	 recombined	 with	 a	 different	 weighting	 given	 to	 the	 data	

associated	with	each	segment.	Their	work,	however,	could	also	be	applied	to	segmentation	

of	walking.	 In	both	studies,	Leave	One	Subject	Out	Cross	Validation	 (LOSO–CV)	 tests	were	

conducted	and	the	weighted	segment	approach	achieved	a	higher	accuracy	classifying	the	

motion	 as	 a	 whole	 action.	 Hence,	 some	 aspects	 of	 motion	 influenced	 the	 affect	

identification	 more	 strongly.	 In	 analysing	 time	 series	 such	 as	 gait	 data,	 the	 general	

assumption	 was	 that	 not	 all	 stages	 of	 walking	 equally	 contributed	 to	 the	 classification	

process.	 For	 example,	 raising	 the	 leg	 could	 provide	 more	 clues	 about	 the	 mood	 than	

lowering	the	leg.	Accordingly,	the	data	could	be	segmented	into	components	representing	

different	 stages	 of	 gait	 and	 only	 the	 raising	 segment	 of	 the	 leg	 could	 be	weighted	more	

heavily	in	the	classification.	

	

Xu	and	Sakazawa	[45]	assumed	that	body	movements	such	as	gestures	have	multiple	phases	

and	that	none	of	these	segments	expressed	an	affective	state	equally.	This	meant	that	each	

segment	must	have	 its	own	weight.	The	method	was	developed	and	validated	based	on	a	

University	of	Glasgow	database.	 In	 this	Temporal	Lobe	approach,	 the	emotions	associated	

with	each	segment	were	identified	and	were	recombined	together	with	a	weighting	given	to	

each	segment.	Xu	and	Sakazawa	achieved	a	2.5%	to	3.4%	higher	detection	rate	of	gestures	
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by	 deploying	 the	 temporal	 lobe	 approach	 compared	 to	 traditional	 deployment	 of	motion	

data.	

	

Bernhardt	 and	 Robinson	 [46]	 also	 showed	 the	 benefit	 of	 giving	 weightings	 to	 different	

segments	 of	 motion	 data	 in	 emotion	 recognition.	 They	 utilised	 a	 collection	 of	 knocking	

performed	 by	 30	 individuals	 in	 neutral,	 happy,	 angry	 and	 sad	 affective	 styles	 contained	

within	 the	 University	 of	 Glasgow	 motion	 capture	 database.	 The	 motion	 energy	 was	

calculated	by	a	weighted	 sum	of	 the	 rotational	 limb	 speeds	 to	detect	 the	emotion	of	 the	

individual.	 A	 set	 of	 accuracies	 ranging	 from	 50%	 to	 81%	 was	 achieved.	 This	 method,	

however,	 relied	 heavily	 on	 normalising	 the	 joint	 position	 data	 based	 on	 body	 size	 and	

known	 properties	 for	 that	 specific	 subject.	 For	 an	 unknown	 candidate,	 however,	 an	

estimation	 of	 body	 size	 for	 normalisation	 was	 made,	 which	 potentially	 decreased	 the	

accuracy.	Only	right	handed	knocking	was	utilised	but	this	method	could	be	applied	to	body	

language	to	identify	emotions	from	walking	styles.		

	

	

2.6 Using	Global	Features	

	

I. Types	of	Global	features	

	

Global	 features	 represent	 the	 overall	 characteristics	 of	 the	 posture	 rather	 than	 the	

properties	of	certain	key	points	on	the	posture.	Sanghvi	et	al.	 [35]	utilised	the	quantity	of	

motion	 and	 contraction	 index	 as	 global	 features.	 Quantity	 of	 motion	 was	 obtained	 by	
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subtracting	the	silhouette	of	the	subject	in	the	current	frame	from	the	previous	frame.	The	

difference	 in	 images	 represented	 how	much	movement	 had	 occurred.	 Contraction	 index	

was	 a	 measure	 of	 the	 expansiveness	 of	 the	 body	 and	 was	 determined	 by	 the	 area	 of	 a	

rectangular	bounding	box	that	surrounded	the	silhouette.		

	

Another	example	is	Laban	Movement	Analysis	(LMA)	[54],	which	has	been	extensively	used	

in	activity	recognition	systems	but	has	potential	for	more	use	in	affect	recognition.	

	

Hachimura	et	al.	 [3]	deployed	the	LMA	method	(which	has	 four	major	components:	body,	

effort,	 shape	and	 space),	 but	with	 focus	on	 the	effort	 and	 space	 components	only.	 Effort	

was	 broken	 down	 even	 further	 into	weight,	 time,	 space	 and	 flow	 factors	 and	 shape	was	

broken	down	into	shaping	and	shape	flow.	They	used	machined	based	recognition	to	extract	

the	 LMA	 components	 of	 ballet	 motion	 and	 made	 a	 comparison	 against	 the	 analysis	

conducted	 by	 an	 LMA	 specialist.	 The	 study	 demonstrated	 that	 LMA	 components	 can	 be	

computed	numerically,	but	they	did	not	go	on	to	use	these	values	within	Classification.	

	

	

II. Global	features	using	Motion	Capture	

	

Karg	et	al.	detected	emotions	using	human	gait	and	compared	different	component	analysis	

techniques	 and	 classifiers	 [48].	 The	 Technische	 Universität	 München	 (TU	 München)	 gait	

database	 was	 utilised,	 which	 contained	 motion	 capture	 recordings	 of	 13	 male	 non-

professional	 actors	 demonstrating	 neutral,	 happy,	 sad	 and	 angry	 emotions.	 Initially,	 the	

motion	capture	data	was	applied	to	an	animated	puppet	in	order	to	determine	the	accuracy	
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in	 determining	 human	 emotions	 purely	 from	 the	 gait,	 without	 any	 influence	 of	 facial	

expressions	or	physique.	Human	observers	were	able	to	identify	emotions	portrayed	by	the	

puppet	 gait	with	 an	 average	 accuracy	 of	 63%.	 Karg	 et	 al.	 used	 velocity,	 stride	 length	 and	

cadence,	as	well	as	the	minimum,	maximum	and	mean	joint	angles	as	features.	The	feature	

space	was	transformed	using	three	different	methods:	principal	component	analysis	(PCA),	

kernel	 PCA	 (KPCA)	 and	 linear	 discriminant	 analysis	 (LDA).	 Three	 different	 classifiers	 were	

applied	 to	 each	 transformation,	 naïve	 bayes,	 nearest	 neighbour	 and	 a	 support	 vector	

machine,	to	categorise	the	emotion	based	on	the	data.	PCA	with	a	support	vector	machine	

classifier	 achieved	 the	 highest	 accuracy	 at	 69%.	 This	 was	 comparable	 to	 the	 accuracy	 of	

human	 recognition	 of	 emotions	 in	 the	 animated	 puppet.	 Taking	 into	 consideration	 the	

characteristics	of	the	individual	being	observed,	the	emotion	recognition	had	an	accuracy	of	

95%.	Following	the	same	approach,	Karg	et	al.	also	studied	the	ability	to	recognise	pleasure,	

arousal	and	dominance	(PAD)	in	the	subjects	as	they	expressed	the	emotions	of	displeasure,	

contentment,	 boredom,	 excitement	 and	obedience.	 These	 emotions	were	 chosen	 as	 they	

lied	at	the	extremes	of	the	PAD	model.	Using	the	same	SVM	from	data	from	all	joint	angles,	

the	 system	 produced	 an	 accuracy	 of	 88%	 for	 pleasure,	 97%	 for	 arousal	 and	 96%	 for	

dominance.	 However,	 there	 is	 no	 reported	 attempt	 to	 use	 PAD	 recognition	 models	 for	

classifying	data	into	different	emotions.	

	

III. Kinect	

	

Zacharatos	 et	 al.	 [25]	 applied	 Laban	 movement	 analysis	 to	 classify	 the	 emotions	 of	

candidates	playing	exergames.	 Thirteen	players	played	 sport	 games	 for	 30	minutes	on	an	

Xbox	with	 Kinect	whilst	 being	 recorded	 through	 an	 eight-camera	motion	 tracking	 system	
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and	a	separate	video	camera.	Ground-truth	was	determined	by	four	observers	labelling	the	

video	 footage.	 Out	 of	 the	 309	 clips	 recorded,	 only	 197	 were	 in	 agreement	 with	 the	

observers	and	were	hence	utilised.	For	 the	analysis,	 Zacharatos	et	al.	only	 considered	 the	

space	 and	 time	 motion	 factors	 of	 LMA.	 Concentration,	 meditation,	 excitement	 and	

frustration	were	recognised	with	an	overall	classification	accuracy	of	85.27%.	Motion	clips	

were	only	used	if	they	felt	the	subjects	exhibited	one	of	the	four	emotions	being	classified	

and	 if	 the	 four	 observers	 agreed	 on	 the	 portrayed	 emotion.	 The	 study	 did	 not	 take	 into	

account	a	range	of	other	emotions	that	may	be	misclassified	by	the	system.		

	

In	 their	 study,	 Woo	 Hyun	 et	 al.	 [37]	 proposed	 using	 an	 LMA	 to	 distinguish	 between	

emotions.	Microsoft	Kinect	was	deployed	to	study	20	points	on	the	body	considering	space,	

weight	and	time.	Flow	always	appears	in	a	state	of	motion	so	it	was	not	used.	Rejoicing	and	

lamenting	were	 found	 to	 be	 easily	 distinguishable	 from	 each	 other	 in	 space,	 weight	 and	

time.	These	two	emotions	are	largely	different	in	their	nature	and	more	study	is	needed	to	

see	how	this	system	works	with	less	extreme	emotions.		

	

McColl	et	al.	 [38]	set	out	to	 improve	social	robots	for	use	at	meal	times	 in	 long	term	care	

facilities.	They	recognised	the	need	for	a	caregiver	to	detect	the	emotions	of	their	patient	at	

meal	 times	 so	 that	 they	 can	 respond	 and	 interact	 appropriately.	 Body	 Posture	 and	

movements	 in	 a	 seated	 position	was	 utilised	 to	 determine	 affect.	 3D	 data	 from	 a	 Kinect	

system	was	deployed	 to	detect	different	body	 language	 features	 (e.g.	 speed	of	 the	body,	

bowing/stretching	of	 the	 trunk)	 to	classify	 the	valence	and	arousal	values	of	 the	subjects.	

McColl	 et	 al.	 utilised	 nine	 different	 learning	 techniques	 to	 compare	 their	 effectiveness,	

benchmarking	them	against	the	median	value	of	twenty	one	human	observers.	The	highest	
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accuracy	for	valence	recognition	obtained	was	77.9%	using	a	radial	basis	function	network	

(RBFN)	and	93.6%	for	the	arousal	recognition	rate	using	adaptive	boosting	with	Naïve	Bayes.	

	

IV. Video	Analysis	

	

Lourens	et	al.	 [55]	 studied	one	subject	performing	waving	 in	angry,	happy,	 sad	and	polite	

emotions,	discovering	that	they	each	produced	distinct	acceleration	profiles.	A	combination	

of	 skin	 colour	 tracking	and	motion	analysis	was	used	 to	view	 the	movement	of	hand	arm	

and	head.	 It	was	shown	that	 these	emotions	occupy	distinct	 regions	of	weight,	 time,	 flow	

and	time	areas	of	LMA.		

	

The	Geneva	Multimodal	Emotion	Portrayal	(GEMEP)	corpus	developed	at	the	University	of	

Geneva	 was	 utilised	 by	 Glowinski	 et	 al.	 [56],	 containing	 12	 emotions	 expressed	 by	 ten	

actors.	Three	subsequent	layers	of	processing	was	deployed,	ranging	from	low-level	physical	

measures	(e.g.,	position,	speed,	acceleration	of	body	parts)	to	overall	gesture	features	(e.g.,	

motion	fluency,	impulsiveness)	and	high-level	information	describing	semantic	properties	of	

gestures	 (affect,	 emotion,	 and	 attitudes).	 Extraction	 of	 expressive	 features	 from	 human	

movement	was	carried	out	using	 the	EyesWeb	XMI	Expressive	Gesture	Processing	Library,	

utilising	head	and	hand	movements.	The	features	of	energy,	spatial	extent,	symmetry,	and	

forward-backward	 learning	 of	 head	 were	 used	 with	 PCA.	 They	 were	 able	 to	 rate	 the	

emotions	 into	 four	 different	 clusters	 of	 combinations	 of	 low/high	 valence	 and	 low/high	

arousal.	
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Park	et	al.	[34]	explored	the	application	of	Laban	Movement	Analysis	to	recognise	emotions	

from	 dance	 image	 sequences.	 A	 camera	 captured	 four	 professional	 dancers	 freely	

performing	various	movements	of	dance	portraying	happiness,	surprise,	anger	and	sadness.	

They	 eliminated	 the	 background	 and	 extracted	 the	 number	 of	 dominant	 points	 on	 the	

boundary,	 the	 coordinates	 of	 centroid,	 the	 aspect	 ratio	 and	 the	 coordinates	 of	 rectangle,	

the	velocity	and	acceleration	of	each	feature.	Singular	value	decomposition	was	applied	to	

the	features	to	distinguish	those	that	were	reliable.	These	features	were	then	classified	into	

the	 emotion	 categories	 using	 a	 time	 delayed	 multi-layer	 perceptron.	 They	 were	 able	 to	

classify	the	emotions	with	an	average	accuracy	of	73%.	

	

Sanghvi	et	al.	 [35]	also	used	global	 features	 in	affective	recognition	by	social	 robots.	They	

analysed	human	postures	and	body	motion	to	measure	the	level	of	engagement	of	children	

playing	chess	with	their	companion	which	was	an	icat	robot	using	an	electronic	chessboard.	

The	icat	interacted	with	the	child	appropriately	by	making	a	sad	facial	expression	when	the	

child	made	a	good	move	and	a	happy	facial	expression	when	the	child	made	a	bad	move.	

Sanghvi	et	al.	recorded	the	gameplay	via	two	cameras;	one	looking	at	the	child	in	a	lateral	

view	and	one	 in	a	 frontal	view.	Five	eight-year-old	subjects	playing	two	chess	exercises	at	

different	 levels	 of	 difficulty	 was	 used.	 Because	 of	 their	 age,	 the	 participants	 they	 were	

unable	 to	 accurately	 identify	 their	 own	 levels	 of	 engagement.	 Instead	 Sanghvi	 et	 al.	 used	

three	 coders	 to	 manually	 label	 the	 different	 sections	 of	 video	 as	 either	 engaged,	 not	

engaged	or	unsure.	The	unsure	segments	were	discarded	in	order	to	remove	sections	of	the	

video	that	could	easily	confuse	the	machine.	In	order	to	measure	the	levels	of	engagement,	

Sanghvi	et	al.	used	 features	of	body	 lean	angle,	a	 slouch	 factor,	quantity	of	motion	and	a	
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contraction	 index.	 A	 variety	 of	 classifiers	 were	 tested	 with	 ADTree	 and	 OneR	 classifiers	

which	achieving	the	highest	accuracy	of	82%.	

	

2.7 Combining	Global	Features	

A	combination	of	 local	and	global	 features	was	deployed	 in	object	recognition	[57],	action	

recognition	 [58]	 and,	 more	 recently,	 in	 facial	 expression	 recognition	 with	 encouraging	

results	 [59].	 In	 spite	 of	 rigorous	 search,	 no	 report	 of	 the	 application	 of	 this	 approach	 to	

automatic	affective	recognition	from	gait	and	posture	was	found	in	the	literature.		

	

Siddiqi	 and	 Vincent	 [60]	 deployed	 a	 combination	 of	 global	 and	 local	 features	 in	 writer	

identification	of	handwriting.	They	recognised	that	previous	techniques	were	classified	into	

global	 and	 local	 approaches,	 which	 contained	 different	 information.	 Global	 methods	

examined	 the	 overall	 look	 and	 feel	 of	 writing,	 whereas	 local	 methods	 utilised	 localised	

features	 of	writing	which	were	different	 to	 each	user.	 By	 combining	 these	 two	 groups	of	

features	they	were	able	to	effectively	identify	the	writer.			

	

He	 et	 al.	 [61]	 examined	 the	 detection	 of	 license	 plates	 from	 video.	 Previous	 detection	

systems	classified	the	license	plates	based	on	local	Haar-like	features	that	could	identify	an	

object	within	a	complex	backgrounds	invariant	to	colour,	illumination,	position	or	size	of	the	

object.	 [61].	Using	 these	Haar-like	 features,	 however,	 resulted	 in	 the	 classifiers	 becoming	

very	large,	leading	in	turn	to	complexity	and	instability.	In	order	to	overcome	this	deficiency,	

the	 authors	 deployed	 the	 use	 of	 global	 statistical	 features	 in	 combination	 with	 the	 local	

Haar-like	features.	The	combination	of	global	and	local	features	produced	a	simpler,	more	

efficient	and	flexible	detection	system.	
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Lising	et	al.	[57]	observed	previous	work	on	object	recognition	utilised	either	local	or	global	

features	in	isolation	from	each	other.	They	reduced	the	error	rate	of	classification	by	20%,	

by	combining	both	local	and	global	features	in	a	single	classifier		

	

Wang	et	al.	[58]	deployed	a	combination	of	local	and	global	features	in	action	recognition.	

Spatio-temporal	 cuboids	were	deployed	 for	 their	 local	 features,	 and	 silhouette	 projection	

histograms	 for	 their	 global	 feature.	 They	 showed	 that	 using	 local	 and	 global	 features	 on	

their	 own	 often	 did	 not	 provide	 sufficient	 information	 to	 distinguish	 variation	 amongst	

different	motions.	A	more	stable	action	recognition	system	was	produced	by	combining	all	

the	features	in	the	classification	process.	

	

Bosch	 et	 al.	 [62]	 examined	 the	 automatic	 detection	 of	 food	 items.	 Local	 colour,	 local	

entropy	 colour,	 Tamura	perceptual	 features,	Gabor	 filters,	 SIFT	descriptor,	Haar	wavelets,	

Steerable	filters,	and	DAISY	descriptor	for	a	patch	around	the	point	of	 interest	 in	the	food	

item	were	deployed	as	local	features.	The	average	of	colour	statistics,	entropy	statistics,	and	

predominant	 colour	 statistic	 across	 the	 whole	 image	 were	 utilised	 as	 global	 features.	 A	

combination	 of	 local	 and	 global	 features	 again	 resulted	 in	 a	 more	 accurate	 classification	

system.			
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2.8 Multiple	Modality	Fusion	

	

D’mello	and	Kory	[84]	performed	a	meta-analysis	of	the	studies	undertaken	between	2003	

and	 2013.	 Accuracy	 of	 90	 studies	 were	 reported	 on,	 including	 both	 uni-modal	 and	

multimodal	 approaches	 to	 affective	 recognition	 so	 that	 the	 two	 approaches	 could	 be	

compared	 without	 taking	 into	 account	 the	 individual	 aspects	 of	 the	 studies.	 Their	 study	

included	 different	 combinations	 of	 multimodal	 systems	 using	 information	 from	 the	 face,	

voice,	text,	physiology,	and	body.	Most	of	these	studies	used	a	combination	of	two	or	more	

modalities,	 but	 sometimes	 they	 used	 three	 or	 more.	 D’mello	 and	 Kory	 found	 that	 a	

multimodal	 approach	 to	 affective	 recognition	 consistently	 performed	 better	 than	 a	 uni-

modal	 system	 by	 an	 average	 of	 9.8%.	 Underperformance	 of	 one	modality,	 however,	 can	

decrease	the	overall	accuracy	of	the	system	as	shown	by	Gunes	and	Picardi	[63].	Therefore,	

improving	body	modalities	will	 in	turn	increase	multiple	modality	results	and	overall	affect	

recognition	accuracy.	In	this	section,	the	focus	will	be	on	the	approach	taken	in	utilising	the	

body	modality	within	multimodal	systems.	

	

In	their	work,	Gunes	and	Picardi	 [63]	utilised	 information	from	the	upper	body	posture	to	

improve	the	recognition	rate	of	emotions	from	facial	recognition	alone.	They	assumed	that	

the	subject	had	a	frontal	view,	with	the	upper	body,	face	and	two	hands	within	full	view	and	

not	 obstructing	 each	 other.	 The	 emotions	 of	 disgust,	 happiness,	 surprise,	 anger,	 happy-

surprise,	 fear,	 sadness	 and	 uncertainty	 were	 studied.	 For	 upper	 body	 information,	 body	

action	units	were	utilised	containing	classes	of	emotions	that	a	posture,	or	combination	of	

postures,	 could	 correspond	 to,	 e.g.	 extended	 body	 and/or	 two	 hands	 up	 could	 represent	

either	anger	or	happiness.	
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The	 system	 would	 therefore	 give	 extra	 weighting	 to	 the	 recognition	 of	 either	 of	 these	

emotions	portrayed	 in	 facial	expressions.	Body	modality	was	used	as	an	auxiliary	mode	 in	

their	 system	 to	 combine	 with	 facial	 recognition.	 Facial	 recognition	 and	 body	 posture	

recognition	were	first	 trained	separately	and	then	trained	together.	A	variety	of	classifiers	

were	 tested	with	BayesNet	providing	 the	best	 results	 for	 the	 face	and	C4.5	providing	 the	

best	results	for	body	posture.	Gunes	and	Picardi	were	able	to	increase	the	recognition	rate	

using	 facial	 information	 from	 72.83%	 to	 89.8%.	 They	 repeated	 the	 results	with	 Adaboost	

and	 were	 able	 to	 recognise	 emotions	 from	 the	 face	 alone	 with	 an	 87.54%	 accuracy	

compared	to	94.66%	when	using	both	face	and	body	modalities.	It	is	interesting	to	note	that	

although	Gunes	and	Picardi	improved	upon	their	accuracy	for	using	facial	expressions	alone,	

the	combined	success	rate	was	lower	than	that	with	the	body	cues	alone.	This	could	be	due	

to	the	significantly	lower	recognition	of	affect	from	facial	expressions	alone	as	compared	to	

recognition	using	body	posture.	

	

Body	gesture	analysis	was	performed	by	extracting	spatial-temporal	 features	and	using	an	

SVM	classifier.	Facial	recognition	and	body	gesture	analysis	were	combined	using	canonical	

correction	analysis	 (CCA).	 In	 a	 single	modality	 alone,	 the	 system	achieved	72.6%	accuracy	

from	body	gestures	and	79.2%	accuracy	 from	facial	 recognition.	When	the	two	modalities	

were	 combined	 using	 canonical	 correction	 analysis,	 the	 system	 reached	 an	 accuracy	 of	

88.5%.	

	

Gunes	and	Picardi	 [29]	also	 investigated	the	difficulty	of	combining	emotional	 information	

from	 face	 and	 body	 modality	 when	 they	 had	 a	 temporal	 relationship	 but	 were	 not	
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necessarily	 synchronous.	 Body	modality	 was	 found	 to	 follow	 the	 facial	 modality	 in	 time,	

even	 though	 they	 appear	 to	 occur	 simultaneously.	 They	 proposed	 that	 since	 each	 of	 the	

feature	vectors	from	the	face	and	body	had	distinct	set	phases	(neutral-onset-apex-offset-

neutral)	 in	 a	 set	 order,	 then	 they	 could	 phase	 synchronise	 the	 apex	 from	 each	modality	

together.	 The	authors	were	not	 able	 to	 identify	 a	 suitable	database	at	 the	 time	and	 they	

created	their	own	database	(FABO).	Then	different	actors	using	a	scenario	approach	where	

they	provided	the	actors	with	a	short	scenario	that	outlined	an	emotion-eliciting	situation	

and	 then	 asked	 them	 to	 act	 as	 if	 they	were	 in	 this	 situation.	 The	 actors’	 responses	were	

recorded	 by	 two	 cameras,	 one	 for	 the	 face	 and	 another	 for	 the	 body	 against	 a	 plain	

coloured	 background	 to	 help	 the	 detection.	 Anger,	 anxiety,	 boredom,	 disgust,	 fear,	

happiness,	negative	surprise,	positive	surprise,	uncertainty,	puzzlement,	and	sadness	were	

examined.	 Frames	 from	 the	 face	 and	 body	 modalities	 were	 first	 classified	 into	 temporal	

segments,	 and	 the	 feature	 vectors	 from	 the	 apex	 frames	were	 used	 in	 the	 classification.	

Gunes	 and	Picardi	 classified	 these	 emotions	 using	 a	 variety	 of	 both	 frame	 and	 sequence-

based	classifiers.	Individual	frames	were	classified,	then	either	feature	level	or	decision	level	

fusion	was	performed.	 In	 feature	 level	 fusion,	 the	apex	 feature	vectors	 from	the	 face	and	

body	 were	 paired	 together	 and	 fed	 into	 a	 classifier	 for	 bimodal	 affect	 recognition.	 In	

decision	 level	 fusion,	 the	 two	 modalities	 were	 classified	 separately,	 then	 decision-level	

fusion	 provided	 the	 eventual	 bimodal	 affective	 recognition.	 Although	 Gunes	 and	 Picardi	

expected	 the	 face	 to	 be	 the	 primary	modality,	 experiments	 prove	 this	 assumption	wrong	

and	 they	 achieved	 a	 confidence	 level	 of	 0.3	 for	 the	 face	 modality	 and	 0.7	 for	 the	 body	

modality.	 For	 the	 body	modality,	 they	 focussed	 on	 emotions	 generated	with	 one	 or	 two	

hands,	 head,	 shoulders	 or	 combinations	 of	 these.	 For	 uni-modal	 approaches,	 they	 only	

obtained	a	success	rate	of	35.22%	for	facial	expressions	and	76.87%	for	body	gestures.	With	



 45 

combined	modalities,	 they	 were	 able	 to	 achieve	 an	 accuracy	 of	 82.65%	 for	 feature	 level	

fusion	and	78%	for	decision	level	fusion.	

	

Shan	et	al.	[31]	also	used	the	FABO	database	to	study	at	the	fusion	of	the	combined	facial	

and	body	modalities.	 The	 categories	 of	 anger,	 anxiety,	 boredom,	disgust,	 joy,	 puzzlement	

and	 surprise	 were	 detected	 from	 videos	 of	 twenty-three	 participants.	 When	 using	 the	

combination	of	data	from	facial	expression	and	body	posture,	the	result	increased	to	88.5%	

compared	to	79.2%	from	facial	recognition	alone		

	

Chen	 et	 al.	 [64]	 also	 considered	 fusing	 together	 information	 from	both	 facial	 expressions	

and	 body	 cues	 with	 a	 temporal	 relationship.	 An	 alternative	 method	 was	 proposed	 to	

compensate	for	complicated	real	time	processing.	A	motion	history	image	(MHI),	consistent	

of	 a	 histogram	of	 oriented	 gradients	 (HOG)	 and	 an	 image-HOG	was	 produced.	 Instead	 of	

using	the	apex	frame,	they	utilised	data	from	the	onset	through	the	apex	to	the	offset.	After	

extracting	MHI-HOG	and	Image-HOG,	PCA	was	performed	to	reduce	the	feature	dimension	

in	each	frame.	Each	frame	was	assigned	a	neutral	divergence	(the	difference	between	the	

frame	image	and	the	neutral	frame)	to	break	the	data	into	temporal	segments.	Chen	et	al.	

also	applied	a	temporal	normalisation	over	the	whole	range	(from	onset,	apex,	to	offset)	to	

overcome	 the	 significant	 variation	 in	 time	 resolutions	 of	 expressions.	 Classification	 was	

performed	by	a	SVM	with	an	RBF	kernel.	They	also	used	the	FABO	database	[29].	Two	thirds	

of	 the	data	was	used	as	 training	and	 the	other	 third	 for	 testing.	Chen	et	 al.	were	able	 to	

achieve	 an	 accuracy	of	 73%	 for	 combined	 facial	 expressions	 and	body	 gestures.	Although	

this	was	a	lower	accuracy	than	that	recorded	by	Gunes	and	Picardi,	Chen	et	al.	believed	that	

it	 was	 a	 more	 appropriate	 approach	 for	 real-time	 processing	 as	 it	 did	 not	 rely	 on	 facial	
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component	 tracking,	 hand	 tracking	 and	 shoulder	 tracking.	 Fusing	 the	 two	 modalities	

increased	the	accuracy	by	7%	to	9%	compared	to	the	use	of	face	or	body	modalities	alone.		

	

Chen	and	Tian	[32]	then	proposed	an	alternative	method	of	fusing	together	facial	and	body	

gesture	 information.	They	proposed	a	method	using	a	margin	constrained	multiple	kernel	

learning	 (MCMKL)	 based	 fusion	 approach	 in	 order	 to	 avoid	 any	 contamination	 from	 less	

discriminating	 features,	 as	 the	 margin	 could	 measure	 the	 discriminating	 power	 of	 each	

feature.	 After	 determining	 the	 base	 features,	 one	 vs	 one	 classifier	 is	 trained	 using	 the	

optimally	 combined	 kernel	 and	 evaluated	 on	 the	 FABO	database	 [29].	 The	 facial	 features	

image-HOG	and	MHI-hog	are	extracted	as	well	as	body	gesture	features	of	location,	motion	

area,	 image-HOG	 and	 MHI-HOG.	 As	 applied	 in	 [64],	 each	 expression	 is	 segmented	 into	

onset,	 apex,	 offset	 and	 neutral	 phases,	 and	 a	 temporal	 normalisation	 procedure	 is	

undertaken,	 following	by	 the	MCMKL.	Chen	et	al.	 found	 that	 this	approach	outperformed	

the	concatenation	fusion	with	an	average	of	1.3%,	achieving	an	accuracy	of	77.3%.		

	

Kessous	et	al.	[33]	combined	multiple	modalities	into	an	emotion	recognition	system.	Their	

own	 database	 of	 ten	 people	 (non-actors)	 pronouncing	 a	 sentence	 while	 making	 eight	

different	 emotional	 expressions	 (anger,	 despair,	 interest,	 pleasure,	 sadness,	 irritation,	 joy	

and	pride)	was	utilised.	These	eight	emotions	were	chosen	as	they	were	equally	distributed	

within	 the	 valence	 and	 arousal	 space.	 The	 demonstrators	 belonged	 to	 five	 different	

nationalities:	 French,	German,	Greek,	 Italian	 and	 Israeli.	 Two	 cameras	were	used,	 one	 for	

facial	recognition	and	the	other	for	body	gestures,	and	a	microphone	on	the	subject’s	shirt	

recorded	the	voice.	The	Viola	Jones	algorithm	was	deployed	for	face	detection.	Kessous	et	

al.’s	system	measures	facial	animation	parameters	(FAPs)	tracking	points	and	compares	the	
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deformation	 against	 a	 neutral	 frame.	 These	 FAPs,	 along	 with	 their	 calculated	 confidence	

levels	were	used	to	provide	the	facial	expression	estimation.	For	body	gestures,	Kessous	et	

al.	 used	 the	 EyesWeb	 expressive	 gesture	 processing	 library	 to	 extract	 the	 quantity	 of	

motion,	 contraction	 index	 of	 the	 body,	 velocity,	 acceleration	 and	 fluidity	 of	 the	 hands	

barycentre.	For	speech	features,	a	set	of	features	based	on	intensity,	pitch,	Mel	frequency	

cepstral	coefficient,	Bark	spectral	bands,	voice	segmented	characteristics	and	pause	length	

were	 utilised.	 The	 same	 classifier,	 BayesNet	 from	 the	 WEKA	 toolbox,	 was	 used	 on	 all	

classification	in	order	to	compare	unimodal,	bimodal	and	multimodal	system	performance.	

Kessous	et	al.	explored	both	the	use	of	feature	level	fusion	and	decision	level	fusion	for	the	

bimodal	 and	multimodal	 classification.	 For	 decision	 level	 fusion,	 two	 alternative	methods	

were	studied;	using	the	emotion	that	had	the	highest	probability	in	the	three	modalities	and	

initially	determining	whether	there	was	an	agreement	in	emotions	between	more	than	one	

of	the	modalities	before	reverting	back	to	the	highest	probability.	When	operating	as	a	uni-

modal	system,	the	accuracy	was	48.3%	for	facial	recognition,	67.1%	for	body	gestures,	and	

57.1%	for	speech	recognition.	The	best	results	were	obtained	from	the	system	operating	as	

a	 multimodal	 system	 looking	 at	 information	 from	 speech,	 facial	 and	 body	 gestures	

combined	with	a	feature	level	future	fusion	method.	This	resulted	in	an	overall	accuracy	of	

78.3	 %.	 It	 is	 worth	 noting	 that	 the	 poorest	 emotion	 recognition	 is	 for	 despair,	 with	 an	

accuracy	of	53.33%,	whereas	the	other	emotions	each	had	a	recognition	rate	of	more	than	

70%.	 The	 decision	 level	 approach	 for	 multimodal	 recognition	 produced	 an	 accuracy	 of	

74.6%.	Bimodal	approaches	also	achieved	more	accurate	results	than	a	uni-modal	approach	

with	an	accuracy	of	62.5%	for	speech	and	face	modalities	and	75%	for	speech	and	gesture	

modalities.	 However,	 the	 accuracy	 of	 65%	 for	 facial	 expression	 and	 gesture	 did	 not	

represent	 an	 improvement	 on	 the	 gesture	 recognition	 approach	 only.	 Although	 their	
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recognition	rate	from	facial	expression	and	bimodal	approaches	was	less	than	that	reported	

in	other	studies,	Kessous	et	al.	proposed	that	this	was	caused	by	their	more	natural	set-up.	

Eight	emotions	based	on	non-trained	actors	from	multiple	nationalities	were	studied,	with	

the	 actors	 given	 no	 instruction	 on	 the	 type	 of	 facial	 expression	 to	 use	 -	 only	 the	 overall	

emotion.	The	outcome	was	a	larger	variety	of	facial	expressions	for	any	one	emotion.	

	

2.8 Discussion	

	

The	 methods	 reported	 in	 various	 studies	 are	 so	 diverse	 that	 the	 differences	 in	 their	

approach	are	barriers	to	their	effective	comparison.	The	major	inconsistencies	between	the	

studies	reviewed	in	this	chapter	can	be	categorised	as:			

	

• The	number	and	type	of	actors	and	observers	

• Consistency	in	dataset	conditions	

• The	approach	used	to	define	the	correct	emotion		

• The	emphasis	on	real	time	computing	and	obtrusive	sensors	

• The	type	and	number	of	emotions	

	

A	 number	 of	 studies	 were	 used	 to	 identify	 the	 emotions	 of	 subjects	 acting	 out	 various	

situations,	 though	 professional	 actors	 were	 not	 consistently	 used.	 The	 majority	 of	 the	

methods	 relied	 on	 the	 subject’s	 ability	 to	 correctly	 communicate	 the	 intended	 emotion.	

While	some	actors,	even	not	professional,	could	act	out	 the	emotions	correctly,	many	did	

not.	Variation	 in	the	quality	of	portrayed	emotions	could	have	also	caused	by	 inconsistent	

methods	of	 inducing	the	emotion.	Some	studies	used	a	story	to	evoke	an	emotion;	others	
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relied	on	the	actor	recalling	their	own	memories,	while	others	left	it	up	to	the	actor.	Acted	

emotions,	however,	can	be	exaggerated	and	less	subtle	and	the	inconsistent	performance	of	

emotions	by	non-actors	may	be	more	 indicative	of	how	emotions	are	naturally	portrayed.	

For	the	purpose	of	this	project,	the	data	was	collected	from	professional	actors.	Each	actor	

was	asked	to	perform	each	emotion	three	times	to	ensure	that	any	variability	in	emotions	

displayed	was	recorded.	Future	research,	however,	could	replicate	this	project	with	natural	

emotions,	 such	as	 the	studies	 ([47],	 [39])	performed	on	emotions	displayed	whilst	playing	

video	games.		

	

Both	 the	 number	 of	 actors	 and	 observers	 used	 in	 the	 databases	 and	 datasets	 deployed	

within	literature	are	quite	small	compared	to	what	is	currently	used	within	facial	expression	

databases.	These	low	numbers	decrease	the	reliability	of	any	result	obtained,	as	any	outlier	

of	 performance	 or	 opinion	 of	 the	 actors	 and	 observers	 has	 a	 large	 effect	 on	 the	 overall	

results.	 For	 this	 research,	 71	 recordings	were	 deployed,	 using	 ten-fold	 cross	 validation	 to	

minimise	the	effect	of	overfitting	to	the	data.		

	

Different	studies	use	a	variety	of	style	of	emotions.	This	 is	dependent	upon	the	context	of	

their	study.	For	example	Calvo	and	D’Mello	 [65]	suggest	 that	emotions	such	as	confusion,	

frustration,	 boredom,	 flow,	 curiosity	 and	 anxiety	 are	more	 suited	 to	 student	 engagement	

environments.	However,	these	would	not	be	appropriate	in	the	context	of	security.	There	is	

debate	[66]	as	to	whether	the	labelled	categories	that	we	place	on	emotions	exist	or	if	they	

are	in	a	spectrum.	It	is	unknown	at	this	stage	whether	categorical	or	dimensional	categories	

are	more	suited	for	affect	recognition.	
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There	is	emphasis	on	real	time	analysis	of	acquired	data	without	requiring	the	user	to	wear	

any	 special	 equipment	 in	 some	 studies,	 whereas	 other	 studies	 use	 wearable	 sensors	 or	

motion	suits,	and	multiple	cameras.	Hence,	intensive	computation	of	data	in	real	time	is	not	

possible.	 The	 latter	methods	 provide	 a	 better	 outcome	 but	 the	 ultimate	 goal	 is	 to	 apply	

affective	perception	in	real	time.	The	differences	in	approach	are	barriers	to	more	effective	

comparison	 of	 methods.	 In	 this	 work,	 the	 emphasis	 was	 on	 providing	 proof	 of	 concept	

rather	than	real	time	deployment	of	the	methodology.	Therefore,	a	motion	capture	device	

was	deployed	that	required	subjects	to	wear	a	specially	designed	suit	with	inertial	sensors.		

	

The	cited	works	used	different	databases	and	datasets	 that	 increased	 the	complexity	of	a	

comprehensive	 comparison	 between	 them.	 Several	 studies	 deployed	 the	 FABO	 database	

but	they	only	used	a	specific	selection	from	the	database	rather	than	the	whole	set.	Since	

each	 study	used	 its	 own	dataset	 and	data	 detection	method,	 comparing	 the	 analysis	 and	

classification	methods	can	be	difficult.	 Studies	 that	use	a	common	data	 set	and	detection	

method	 need	 to	 be	 undertaken	 to	 enable	 comparison	 of	 the	 various	 processing	 options	

(including	 raw	 data)	 to	 determine	 their	 comparative	 effectiveness.	 Comparing	 classifiers	

within	 the	 same	 dataset	 and	 processing	 options	 should	 be	 considered	 to	 determine	 the	

more	effective	classifiers.	They	also	 incorporate	different	types	and	numbers	of	emotions.	

This	thesis	research	aims	to	overcome	some	of	these	issues.	

	

It	 is	 evident	 from	 the	 literature	 that	 machine	 based	 affective	 recognition	 from	 gait	 and	

posture	 is	 at	 an	 early	 stage	 of	 its	 development.	 The	 evidence	 produced	 by	 the	 studies	

presently	supports	the	conclusion	that	using	gait	alone	may	not	produce	results	which	are	

as	 accurate	 as	 those	 obtained	when	multimodal	 information	 is	 used.	 But,	 the	 studies	 on	
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multiple	modalities	 indicate	that	using	body	cues	still	provide	strong	performance	and	can	

be	 added	 to	 further	 improve	 facial	 and	 voice	 recognition.	 Underperformance	 of	 one	

modality,	however,	can	decrease	the	overall	accuracy	of	the	system	as	shown	by	Gunes	and	

Picardi	 [63].	 Therefore,	 improving	 body	modalities	will	 in	 turn	 increase	multiple	modality	

results	and	overall	affect	recognition	accuracy.		

	

As	 seen	 in	 the	 literature,	 moderately	 strong	 performance	 can	 be	 achieved	 with	 local	

(Section	2.4	&	2.5)	 or	 global	 features	by	 themselves	 (Section	2.6).	A	 combination	of	 local	

and	global	features	was	utilised	in	object	recognition	[57],	action	recognition	[58]	and,	more	

recently,	 in	 facial	 expression	 recognition	with	encouraging	 results	 [59].	 To	date,	however,	

this	approach	is	not	applied	to	automatic	affective	recognition	from	gait	and	posture.		

	

In	 this	 thesis,	 the	 performance	 the	 classifiers	 using	 of	 a	 combination	 of	 local	 and	 global	

features	 was	 studied.	 More	 specifically,	 the	 local	 features	 of	 Kapur	 [26]	 and	 the	 global	

features	 used	 by	 Zacharatos	 [25]	 were	 deployed	 in	 our	 analysis.	 The	 effect	 of	 additional	

global	 features	 that	 could	 further	 improve	 the	 performance	 of	 the	 classifier	 were	 also	

considered.	Overall,	four	datasets	were	deployed,	Kapur’s	local	features,	Zacharatos’	global	

features,	 Kapur	 and	 Zacharatos	 features	 combined,	 and	 the	 combined	 feature	 set	 with	

additional	global	features.	In	order	make	an	effective	comparison,	all	four	feature	sets	were	

examined	on	the	same	data	set	and	emotion	categories.	Multiple	classifiers	were	applied	to	

the	four	datasets	and	their	performance	were	compared.			
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3 MODELLING	

3.1 Introduction	

`	 	 `	

The	 previous	 work	 on	 automatic	 affect	 recognition	 from	 gait	 are	 based	 on	 only	 local	 or	

global	 features,	 in	 isolation	 from	 each	 other.	 Local	 features	 are	 the	 characteristics	

associated	with	 specific	 locations	 in	 a	 pattern	 or	 an	 image.	Global	 features,	 on	 the	 other	

hand,	represent	the	characteristics	associated	with	all	the	points	 in	a	pattern	or	an	image.	

Although	 applied	 in	 other	 areas,	 there	 are	 no	 reports	 in	 the	 literature	 on	 the	 automatic	

affect	 recognition	 from	 gait	 utilising	 a	 combination	 of	 local	 and	 global	 features.	 In	 this	

thesis,	 the	 effectiveness	 of	 combining	 these	 two	 categories	 of	 features	 in	 increasing	 the	

accuracy	of	affect	recognition	is	explored.	The	local	feature	approach	developed	by	Kapur	et	

al.	 [26]	 (referred	 to	 as	 Kapur	 local	method)	 and	 the	 global	 feature	method	 proposed	 by	

Zacharatos	 et	 al.[25]	 (referred	 to	 as	 Zacharatos	 global	 method)	 are	 combined	 in	 our	

approach.	

	

The	Kapur	local	method	is	outlined	in	Section	3.2.	The	global	methods	deployed	in	this	study	

rely	 heavily	 on	 Laban	 Movement	 Analysis	 [54],	 which	 is	 described	 in	 Section	 3.3.	 The	

Zacharatos	Global	method	is	outlined	in	Section	3.4.	The	theoretical	framework	behind	the	

expected	 improvement	 of	 combining	 local	 and	 global	 features	 into	 a	 single	 classifier	 is	

described	 in	 Section	 3.4.	 Section	 3.5	 outlines	 the	 additional	 features	 that	 are	 introduced,	

and	 the	 reasoning	 behind	 the	 resulting	 expected	 improvement.	 Finally,	 a	 detailed	

description	of	 the	 classification	algorithms	deployed,	and	validation	 techniques	utilised,	 is	

provided	in	Sections	3.6	and	3.7.	

	

	



 53 

3.2 Local	Features	

	

As	mentioned	earlier,	our	approach	is	inspired	by	the	Kapur	local	method.	Kapur	et	al.	[26]	

demonstrated	 the	 high	 potential	 of	 automatically	 detecting	 emotions	 through	 the	 use	 of	

body	movements.	A	VICON	Motion	System	was	used	to	capture	14	reference-point	markers	

placed	on	five	different	subjects.	The	participants	acted	out	 four	basic	emotions	 (sadness,	

joy,	 anger	 and	 fear).	 The	 VICON	 Motion	 Capture	 system	 recorded	 human	 movement	

through	 the	 use	 of	 six	 infrared	 cameras	 that	 tracked	 the	markers.	 The	markers	 positions	

were	reconstructed	by	VICON	to	give	them	a	vector	(v	=	[x,	y,	z])	of	Cartesian	coordinates	

representing	the	markers’	positions	in	3D	space.		

	

For	each	marker,	a	vector	containing	the	first	and	second	derivative	of	the	position	marker	

was	 reconstructed	 to	 represent	 the	 velocity	 and	 acceleration.	 The	 mean	 and	 standard	

deviations	 of	 the	 velocity	 and	 acceleration	were	 calculated	 to	 examine	 variation	 in	 these	

parameters	over	10	seconds	of	recording.	

	

3.3 Laban	Movement	Analysis	

	

Laban	 Movement	 Analysis	 (LMA)	 components	 are	 employed	 in	 our	 research	 as	 global	

features.	LMA	was	proposed	by	Rudolf	Laban	for	analysis	of	dance	movements	and	is	used	

in	the	literature	for	observing,	describing,	notating	and	interpreting	human	movement.		
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Moore	 and	 Yamamoto	 listed	 five	 general	 principles	 that	 underlie	 Laban's	 conception	 of	

human	movement	[67]:	

	

1. Movement	is	a	process	of	change.	

It	is	not	only	a	change	in	body	position	that	communicates	movement,	but	how	the	change	

has	occurred	is	important	in	conveying	information	about	movement.		

	

2. The	change	is	patterned	and	orderly.	

Although	the	process	of	change	of	 the	body	movement	may	appear	 to	be	disordered	and	

random,	there	are	distinct	sequencing	and	patterns.		

	

3. Human	movement	is	intentional.	

Human	 movement	 is	 purposeful	 and	 intentional	 to	 satisfy	 a	 need.	 Thus,	 there	 are	 clear	

energies	 and	 dynamics	 associated	with	 the	 “effort”	 of	 the	movement	 that	 can	 show	 the	

intention	behind	the	movement.		

	

4. The	basic	elements	of	human	movement	may	be	articulated	and	studied.	

	The	 basic	 elements	 forming	 a	 motion	 like	 alphabets	 in	 a	 language	 are	 the	 same.	 These	

elements	can	be	used	to	observe	and	analyse	any	human	movement.		
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5. Movement	must	be	approached	at	multiple	levels	if	it	is	to	be	properly	understood.	

In	 Laban’s	 approach	 to	 the	 analysis	 of	 movement,	 all	 aspects	 of	 motion	 are	 analysed	 at	

once.	 It	 incorporates	 the	 analysis	 of	 body	 part	 position,	 where	 and	 how	 these	 parts	 are	

moved	the	energy	of	the	movement,	and	the	use	of	space.	

	

Laban	originally	outlined	that	all	the	body	movements	can	be	categorised	by	their	use	of	the	

body,	the	use	of	space	and	the	use	of	dynamic	energy.	Hence,	LMA	is	generally	divided	into	

four	categories,	Body,	Effort,	Shape	and	Space.		

	

I. Body	

Body	describes	the	physical	characteristics	of	the	body	motion.	It	examines	the	components	

that	 initiate	movement,	the	final	position	of	the	body	movement	and	the	sequence	of	the	

movement.	

	

II. Effort	

Effort	identifies	the	intention	behind	movements.	For	example,	a	fist	in	the	air	can	represent	

anger,	or	can	represent	happiness.	For	this	action,	the	body	component	would	identify	the	

same	components	and	structure	of	the	body	parts	involved	with	the	movement,	but	Effort	

can	distinguish	how	the	movement	 takes	place.	The	movements	associated	with	different	

emotion	 are	 different	 in	 their	 power,	 control	 and	 timing	 of	 movement,	 which	 can	 be	

represented	within	Effort.	Effort	describes	whether	the	movement	 is	smooth,	sharp,	slow,	

fast,	flowing	etc.	and	is	broken	down	into	the	motion	categories	of	space,	weight,	time	and	
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flow.	Each	motion	category	exists	as	a	 continuum	between	 two	extremes,	as	displayed	 in	

Table	4.		

Table	4	-	Motion	Factors	and	Effort	Elements	[68]	

Space	–	attention	to	the	surroundings	
Indirect	

Flexible,	meandering,	wandering,	multi-focus	

Examples	 Waving	away	bugs,	slashing	through	plant	growth,	surveying	a	crowd	of	
people,	scanning	a	room	for	misplaced	keys	

Direct	
Singe	focus,	channelled,	undeviating	

Examples:	 Pointing	to	a	particular	spot,	threading	a	needle,	describing	the	exact	
outline	of	an	object	

Weight	–	attitude	towards	the	impact	of	one’s	movement	

Light	
Buoyant,	delicate,	easily	overcoming	gravity	

Examples	 Dabbing	paint	on	a	canvas,	pulling	out	a	splinter,	describing	the	movement	
of	a	feather	

Strong	
Powerful,	having	an	impact,	increasing	pressure	into	the	movement	

Examples:	 Punching,	pushing	a	heavy	object,	wringing	a	towel,	expressing	a	firmly	held	
opinion	

Time	–	lack	or	sense-of	urgency	

Sustained	
Lingering,	leisurely,	indulging	in	time	

Examples	
Stretching	to	yawn,	stroking	a	pet	

Sudden	
Hurried,	urgent	

Examples:	 Swatting	a	fly,	lunging	to	catch	a	ball,	grabbing	a	child	from	the	path	of	
danger,	making	a	snap	decision	

Flow	–	amount	of	control	and	bodily	tension	

Free	
Uncontrolled,	abounded,	unable	to	stop	in	the	course	of	the	movement	

Examples	
Waving	wildly,	shaking	off	water,	flinging	a	frock	into	a	pound	

Bound	
Controlled,	restrained	

Examples:	 Moving	in	slow	motion,	tai	chi,	fighting	back	tears,	carefully	carrying	a	cup	
of	hot	liquid	
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III. Shape	

	

Shape	characterises	how	the	body	form	changes	in	the	space.	Shape	has	three	components:	

Shape	 Flow,	Directional	Movement	 and	 Shaping/Carving.	 Shape	 Flow	 is	 a	measure	 of	 the	

size	that	the	torso	grows	or	shrinks,	and	the	opening	and	closing	of	body	limbs.	Directional	

Movement	 describes	 the	 direction	 of	movement	 towards	 an	 object.	 Shape	measures	 the	

changes	in	movement	in	the	three	planes	of	horizontal,	vertical	and	sagittal.		

	

Horizontal		

Indirect	 Affinity	with	Indirect	(i.e.,	deviating,	circling)	

Examples	
Opening	arms	to	embrace,	sprawling	in	a	chair,	smoothing	the	wrinkles	of	a	
table	cloth,	a	fisherman	throwing	out	a	net	

Enclosing	 Affinity	with	Direct	(i.e.,	undeviating,	pointing)	

Examples:	 Clasping	someone	in	a	hug,	crossing	one’s	arms	as	when	feeling	cold	

Vertical	

Rising	 Affinity	with	Light	(decreasing	pressure)	

Examples	
Reaching	for	something	in	a	high	shelf,	showing	off	with	a	pompous	bearing,	
looking	over	the	shoulder	

Sinking	 Affinity	with	Strong	(increasing	pressure)	

Examples:	
Stamping	the	floor	with	indignation,	pulling	down	a	shade,	a	boxer	ducking	
to	avoid	a	punch	

Sagittal	

Advancing	 Affinity	with	Sustained	(i.e.,	decelerating)	
Examples	 Reaching	forward	to	shake	hands,	reaching	forward	to	listen	more	carefully	
Retreating	 Affinity	with	Sudden	(i.e.,	accelerating)	

Examples:	
Darting	back,	avoiding	a	punch,	pulling	one’s	hand	back	from	a	hot	stove,	
shocked	by	a	sad	or	surprising	news	

Table	5	-	Shaping	Dimensions	and	Affinities	[4]	
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Although	Shape	has	three	components,	Chi	et	al.	[68]	suggested	that	they	could	be	merged	

into	 one	 three	 dimensional	 Shape	 term,	 comprising	 of	 horizontal,	 vertical	 and	 sagittal	

planes.	Each	dimension	exists	on	a	continuum	between	two	different	extremes,	as	shown	in	

Table	5.		

	

IV. Space	

	

Space	 is	 a	 measure	 of	 how	 the	 body	 moves	 through	 the	 space.	 There	 are	 certain	

combinations	of	movements	that	can	be	practised	to	be	more	harmonious	and	aesthetically	

pleasing.	Space	can	describe	the	area	the	body	is	moving	within,	the	space	being	used,	and	

the	direction	of	the	movement	and	where	the	movement	is	occurring.	

	

3.4 Global	Features	

	

In	Zacharatos	et	al.’s	study	[25],	13	players	played	sport	games	for	30	minutes	on	an	Xbox	

with	Kinect	whilst	being	 recorded	 through	an	eight-camera	motion	 tracking	 system	and	a	

separate	video	camera.	After	recording,	small	motion	clips	less	than	two	seconds	long	were	

extracted	 that	 represented	 one	 of	 the	 four	 mind	 states	 being	 investigated;	 meditation,	

concentration,	excitement	and	frustration.	Ground-truth	was	determined	by	four	observers	

labelling	the	video	footage	and	the	actors	intended	emotion.	Out	of	the	309	clips	recorded,	

only	197	were	in	agreement	with	the	observers	and	were	hence	utilised.		
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These	 authors	 employed	 Laban	 Movement	 Analysis	 (LMA),	 which	 describes	 movement	

based	on	the	components	of	Body,	Shape,	Effort	and	Space.	However,	they	only	deployed	

the	features	of	space	and	time,	which	is	a	subset	of	the	LMA	component	effort.	

	

The	 space	 feature	 vector	 was	 a	 combination	 of	 the	 change	 in	 head	 height	 and	 the	

prospective	 focus.	 The	 change	 in	 head	 height	 was	 calculated	 as	 a	 percentage	 and	 was	

referred	to	as	the	percentage	of	narrowing	down,	as	shown	in	equation	1.		

	

!"# = (&'()*)+,-.+/ −	&)/&'()*)+,-.+/ 	 (1)	

	 	

The	 dot	 product	 of	 the	 face	 features	 with	 the	 four	 extremity	 vectors	 represent	 the	

prospective	focus	of	the	movement	relative	to	a	given	point,	as	shown	in	equations	2	and	3.	

4 = {67+(/, 97+(/, 6:;;*, 9:;;*}	 (2)	

	

∀> ∈ 4, @ ∙ >	 (3)	

	

Together,	 these	 parameters	 form	 the	 components	 of	 the	 Space	 feature	 set,	 as	 shown	 in	

Table	 6.	 This	 Space	 feature	 set	 contains	 the	 percentage	 of	 narrowing	 down,	 and	 the	

prospective	focus	relative	to	the	left	and	right	hand,	and	the	left	and	right	foot.		
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Feature	 Description	

PND	 (&'()*)+,-.+/ −	&)/&'()*)+,-.+/ 	

DotLhandDirect	 @ ∙ 67+(/ 	

DotRhandDirect	 @ ∙ 97+(/ 	

DotLfootDirect	 @ ∙ 6:;;*	

DotRfootDirect	 @ ∙ 9:;;*	

	

Table	6	-	The	Space	Feature	Vector	

	

The	velocity,	acceleration,	and	jerk	of	the	four	extremities	were	utilised	by	Zacharatos	et	al.	

to	 represent	 the	 time	 that	 corresponds	 to	 the	 speed	 of	 the	 movement.	 Velocity,	

acceleration	and	jerk	formed	the	feature	set	of	the	time	as	shown	in	Table	7.	

	

These	combined	feature	sets	were	fed	into	WEKA.	Ten-fold	cross	validation	was	used	with	a	

Multilayer	Perceptron	classifier.		

	

	

	 	



 61 

	
Feature	 Description	

LhandV	 Velocity	(v)	for	Left	Hand	

RhandV	 Velocity	(v)	for	Right	Hand	

RfootV	 Velocity	(v)	for	Left	Foot	

LfootV	 Velocity	(v)	for	Right	Foot	

LhandA	 Acceleration	(a)	for	Left	Hand	

RhandA	 Acceleration	(a)	for	Right	Hand	

RfootA	 Acceleration	(a)	for	Left	Foot	

LfootA	 Acceleration	(a)	for	Right	Foot	

LhandJ	 Jerk	(j)	for	Left	Hand	

RhandJ	 Jerk	(j)	for	Right	Hand	

RfootJ	 Jerk	(j)	for	Left	Foot	

LfootJ	 Jerk	(j)	for	Right	Foot	

	

Table	7	-	The	Time	Feature	Vector	

	

3.5 	 Combining	Global	and	Local	Features		

	

As	 discussed	 in	 Chapter	 2,	 combining	 information	 from	 a	 variety	 of	 different	 modalities	

(body,	face,	voice	etc.)	can	improve	the	accuracy	of	affect	recognition.	These	different	data	

sources	bring	together	different	types	of	information	that,	when	combined,	are	greater	than	

any	of	them	individually.	Machine	based	affect	recognition	from	gait	and	body	posture	was	
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achieved	 in	 the	 previous	 work	 only	 through	 the	 use	 of	 either	 local	 features	 or	 global	

features.	 Local	 features	 examine	 movements	 within	 individual	 joints,	 whereas	 global	

features	examine	the	movement	of	the	whole	body	as	a	single	entity.		

	

As	 shown	 in	 a	 variety	 of	 contexts	 in	 Section	 2.7,	 combining	 the	 local	 and	 global	 features	

results	 in	 improved	 classification	 models.	 The	 model	 of	 global	 features	 used	 within	 this	

study	relies	on	LMA.	The	fifth	principal	stated	by	Moore	and	Yamamoto	[67]	underlying	LMA	

indicates	 that	movement	 can	 be	 understood	 better	 if	 it	 is	 approached	 at	multiple	 levels.	

That	is,	we	need	to	analyse	motion	based	on	all	components	of	LMA.	As	discussed	in	Section	

3.2,	LMA	is	made	up	of	four	components:	Body,	Effort,	Shape	and	Space;	and	they	are	best	

used	in	combination	with	each	other.		

	

In	 Zacharatos	 global	 method,	 only	 two	 subsections	 of	 the	 Effort	 LMA	 component	 were	

utilised.	 In	 Kapur	 local	 method,	 the	 features	 describing	 the	 actual	 positions	 of	 the	 body	

parts	corresponding	to	the	Body	component	of	LMA	were	used.	By	deploying	a	combination	

of	 the	 Kapur	 local	 method	 and	 the	 Zacharatos	 local	 method,	 the	 Effort	 and	 Body	 LMA	

components	are	effectively	combined	resulting	in	a	more	complete	LMA	description.		

	

3.6 Extra	features	

	

As	discussed	in	Section	3.2,	LMA	contains	four	components	and	is	best	represented	when	all	

four	components	are	utilised	together.	There	are	other	components	of	LMA	that	were	not	

used	 in	 Zacharatos	 global	 and	Kapur	 local	methods.	 In	 addition,	 each	 component	of	 LMA	
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contains	multiple	subsections,	which	are	not	all	utilised	 in	 the	 features	deployed	 thus	 far.	

Following	the	extraction	of	the	combination	feature	set,	we	employed	additional	features	to	

further	 improve	 classification	 accuracy.	 Features	 utilised	 by	 Hachimura	 et	 al.	 [3],	 and	

Garber-Barron	and	Si	[39]	were	deployed	to	articulate	a	more	complete	LMA	description.		

	

The	LMA	component	of	the	Body,	the	space	and	time	subset	of	Effort	were	already	included	

within	 the	 existing	 features.	 The	 features	 used	 by	 Hachimura	 et	 al	 were	 deployed	 to	

represent	 the	weight	 component	 of	 Effort,	 and	 the	 shape-flow	 component	 of	 Shape.	 The	

Horizontal	 and	 Vertical	 Symmetry	 utilised	 by	 Garber-Barron	 and	 Si	 were	 deployed	 to	

contribute	towards	the	Space	component	of	LMA.	Hachimura	et	al.	also	utilised	space	and	

time	subset	of	Effort,	but	this	was	not	deployed	to	avoid	duplication	in	the	feature	set	used	

in	this	study.		

	

Hachimura	et	al.	[3]	also	utilised	LMA	and	incorporated	weight,	space,	time	section	of	Effort,	

and	the	shape	flow	and	shaping	features	of	Shape.	Only	their	approach	to	shape	flow	and	

shaping	were	incorporated	in	our	approach	as	space	and	time	were	already	included.		

Weight	was	 also	 ignored	 because	 of	 its	 similarity	 to	 the	 velocity	 local	 feature.	 This	 study	

proposes	that	the	least	computationally	 intensive	method	for	calculating	the	shape	flow	is	

using	a	rectangular	parallelepiped	enclosing	the	whole	body	as	shown	in	Figure	7.	The	size	

of	each	side	of	 this	 rectangular	prism	 is	used	as	a	measure	of	 the	shape	 flow.	The	shape-

flow	is	calculated	by	(4).		
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shapeflow = xposLMN − xposLOP × yposLMN − yposLOP × zposLMN − zposLOP 	 (4)	

	

The	shaping	feature,	deployed	by	Hachimura	et	al.,	is	the	variance	of	the	x-y	frame	along	the	

z-axis.	It	is	calculated	by	determining	the	change	in	the	torso’s	z	coordinate.		

	

Horizontal	and	Vertical	Symmetry,	as	explored	by	Garber-Barron	and	Si	[39]	and	estimated	

by	(5)	and	(6),	were	deployed	in	the	model.	

	

Horizontal	Symmetry = 	
centreN − leftN − centreN − rightN

rightN − leftN
	 (5)	

	 	

Vertical	Symmetry = 	
centre^ − left^ − centre^ − right^

right^ − left^
	 (6)	

Figure 7 - Rectangular Parallelepiped [3] 
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3.7 Classifiers	

	

The	 classifiers	 are	 algorithms	 applied	 to	 the	 motion	 data	 for	 analysis	 and	 classification.	

More	 specifically,	 in	 affect	 recognition,	 these	 algorithms	 determine	 what	 features,	 or	

combinations	of	 features,	 can	be	used	 to	most	 accurately	predict	 the	associated	emotion	

category.	 In	this	section,	a	brief	outline	of	 the	most	commonly	used	classifiers	 in	machine	

based	 affect	 recognition	 is	 provided;	 alongside	 their	 advantages,	 disadvantages	 and	 an	

example	 of	 their	 application.	 The	 following	 classifiers	 were	 chosen	 since	 they	 have	 been	

used	in	previous	studies,	as	shown	in	Table	8:	BayesNet	[69],	Naïve	Bayes	 [70],	Multi-Layer	

Perceptron	 [71],	RBF	Network	[72],	SMO	[73] ,	IBk	[74],	J48	[75]	and	Random	Forest	[76].	

WEKA	was	used	to	apply	the	different	classifiers	and	to	compare	their	accuracy.	

	

Classification	Algorithm	 Deployed	by	

BayesNet	 Kessous	et	al.	[32]	

Naïve	Bayes	 Kapur	et	al.	[26]	and	McColl	et	al.	[38].				

Multilayer	Perceptron	(MLP)	 Kapur	et	al.	[26],	Kleinsmith	et	al.	[47],	

Zacharatos	et	al.	and	[25]	Park	et	al.	[33]	

Radial	Basis	Function	(RBF)	Network	 McColl	et	al.	[38].	

Sequential	Minimal	Optimisation	(SMO)	

	

Kapur	et	al.	[26],	McColl	et	al.	[38],	Karg	et	

al.	[48],	Shan	et	al.	[30],	Xu	

and	Sakazawa	[44]	

IBk	 McColl	et	al.	[38]	and	Xiao	et	al.	[39]	

J48	 Kapur	et	al.	[26]	

Random	Forest	 McColl	et	al.	[38],	Gunes	and	Picardi	[28]	

	

Table 8 - Summary of classifiers used 
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I. BayesNet	

	

BayesNet	 classifier	 is	 an	 implementation	 of	 a	 Bayesian	 Network	 algorithm.	 A	 Bayesian	

Network	is	a	graphical	model	that	represents	a	set	of	variables	that	have	dependence	upon	

each	 other.	 A	 simple	 Bayesian	 network	 is	 shown	 in	 Figure	 8,	 with	 the	 dependence	

relationships	shown	by	the	arrows.		

	

	

Figure	8	-	Bayesian	Network	[77]	
	

	

In	this	example,	node	b	is	dependent	upon	its	parent	node	a,	and	node	c	is	dependent	upon	

its	parent	nodes	a	and	b.		

	

The	 joint	probability	distribution	of	 this	network	 in	 Figure	8	 can	be	determined	using	 the	

product	 rule	 of	 probability	 based	 upon	 the	 product	 of	 conditional	 probabilities,	 as	

demonstrated	by	(7)	[77].		

	

Pr(a, b, c) 	= 	Pr(c|a, b)Pr(b|a)Pr(a)	 (7)	
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This	can	be	generalized	for	a	larger	Bayesian	network	with	any	number	of	nodes.	The	joint	

distribution	 of	 a	 Bayesian	 network	 with	 K	 nodes	 is	 shown	 in	 Equation	 8	 [77],	 where	 pak	

denotes	the	set	of	parent	notes	of	xk,	and	the	input	data	x	=	{x1,	…,	xk}.	

Pr > = 	 !b(>c|dec)
f

cgh

	 (8)	

BayesNet	classifier	was	implemented	in	WEKA	with	one	parent	and	a	simple	estimator	

alpha	value	of	0.5.	

	

	

II. Naïve	Bayes	

	

Naïve	 Bayes	 classifier	 utilises	 Bayes	 Theorem	 under	 the	 assumption	 that	 features	 are	

independent,	as	shown	in	Figure	9.	It	requires	only	a	small	amount	of	training	data,	 is	fast	

and	 easy,	 and	 performs	 reasonably	 well.	 However,	 since	 it	 assumes	 that	 features	 are	

independent,	 no	 learning	 takes	 place	 as	 a	 result	 of	 interaction	 between	 features.	 For	

example,	the	approach	can	 identify	emotions	when	the	fist	 is	closed,	or	the	arm	is	raised,	

but	cannot	identify	emotions	when	both	the	fist	is	closed	and	the	arm	is	raised.	

	

	

Figure	9	-	Naïve	Bayes	Classifier	[78]	
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This	classifier	is	based	on	the	Bayes	rule	of	conditional	probability.	As	the	name	assumes,	it	

naively	assumes	that	there	is	independence	between	the	different	events.	Because	of	this,	

the	probabilities	are	able	to	be	multiplied	together	as	shown	in	(9)	[79].	Although	this	 is	a	

simplistic	assumption	in	real	life,	it	is	still	effective	[79].		

!b i|j =
!b j i !b	[i]

!b	[j] 	 (9)	

	

Naïve	Bayes	was	deployed	in	emotion	recognition	by	Kapur	et	al.	[26]	and	McColl	et	al.	[38].				

	

III. Multi-Layer	Perceptron	(MLP)	

	

Multi-Layer	 Perceptron	 (MLP)	 is	 an	 artificial	 network	 which	 employs	 a	 hidden	 layer	 to	

connect	the	input	features	to	the	output	layer,	as	shown	in	Figure	10.	The	MLP	hidden	layer	

contains	neurons	in	the	shape	of	a	sigmoid	function.	

	

MLP	 can	utilise	weighted	 components	 and	biases,	 and	 is	 able	 to	 learn	non-linear	models.	

This	classifier,	with	the	appropriate	training	data,	can	become	a	good	generalised	classifier	

with	a	high	fault	tolerance.	However,	when	training	an	MLP	classifier,	 it	sometimes	settles	

into	a	local	minimum	of	the	error	instead	of	finding	the	global	minimum	error.	
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Figure	10	-	Multilayer	Perceptron	[77]	
	

	

In	MLP,	 initially,	 the	 input	 variables	 are	 linearly	 combined	with	 input	 biases	 and	weights.	

The	 result	 is	 then	 transformed	 using	 hidden	 units	 comprising	 differentiable	 non-linear	

activation	 functions,	 such	as	a	 logistic	 sigmoid	or	 the	 ‘tanh’	 functions.	These	hidden	units	

are	 again	 linearly	 combined	 together	 and	 transformed	 through	 an	 appropriate	 activation	

function,	 resulting	 in	 a	 set	 of	 outputs.	 The	 overall	 equation	 for	 a	 multiclass	 problem	 is	

demonstrated	by	Bishop	[77]	and	shown	here	by	(10).		
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mc >, n = o npc
(q)ℎ np)

(h)
#

)gh

>) + npt
(h) + nct

(q)
u

pgh

	 (10)	

Where	

- 	npc
(q)	and	np)

(h)	are	weights	

- 	npt
(h)	and	nct

(q)are	biases	

- {xi}	is	a	set	of	input	variables	

- [80]	is	a	set	of	output	variables	

- o	is	a	logistic	sigmoid	function	

	

MLP	was	deployed	 in	 emotion	 recognition	by	Kapur	 et	 al.	 [26],	 Kleinsmith	 et	 al.	 [47]	 and	

Zacharatos	et	al.	[25]	

	

The	MLP	algorithm	was	implemented	in	WEKA	with	a	learning	weight	of	0.3,	momentum	of	

0.2,	and	a	training	time	of	500.	

	

IV. Radial	Basis	Function	(RBF)	Network	

	

RBF	Network	is	also	an	artificial	network	using	a	hidden	layer.	However,	it	employs	spherical	

Gaussian	 functions	 as	 the	 boundaries	 in	 the	 hidden	 layer.	When	 these	 hidden	 layers	 are	

recombined,	adjustable	weights	can	also	be	applied.	The	RBF	Network	is	illustrated	in	Figure	

11.	Similar	to	MLP,	it	is	effective	at	generalising	trends	and	performs	well	on	unseen	data.	It	

can,	however,	be	quicker	than	MLP	in	training,	but	slower	in	execution	when	the	network	is	

trained.		
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Figure	11	-	RBF	Network	[81]	

	

The	RBF	Network	was	deployed	in	gait	recognition	by	McColl	et	al.	[38].	

	

Each	basis	function	depends	on	the	radial	distance	from	the	centre	uj	so	that		

	

∅p > = ℎ(∥ > − xp ∥)	 (11)	

	

The	 goal	 is	 to	 find	 a	 smooth	 function	 f(x)	 for	 a	 set	 of	 input	 vectors	 (x1,	 ….,xn)	 and	

corresponding	 target	 values	 {t1,	 …	 ,	 tn)	 so	 that	 f(xn)	 =	 tn	 for	 n	 =	 1,…,N.	 This	 is	 achieved	

through	radial	basis	functions	centred	on	every	data	point,	as	shown	in	equation	12	[77].	

y > = z(ℎ(∥ > − >( ∥)
"

(gh

	 (12)	

where	the	value	of	the	coefficients	wn	are	found	by	the	least	square	method.	

	

RBF	Network	was	implemented	in	WEKA	with	a	minimum	standard	deviation	of	clusters	of	

0.2,	and	the	number	of	clusters	of	2.	
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V. Sequential	Minimal	Optimisation	(SMO)	

	

SMO	is	an	algorithm	based	on	the	Support	Vector	Machine	(SVM)	classifier	that	is	speeded	

up	by	breaking	SVM	down	into	a	series	of	smaller	optimization	problems.	SVM	Classifiers	

work	by	maximising	the	distance	between	the	decision	boundary	and	the	data	points,	as	

shown	in	Figure	12.		

	

Figure	12	-	SVM	Boundary	Maximisation	[82]	

Maximising	the	margin	is	achieved	by	solving	equation	13	[77].	

	

eb{	|e>
},~

1
n |ÄÅ

(
Ç( nÉ∅ >( + Ñ 	 (13)	

	

SMO	has	good	generalisation,	but	is	sensitive	to	the	initial	constraint	parameters.	Although	

SMO	is	faster	than	SVM,	it	can	be	slower	than	other	classifiers	in	both	training	and	running.		
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SVM	classifiers	were	deployed	in	gait	recognition	by	Kapur	et	al.	[26],	McColl	et	al.	[38]	and	

Karg	et	al.	[48].	

	

VI. IBk	

	

IBk	is	an	implementation	of	the	k-nearest	neighbour	algorithm,	whereby	the	class	assigned	

is	based	on	the	most	common	class	amongst	the	k	closest	neighbours	of	the	training	data.	

Figure	13	illustrates	implementation	of	a	one	nearest	neighbour	algorithm	(left),	and	a	four	

nearest	 neighbour	 algorithm	 (right).	 It	 is	 a	 very	 simple	 classifier	 that	 can	work	well	 with	

basic	 classification.	 This,	 however,	 means	 that	 since	 IBk	 doesn’t	 learn	 anything	 from	 the	

training	data,	it	is	not	good	at	generalisation	and	doesn’t	perform	well	on	unseen	data.	

	

	

Figure	13	-	KNN	Classifier	[83]	

	

KNN	classifier	was	deployed	in	gait	recognition	by	McColl	et	al.	[38].	
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The	k-nearest	neighbour	classification	algorithm	as	explained	by	Tan	et	al.	 [1]	 is	 shown	 in	

Figure	 14.	 The	 k	 number	 of	 nearest	 neighbours	 is	 determined	by	 calculating	 the	 distance	

between	each	 test	 point	 [z=(x,y)]	 and	every	 training	data	point	 [(x,y)	Î	D].	Majority	 class	

voting	is	performed	on	these	k	nearest	neighbours	to	determine	the	class	of	the	test	point,	

as	shown	in	equation	14	[1].	

ÖeÜábÄÇm	àáÇÄÅ{ = mâ = eb{|e>
ä

ã(å = m))
(çé,èé)∈êë

	 (14)	

IBK	was	implemented	in	WEKA	with	KNN	value	of	1	and	no	distance	weighting.	

VII. J48	

	

J48	 is	 developed	 based	 on	 the	 C4.5	 Decision	 tree	 algorithm,	 whereby	 tree-like	 graph	

decisions	are	used	to	group	the	data	into	different	classes.	The	depth	of	the	tree	is	limited	

by	the	number	of	attributes.	Figure	15	 illustrates	a	sample	decision	tree	used	to	classify	a	

plant	based	on	its	petal	width	and	petal	length.		

	

J48	classification	is	easy	to	visualize	and	explain,	but	should	be	rebuilt	when	more	training	

data	is	incorporated.	The	method	is	also	prone	to	over-fitting.		

	

Let k be the number of nearest neighbours and D be the set of training examples 
for each test example z = (x', y') do 
 Compute (d(x', x), the distance between z and every example, (x,y)ÎD. 
 Select Dz Í D, the set of k closest training examples to  
 m′	 = 	 arg	max

ä
∑ ã(å = m))(çé,èé)∈êë  

end for 

Figure 14 - K-nearest neighbour classification algorithm [1] 
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The	J48	classifier	was	utilised	in	gait	recognition	by	Kapur	et	al.	[26].		

	

	

Figure	15	-	Decision	tree	visualisation	[84]	

	

A	decision	tree	is	built	recursively	by	splitting	up	the	training	data	into	subsets.	If	all	records	

in	 the	 subset	 belong	 to	 the	 same	 class,	 they	 are	 grouped	 together	 in	 a	 leaf	 node.	 If,	

however,	all	records	in	the	subset	belong	to	more	than	one	class,	they	are	split	up	based	on	

a	test	condition,	creating	multiple	child	nodes.	This	process	is	then	repeated	for	each	child	

node.	An	algorithm	for	building	a	decision	tree	is	shown	in	Figure	16.		
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To	 determine	 the	 best	 split,	 the	 J48	 algorithm	utilises	 a	 criterion	 known	 as	 gain	 ratio,	 as	

shown	in	(15)	[1].	

îeÄÅ	beÇÄá = 	
∆)(:;

4dñÄÇ	ÄÅyá	 (15)	

Where	

	 4dñÄÇ	ÄÅyá = − !(å)) logq !(å))c
)gh ,	and	

	 k	=	total	number	of	splits	

	 !(å))	=	Probability	of	each	node	value	

	

J48	was	 implemented	 in	WEKA	with	 two	minimum	 instances	per	 leaf,	 and	 three	 folds	 for	

pruning.		

	

	

TreeGrowth (E,F) 
 if stopping_cond(E,F) = true then 
  leaf = createNode(). 
  leaf.label = Classify(E). 
  return leaf. 
 else 
  root = createNode() 
  root.test_cond = find_best_split(E,) 
  let V = {v|v is a possible outcome of root.test_cond } 
  for each v Î V do 
   Ev = {e | root.test_cond()  = v and e Î E}. 
   child =  TreeGrowth(Ev, F). 
   add child as descendent of root and label the edge ( root®child) as v 
  end for 
 end if 
 return root 

Figure 16 - Skeleton decision tree induction algorithm [1] 
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VIII. Random	Forest	

	

Random	Forest	 is	 a	 classifier	whereby	a	decision	 is	made	 through	a	 collection	of	decision	

trees	from	a	random	sub	selection	of	data.		

	

Since	Random	Forest	employs	multiple	trees	from	a	random	selection	of	training	data,	it	is	

resistant	 to	 over	 fitting.	 The	 large	 collection	 of	 trees,	 however,	 can	make	 it	 slow	 for	 real	

time	processing.	The	upper	generalisation	error	bound	of	Random	Forest	converges	towards	

being	 dependent	 upon	 the	 strength	 of	 the	 tree	 classifiers	 and	 the	 average	 correlation	 of	

trees,	as	shown	in	equation	16.		

	

Figure	17	-	Random	Forest	Visualisation	[85]	
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îõÅõbeñÄúeÇÄáÅ	õbbáb	 ≤
û(1 − úq)

úq 	 (16)	

	

where	û	is	the	average	correlation	of	the	trees	and	s	corresponds	to	the	“strength”	

of	the	tree	classifiers.	

	

According	 to	 equation	 16	 [1],	 an	 increase	 in	 correlation	 between	 trees	 produces	 an	

increased	 generalisation	 error	 bound.	 By	 undertaking	 randomisation,	 the	 correlation	

reduces	resulting	in	a	lower	generalisation	error	[1].		

	

The	Random	Forest	Classifier	was	deployed	in	gait	recognition	by	McColl	et	al.	[38].	Random	

Forest	was	implemented	in	WEKA	with	100	Trees.	

	

IX. J48	Graft	

	

Although	J48	Graft	[86]	does	not	appear	in	any	of	the	literature	on	gait	recognition,	it	was	

also	 tested	 in	 this	 work	 as	 an	 alternative	 approach	 as	 it	 also	 demonstrates	 substantial	

accuracy	 in	this	research.	 J48	Graft	 is	similar	to	the	J48	algorithm	but	utilises	grafts	which	

adds	nodes	 to	 reduce	 the	prediction	error.	Grafting	 is	a	post	processing	 technique	 that	 is	

applied	 to	 decision	 trees	 to	 remove	 branches	 that	 either	 occupies	 space	 not	 contained	

within	 the	 training	 data,	 or	 contains	 misclassified	 data.	 The	 grafting	 process	 examines	

alternative	branching	at	ancestor	nodes	of	branches	in	question.	If	the	replacement	branch	

increases	classification	strength,	then	it	is	grafted	to	the	existing	decision	tree.	Although	this	
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potentially	 increases	 the	 tree	performance,	at	 the	same	time	 it	adds	 to	 the	complexity	of	

the	decision	tree	[86].	

	

J48	Graft	was	implemented	in	WEKA	with	a	minimum	of	two	instances	per	leaf.	

	

3.8 Validation	

	

A	 problem	 often	 encountered	 in	 classification	 training	 is	 that	 the	 classification	 models	

become	over-fitted	to	the	training	data	and	do	not	perform	satisfactory	on	unseen	data.	For	

our	research,	the	ten-fold	cross	validation	was	chosen	as	it	is	considered	a	“standard	way	of	

measuring	performance”	[79].	In	N-Fold	Cross	validation,	the	data	is	randomly	split	up	into	

N	parts,	 trained	on	(N-1)	parts,	evaluating	the	performance	against	the	remaining	section.	

The	process	is	repeated	for	all	N	possible	options	for	the	held	out	group.	A	sample	process	

of	four-fold	cross	validation	is	shown	in	Figure	18,	where	the	red	box	indicates	the	group	left	

out	for	testing	and	the	other	3	remaining	boxes	are	used	for	training.	As	shown,	each	run	is	

repeated	 where	 the	 allocated	 group	 removed	 for	 testing	 is	 changed.	 The	 overall	

performance	is	based	on	the	average	of	the	performance	across	each	run.		

	

Figure	18	-	Four-Fold	Cross	Validation	
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A	downside	to	this	process	is	that	the	time	taken	for	process	is	increased	N	times,	where	N	

is	the	number	of	subsections.		

	

3.9 Summary	

	

The	 Kapur	 local	 method	 and	 Zacharatos	 global	 method	 underlying	 our	 approach	 was	

outlined.	A	background	to	the	LMA	model	was	provided	and	the	theoretical	reasoning	was	

presented	 to	 justify	 the	 combination	 of	 local	 and	 global	 features	 into	 a	 single	 classifier.	

Introduction	 of	 additional	 features	were	 justified	 as	 they	 provide	 a	more	 complete	 LMA.	

Finally,	the	classification	algorithms	and	performance	validation	technique	deployed	in	our	

approach	was	described.		
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4 EXPERIMENTAL	SETUP	

4.1 Introduction	

	

The	 experimental	 approach	 undertaken	 in	 our	 research	 is	 presented	 in	 this	 chapter.	 This	

includes	 the	hardware,	 software	 and	 techniques	 used	 to	 record	 and	 extract	 the	 features,	

and	 to	 classify	 the	 motion	 data.	 The	 hardware	 deployed	 to	 capture	 the	 motion	 data	 is	

described	 in	 Section	 4.2,	 and	 the	 data	 recording	 process	 is	 outlined	 in	 Section	 4.3.	 The	

software	utilised	to	record	and	store	the	data	is	described	in	Section	4.4	whilst	Section	4.5	

explains	 the	 methods	 used	 to	 extract	 and	 store	 the	 features	 from	 the	 data,	 ready	 for	

classification.	 The	 classification	 software	 toolbox	 is	 presented	 in	 Section	 4.6;	 and	 the	

calculations	employed	 to	extract	 the	various	 feature	 sets	are	 finally	presented	 in	Sections	

4.7-4.10.	

	

4.2 Motion	Capture	Device	

	

An	X-sens	Moven	(MVN)	[2]	 inertial	movement	suit	was	deployed	to	capture	the	position,	

velocity	and	acceleration	of	22	joints	and	23	segments	of	the	body	during	the	experimental	

work,	as	shown	in	Figure	19.	
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Figure	19	-	Location	of	MVN	Segments	and	Joints	[87].	Blue	markers	represent	the	joint’s	

centre;	green	markers	represent	the	segment’s	centre	of	mass;	red	markers	represent	the	

segment’s	mid-point.	

	

The	MVN	motion	suit	consists	of	a	series	of	body	mounted	inertial	sensors,	(Figure	20),	and	

does	not	 require	any	emitters	or	external	 cameras	 [88].	 The	MVN	system	utilises	17	MTx	

sensors	 with	 two	 XBus	 Masters.	 Each	 MTx	 sensor	 is	 comprised	 of	 a	 3D	 gyroscope,	 3D	

accelerometer	and	a	3D	magnetometer.		

	

Figure	20	-	Inertial	Sensor	[2]	
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Each	 sensor	 is	 connected	 to	 an	 XBus	Master	 transmitter	 via	 daisy	 chains,	with	 one	 cable	

going	towards	each	limb.	The	sensors	are	placed	onto	segments	that	are	surrounded	by	two	

joints.	The	locations	of	these	sensors	are	outlined	in	Table	9	and	are	shown	in	Figure	21.	

	

	

Figure	21	-	MTx	Sensor	Placement	[2]	

	

	

The	 initial	 location	 and	 orientation	 of	 these	 sensors	 are	 determined	 by	 a	 combination	 of	

measured	 body	 dimensions	 and	 initial	 alignment	 calibrations.	 For	 each	 subject,	

measurements	are	taken	of	the	body	height,	shoe	size,	arm	span,	hip	height,	knee	height,	

ankle	 height,	 hip	 width,	 shoulder	 width	 and	 the	 shoe	 sole	 thickness.	 Based	 on	 these	

measurements,	 the	 location	of	 the	 joints	 and	 sensors	 are	 estimated	by	 the	MVN	 system.	

The	 accuracy	 of	 the	 distances	 between	 the	 sensors	 and	 the	 joints	 can	 be	 increased	 by	

entering	their	measured	values,	rather	than	relying	on	estimations.	
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Table	9	-	MTx	Sensor	Placement	[2]	

	

	

The	orientation	of	 the	 sensors	 is	 calibrated	with	either	 an	n-pose	or	 t-pose	 stance	of	 the	

subject.	In	an	n-pose,	the	subject	stands	up	straight	with	their	hands	by	their	side;	whereas	

in	a	t-pose	position	the	subject	stands	up	straight	with	their	arms	and	hands	out	parallel	to	

the	ground,	with	their	thumbs	facing	forwards.	The	calibration	accuracy	can	be	increased	by	

incorporating	a	squat	and/or	hand	touch	movement	during	the	calibration	process.	

	

Joint	 origins	 are	 determined	 based	 on	 the	 anatomical	 frame,	 and	 are	 described	 in	 the	

Cartesian	 coordinate	 frames.	 After	 the	 initial	 measurements	 and	 calibration,	 the	 system	

Location	 Optimal	position	

Foot	 Middle	of	Bridge	of	foot	

Lower	leg	 Flat	on	the	shin	bone	(medial	surface	of	the	tibia)	

Upper	leg	 Lateral	side	above	knee	

Pelvis	 Flat	on	sacrum	

Sternum	 Flat	in	the	middle	of	the	chest	

Shoulder	 Scapula	(Shoulder	Blades)	

Upper	Arm	 Lateral	Side	above	elbow	

Fore	arm	 Lateral	and	flat	side	of	the	wrist	

Hand	 Backside	of	hand	

Head	 Any	comfortable	position	
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translates	 data	 obtained	 from	 the	 sensors	 into	 a	 23	 segment	 biomechanical	 model.	 The	

segments	are	pelvis,	 L5,	 L3,	 T12,	 T8,	neck,	head,	 and	 right	and	 left	 shoulder,	upper	arms,	

forearms,	hands,	upper	legs,	 lower	legs,	feet	and	toes.	Although	there	are	only	17	sensors	

attached,	the	remaining	segments	are	estimated	based	on	a	biomechanical	model	utilising	

constraints	for	connecting	segments.	The	anatomical	landmarks	are	presented	in	Figure	22.	

	

	

	

In	 addition	 to	 the	 recorded	 joint	 angles,	 the	 system	 estimates	 and	 provides	 the	 joint	

positions,	linear	and	angular	velocities,	and	accelerations.	These	are	referenced	to	an	initial	

global	frame	with	a	sampling	frequency	rate	of	120Hz.	

	

Figure 22 - X-Sens MVN Anatomical Landmarks 	[2]	
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During	the	motion,	 integration	drift	can	occur	within	the	data	due	to	sensor	noise,	sensor	

signal	 offset	 and	 sensor	 orientation	 errors.	 This	 is	 continuously	 corrected	 based	 on	 the	

biomechanical	 characteristics	 of	 the	 human	body.	 Joint	 characteristics	 and	 contact	 points	

are	used	 to	constrain	 the	position	and	 the	velocity.	An	additional	magnetic	 field	 sensor	 is	

deployed	to	correct	accumulation	errors	 that	may	occur	over	 time.	The	sensor	 fusion	and	

correction	process	is	illustrated	in	Figure	23.		
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Figure	23	-	Sensor	Fusion	and	Correction	[88]	
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The	 XSens	 MVN	 system	 deploys	 an	 Extended	 Kalman	 Filter	 (EKF)	 [89]	 to	 estimate	 and	

correct	 the	drift	 in	measurements.	The	EKF	compares	 the	estimated	orientation	based	on	

accelerometer	 data,	 inbuilt	 magnetometers	 measuring	 the	 deviation	 from	 the	 earth’s	

magnetic	 field,	 and	 a	 sample	 of	 the	 gravitational	 direction.	 This	 fusion	 and	 correction	

process	results	in	an	accuracy	of	five	mm	for	position	and	three	degrees	for	orientation	[89].		

	

4.3 Data	Collection	

	

The	 kinematics	 data	 utilised	 in	 this	 work	 was	 produced	 at	 the	 Centre	 for	 Intelligent	

Mechatronic	Research	(CIMR)	at	University	of	Wollongong,	Australia	[90].	Nine	actors	(five	

females	 and	 four	 males)	 were	 used	 to	 demonstrate	 grieving,	 neutral	 and	 happy	 affects	

whilst	walking.	

	

In	the	experimental	work,	the	intended	emotion	was	sent	to	the	actor	via	an	SMS	message	

and	recordings	were	done	in	three	phases:	the	gait	of	the	actor	walking	towards	the	table	

with	 the	phone	on	 it	was	 the	 first	phase,	 the	actor	 reading	 the	 received	SMS	 formed	 the	

second	 phase,	 and	 the	 actor	walking	whilst	 acting	 the	 designated	 emotion	was	 the	 third	

phase,	as	shown	in	Figure	24.	 In	each	of	these	stages,	gait	data	was	recorded	through	the	

MVN	system,	as	shown	in	Figure	25.		
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Figure	24	-	A	subject	playing	the	emotions	in	the	experimental	work	

	

Each	emotion	was	performed	three	times,	producing	a	total	of	81	recordings.	In	this	study	

only	 the	motion	data	 recorded	 in	 the	 third	phase	was	used,	which	consisted	of	 the	acted	

emotion.	There	was,	however,	data	corruption	that	occurred	within	three	recordings	(2	Joy	

and	1	Grief),	 resulting	 in	 78	 files	 available	 for	 classification	 training	 and	 testing.	Although	

this	thesis	research	only	focuses	on	the	third	phase,	the	recordings	were	part	of	a	broader	

database,	with	the	other	two	phases	being	utilised	in	other	works.	

	

In	training	the	classifiers,	a	ground	truth	must	be	established.	Some	studies	[48],	[43],	[45]	

use	the	actor’s	intended	emotion	as	the	ground	truth.	Alternatively,	the	emotion	observed	

by	 a	 human	observer	 is	 considered	 as	 the	 true	 emotion	when	 training	 the	 classifier	 [26],	

[25],	[47].	Sometimes	there	is	a	disagreement	between	the	emotion	observed	by	the	human	
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observer	and	the	actual	emotion	portrayed.	In	this	study	the	emotion	sent	to	the	actor	via	

an	SMS	was	employed	as	the	ground	truth.		

	

4.4 MVN	Studio	

	

The	motion	data	measured	by	the	sensors	is	sent	wirelessly	to	a	computer	and	is	recorded	

via	 the	 MVN	 Studio	 Program.	 This	 software	 package	 provides	 simulation	 of	 the	 motion	

capture	files	for	verification,	as	shown	in	Figure	25.	MVN	Studio	can	trim	recordings,	view	

variance	 within	 the	 data	 attributes,	 provide	 a	 selection	 of	 different	 motion	 data	

characteristics	to	export,	and	offers	various	exported	file	formats.	

	

	

Figure	25	-	Gait	Cycle	as	reconstructed	in	MVN	Studio	[90]	

	

MVN	Studio	exports	all	of	the	motion	data	into	an	MVNX	file,	which	is	based	upon	an	XML	

format.	Figure	26	shows	the	format	of	a	section	of	an	MVNX	file.	The	sample	data	shown	in	

Figure	25	represents	the	data	associated	with	a	four	frames	of	motion	from	a	gait	cycle.	The	



 91 

data	used	 in	our	experiments	 is	 sampled	at	every	10th	 frame	of	motion	data	produced	by	

the	motion	capture	device.		

	

	

Figure	26	-	Sample	MVNX	format	[2]	

	

The	MVN	System	records	acceleration,	angular	velocity,	magnetic	 field,	and	orientation	of	

different	body	segments.	MVN	Studio	processes	the	data	captured	by	the	sensors	and	can	

export	 the	 following	 parameters	 for	 each	 segment:	 orientation,	 position,	 velocity,	

acceleration,	 angular	 velocity,	 angular	 acceleration	and	 centre	of	mass	 and	 joint	 angle.	 In	

this	study,	we	chose	to	export	only	the	position,	velocity	and	acceleration	of	each	segment	

into	our	MVNX	file.	
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4.5 Motion	Data	Extraction	

	

Matlab	was	utilised	to	import	the	MVNX	files	and	extract	the	data	on	the	position,	velocity	

and	acceleration	of	each	segment,	storing	them	in	separate	arrays.	 Initially,	the	MVNX	file	

was	loaded	into	Matlab.	Each	line	of	the	file	was	read	until	the	tags	<position>,	<velocity>	or	

<acceleration>	were	found.	The	data	contained	within	these	tags	were	then	assigned	to	the	

corresponding	array,	one	frame	at	a	time.	For	example,	for	the	first	frame	of	readings,	the	

data	was	assigned	to	the	first	row	of	their	corresponding	arrays	as	shown	below:		

	

Pos	[1,:]={pseg1x,	pseg1y,	pseg1z,	pseg2x,	pseg2y,	pseg2z…etc…	pseg23x,	pseg23y,	pseg23z}								(17)	

Vel[1,:]	=	{vseg1x,	vseg1y,	vseg1z,	vseg2x,	vseg2y,	vseg2z…etc…	vseg23x,	vseg23y,	vseg23z}							(18)	

Accel[1,:]	={aseg1x,	aseg1y,	aseg1z,	aseg2x,	aseg2y,	aseg2z…etc…	aseg23x,	aseg23y,	aseg23z}							(19)	

	

Similarly,	 the	 second	 frame	was	 assigned	 to	 the	 second	 row	 of	 the	 corresponding	

arrays:	

	

Pos	[2,:]={pseg1x,	pseg1y,	pseg1z,	pseg2x,	pseg2y,	pseg2z…etc…	pseg23x,	pseg23y,	pseg23z}						(20)	

Vel[2,:]	=	{vseg1x,	vseg1y,	vseg1z,	vseg2x,	vseg2y,	vseg2z…etc…	vseg23x,	vseg23y,	vseg23z}							(21)	

Accel[2,:]	={aseg1x,	aseg1y,	aseg1z,	aseg2x,	aseg2y,	aseg2z…etc…	aseg23x,	aseg23y,	aseg23z}						(22)	

	

Since	there	were	23	segments,	 the	position,	velocity	and	acceleration	arrays	contained	69	

columns.	 The	 number	 of	 rows	 varied	 depending	 on	 the	 number	 of	 frames	 within	 the	

recording.	 These	 arrays	 could	 then	 be	 used	 to	 calculate	 the	 appropriate	 features.	 The	
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calculated	features	were	exported	into	a	CSV	file	format	were	read	by	the	classifier.	In	the	

CSV	 file,	 each	 row	 related	 to	 a	 different	 instance.	 In	 our	 case,	 each	 row	 represented	 a	

different	recording.	Each	column	corresponded	to	a	different	attribute	used	by	the	machine	

learning	algorithm,	with	the	last	column	designated	to	be	the	class	or	state	of	the	attribute.	

In	our	case,	the	last	column	was	used	to	store	the	“ground	truth”	emotion	corresponding	to	

that	recording.		

	

4.6 Classification	

	

In	our	analysis,	the	Waikato	Environment	for	Knowledge	Analysis	(WEKA)	classifier	toolbox	

[27]	 was	 used	 for	 classification	 (Figure	 27).	 WEKA	 is	 a	 graphical	 user	 interface	 based	

software	consisting	of	a	collection	of	machine	learning	algorithms.	It	was	developed	by	the	

University	of	Waikato	on	a	 Java	Platform	and	 is	an	open	source	 software,	 freely	available	

through	general	public	license.	WEKA	is	a	workbench	to	data	mine	large	amount	of	data	and	

can	load	data	files	in	the	form	of	a	CSV	table	file.		

	

WEKA	 allows	 us	 to	 quickly	 experiment	 on	 a	 variety	 of	 datasets	 using	 a	 range	 of	 learning	

algorithms.	 The	 Graphical	 User	 Interface,	 WEKA	 Explorer	 shown	 in	 Figure	 27,	 allows	 a	

classification	model	 to	 be	 built,	 and	 its	 performance	 analysed,	 without	 the	 need	 for	 any	

code	to	be	written.		
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The	classification	results;	comprising	of	accuracy,	error	rates	and	a	confusion	matrix	for	each	

algorithm;	were	stored	in	a	classification	log,	as	shown	in	Figure	28.	This	process	could	be	

repeated	for	multiple	classification	algorithms.		

	

In	all	of	the	classification	models,	ten-fold	cross	validation	was	deployed	to	obtain	a	more	

reliable	accuracy.		

	

Figure	27	-	WEKA	Classification	Toolbox	
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Figure	28	-	WEKA	classification	Output	

4.7 Extraction	of	Local	Features	

	

When	applying	Kapur	local	method,	we	deployed	the	mean	of	velocity	and	acceleration;	and	

the	 standard	 deviation	 of	 position,	 velocity	 and	 acceleration	 of	 each	 of	 the	 markers.	 A	

sample	matrix	of	 three	 frames	of	 velocity	motion	data	 is	 shown	 in	equation	23.	A	 similar	

structure	was	used	for	both	the	position	and	the	acceleration.		

	

å = 	

vü†°hN, vü†°h^, vü†°h¢,vü†°qN, vü†°q^, vü†°q¢, …	vü†°q§N, vü†°q§^, vü†°q§¢, *)•.h
vü†°hN, vü†°h^, vü†°h¢,vü†°qN, vü†°q^, vü†°q¢, …	vü†°q§N, vü†°q§^, vü†°q§¢, *)•.q
vü†°hN, vü†°h^, vü†°h¢,vü†°qN, vü†°q^, vü†°q¢, …	vü†°q§N, vü†°q§^, vü†°q§¢, *)•.§

	

	

(23)	

	

The	mean	and	standard	deviation	of	each	column	within	the	matrix	was	calculated,	resulting	

in	a	1	x	69	sized	matrix	for	each	of	the	five	features	stated	above.	These	five	matrices	were	

exported	into	a	.csv	file	side	by	side,	resulting	in	345	columns	and	one	row	used	for	the	first	
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motion	recording.	This	process	was	repeated	for	each	recording,	placing	features	from	each	

successive	file	into	a	new	row,	resulting	in	a	total	of	345	columns	and	68	rows	from	the	68	

files.	The	ground	state	of	the	emotion	of	each	recording	was	manually	added	into	the	346th	

column,	as	the	class	for	WEKA.	

	

4.8 Extraction	of	Global	Features		

	

In	applying	the	global	Zacharatos	method,	the	percentage	of	narrowing	down,	prospective	

focus	 of	 movement	 (as	 represented	 by	 the	 four	 extremity	 vectors)	 and	 the	 velocity,	

acceleration	and	jerk	of	both	hands	and	feet	were	deployed.	The	first	frame	of	the	y-axis	of	

the	head	was	used	as	the	initial	head	position	in	calculating	PND	according	to	(24).	

	

!"# =
!áú-.+/¶è+ç)ß 1 − ÖõeÅ(!áú-.+/¶è+ç)ß)

!áú-.+/¶è+ç)ß 1
	 (24)	

	

The	 eye	 direction	 was	 determined	 using	 the	 shoulder	 and	 head	 position,	 as	 shown	 in	

equations	25-34,	for	deployment	in	the	face	feature	vectors.		

àç = dáú7.+/ç − dáú®ß7;©,/ç	 (25)	

àè = dáú7.+/è − dáú®ß7;©,/è	 (26)	

à™ = dáú7.+/™ − dáú®ß7;©,/™	 (27)	

ḉ = dáú7.+/ç − dáú¨ß7;©,/ç	 (28)	

è́ = dáú7.+/è − dáú¨ß7;©,/è	 (29)	

™́ = dáú7.+/™ − dáú¨ß7;©,/™	 (30)	
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jmõç = àè ∗ ™́ − à™ ∗ è́	 (31)	

jmõè = àç ∗ ḉ − àç ∗ ™́	 (32)	

jmõ™ = àç ∗ è́ − àè ∗ ḉ	 (33)	

@ = [jmõç, 	jmõè, 	jmõ™]	 (34)	

	

The	prospective	focus	of	the	movement	was	then	calculated	using	equations	35-

38	for	each	frame,	with	the	results	stored	into	an	array.	

	

	

ÆáÇ6ieÅØÆÄbõ∞Ç = @ ∙ !áú¨-+(/ 	 (35)	

ÆáÇ9ieÅØÆÄbõ∞Ç = @ ∙ !áú®-+(/ 	 (36)	

ÆáÇ6@ááÇÆÄbõ∞Ç = @ ∙ !áú¨±;;*	 (37)	

ÆáÇ9@ááÇÆÄbõ∞Ç = @ ∙ !áú®±;;*	 (38)	

	

The	velocity,	acceleration	and	jerk	of	the	four	extremities	were	calculated	as	a	single	vector,	

rather	 than	one	 for	each	dimension.	A	 sample	calculation	of	velocity	 for	 the	 right	hand	 is	

shown	in	Equation	39.		

9ieÅØàõñ = 	 [|õeÅ åõñ®-+(/ç ]q + [|õeÅ åõñ®-+(/è ]q + [|õeÅ åõñ®-+(/™ ]q	 (39)	

	

This	velocity	calculation	was	repeated	for	each	of	the	other	three	extremities.	Additionally,	

acceleration	was	calculated	 in	a	similar	manner	 for	all	 four	extremities.	There	was	no	 jerk	

data	extracted	from	the	motion	capture	data	suit.	Instead	the	first	derivative	was	calculated	

for	each	of	the	extremities	in	each	axis	(e.g.	Jerk	in	the	x-axis	of	the	Right	hand	is	shown	in	

Equation	40).	This	process	of	derivation	was	repeated	in	x,	y	and	z	directions	for	each	of	the	

four	extremities.	
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≤õb≥®-+(/ç = 	
¥e
¥Ç e∞õñ®-+(/ç	

(40)	

	

The	Pnd,	mean	values	of	each	of	the	four	prospective	focus	arrays,	and	the	overall	velocity,	

acceleration	and	jerk	of	the	four	extremities	were	combined	into	one	matrix	of	size	1	x	17	

for	the	global	features.	They	were	exported	into	a	.csv	file	resulting	in	17	columns	and	one	

row	being	utilised	for	the	first	emotion	data	recording.	This	process	was	repeated	for	each	

recording,	placing	features	from	each	successive	file	into	a	new	row.	A	total	of	17	columns	

and	68	rows	were	filled	from	the	68	motion	files.	The	ground	state	of	the	emotion	of	each	

recording	 was	 then	 manually	 added	 to	 the	 18th	 column	 to	 acted	 as	 class	 for	 the	 WEKA	

classification.	

	

4.9 Extraction	of	Combined	Features	

	

The	local	features	and	global	features	were	then	combined	into	one	matrix	of	size	1	x	362	

for	the	combination	feature	set.	They	were	exported	into	a	.csv	file	resulting	in	362	columns	

and	one	row	being	utilised	for	the	first	emotion	data	recording.	This	process	was	repeated	

for	each	recording,	placing	features	from	each	successive	file	into	a	new	row.	A	total	of	362	

columns	and	68	rows	were	filled	from	the	68	motion	files.	The	ground	state	of	the	emotion	

of	 each	 recording	was	 then	manually	 added	 to	 the	363rd	 column	 to	 act	 as	 a	 class	 for	 the	

WEKA	classification.		
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4.10 Extraction	of	Additional	Features	

	

Only	 the	 Weight	 and	 Space	 components	 were	 deployed	 as	 extra	 features.	 Weight	 was	

calculated	as	shown	in	equations	41-42.		

	

VOµ
∂ = (xOµ − xO¶hµ )q+(yOµ − yO¶hµ )q + (zOµ − zO¶hµ )q	 (41)	

	 	

The	weight	feature	in	the	i-th	frame	was	then	obtained	by	adding	the	weight	of	each	marker	

	

WeightO = WeightO∏ππ∫ + WeightOªπ† +WeightO
ºOP°†Ω	 (42)	

where	

	 WeightO∏ππ∫ = 	 aΩVO∏ππ∫
∂
	

	 WeightOªπ† = 	 a∫(VOæªπ†
∂ + VOæªπ†

∂)	

	 WeightO
ºOP°†Ω = 	 aø(VO

æºOP°†Ω∂ + VO
∏ºOP°†Ω∂)	

	 Root	is	defined	as	the	centre	of	the	body	

	

This	resulted	 in	an	array	of	the	Weight	for	each	frame	of	motion.	The	mean	and	standard	

deviation	of	this	array	was	calculated	and	stored	as	a	feature	for	each	file.		

	

Shape-flow	was	 calculated	 based	 of	 the	 volume	 of	 space	 taken	 up	 by	 the	 actor	 in	 three	

dimensions,	as	shown	in	equation	43.	
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4ℎedõ@ñán = Öe>ç¿;ß − ÖÄÅç¿;ß ∗ Öe>è¿;ß − ÖÄÅè¿;ß

∗ Öe>™¿;ß − ÖÄÅ™¿;ß 	

(43)	

	 	

Shape-flow	 was	 created	 for	 each	 frame	 and	 stored	 in	 an	 array.	 The	mean	 and	 standard	

deviation	of	this	area	was	calculated	and	stored	as	a	feature	for	each	motion	data	file.	

	

Shaping	 was	 determined	 by	 the	 change	 of	 the	 root	 marker	 in	 the	 y-axis	 and	 z-axis.	 The	

variance	of	the	root	marker’s	motion	data	was	calculated,	as	shown	in	equations	44	and	45.	

	

4ℎedÄÅ{_m = àebÄeÅ∞õ(bááÇè)	 (44)	

4ℎedÄÅ{_¬ = àebÄeÅ∞õ(bááÇ™)	 (45)	

	

The	Horizontal	and	Vertical	Symmetry	was	calculated	as	shown	in	equations	46	and	47.	

	

Horizontal	Symmetry

= 	
dáú√;;*ç − dáú	¨.:*ƒ7;©,/.√ç − dáú√;;*ç − dáú	®)≈7*ƒ7;©,/.√ç

dáú	®)≈7*ƒ7;©,/.√ç − dáú	¨.:*ƒ7;©,/.√ç
	

(46)	

	

Vertical	Symmetry

= 	
dáú√;;*è − dáú	¨.:*ƒ7;©,/.√è − dáú√;;*è − dáú	®)≈7*ƒ7;©,/.√è

dáú	®)≈7*ƒ7;©,/.√è − dáú	¨.:*ƒ7;©,/.√è
	

(47)	

	

The	 local	 features	outlined	 in	Section	4.7,	 global	 features	outlined	 in	Section	4.8,	and	 the	

eight	extra	features	outlined	in	Section	4.9	were	combined	into	one	matrix	of	size	1	x	370	
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for	 the	 extra	 feature	 set.	 The	 combined	 feature	 set	 was	 exported	 into	 a	 single	 .csv	 file,	

resulting	 in	 370	 columns	and	one	 row	being	utilised	 for	 the	 first	 emotion	data	 recording.	

This	process	was	repeated	for	each	recording,	placing	features	from	each	successive	file	into	

a	new	row.	A	 total	of	370	columns	and	68	 rows	were	 filled	 from	the	68	motion	 files.	The	

ground	 state	 of	 the	 emotion	 of	 each	 recording	 was	 then	 manually	 added	 to	 the	 371st	

column	to	act	as	a	class	for	the	WEKA	classification.		

4.11 Summary	

	

In	this	chapter	an	overview	of	the	experimental	set	up	used	in	this	thesis	was	provided.	The	

main	device	was	 the	XSens	MVN	motion	capture	system	that	deployed	 inertial	 sensors	 to	

measure	and	kinematics	parameters	association	with	motion.	The	nature	of	data	produced	

by	 the	 motion	 capture	 device	 was	 discussed	 and	 the	 approach	 used	 to	 process	 it	 was	

described.	We	 then	 presented	 the	 software	 packages	 utilised	 to	 export	 the	 data	motion,	

extract	 features	 and	 run	 classification	 algorithms.	 Finally,	 the	 method	 of	 extracting	 the	

various	feature	sets	was	presented.		
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5 VALIDATION	

5.1 Introduction	

	

In	this	chapter	the	classification	results	from	the	various	feature	sets	will	be	presented.	The	

significance	 of	 these	 results,	 limitations	 of	 our	 work	 and	 potential	 directions	 for	 future	

research	is	also	discussed.	For	each	feature	set,	the	accuracy	from	ten-fold	cross	validation	

is	presented	for	all	of	the	nine	different	classifiers	deployed.	

	

The	 results	 for	 local	 features,	 global	 features,	 combined	 feature	 set	 and	 the	 additional	

feature	set	are	provided	 in	Sections	5.2,	5.4,	5.6	and	5.8,	 respectively.	Since	the	 local	and	

global	feature	results	are	produced	based	on	the	previous	work,	a	comparison	of	our	results	

are	made	in	Section	5.3	and	Section	5.5	against	equivalent	results	reported	in	the	literature.	

Section	5.7	discusses	the	results	of	combining	local	and	global	features	in	a	single	classifier	

and	Section	5.9	examines	the	results	of	the	additional	features	provided.	The	significance	of	

our	 work	 is	 presented	 within	 Section	 5.10,	 and	 the	 limitation	 of	 our	 work	 and	 ideas	 for	

future	research	is	described	in	Section	5.11.		

	

5.2 Local	Feature	Results	

	

For	 the	 local	 feature	 set,	 we	 deployed	 the	 mean	 of	 velocity	 and	 acceleration;	 and	 the	

standard	 deviation	 of	 position,	 velocity	 and	 acceleration	 of	 each	 of	 the	 markers.	 A	

classification	model	was	built	 in	WEKA	deploying	the	following	classifiers:	BayesNet,	Naïve	

Bayes,	MLP,	RBF	Network,	SMO,	IBk,	J48,	J48	Graft	and	Random	Forest.	
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The	accuracy	of	classification	of	these	models	using	the	local	feature	set	with	ten-fold	cross	

validation	is	presented	in	Table	10,	including	the	average	and	maximum	performance.		

	

The	highest	performance	was	produced	by	the	IBk	classifier	with	an	accuracy	of	87.2%.	The	

lowest	performance	was	from	Bayes	Net	and	Naïve	Bayes,	both	with	an	accuracy	of	71.8%.	

These	 local	 features	 resulted	 in	 an	 average	 accuracy	 of	 87.2%	 across	 all	 of	 the	 nine	

classifiers.	

	

	

Classifier	 Local	Feature	Accuracy	(%)	

Bayes	Net	 71.8	

Naïve	Bayes	 71.8	

Multi-Layer	Perceptron	 84.6	

RBF	Network	 73.1	

SMO	 82.1	

IBk	 87.2	

J48	 80.8	

J48Graft	 79.5	

Random	Forest	 80.8	

Average	 79.1	

Max	 87.2	

Table	10	-	Local	Feature	Accuracy	
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5.3 Benchmarking	against	Kapur	Local	Method	

	

The	result	from	both	Kapur	et	al.’s	data	and	our	data	demonstrates	that	using	raw	joint	data	

alone	can	lead	to	moderate	performance	across	a	variety	of	classifiers.	Our	average	(79.1%)	

and	 highest	 accuracy	 (87.2%)	was	 lower	 than	 their	 average	 (84.2%)	 and	 highest	 accuracy	

(91.8%).	 However,	 their	 lowest	 accuracy	 (66.2%)	 was	 lower	 than	 our	 lowest	 accuracy	

(71.8%).	 These	 results	 are	 difficult	 to	 compare	 due	 to	 the	 difference	 in	 data	 collection	

technique,	 number	 of	 markers	 and	 number	 of	 emotions.	 This	 highlights	 the	 need	 for	

comparison	of	different	techniques	on	a	dataset	that	contains	the	same	data	and	the	same	

emotions.	Otherwise,	as	demonstrated	in	this	research,	the	same	techniques	performed	on	

two	different	data	sets	can	result	in	two	differing	results	and	hence	reduces	the	reliability	of	

any	comparisons	made.	

	

On	both	tests,	however,	Naïve	Bayes	was	the	lowest	performing	classifier,	suggesting	that	it	

was	 not	 the	 most	 appropriate	 classifier	 when	 only	 using	 raw	 joint	 data.	 SMO	 and	 MLP	

performed	strongly	in	both	tests,	suggesting	that	they	well	suited	to	these	styles	of	features.	

IBk,	however,	outperformed	both	of	SMO	and	MLP	in	our	study,	but	this	classifier	was	not	

tested	 by	 Kapur	 et	 al.	 This	 identifies	 the	 challenge	when	 a	 small	 number	 of	 classifiers	 is	

deployed,	as	there	may	exist	a	higher	performing	classifier	that	is	not	applied.		
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5.4 Global	Feature	Results	

	

For	 the	 global	 feature	 set,	 we	 deployed	 the	 percentage	 of	 narrowing	 down,	 prospective	

focus	 of	 movement	 (as	 represented	 by	 the	 four	 extremity	 vectors)	 and	 the	 velocity,	

acceleration	 and	 jerk	 of	 both	 hands	 and	 feet.	 A	 classification	 model	 was	 built	 in	 WEKA	

deploying	 the	 following	 classifiers:	 BayesNet,	 Naïve	 Bayes,	MLP,	 RBF	 Network,	 SMO,	 IBk,	

J48,	J48	Graft	and	Random	Forest.	

	

The	 accuracy	 of	 classification	 of	 these	 models	 using	 the	 global	 feature	 set	 with	 ten-fold	

cross	validation	is	presented	in	Table	11,	including	the	average	and	maximum	performance.		

Classifier	 Local	Feature	Accuracy	(%)	

Bayes	Net	 71.5	

Naïve	Bayes	 70.5	

Multi-Layer	Perceptron	 73.1	

RBF	Network	 73.1	

SMO	 68	

IBk	 82.1	

J48	 77	

J48Graft	 74.4	

Random	Forest	 79.5	

Average	 74.4	

Max	 82.1	

Table	11	-	Global	Feature	Accuracy	
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The	highest	performance	was	produced	by	the	IBk	classifier	with	an	accuracy	of	82.1%.	The	

lowest	performance	was	from	SMO,	with	an	accuracy	of	68%.	These	global	features	resulted	

in	an	average	accuracy	of	74.4%	across	all	of	the	nine	classifiers.	

	

5.5 Benchmarking	against	Zacharatos	Global	method	

	

The	 result	 from	both	 Zacharatos’	 et	 al.’s	 and	 our	 data	 demonstrates	 that	 LMA	 alone	 can	

result	in	moderate	performance	across	a	variety	of	classifiers.	Our	average	accuracy	(74.4%)	

and	 highest	 accuracy	 (82.1%)	 are	 lower	 than	 Zacharatos’	 average	 accuracy	 (84.2%).	

However,	 they	 deployed	 a	 different	 category	 of	 emotions	 and	 utilised	 a	 different	 data	

collection	technique.	This	again	highlights	the	need	for	comparison	of	different	techniques	

on	a	dataset	that	contains	the	same	motion	data	and	emotions.		

	

In	 our	 data,	 SMO	 was	 the	 lowest	 performing	 classifier	 and	 IBK	 was	 again	 the	 most	

successful.	Zacharatos	et	al.	only	tested	the	MLP	classifier,	but	in	our	data	there	were	four	

classifiers	 that	produced	a	higher	accuracy.	This	 reinforces	 the	need	 to	consistently	 test	a	

wide	variety	of	classifiers.	

	

5.6 Combined	Feature	Results		

	

The	accuracy	of	classification	using	a	combination	of	local	and	global	features	with	ten-fold	

cross	 validation	 is	 presented	 in	 Table	 12.	 The	 classification	 model	 was	 built	 in	 WEKA	
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deploying	 the	 following	 classifiers:	 BayesNet,	 Naïve	 Bayes,	MLP,	 RBF	 Network,	 SMO,	 IBk,	

J48,	J48	Graft	and	Random	Forest.	The	results	for	local	and	global	features	are	also	placed	

within	 the	 same	 table	 for	 comparison.	 The	 table	 contains	 the	 difference	 between	 the	

combined	 feature	 set	 and	 the	best	performer	out	of	 the	 local	 and	global	 feature	 sets	 for	

each	 classifier.	 The	 average	 and	maximum	 accuracy	 across	 all	 classifiers	 is	 presented	 for	

each	feature	set.	The	difference	 in	average	and	maximum	values	across	all	classifiers,	and	

the	improvements	upon	the	average	is	also	displayed.	

	

Classifier	
Feature	Set	1	

Local	
Feature	

Set	2	Global	
Feature	Set	3	
Combined	

Difference	

Bayes	Net	 71.8	 71.5	 71.8	 0	

Naïve	Bayes	 71.8	 70.5	 71.8	 0	

Multi-Layer	Perceptron	 84.6	 73.1	 84.6	 0	

RBF	Network	 73.1	 73.1	 75.6	 +2.5	

SMO	 82.1	 68	 85.9	 +3.8	

IBk	 87.2	 82.1	 88.5	 +1.3	

J48	 80.8	 77	 87.2	 +6.4	

J48Graft	 79.5	 74.4	 85.9	 +6.4	

Random	Forest	 80.8	 79.5	 80.8	 +0	

Average	 79.1	 74.4	 81.3	 +2.2	

	
improvement	on	average	 +2.3	

Max	 87.2	 82.1	 88.5	 +1.3	

Table	12	-	Combined	Feature	Set	Results	
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5.8 Discussion	on	Combining	Features	

	

There	was	no	improvement	achieved	by	combining	features	for	Bayes	Net	and	Naïve	Byes.	

This	might	be	due	to	the	low	performance	of	both	classification	algorithms	using	only	Local	

features	 and	 Global	 Features	 independent	 from	 each	 other.	 Multi-Layer	 Perceptron	

Algorithm	 and	 Random	 Forest	 also	 showed	 no	 improvement	 by	 combining	 the	 features	

together.	The	largest	improvement	was	produced	by	J48	and	J48	Graft	algorithms,	resulting	

in	 an	 increase	of	 6.4%.	By	 combining	 local	 and	 global	 features	 into	 a	 single	 classifier,	 the	

average	 accuracy	 increased	 by	 2.3%.	 A	 new	 high	 performance	 was	 achieved	 at	 88.5%	

through	the	deployment	of	IBk	algorithm.		

	

Combining	 the	 two	 types	 of	 features	 never	 resulted	 in	 a	 decrease	 of	 accuracy	 of	 the	

systems.	 On	 the	 contrary,	 for	 most	 of	 the	 classifiers,	 the	 combination	 resulted	 in	 an	

improved	 performance.	 Similar	 to	 what	 has	 been	 reported	 in	 the	 literature	 in	 other	

applications,	combining	 local	and	global	 features	 results	 in	a	higher	accuracy	 in	automatic	

classification.		

	

5.9 Additional	Feature	Results		

	

For	 the	 additional	 features,	 as	 the	 combined	 feature	 set	we	 deployed	 the	Weight,	 shape	

flow,	 shaping,	 vertical	 and	horizontal	 symmetry.	A	 classification	model	was	built	 in	WEKA	

deploying	 the	 following	 classifiers:	 BayesNet,	 Naïve	 Bayes,	MLP,	 RBF	 Network,	 SMO,	 IBk,	

J48,	J48	Graft	and	Random	Forest.	
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The	accuracy	of	classification	using	a	combination	of	the	local	and	global	feature	sets	with	

the	additional	features	with	ten-fold	cross	validation	is	presented	in	Table	13.	The	results	for	

local	features,	global	features,	and	the	combined	features	are	also	placed	within	the	same	

table	for	comparison.	The	table	contains	the	difference	between	the	additional	feature	set	

and	 the	 best	 performer	 in	 local	 and	 global	 features	 for	 each	 classifier,	 as	 well	 as	 the	

difference	 in	accuracy	of	 the	additional	 feature	set	against	 the	combined	 feature	set.	The	

accuracy	 of	 the	 average	 and	maximum	 values	 across	 all	 classifiers	 is	 presented	 for	 each	

feature	 set.	 The	 difference	 in	 average	 and	maximum	 values	 across	 all	 classifiers	 and	 the	

improvements	on	the	average	are	also	shown.		
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Feature	
Set	1	
Kapur	

Feature	
Set	2	

Zacharatos	

Feature	Set	3	
Combined	

Difference	
Feature	Set	4	My	
Combination	

Improvement	
upon	Set	1-2	

Improvement	
upon	Set	1-	3	

Naive	Bayes	 71.8	 70.5	 71.8	 0	 71.8	 0	 0.0	

Multi-Layer	

Perceptron	
84.6	 73.1	 84.6	 0	 87.2	 2.6	 2.6	

RBF	Network	 73.1	 73.1	 75.6	 2.5	 76.9	 3.8	 1.3	

SMO	 82.1	 68	 85.9	 3.8	 88.5	 6.4	 2.6	

IBk	 87.2	 82.1	 88.5	 1.3	 92.3	 5.1	 3.8	

J48	 80.8	 77	 87.2	 6.4	 87.2	 6.4	 0.0	

J48Graft	 79.5	 74.4	 85.9	 6.4	 84.6	 5.1	 -1.3	

Random	Forest	 80.8	 79.5	 80.8	 0	 82.1	 1.3	 1.3	

Average	 79.1	 74.4	 81.3	 2.2	 83.8	 3.8	 1.3	

	 	
improvement	on	average	 3.0	

	
4.7	 2.5	

Max	 87.2	 82.1	 88.5	 1.3	 92.3	 5.1	 3.8	

Table	13	-	Additional	Feature	Set	Classification	Results	
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5.10 Discussion	on	Additional	Features	

	

The	new	combination	(feature	set	four)	resulted	in	an	increased	performance	from	

the	 majority	 of	 classifiers	 deployed.	 The	 IBk	 classifier,	 produced	 the	 highest	

performance	when	examining	feature	set	with	an	accuracy	of	92.3%.	

	

With	 the	 inclusion	of	extra	 features,	most	of	 the	classifiers	showed	an	 increase	 in	

their	accuracy.	Only	J48Graft	had	a	very	small	 (1.3%)	decrease	 in	the	classification	

rate.	 The	 new	 additional	 features	 increased	 the	 average	 performance	 by	 2.5%,	

compared	to	the	deployment	of	the	combination	feature	set.	This	feature	set	also	

resulted	 in	 an	 increased	 average	 performance	 of	 4.7%,	 compared	 to	 the	 best	

performance	of	deploying	either	local	and	global	feature	set	by	themselves.	

	

These	results	support	the	statement	by	Moore	and	Yamamoto	[67]	that	movement	

must	be	approached	at	multiple	levels	if	 it	 is	to	be	properly	understood.	They	also	

support	 the	 hypothesis	 that	 the	 classification	 performance	 increases	 from	 adding	

additional	LMA	components.	
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6 CONCLUSION	

6.1 Overview	of	work	

	

We	presented	a	method	of	improving	performance	of	affect	recognition	using	body	

language.	Within	existing	 literature,	 the	majority	of	systems	deploy	either	 local	or	

global	 features	 independently.	 In	 this	 study,	 the	 impact	 of	 combining	 local	 and	

global	features	 into	a	single	classifier	was	explored	in	automatic	affect	recognition	

based	on	body	language.		

	

A	motion	capture	suit	was	deployed	to	record	68	different	walking	movements	from	

nine	actors	performing	happy,	neutral	and	grieving	emotions.	These	data	files	were	

exported	 through	 MVN	 studio	 and	 imported	 into	 Matlab.	 Matlab	 extracted	 and	

calculated	the	required	feature	sets,	 then	exported	these	 into	a	CSV	file	ready	for	

classification.	Feature	set	one	contained	the	Kapur	local	method	features	consisting	

of	 the	mean	of	 velocity	 and	 acceleration;	 and	 the	 standard	 deviation	 of	 position,	

velocity	 and	 acceleration	 of	 each	 of	 the	markers.	 Feature	 set	 two	 contained	 the	

Zacharatos	 global	 method	 features,	 consisting	 of	 the	 percentage	 of	 narrowing	

down,	 prospective	 focus	 of	 movement	 (as	 represented	 by	 the	 four	 extremity	

vectors)	and	the	velocity,	acceleration	and	jerk	of	both	hands	and	feet.	Feature	set	

three	was	an	amalgamation	of	the	Kapur	local	method	features	and	the	Zacharatos	
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global	 method	 features.	 Features	 set	 four,	 containing	 the	 expanded	 LMA	 set,	

produced	an	even	higher	accuracy	across	multiple	classifiers.		

	

A	 classification	 model	 was	 built	 in	 WEKA	 using	 ten-fold	 cross	 validation	 whilst	

deploying	the	following	classifiers:	BayesNet,	Naïve	Bayes,	Multi-Layer	perceptron,	

RBF	Network,	SMO,	IBk,	J48	and	Random	Forest.	

	

The	 results	of	 classification	 from	the	combination	 feature	set	 three	outperformed	

classification	undertaken	with	only	the	local	features	or	global	features	individually	

for	a	variety	of	classifiers.	Several	classification	algorithms	achieved	an	even	higher	

accuracy	 when	 deploying	 feature	 set	 4,	 which	 contained	 the	 additional	 LMA	

components.	

	

6.2 Significance	of	Results	

	

Combining	the	two	types	of	features	never	resulted	in	a	decrease	in	accuracy	of	the	

results.	 On	 the	 contrary,	 for	 most	 classifiers,	 the	 combination	 resulted	 in	 an	

improved	 performance.	 Hence,	 it	 can	 be	 confidently	 stated	 that	 using	 a	

combination	 of	 local	 and	 global	 features	 results	 in	 a	 more	 robust	 and	 reliable	

method	 for	 affect	 recognition	 using	 gait	 by	 improving	 accuracy	 across	 a	 range	 of	

classifiers.		
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Features	 set	 four,	 containing	 the	 expanded	 LMA	 set,	 produced	 an	 even	 higher	

accuracy	 across	 multiple	 classifiers.	 This	 supports	 the	 hypothesis	 that	 deploying	

LMA	 components	 together	 impacts	 positively	 upon	 the	 classification	 accuracies.	

Therefore,	when	deploying	LMA	as	part	of	movement	classification,	 it	 is	beneficial	

to	deploy	as	many	LMA	components	as	practical.		

	

As	 discussed	 in	 Chapter	 2,	 body	 language	 provides	 useful	 information	 in	

communicating	affect.	Although	the	use	of	multiple	modalities	in	affect	recognition	

tends	to	outperform	a	single	modality	being	used	by	itself,	improving	any	single	one	

of	 them	 in	 isolation	 will	 result	 in	 improvement	 when	 combined	 with	 other	

information.	This	research	demonstrates	a	different	approach	to	choosing	features	

deployed	in	classification	than	previously	reported	in	the	literature,	producing	more	

accurate	 results.	 Better	 automatic	 affect	 recognition	 rates	 can	 lead	 to	 increased	

application	of	the	approach,	as	well	as	its	usefulness	and	reliability.		

	

	

Our	 results	 show	 that	 the	 same	 classifier	 can	 have	 a	 range	 of	 performance	

depending	upon	the	style	of	feature	set	used.	For	example,	Multi-layer	Perceptron	

and	 SMO	 both	 had	 very	 poor	 accuracy	 with	 the	 Zacharatos	 global	 method,	 but	

performed	well	with	 the	others.	 In	 addition,	 an	 approach	 can	be	better	 suited	 to	

different	classifiers,	as	not	all	 classifiers	obtained	 the	same	performance	 increase,	
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which	 may	 relate	 to	 the	 assumptions	 made	 for	 each	 individual	 classifier.	 The	

previous	 affect	 recognition	 studies,	 however,	 appear	 to	 only	 report	 the	

performance	of	 the	classifier	with	 the	highest	accuracy.	The	success	of	a	classifier	

can	depend	on	a	number	of	factors	including	the	size	of	the	training	data,	number	

of	emotion	categories,	method	of	data	collection	and	the	number	of	features	used	

for	classification.	To	determine	the	impact	of	these	factors	on	various	classifiers,	the	

performance	of	a	variety	of	classifiers	should	be	reported,	even	when	the	accuracy	

of	each	classifier	is	poor.		

	

6.3 Limitations	and	Future	Work		

	

There	 are	 a	 number	of	 limitations	 associated	with	 the	 research	 conducted	 in	 this	

thesis	 which	 can	 be	 overcome	 with	 further	 work.	 These	 limitations	 and	 possible	

methods	to	address	them	are	described	in	this	section.		

	

Although	it	 is	assumed	that	the	improvement	from	using	multiple	LMA	features	in	

combination	with	 each	other	 in	 a	 gait	 system	would	 improve	 a	multiple	modality	

system,	this	has	yet	to	be	tested.	Further	work	could	compare	a	multiple	modality	

system	deploying	a	single	body	language	feature	set	(feature	set	one	or	feature	set	

two),	and	one	deploying	a	combined	local	and	global	feature	set	(feature	set	three)	

or	a	multiple	component	LMA	set	(feature	set	four)	for	the	body	language	modality.	
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Both	feature	set	three	and	feature	set	 four	demonstrated	a	performance	 increase	

across	multiple	different	classifiers	when	compared	against	the	Kapur	local	method	

and	the	Zacharatos	global	method.	This	improvement,	however,	may	be	due	to	over	

fitting	to	our	data.	That	is,	even	though	ten-fold	cross	validation	was	used,	since	the	

data	set	was	relatively	small	this	feature	combination	might	have	been	suited	to	this	

particular	data	set.	Our	dataset	was	small	in	comparison	to	those	deployed	in	facial	

recognition,	with	only	a	total	of	68	recordings.	Further	testing	should,	therefore,	be	

conducted	across	different	data	sources,	particularly	ones	with	a	larger	collection	of	

recordings.	Feature	sets	and	techniques	explored	in	other	studies	may	also	face	this	

problem	and	only	 be	 successful	with	 their	 own	data.	A	more	 reliable	 comparison	

would	be	achieved	by	testing	different	feature	sets	and	techniques	against	multiple	

data	sets.		

	

As	 outlined	 in	 chapter	 2,	Moore	 and	 Yamamoto	 [67]	 state	 that	 the	 first	 principle	

underlying	 LMA	 is	 that	 movement	 is	 a	 process	 of	 change.	 The	 start	 and	 end	

positions	are	not	only	important	but	the	pattern	of	change	of	body	position	helps	to	

communicate	 emotion.	 We	 simplified	 this	 process	 by	 utilising	 mean	 values	 and	

variance	 of	 the	 features.	 This	 allowed	 us	 to	 feed	 in	 single	 values	 in	 each	 cell	 for	

classification.	 A	 more	 thorough	 approach	 would	 be	 to	 undertake	 discriminant	

analysis	 to	 determine	 the	 most	 distinguishing	 features,	 then	 feed	 these	 features	

into	our	classifier	model	as	a	time	series,	rather	than	utilising	single	values	based	on	
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the	 mean	 and	 variance.	 However,	 to	 isolate	 the	 improvement	 resulting	 from	

combining	local	and	global	features	into	a	single	classifier,	discriminate	analysis	was	

not	applied	to	the	data.	Instead	only	the	mean	and	standard	deviation	of	data	was	

used	rather	than	using	 it	as	a	time	series	 in	building	our	classification	model.	Post	

processing	 techniques,	 such	 as	 segmentation	 and	 weighting	 [45],	 [46],	 or	

Dimensional	 Reduction	 [43],	 [44],	 have	 previously	 been	 deployed	 in	 affect	

recognition	with	success.	These	techniques,	however,	have	yet	to	be	applied	to	LMA	

which	 may	 improve	 its	 performance.	 These	 post-processing	 techniques	 may	 also	

benefit	the	combination	feature	sets	three	and	four.	

	

Our	 research	 only	 examined	 the	 three	 acted	 emotions	 of	 grieving,	 neutral	 and	

happy	by	nine	professional	 actors.	Acted	emotions,	 however,	 can	be	exaggerated	

and	less	subtle	and	the	inconsistent	performance	of	emotions	by	non-actors	may	be	

more	 indicative	 of	 how	 emotions	 are	 naturally	 portrayed.	 Future	 research	 could	

replicate	 this	 project	 with	 natural	 emotions,	 such	 as	 the	 studies	 ([47],	 [39])	

performed	on	emotions	displayed	whilst	playing	video	games.		

	

The	three	emotions	studied	are	only	a	small	portion	of	emotions	that	are	displayed	

by	humans	and	the	results	should	be	repeated	with	a	set	of	recordings	that	contain	

a	large	number	of	emotions.	Although	it	is	unknown	how	scalable	it	is	the	number	

of	emotions,	based	on	the	literature	this	approach	would	apply	to	a	large	number	of	

emotions.	 In	addition,	all	emotions	that	are	contained	within	the	database	belong	
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to	 one	 of	 these	 three	 emotions.	 To	 further	 test	 the	 accuracy	 of	 the	 system,	 the	

classifier	should	be	trained	on	these	three	emotions	but	tested	on	recordings	that	

contain	more	than	those	three	emotions.	Rather	than	the	system	choosing	the	best	

fitting	emotion,	it	would	be	required	to	place	any	emotion	unsure	of	into	a	different	

category	of	unknowns.	

	

Currently	most	of	the	studies	use	actors	who	can	display	extremes	of	emotions	but	

the	intensity	of	such	extremes	vary	in	different	people.	For	example,	sometimes	we	

could	 feel	 a	 little	 bit	 angry	 and	 other	 times	 really	 angry.	 This	 could	 lead	 to	

differences	in	how	much	is	communicated	in	our	gait.	In	addition,	the	tendency	to	

happiness	and	anger	can	occur	at	the	same	time.	An	alternative	way	of	approaching	

affect	recognition	would	be	assigning	a	specific	confidence	rating	to	an	emotion.	For	

example,	rather	than	determining	an	emotion	as	happy	or	sad,	it	might	be	better	to	

identify	it	as	60%	confidence	of	being	happy,	and	40%	chance	of	being	sad.	Using	a	

percentage	 confidence	 rating	 could	 allow	 recognition	 of	 mixed	 emotions	 rather	

than	 single	 extreme	 emotions.	 The	 focus	 of	 this	 study	 was	 on	 three	 distinct	

emotions	 of	 grieving,	 happy	 and	 neutral.	 Future	 work	 could	 investigate	 the	

deployment	of	confidence	ratings,	rather	than	distinct	boundaries.	

	

In	our	research,	a	motion	capture	device	was	deployed	which	required	subjects	to	

wear	a	specially	designed	suit	with	inertial	sensors.	Although	a	large	amount	of	data	

is	captured	in	this	method	to	validate	the	concept,	it	is	not	a	practical	approach	in	
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real	 time	 applications.	Our	 research	 should	be	 replicated	with	 the	deployment	of	

perception	 systems,	 such	 as	 Kinect	 or	 video	 cameras,	 which	 do	 not	 require	 the	

subject	to	wear	any	specialised	equipment.	

	

The	performance	of	combinations	of	other	feature	sets	currently	being	deployed	in	

affect	recognition	from	gait	should	be	analysed.	The	accuracy	of	these	feature	set	

combinations	 may	 change	 depending	 on	 the	 data	 source	 and	 the	 classifier	

deployed.	Some	classifiers	appear	to	work	better	with	different	feature	sets.	Some	

classifiers,	 such	 as	 Naïve	 Bayes,	 appear	 to	 benefit	 insignificantly	 from	 the	 added	

extra	features.	There	was	only	a	difference	of	1.5%	between	the	Zacharatos	global	

method	and	the	Kapur	local	method	features	using	these	classifiers,	and	there	was	

no	 improvement	 when	 deploying	 the	 combination	 feature	 set	 three,	 or	 with	 the	

extra	 information	 in	 feature	set	 four.	However,	some	studies	 ([38],	 [53])	 recorded	

Naïve	Bayes	with	Adaboost	as	their	highest	performing	classifier.	Their	feature	set	

may	 combine	 with	 a	 different	 complementary	 feature	 set	 to	 produce	 a	 higher	

performance	with	Naïve	Bayes	classification.	

	

Since	each	study	uses	 its	own	dataset	and	data	detection	method,	 it	 is	difficult	 to	

compare	 the	 analysis	 and	 classification	 methods	 of	 our	 technique	 against	 other	

previous	literature.	Studies	using	a	common	data	set	and	detection	method	need	to	

be	undertaken	 to	enable	 comparison	of	 various	processing	options	 (including	 raw	

data)	 to	 determine	 their	 comparative	 effectiveness.	 This	 thesis	 research	
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demonstrated	its	effectiveness	by	comparing	the	combined	features	and	additional	

feature	approach	with	 the	Kapur	 local	method	and	 the	Zacharatos	global	method	

on	 the	 same	 data	 set.	 However,	 this	 work	 could	 be	 expanded	 by	 applying	 all	 of	

these	methods	on	another	publically	available	dataset	for	further	comparison.				 	
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