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Abstract Abstract 
White-rot fungi (WRF) and their ligninolytic enzymes have been investigated for the removal of a broad 
spectrum of trace organic contaminants (TrOCs) mostly from synthetic wastewater in lab-scale 
experiments. Only a few studies have reported the efficiency of such systems for the removal of TrOCs 
from real wastewater. Wastewater derived organic and inorganic compounds can inhibit: (i) WRF growth 
and their enzyme production capacity; (ii) enzymatic activity of ligninolytic enzymes; and (iii) catalytic 
efficiency of both WRF and enzymes. It is observed that essential metals such as Cu, Mn and Co at trace 
concertation (up to 1 mM) can improve the growth of WRF species, whereas non-essential metal such as 
Pb, Cd and Hg at 1 mM concentration can inhibit WRF growth and their enzyme production. In the case of 
purified enzymes, most of the tested metals at 1-5 mM concentration do not significantly inhibit the 
activity of laccases. Organic interfering compounds such as oxalic acid and ethylenediaminetetraacetic 
acid (EDTA) at 1 mM concentration are potent inhibitors of WRF and their extracellular enzymes. However, 
inhibitory effects induced by interfering compounds are strongly influenced by the type of WRF species as 
well as experimental conditions (e.g., incubation time and TrOC type). In this review, mechanisms and 
factors governing the interactions of interfering compounds with WRF and their ligninolytic enzymes are 
reviewed and elucidated. In addition, the performance of WRF and their ligninolytic enzymes for the 
removal of TrOCs from synthetic and real wastewater is critically summarized. 
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Abstract:  

White-rot fungi (WRF) and their ligninolytic enzymes have been investigated to remove a broad spectrum 

of TrOCs mostly from synthetic wastewater in lab-scale experiments. Only a few studies have reported 

the efficiency of such systems for the removal of TrOCs from real wastewater. Wastewater derived 

organic and inorganic compounds can inhibit: (i) WRF growth and their enzyme production capacity; (ii) 

enzymatic activity of ligninolytic enzymes; and (iii) catalytic efficiency of both WRF and enzymes. It is 

observed that essential metals such as Cu, Mn and Co at trace concertation (up to 1 mM) can improve the 

growth of WRF species, whereas non-essential metal such as Pb, Cd and Hg at 1 mM concentration can 

inhibit WRF growth and their enzyme production. In the case of purified enzymes, most of the tested 

metals at 1-5 mM concentration do not significantly inhibit the activity of laccases. Organic interfering 

compounds such as oxalic acid and ethylenediaminetetraacetic acid (EDTA) at 1 mM concentration are 

potent inhibitors of WRF and their extracellular enzymes. However, inhibitory effects induced by 

interfering compounds are strongly influenced by the type of WRF species as well as experimental 

conditions (e.g. incubation time and TrOC type). In this review, mechanisms and factors governing the 

interactions of interfering compounds with WRF and their ligninolytic enzymes are reviewed and 

elucidated. In addition, the performance of WRF and their ligninolytic enzymes for the removal of TrOCs 

from synthetic and real wastewater is critically summarized. 

Keywords: Trace organic contaminants (TrOCs); White-rot fungi (WRF); Metal salts; Organic solvents; 

Surfactant; Inhibitory mechanisms.   
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1. Introduction  

White-rot fungi (WRF) are a type of fungus that is known to degrade lignin, a class of complex natural 

organic polymers found in the cell wall of plants, by using their extracellular enzymatic system, called as 

ligninolytic enzymes (Bugg et al., 2011; Rouches et al., 2016). WRF and their ligninolytic enzymes have 

also been studied for the treatment of a variety of recalcitrant compounds such as polycyclic aromatic 

hydrocarbons, dyes, and chlorophenols (Hai et al., 2007; Yang et al., 2013b; Zhang et al., 2016). In 

particular, removal of trace organic contaminants (TrOCs) using WRF or their extracellular enzymes has 

gained much attention over the last decade (Kim and Nicell, 2006a; Nguyen et al., 2015; Tran et al., 

2010). TrOCs such as pharmaceuticals, personal care products, industrial chemicals and steroid hormones 

have been commonly detected in municipal wastewater and surface water bodies. Their occurrence in 

environmental systems can be harmful to aquatic ecosystem and human health even at trace 

concentrations (Gavrilescu et al., 2015; Luo et al., 2014).  

Whole-cell WRF and their ligninolytic enzymes have been reported to efficiently remove a wide range of 

TrOCs such as pharmaceuticals (e.g. ibuprofen, ketoprofen and diclofenac), personal care products (e.g. 

triclosan and oxybenzone) and steroid hormones (Marco-Urrea et al., 2010; Nguyen et al., 2014a; Nguyen 

et al., 2015; Yang et al., 2013a). Moreover, a number of performance influencing factors for such 

treatment systems have been identified. These factors include physicochemical properties of TrOCs, type 

of WRF species and their individual ligninolytic extracellular enzymes as well as culture medium and 

environmental conditions (Gao et al., 2010; Yang et al., 2013b). With a few exceptions, studies 

investigating the removal of TrOCs by whole-cell WRF or their ligninolytic enzymes used synthetic 

wastewater matrix containing a mixture of a few TrOCs (Marco-Urrea et al., 2009; Rodarte-Morales et 

al., 2011). However, the performance of whole-cell WRF or enzyme based treatment systems operated 

under controlled conditions may not reflect the true picture of their ability to treat municipal or industrial 

wastewater.  
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Physicochemical properties of real wastewater are diverse. Real wastewater matrix contains different 

dissolved organic and inorganic interfering compounds. These interfering compounds can affect the 

growth of WRF species and can inactivate extracellular enzymes, consequently inhibiting their catalytic 

efficiency (Kim and Nicell, 2006c; Mutlu et al., 2014; Stajić et al., 2013). Depending on their 

concentration and the type of WRF species, inorganic interfering compounds such as PbCl2, CdCl2 and 

HgCl2 have been reported to inhibit the growth and enzyme secretion capacity of WRF. Exposure of 

WRF to interfering compounds could cause DNA damage, protein denaturation and cell lysis 

(Bhattacharya et al., 2014; Chen et al., 2014). Similarly, inhibition of the activity of extracellular enzymes 

has also been observed following the exposure of extracellular enzymes to different concentrations of 

organic interfering compounds such as oxalic acid and organic solvents (Kumar et al., 2012; Ramírez-

Cavazos et al., 2014). Therefore, impacts of interfering compounds on WRF and ligninolytic enzymes 

should be studied for an in-depth understating of their inhibitory mechanisms.  

Many reviews related to WRF and their ligninolytic enzymes have been published over the last few years.  

(Asif et al., 2017; Gao et al., 2010; Kües, 2015; Rodgers et al., 2010; Tortella et al., 2015; Yang et al., 

2013b). However, impacts of wastewater derived interfering compounds on the growth of WRF and their 

enzyme production capacity as well as on the stability and catalytic efficiency of extracellular enzymes 

have not been reviewed systematically. This review aims to critically evaluate the impacts of dissolved 

organic and inorganic interfering impurities on WRF growth and enzymatic activity and TrOC removal. 

In addition, the inhibitory mechanisms and influencing factors (e.g. effects of WRF species and 

incubation time) are critically discussed. Efficacy of WRF and their ligninolytic enzymes for the removal 

of TrOCs from synthetic and real wastewater is also reviewed to provide a general overview. Directions 

for future research are also outlined.  

2. Properties and performance of WRF and their ligninolytic enzymes  

WRF species degrade recalcitrant compounds including TrOCs by using their intracellular or extracellular 

enzymes (Lloret et al., 2012; Yang et al., 2013b). In order to understand the impacts of wastewater 
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derived interfering compounds on the growth and enzymatic activity of WRF, it is vital to understand the 

key features of WRF and their enzymatic systems. This section provides this important background 

information concisely. 

The key features of WRF that make them an attractive treatment option for TrOC removal include but are 

not limited to (i) the non-specificity and non-selectivity of their enzyme systems, enabling them to 

degrade complex individual and mixture of pollutants; (ii) the secretion of extracellular enzymes, 

enabling them to degrade pollutants with low water solubility; (iii) the ability of their plasma membrane-

dependent redox system to degrade pollutants in a nutrient deficient reaction mixture over a wide range of 

pH; and (iv) the ability of intracellular enzyme to degrade some pollutants (Pointing, 2001; Rodríguez-

Couto, 2016; Rouches et al., 2016):. Depending on growth medium and culture conditions as well as on 

the type of WRF species/strains, WRF can secrete four different ligninolytic enzymes namely laccase, 

lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP). In addition, 

cytochrome P450 monooxygenases, a group of intracellular enzymes, have also been reported to play a 

vital role in the degradation of TrOCs via hydroxylation, dehalogenation and heteroatom oxygenation 

mechanisms (Dashtban et al., 2010; Golan-Rozen et al., 2011; Yang et al., 2013b).  

Characteristics of ligninolytic extracellular enzymes such as molecular mass, isoelectric point and redox 

potential are outlined in Table 1. Stability and catalytic potential of ligninolytic enzymes may vary due to 

difference in their redox-potential as well as due to the extent of glycosylation. In general, enzymes 

having high redox-potential are favorable for enzyme catalyzed reactions (Dashtban et al., 2010; Fabbrini 

et al., 2002; Riva, 2006). Redox-potential of ligninolytic enzymes is as follows: LiP>MnP=VP>laccase 

(Table 1).  

Glycosylation, a complex enzymatic process, is responsible for the formation of biopolymers such as 

polynucleotides at the cellular level (Haltiwanger and Lowe, 2004; Jung et al., 2011). Glycosylation in 

extracellular enzymes can influence their shape, structure, composition and the formation of substrate 

binding sites as well as their properties such as redox-potential, enzymatic activity and catalytic potential 
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(Sirim et al., 2011; Yang et al., 2015). Stability of enzymes tends to improve with the increase of 

glycosylation but it may not always improve the catalytic potential of an enzyme (Hamilton and 

Gerngross, 2007; Maestre-Reyna et al., 2015). Deglycosylation of extracellular enzymes has been 

observed to adversely affect the enzymatic activity, stability and catalytic potential of enzymes (Nagai et 

al., 1997; Vite-Vallejo et al., 2009; Yang et al., 2015). Notably, the catalytic potential or redox-potential 

of LiP is higher than other ligninolytic enzymes, possibly because the level of glycosylation in LiP is 

greater than other ligninolytic enzymes (Dashtban et al., 2010; Sigoillot et al., 2012). Isoelectric point is 

important to estimate the charge on fungal enzymes at different pH (Magner, 2013). Isoelectric point of 

ligninolytic enzymes mostly falls in acidic pH range i.e. 3-7, indicating that ligninolytic enzymes are 

negatively charged at pH ≥7.0 (Lu et al., 2017)  

[Table 1] 

WRF mediated removal of TrOCs involves secondary metabolism. In presence of an easily 

degradable substrate, WRF species produce ligninolytic enzymes that can degrade TrOCs (Yang 

et al., 2013a; Yang et al., 2013b). TrOC removal mechanisms by whole-cell WRF include biosorption 

onto fungal biomass as well as degradation by extracellular and intracellular enzymes, as depicted in 

Figure 1. However, the extent of TrOC removal in whole-cell fungal treatment systems may vary 

depending on the type of WRF species or even the strain (Yang et al., 2013b). An alternative to whole-

cell WRF treatment is the use of crude or purified enzymes, thus separating fungal growth and pollutant 

degradation steps (Spina and Varese, 2016). Among the WRF enzymes, laccases have predominantly 

been used compared to lignin peroxidases because laccases do not require a cofactor for the oxidation of 

recalcitrant pollutants and have demonstrated better stability than peroxidases (Ashe et al., 2016; Nguyen 

et al., 2014b; Riva, 2006; Wang et al., 2012).  

[Figure 1] 
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Notably, wide variations in the removal of TrOCs by whole-cell WRF and laccase (crude/purified) can be 

observed depending on the physicochemical properties of the compounds, the experimental conditions 

and the type of WRF species and their ligninolytic enzymes (Figure 2). These factors governing the 

performance of WRF or laccase based treatment for TrOC removal have been critically reviewed (Asif et 

al., 2017; Yang et al., 2013b). The main focus of the current review is to elucidate and discuss the effects 

of wastewater derived interfering compounds on the growth and enzyme production capacity of WRF as 

well as on the activity and catalytic efficiency of extracellular enzymes.  

[Figure 2] 

3. Wastewater derived interfering compounds 

Fungal/enzymatic bioreactors have mostly been studied for the treatment of synthetic wastewater 

spiked with TrOCs in absence of potential inhibiting compounds prevalent in real wastewater 

(Asif et al., 2017; Margot et al., 2015; Yang et al., 2013b). However, wastewater derived 

interfering compounds can affect the stability and catalytic efficiency of WRF and ligninolytic 

enzymes (Sadhasivam et al., 2008; Zeng et al., 2012). Interfering compounds can be divided into 

two categories, namely inorganic and organic compounds. Organic interfering compounds such 

as organic acids and solvents are used in different industrial processes, and hence are detected in 

industrial wastewater. For instance, phenol and Ɛ-caprolactam are used as monomers for 

polymerization in plastic industries, while organic solvents such as methanol, ethanol and 

acetone are used in pharmaceutical as well as in resin manufacturing. Concentration of organic 

solvents in industrial wastewater can vary from 0.1-1% w/w (Grodowska and Parczewski, 2010; 

Kim and Nicell, 2006a). Similarly, EDTA is used in fabric modification for dyeing and as an 

ingredient of bleaching powder (Riemenschneider and Tanifuji, 2000; Taxiarchou and Douni, 
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2014). Citric acid is an active ingredient of pharmaceuticals, cosmetics, and food products 

(OECD, 2001; Roehr et al., 2008).  

In municipal and industrial wastewater, inorganic interfering compounds comprise mainly of 

inorganic salts. Specific inhibitory effects of different cations and anions on WRF and 

ligninolytic enzymes have been reported (see Section 5.1). Concentration of cations commonly 

detected in wastewater varies from 2 µg/L to 200 mg/L (Supplementary data Table S2). For 

example, concentrations of common cations such as Na
+
 and Ca

+2
 have been reported to be in the 

range 32-170 mg/L, while trace concentrations (1-10 µg/L) of heavy metal cations such as Cr, 

Pb, Zn and As have been reported (Auriol et al., 2007; Carletti et al., 2008; Spina et al., 2015). 

Among interfering anions, a high concentration of chloride (240-1500 mg/L) can be expected in 

wastewater (Auriol et al., 2008; Mir-Tutusaus et al., 2016). The concentration of other anions 

such as fluoride, sulfate and cyanide can be in the range of 0.002-0.05 mM (Supplementary data 

Table S2). Since WRF and enzymatic treatment has the potential for the treatment of both 

municipal and industrial wastewater, a comprehensive literature survey was carried out to 

discuss and elucidate the inhibitory effects of aforementioned interfering compounds on the 

growth and activity of WRF and ligninolytic enzymes. 

4. Impacts of interfering compounds on WRF growth and enzyme production 

4.1. Impact on WRF growth 

WRF can uptake heavy metals from their immediate environmental settings which could affect their 

metabolic processes. Impacts of heavy metals on WRF growth and their ability to produce extracellular 

enzymes have been investigated mostly from the viewpoint of WRF potential to uptake and/or remove 

heavy metals (Bayramoğlu and Arıca, 2008; Chen et al., 2012). Although heavy metals are generally 

toxic to WRF, some heavy metals such as Cu, Mn, Fe and Co at trace concentrations are essential for the 
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growth of fungi. However, these essential metals can inhibit the growth of WRF at high concentrations. 

Heavy metals that are generally toxic to WRF include Pb, Cd, Hg and Ag (Baldrian, 2003; Baldrian et al., 

2005; Bhattacharya et al., 2014; Gupta et al., 2016; Mutlu et al., 2014). 

Cd, Pb and Hg are the most toxic heavy metals for WRF (Bhattacharya et al., 2014; Hatvani and Mécs, 

2003; Li et al., 2015; Wan et al., 2015; Zhang et al., 2015). For instance, severe inhibition (≥50%) of the 

growth of Lentinula edodes (Hatvani and Mécs, 2003), Trametes versicolor (Mutlu et al., 2014) and 

Phanerochaete chrysosporium (Li et al., 2015) has been reported at low concentrations of HgCl2 (0.015 

mM), CdCl2 (0.05 mM) and Pb(NO3)2 (0.6 mM), respectively. On the other hand, essential heavy metals 

such as Cu, Mn, Zn and Co could slightly improve the growth of WRF. For instance, Bhattacharya et al. 

(2014) observed an 8% improvement in the growth of Pleurotus ostreatus in the presence of 5 mM 

CuSO4. Similarly, Baldrian et al. (2005) reported a slight increase (2-5%) in the growth of Pleurotus 

ostreatus due to the addition of MnSO4 at 1-10 mM. However, the growth of Lentinula edodes was 

inhibited by 50% in presence of MnSO4 only at a concentration of 3.1 mM (Hatvani and Mécs, 2003), 

which suggests that the specific impact depends on both the type of salt and fungi.  

Organic compounds such as ethylenediaminetetraacetic acid (EDTA), citric acid and organic solvents can 

be detected in industrial and municipal wastewater. These compounds may induce significant toxic effects 

in a number of aquatic species (OECD, 2001; Reaves, 2004; Roehr et al., 2008). For example, EDTA is 

used in dyeing processes, in silica analysis equipment and as an ingredient of bleaching powder 

(Riemenschneider and Tanifuji, 2000; Taxiarchou and Douni, 2014). EDTA was reported to reduce the 

population of green algae by 50% within 96 h of exposure even at a concentration of 0.01 mM (Reaves, 

2004). Similarly, citric acid, an active ingredient of pharmaceuticals, cosmetics, and food products, can 

reduce the population of fish (Lepomis macrochirus and Leuciscus idus) and crustaceans species by 50% 

at 2.3 and 0.9 mM, respectively (OECD, 2001; Roehr et al., 2008). Although the impacts of organic 

interfering compounds on WRF have not been investigated thoroughly, these compounds can be toxic to 
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WRF species as well. Indeed, in a study by Bhattacharya et al. (2014), EDTA (5 mM) reduced the growth 

of Pleurotus ostreatus by 80%..   

4.2. Growth inhibition mechanisms 

Recent studies show that the mechanisms of WRF growth inhibition by metals are similar to other 

microbes (Zeng et al., 2012; Zeng et al., 2015; Zhang et al., 2015). Possible mechanisms of inhibition due 

to metal-induced toxicity may include; (i) alteration in the morphology of fungal mycelium (Errasquın 

and Vazquez, 2003; Peña-Castro et al., 2004); (ii) inhibition of intracellular and extracellular proteins due 

to the denaturation of sulfhydryl groups (Hall, 2002; Kiyono et al., 2010); (iii) disruption in the formation 

of cell wall by inhibiting Ca
+2

 dependent regulatory pathways which results in enhanced intercellular Ca
+2

 

efflux (Poirier et al., 2008; Zeng et al., 2012); (iv) induction of oxidative stress due to the inactivation of 

enzymatic and non-enzymatic antioxidants such as thiols and peroxidases (Kim et al., 2013; Zhang et al., 

2015); and (v) formation and accumulation of excessive reactive oxygen species (ROS) namely O
−2

, OH
−1

 

and H2O2, causing severe damage to the cell structure (lipids and proteins) and nucleic acid (DNA and 

mRNA) as well as enzyme inactivation (Chen et al., 2014; Gupta et al., 2016; Zeng et al., 2012). Despite 

their potential inhibitory effects, ROS at low concentrations plays an important role in cellular signaling 

systems such as induction of mutagenic response (Valko et al., 2006; Wan et al., 2015). Impacts of heavy 

metals on WRF growth are systematically presented in Figure 3.  

[Figure 3] 

4.3. Impacts on enzyme secretion capacity 

Metals may understandably affect WRF growth and enzymatic activity simultaneously, but may not be to 

the same extent. For instance, Mutlu et al. (2014) investigated the toxic stress of CdCl2 on the growth of 

Trametes versicolor as well as the production of laccase. They observed that the growth of Trametes 

versicolor was reduced by 40-60 % in presence of 0.3-1.1 mM CdCl2, but the specific laccase activity i.e., 

activity per unit weight of biomass gradually increased (Mutlu et al., 2014). Therefore, it is important to 
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observe both biomass growth and enzyme production in experiments focusing on the toxic effects of 

metals in order to develop a correlation between WRF growth inhibition and enzyme production. 

Surprisingly, only a few studies have reported both the change in WRF growth and enzyme activity 

(Hatvani and Mécs, 2003; Huang et al., 2010; Mutlu et al., 2014). For instance, Hatvani and Mécs (2003) 

investigated the impacts of nine heavy metals, including Cd, Cu, Co, Fe, Hg, Mn, Ni, Pb and Zn over a 

range of 0.005-6 mM separately, on the growth and enzyme production capacity of Lentinula edodes. 

They observed that the production of laccase increased in the presence of all heavy metals except Fe, 

while the production of MnP reduced in the presence of all heavy metals. This was accompanied by a 

reduction of growth of Lentinula edodes  by 20%, (Hatvani and Mécs, 2003). Similarly, Huang et al. 

(2010) reported that the growth of Phanerochaete chrysosporium (BKMF-1767) was reduced by 12 and 

50% at Pb(NO3)2 concentrations of 0.09 and 1.2 mM, respectively, with a concomitant drop in specific 

LiP activity of 55 and 72%. However, the specific MnP activity was not affected in any of the tested 

concentrations (Huang et al., 2010).   

Increase in the production or activity of an extracellular enzyme such as laccase has been observed in the 

presence of essential metals such as Cu, Fe, Mn, Co and Zn. For instance, CuSO4 at 0.5-1 mM 

concentration increased the production of laccases from Pleurotus ostreatus (Baldrian and Gabriel, 2002; 

Bhattacharya et al., 2014) and Lentinus polychrous (Khammuang et al., 2013). Enzymes are strongly 

regulated at the transcription level. Cu can enhance the transcription levels in WRF, thereby increasing 

the production of enzymes (Baldrian, 2003). Similarly, exposure of WRF to ZnSO4 (0.26 mM), MnSO4 

(2.4 mM) and NiCl2 (0.16 mM) increased the production of laccase from Lentinula edodes  by 27, 29 and 

48%, respectively (Hatvani and Mécs, 2003). On the other hand, non-essential metals can inhibit the 

enzyme production even at trace concentrations. For example, 0.0005 mM CdCl2 significantly reduced 

(>70%) the production of laccase from Funalia trogii (Mutlu et al., 2014). Similarly, production of other 

extracellular enzymes, namely LiP and MnP, have been reported to be also affected. For instance, LiP and 

MnP production from Phanerochaete chrysosporium was inhibited by 49 and 30%, respectively, at a 
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Pb(NO3)2 concentration of 0.05 mM (Zhang et al., 2015). Similarly, Chen et al. (2015) observed a linear 

decrease in  the production of LiP and MnP from Phanerochaete chrysosporium when CdCl2 dose was 

increased from 0.1 to 0.5 mM. Notably all these studies (Bhattacharya et al., 2014; Chen et al., 2015; 

Zhang et al., 2015) reported only enzymatic activity, and not the change in biomass growth, which makes 

it difficult to assess the specific mode of impact on enzymatic activity. 

In terms of the impact on intracellular enzymes of WRF, there is a strong body of evidence that Pb can 

inhibit a number of enzymatic antioxidants associated with cytochrome P450 (Matityahu et al., 2010). 

Heavy metals, particularly Pb and Cd, may inhibit intracellular enzymes using two mechanisms (Kim et 

al., 2002; Sugiyama, 1992; Zhang et al., 2015); (i) Protein denaturation: heavy metals may inactivate δ-

aminolevulinic acid dehydratase which is an important enzyme for the synthesis of a prosthetic group of 

cytochrome P450 i.e., heme is; and (ii) Direct inhibition of cytochrome P450: heavy metals, particularly 

Pb, may alter the conformation of phospholipids, causing lipid peroxidation and affecting the transport of 

electrons among microsomal cytochrome P450. Recently, Zhang et al. (2015) confirmed the inhibition of 

cytochrome P450 and cytochrome P420 in Phanerochaete chrysosporium by Pb and Cd separately over a 

range of 0.005-0.05 mM , but not beyond that. In fact they observed increased activity of cytochrome 

P450 and cytochrome P420 in presence of Pb or Cd over a range of 0.05-0.1 mM. This increase in the 

activity of P450 and P420 was attributed to some unknown regulatory mechanisms that could alleviate Pb 

and Cd-induced oxidative stress (Zhang et al., 2015). Hence, more research is required to identify and 

elucidate such mechanisms providing resistance against metal-induced oxidative stress.  

4.4. Effect of WRF species and incubation time 

The impacts of metal on WRF growth and enzymatic activity may depend on the WRF species and 

incubation time. Inhibition or enhancement of WRF growth and enzyme production at different 

concentrations of metals are presented in Figure 4 to facilitate the discussion.  

[Figure 4] 



Page 15 of 76 

 

The growth of both Trametes versicolor and Funalia trogii were unaffected by CdCl2 at 0.0005 – 0.005 

mM concertation. However, the growth of Trametes versicolor was inhibited at CdCl2 concentration of 

0.05-1.1 mM, while the growth of Funalia trogii remained still unaffected (Mutlu et al., 2014). Pb(NO3)2 

inhibited the growth of both Pleurotus ostreatus (Baldrian et al., 2005) and Phanerochaete chrysosporium 

(Li et al., 2015), particularly of the latter. By contrast, the exposure of Alcea biennis and Pleurotus 

ostreatus to 10-30 mM of PbO and 1 mM of Pb(NO3)2, respectively, enhanced their growth (Figure 4a). 

Essential metals such as CuSO4 (1.3 mM), MnSO4 (3.1 mM), ZnSO4 (0.62 mM) and CoSO4 (0.46 mM) 

inhibited the growth of Lentinula edodes  by 4.55 % per day (Hatvani and Mécs, 2003). These results 

highlight that the tolerance to metal exposure varies among WRF species, possibly depending on the 

effectiveness of their defense mechanisms (Chen et al., 2015; Huang et al., 2010; Mutlu et al., 2014) as 

discussed in the next section. 

Enzyme production in the presence of metals also depends on WRF species. However, it can be observed 

from Figure 4b that the production of LiP and MnP is severely inhibited in the presence of metals 

regardless of WRF species. On the other hand, laccase production was increased even in the presence of 

some non-essential metals such as Pb, Cd and Hg. For instance, exposure to 0.0005-0.27 mM CdCl2 and 

0.003 mM Pb(NO3)2 improved the production of laccase by Trametes versicolor and Lentinula edodes, 

respectively (Hatvani and Mécs, 2003; Mutlu et al., 2014). Interestingly, essential metals such as Zn, Ca, 

Mn, Ni and Co at trace concentrations improved the production of laccase by Lentinula edodes but 

inhibited the production of MnP (Figure 4b). As noted earlier, no correlation between the inhibitory 

concentrations of metals and WRF growth/enzyme production could be developed because data on both 

WRF growth and enzyme production has not been reported in all studies.  

Incubation time is important when investigating the acute and chronic toxic effects of metals on WRF. 

For instance, for 1.2 mM of Pb(NO3)2, Phanerochaete chrysosporium growth was inhibited more severely 

during the first week (4.8% per day) but then gradually subsided to <1 % per day (Huang et al., 2010; Li 

et al., 2015). In a study by Zhang et al. (2015), MnP and LiP production from Phanerochaete 
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chrysosporium dropped gradually for 4 h at 0.05 mM Cd(NO3)2 but started to rise thereafter. It is possibly 

because the defense mechanism in WRF against metal toxicity may take some time to be activated (Zeng 

et al., 2015). Therefore, unless an acute assessment of metal-induced toxicity is required, an exposure 

time of more than one day should be used to assess the impact on WRF.  

4.5. WRF defense mechanisms  

WRF can either intracellularly uptake metals or can bind them to their cell surface which may result in a 

wide range of inhibitory effects including cell lysis (Chen et al., 2012; Zeng et al., 2012). Hence, WRF 

have developed certain defense mechanisms to alleviate toxic effects of metals. These defense 

mechanisms protect WRF usually by immobilizing metals via intracellular and extracellular compounds 

(Baldrian, 2003). Among these compounds, extracellular polymeric substances (EPS) are the most 

effective line of defense against metals in microbes including WRF. EPS can: (i) regulate immediate 

surrounding for their growth; (ii) preserve fungal morphology; and (iii) bind metals (Chen et al., 2015; 

Gadd et al., 2014; Li and Yu, 2014). The negative charge on EPS promotes the binding of metals on its 

surface, thereby reducing the dispersion and concentration of metals in the solution as well as their 

interaction with WRF. Moreover, the interaction of metals with EPS could also result in the formation of 

metal crystals, hence limiting the interaction of toxic metals with WRF (Jittawuttipoka et al., 2013; 

Pereira et al., 2011). In a recent study by Chen et al. (2015), EPS production by Phanerochaete 

chrysosporium increased linearly with the increase in the concentration of Pb and Cd, indicating that 

WRF produce EPS for protection against metals.    

In addition to EPS, enhanced secretion of organic acids such as oxalic acid or oxalates is another defense 

mechanism in fungi including WRF. These organic acids react with metals and form metalloid-organic 

molecules such as oxalate crystals (Chen et al., 2015; Guggiari et al., 2011). Formation of metalloid-

organic molecules limits the dispersion of metals in solution, thereby reducing the availability of metals 

for fungal uptake. It has been confirmed in recent studies that the production of oxalates by P. 

chrysosporium increases in the presence of Cd and Pb (Chen et al., 2015; Li et al., 2015).  
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Excessive production of ROS may induce a wide range of inhibitory effects inside the cell such as 

oxidation of intracellular lipids, denaturation of intracellular proteins and cell lysis (Figure 3). In metal 

free environment, enzymatic and non-enzymatic antioxidants provide defense against ROS. These 

antioxidants are comprised of catalase, superoxide dismutase and glutathione peroxidase (Bokara et al., 

2008; Zhang et al., 2015). Interestingly, Zhang et al. (2015) observed increased production of enzymatic 

antioxidants from Phanerochaete chrysosporium in presence of Pb and Cd, possibly to protect against 

excessive ROS due to metal-induced oxidative stress. However, excessive ROS generation in presence of 

metals may reduce their level or even inhibit the enzymatic antioxidants: ROS can replace cofactor in 

enzymes and can also interact with sulfhydryl functional groups of enzymatic antioxidants, resulting in 

their inactivation (Azevedo et al., 2007; Belinky et al., 2003). Similar mechanisms are likely to occur in 

other WRF species, but many of these mechanisms are yet to be confirmed in other common WRF 

species such as Trametes versicolor, Pleurotus ostreatus and Funalia trogii.  

5. Impacts on purified extracellular enzymes 

Impacts of dissolved organic and inorganic interfering compounds on the stability and catalytic efficiency 

have been studied mainly for laccase (Kim and Nicell, 2006a; Ramírez-Cavazos et al., 2014). Possible 

inhibition mechanisms of laccase catalysis are presented in Figure 5.  

[Figure 5] 

5.1. Impacts of inorganic interfering compounds on laccase activity 

Presence of inorganic interfering compounds can inhibit enzymatic activity as well as their catalytic 

efficiency. Inhibition of purified laccases from different WRF species in the presence of inorganic 

interfering compounds is shown in Supplementary Data Table S3 to facilitate critical analysis. Based on 

the data presented in Supplementary Data Table S3, the estimated minimum range of concentration for 

inorganic interfering compounds that can inhibit laccase activity by 20 (IC20), 50 (IC50) and 100% (IC100) 

are presented in Table 2 to provide a general overview. 
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[Table 2] 

Impacts of different inorganic interfering compounds have been investigated over a broad range of 

concentration (<0.05 to >100 mM). Inorganic compounds can inactivate enzyme via binding to type II 

and type III copper sites, thereby blocking the electron transport system in laccase (Kumar and Srikumar, 

2012; Murugesan et al., 2009; Sadhasivam et al., 2008; Wang et al., 2010). The impact of an inorganic 

interfering compound depends on the combined impact of the constituent anion and cation. Based on a 

critical analysis of the data compiled in Supplementary Data Table S3, metal cations can be divided into 

two categories: (i) metals with low impact (e.g. Na, K, Cu, Zn, and Mn); and (ii) metals with significant 

impact (e.g. Hg, Ca, Fe
 
and Cr).  

5.1.1. Metals with low impact 

Alkali metal ions namely Na and K have been predominantly reported not to induce any inhibitory effects 

on the activity of laccase. For instance, Kumar et al. (2012) reported a negligible impact of  2-10 mM Na 

or K on the enzymatic activity of laccase from Pleurotus ostreatus. Similarly, Sadhasivam et al. (2008) 

observed no inhibitory effects on the enzymatic activity of laccase from Trichoderma harzianum WL1 

over a concentration range of 1-5 mM of these monovalent cations. However, these cations each at 1 mM 

concentration were reported to reduce (10-20%) the enzymatic activity of laccase from Pycnoporus sp. 

SYBC-L1 (Wang et al., 2010).  

Cu, Mg, Ca, Mn, Cd, Co and Zn at low concentrations (≤1 mM) may not induce any inhibitory effects, 

rather these metals may enhance or stabilize enzymatic activity. For instance, laccases from Trametes 

versicolor CBS (Lorenzo et al., 2005), Meripilus giganteus (Schmidt et al., 2012), Pycnoporus sp. (Wang 

et al., 2010), Pycnoporus coccineus Thongkred 013 BCU (Thongkred et al., 2011), Marasmius 

quercophilus (Farnet et al., 2008) and Pleurotus ostreatus (Sun et al., 2017) was not inhibited in presence 

of 1mM of Cu, Mn
 
 or Zn separately. On the other hand, an increase of 20% in the activity of laccase from 

Pycnoporus sp. SYBC-L1 was observed after addition of 10 mM Na (Wang et al., 2010). Moreover, 

Kumar and Srikumar (2012) reported around 45% increase in the enzymatic activity of laccase from 
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Cereus pterogonus with the addition of 1 mM Cu or Mn separately to the  enzyme solution. In laccase 

catalyzed reactions, auto-oxidation of semi-quinone produced by laccase may result in the formation of 

quinone, and the superoxide anion produced in this reaction can then be reduced to hydrogen peroxide. In 

this process, both Cu
+2

 and Mn
+2

 can be reduced to Cu
+
 and Mn

+
, leading to an apparent increase in the 

activity of laccase (Farnet et al., 2008; Munoz et al., 1997). Depletion or removal of type II copper from 

laccase following enzyme purification has been observed to reduce the enzymatic activity of laccase 

(Nagai et al., 2002; Sadhasivam et al., 2008). In such cases, the addition of Cu salt in enzyme solution 

fills the Type II copper sites of laccases, consequently improving their enzymatic activity (Nagai et al., 

2002; Sadhasivam et al., 2008).  

Despite the improvement in laccase activity in presence of Cu and Mn in the low concentration range, 

these metals can inhibit laccase activity by as much as 50% beyond a concentration of 20 mM (Cabana et 

al., 2007; Kumar and Srikumar, 2012; Murugesan et al., 2009; Wang et al., 2010). This happens because 

these metal ions can block the active sites of the enzymes at high concentrations. Cd
 
is known to induce 

severe growth inhibition in fungal species (Figure 4). However, it has been reported to have a low impact 

on the activity of purified laccases in most studies. For instance, the enzymatic activity of laccases from 

Pleurotus ostreatus (Kumar et al., 2012), Trametes versicolor CBS (Lorenzo et al., 2005) and Ganoderma 

lucidum (Murugesan et al., 2009) was only reduced by 15-20% in presence of Cd at a concentration of 10 

mM.  

Impact of metals on laccase activity has only been investigated in the presence of individual metals with 

the exception of the study by Murugesan et al. (2009): in that study the combined effect of Ca, Cd, Co, 

Cu, Li, Mn, Ni, Zn, iodide and chloride ions each at 1 mM concentration on the activity of laccase from 

Ganoderma lucidum was investigated. As expected, they found a slight decrease (13%) in laccase activity 

after 60 min of incubation because all the tested ions have mostly been reported to show negligible or no 

impact on laccase activity at 1 mM concentration (Kumar and Srikumar, 2012; Lorenzo et al., 2005; 

Sadhasivam et al., 2008; Wang et al., 2010).   
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5.1.2. Metals with significant impact 

Metals such as Fe, Hg and Cr inhibit the activity of laccase by binding to its Type II and Type III copper 

sites (Kumar and Srikumar, 2012; Murugesan et al., 2009; Sadhasivam et al., 2008; Wang et al., 2010). 

Moreover, these metals block the internal electron transfer required to complete laccase catalyzed 

reactions and can inhibit laccase activity at low concentrations (Murugesan et al., 2009; Paterson et al., 

2008; Sun et al., 2017). For instance, at a concentration of 1 mM, Fe has been reported to inhibit the 

enzymatic activity of laccases from Pycnoporus sp. SYBC-L1, Opuntia vulgaris and Cereus pterogonus 

by 65-98% (Kumar and Srikumar, 2012; Wang et al., 2010). Similarly, Cr at all tested concentrations 

(0.5-10 mM) completely inhibited the enzymatic activity of laccase from Ganoderma lucidum 

(Murugesan et al., 2009). In addition to the aforementioned inhibitory mechanisms, Hg can inactivate 

enzymes due to their high affinity towards the thiol groups in proteins (Bhattacharya et al., 2014; Palmieri 

et al., 2000). Hg at a concentration of 1 mM reduced the activity of laccases from Pleurotus ostreatus and 

Ganoderma lucidum by 70-100% (Kumar et al., 2012; Murugesan et al., 2009). By contrast, laccase 

extracted from Trichoderma harzianum WL1 showed tolerance against Fe, Cr and Hg. Only 2, 14 and 

25% loss in the enzymatic activity of laccase from Trichoderma harzianum WL1 was observed in 

presence of 5 mM of Fe, Cr and Hg, respectively (Sadhasivam et al., 2008).  

5.1.3. Impacts of anions  

Halide salts have been studied extensively for their inhibitory impacts on enzymatic activity. For instance, 

fluoride can reduce laccase activity by as much as 50% even at a concentration of 0.1 mM (Ramírez-

Cavazos et al., 2014). By contrast, 2-5 mM chloride and 10-25 mM iodide has been reported to reduce the 

enzymatic activity of laccase by 10-20% and 50%, respectively (Ramírez-Cavazos et al., 2014; Schmidt 

et al., 2012; Wang et al., 2010). Chloride and bromide ions induce competitive inhibition, meaning that 

these anions prevent the binding of the substrate on to the active sites of enzymes. On the other hand, 

fluoride is a non-competitive inhibitor. Depending on the laccase source, the putative channels leading to 

type II and type III copper sites of laccases have different but defined cut-off diameter. Hence, the extent 
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of inhibition induced by halides depends on the size of putative channels, influencing their accessibility to 

these copper sites (Purich, 2010; Rodgers et al., 2010; Xu, 1996). 

As noted in Section 5.1.1, in combination with various anions, Na salts have been usually reported to pose 

low or negligible inhibition. However, the importance of anions on the overall toxicity of a salt can be 

exemplified by sodium azide (NaN3) that is commonly used in many industrial and agriculture 

applications as a biocide and mutagen (Al-Qurainy and Khan, 2009; Arseculeratne et al., 2006; Bräse et 

al., 2005). Accordingly it has also been used to inactivate whole-cell WRF at sub-molar concentrations in 

laboratory scale experiments (Nguyen et al., 2014c; Yang et al., 2013c). Sodium azide is one of the most 

toxic compounds for extracellular enzymes. Even at a concentration of ≤0.01 mM, it can reduce laccase 

activity by 50-75% (Ademakinwa and Agboola, 2016; Cabana et al., 2007; Kumar et al., 2012). Binding 

to type II and type III copper sites of enzymes is the main inhibition mechanism of sodium azide. 

5.2. Impacts of organic interfering compounds on laccase activity 

Organic compounds such as acids (e.g., oxalic acid and EDTA), surfactants (e.g., sodium dodecyl sulfate, 

SDS), and solvents (e.g., acetone, methanol and ethanol) are widely used in different industrial 

applications and can occur in wastewater (Kim and Nicell, 2006a; Zavarzina et al., 2004). Influence of 

organic interfering compounds on laccase activities from different WRF under a wide range of operating 

conditions is shown in Table 3.  With a few exceptions (e.g., humic acid), all the organic interfering 

compounds, particularly EDTA and oxalic acid are potent inhibitors of laccase.  

[Table 3] 

In most studies (Table 3), significant inhibition of enzymatic activity i.e., in the range of 50-75% has been 

reported in the presence of EDTA, oxalic acid, citric acid and phenol at the concentrations range of 0.01-1 

mM. In addition to causing a competitive inhibition, these compounds can block type II and type III 

copper sites in laccase. Moreover, EDTA and citric acid can also act as copper ion chelators (Schmidt et 
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al., 2012; Zavarzina et al., 2004). Organic compounds such as oxalic acid, citric acid and some organic 

solvents may affect enzymatic activity by altering the pH of media (Zhang et al., 2013).  

Depending on their type, the interaction of surfactants with enzymes can vary. Surfactants can be 

categorized into two classes: (i) non-ionic surfactants such as triton X-100 (TX-100); and (ii) ionic 

surfactants such as cetyltrimethylammonium bromide (CTAB), sodium di-2-ethylhexylsulfosuccinate 

(AOT) and sodium dodecyl sulfate (SDS). Since laccase is negatively charged, only hydrophobic 

interactions between the alkyl chain of non-ionic surfactants and laccase are possible. Therefore, non-

ionic surfactants may not  significantly damage the protein structure and, thus, may only mildly inhibit 

enzymatic activity (Delorme et al., 2011; Otzen, 2011). On the other hand, in addition to hydrophobic 

interactions, the ionic surfactants can interact with the charged amino residues of protein body of the 

enzyme and cause enzyme inactivation by protein unfolding (Azimi et al., 2016; Delorme et al., 2011; 

Otzen, 2011). For instance, TX-100, a non-ionic surfactant, slightly inhibited (2-10%) the enzymatic 

activity of laccase from Trametes versicolor over a broad concentration range of 0.1-50 mM (Azimi et al., 

2016). By contrast, ionic surfactants SDS and CTAB inhibited (50-70%) the enzymatic activity of 

laccases from Trametes versicolor and Aureobasidium pullulans NAC8, respectively, even at a 

concentration of 0.05 – 1 mM (Ademakinwa and Agboola, 2016; Azimi et al., 2016). Similarly, in a study 

by Schmidt et al. (2012), 1 mM SDS completely inhibited the activity of laccase from Meripilus 

giganteus.  

Interestingly, a few studies have reported increased laccase activity in presence of surfactants. For 

instance, the activity of laccase from Meripilus giganteus improved in the presence of nonionic 

surfactants such as tween 80, tween 20 and TX-100, and even ionic surfactants such as CTAB over a 

concentration range of 0.1-10 mM (Schmidt et al., 2012). Similarly, for a concentration range of 0.5-1.0 

mM, AOT improved the activity of commercial laccase from Trametes versicolor by 120-150% (Azimi et 

al., 2016). Such improvement in laccase activity depending on the source of fungal laccase can be 

attributed to alterations in the physical and enzymatic characteristics of laccase i.e., conformational 
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changes linked with enzyme-surfactant interaction. These conformational changes could: (i) convert 

laccase into more active form; (ii) alter the optimum temperature and pH of the laccase; and (iii) stabilize 

the native folded structure of laccase (Azimi et al., 2016; Goldfeder and Fishman, 2014; Zhang et al., 

2012).  

Kumar and Srikumar (2012) investigated the impact of urea on laccases from Cereus pterogonus and 

Opuntia vulgaris. They observed 50% loss of enzymatic activity at an urea concentration of 8 mM. Urea 

inhibits enzymes by attacking their hydrophobic regions containing helix and β -pleated sheets, resulting 

in the denaturation of enzyme proteins (Kim and Nicell, 2006a; Kumar and Srikumar, 2012).  

Organic solvents such as methanol, ethanol and acetone have been studied extensively for their impacts 

on enzymatic activity (Ademakinwa and Agboola, 2016; Farnet et al., 2008; Kumar et al., 2012; Ramírez-

Cavazos et al., 2014; Singhal et al., 2012). Solvents affect enzymatic activity mainly by changing the pH 

of the solution (Rodakiewicz-Nowak et al., 2000; Sadhasivam et al., 2008). Data compiled in Table 3 

suggest that methanol, ethanol and acetone at concentrations ranging from 30-50% (v/v) could reduce 

enzymatic activity by as much as 50%. However, solvents can also improve the solubility of the apolar 

substrates (e.g. syringaldazine) used for the measurement of enzymatic activityat a concentration of <30% 

(v/v), increasing the availability of that substrate for enzymatic oxidation, thus showing an apparent 

increase in  laccase activity (Farnet et al., 2008).  

Natural organic matter (NOM) are mainly comprised of humic acid which contains diverse functional 

groups such as carboxyl, amino and hydroxyl groups. Humic acid has been widely used in various 

applications as a representative model of NOM. In a study, 50 mg/L humic acid showed no impact on 

laccase activity (Sun et al., 2017). This was attributed to the negative charge on both laccase and humic 

acid, which possibly limited their interaction. However, as discussed further in Section 6, the impact of 

humic acid can be multidimensional. 

5.3. Factors influencing the inhibition of laccase 
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Inhibition by organic and inorganic interfering compounds can be influenced by the source of laccase and 

incubation time. In addition, the extent of inhibition induced by each type of metal salt may be different.  

5.3.1. Effects of laccase source  

Laccases from different WRF species show resistance to certain toxic organic and inorganic interfering 

compounds such as EDTA and sodium azide (Ademakinwa and Agboola, 2016; Sadhasivam et al., 2008). 

To show the tolerance of laccases extracted from different WRF species, their inhibition by EDTA and 

sodium azide is presented in Figure 6. Inhibition data is presented in % per min to normalize the effect of 

incubation time.  

[Figure 6] 

The impact of EDTA on laccases from 8 different sources at EDTA concentrations ranging from 0.01-100 

mM has been investigated in different studies as shown in Figure 6. In presence of 0.1 mM EDTA, the 

laccase from Meripilus giganteus (Schmidt et al., 2012) was not affected, whereas the laccase from 

Opuntia vulgaris (Kumar and Srikumar, 2012) and Aureobasidium pullulans NAC8 (Ademakinwa and 

Agboola, 2016) were inhibited by 2-2.5% per min. Activity of laccases from Opuntia vulgaris (Kumar 

and Srikumar, 2012), Aureobasidium pullulans NAC8 (Ademakinwa and Agboola, 2016) and Cereus 

pterogonus (Kumar and Srikumar, 2012) was significantly inhibited (3-3.5 % per min) by 1 mM EDTA. 

On the other hand, activity of laccase from Pycnoporus sp. SYBC-L1 (Wang et al., 2010) was slightly 

improved at that concentration (i.e., 1 mM). It is interesting to note that inhibition of laccase activity did 

not increase linearly with EDTA concentration. For instance, EDTA at concentrations of 0.05, 0.5 and 2.5 

mM inhibited the enzymatic activity of laccase from Aureobasidium pullulans NAC8 by 1.13, 1.93, and 

1.87 % per min, respectively (Ademakinwa and Agboola, 2016). Based on Figure 6a, laccases from 

Pycnoporus sp. SYBC-L1, Meripilus giganteus and Pleurotus ostreatus showed better tolerance to EDTA 

compared to laccases from other WRF species. 
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Figure 6 reveals that sodium azide is a potent inorganic inhibitor of laccase. All laccases were 

significantly inhibited in the presence of sodium azide (Figure 6b). For instance, laccases from Opuntia 

vulgaris (Kumar and Srikumar, 2012), Aureobasidium pullulans NAC8 (Ademakinwa and Agboola, 

2016) and Cereus pterogonus (Kumar and Srikumar, 2012) were inhibited by 1.5-3 % per min at sodium 

azide concentrations of 0.005- 0.5 mM. This can be attributed to the strong bonding of azide onto the 

T2/T3 copper of laccase, which disrupt the internal electron transfer for the enzyme. However, the laccase 

from Trichoderma harzianum WL1 appears to be comparatively more tolerant compared to laccases from 

other WRF species (Figure 6b).  

5.3.2. Effect of incubation time 

Incubation time may influence the inhibition caused by organic and inorganic interfering compounds. 

Impact of incubation time on laccase inhibition in the presence of different individual organic and 

inorganic interfering compounds is presented in Figure 7, which shows three distinct trends: (i) no 

influence on inhibition in case of SDS and FeSO4;
 
(ii) moderate influence in case of organic solvents and 

HgCl2; and (iii) significant influence in case of sodium azide, EDTA and K2CrO4. The extent of inhibition 

of laccases by sodium azide (0.005 mM), EDTA (1 mM) and K2CrO4 (1 mM) increased (40-80%) as the 

incubation time was increased from 5 to 60 min. Compared to that, the percentage of  inhibition varied 

less for HgCl2 (5 mM), acetone (1.5 mM) and ethanol (1.9 mM) with incubation time (Figure 7), 

indicating that these interfering compounds can rapidly inactivate laccase. The incubation time for laccase 

based treatment processes has mostly been in the range of 12-24 h (Ashe et al., 2016; Kang et al., 2008; 

Nguyen et al., 2014a; Tran et al., 2010). However, Figure 7 indicates that the incubation time could be 

better selected depending on the wastewater derived interfering compounds of interest.  

[Figure 7] 

5.3.3. Choice of salts to study the impact of metal ions 
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Studies to date have investigated the impact of metals mostly by incubating their chloride or sulphate salts 

with laccase preparations (Kumar and Srikumar, 2012; Ramírez-Cavazos et al., 2014; Thongkred et al., 

2011; Wang et al., 2010). Notably, chloride is a competitive inhibitor of laccase (Ramírez-Cavazos et al., 

2014; Schmidt et al., 2012; Wang et al., 2010), which makes it difficult to assess the inhibition caused 

specifically by the individual metal ions if their chloride salts are used. Reported range of laccase 

inhibition (% per min) by chloride and sulphate salts of different metals are presented in Figure 8. It is 

noted that the sulphate salts of the selected metal ions showed no inhibitory effects on laccase activity at 

concentrations of 5-10 mM, whereas their chloride salts inhibited laccase activity by 0.5-5% per min 

(Figure 8). This comparison evidences that the selected metals (i.e., Cu, Mg, Zn, and Mg) themselves 

have minimal adverse impact on laccase activity, and the toxicity shown by their salts are due to the 

constituent anions. In contrast to the benign metal ions shown in Figure 8, Fe salts can significantly 

inhibit laccase activity regardless of the salt type (e.g., chloride vs sulphate) because Fe is a potent 

inhibitor of laccase (Kumar and Srikumar, 2012; Thongkred et al., 2011; Wang et al., 2010).  

[Figure 8] 

5.3.4. Choice of substrate to monitor enzymatic activity 

Laccase activity before and after incubation with the interfering compound is measured using a substrate 

of laccase such as ABTS, DMP or syringaldazine (Ademakinwa and Agboola, 2016; Lorenzo et al., 

2005). Impacts of incubation time on the inhibitory effects of different interfering compounds have been 

discussed in section 5.3.2. The choice of substrate can also influence the observed level of inhibition. 

Since some organic interfering compounds can act as a substrate of laccase, they can interfere with 

laccase activity measurement by acting as a competitive inhibitor. For instance, Lorenzo et al. (2005) 

measured laccase activity from Trametes versicolor CBS using two different substrates namely, DMP and 

syringaldazine. With the addition of DMP as substrate, they observed an inhibition of 40% in laccase 

activity within an incubation period of 2 min at an oxalic acid concentration of 8 mM. On the other hand, 

complete inhibition of enzymatic activity was observed when syringaldazine was used as a substrate for 
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the measurement of laccase activity (Lorenzo et al., 2005). The complete loss in enzymatic activity in the 

presence of syringaldazine was possibly because oxalic acid is a better substrate for laccase (Farnet et al., 

2008; Shleev et al., 2006). Similarly, 2 mM EDTA inhibited the enzymatic activity of laccase from 

Trametes versicolor CBS by 10 and 20% using DMP and syringaldazine as substrates, whereas EDTA 

did not show any inhibitory effects on laccase activity in the presence of ABTS (Lorenzo et al., 2005). 

Since EDTA induces its inhibitory effects on enzymatic activity by reducing the availability of substrate 

for enzymatic oxidation and acts as a non-competitive inhibitor (Johannes and Majcherczyk, 2000; Si et 

al., 2013), these results indicate that EDTA can interfere with the interaction of laccase with DMP and 

syringaldazine but its interference is not significant in case of ABTS. Therefore, the substrate for laccase 

measurement should be carefully selected for the assessment of inhibition by interfering compounds. 

6. Impacts of organic and inorganic interfering compounds on TrOC removal 

The extent and mode of inhibition of WRF enzymes by dissolved organic and inorganic interfering 

compounds have been analyzed in the previous sections. This section critically examines their specific 

impact on TrOC degradation. To date there have been a few short term batch studies in this regard (Hou 

et al., 2014; Kim and Nicell, 2006a; Kim and Nicell, 2006c; Sun et al., 2017; Sun et al., 2016). Impacts 

(i.e., inhibition or enhancement) of organic and inorganic interfering compounds on the removal of 

TrOCs are presented in Figure 9 to facilitate a critical discussion.  

[Figure 9] 

Kim and Nicell (2006a) investigated the impact of individual metal ions and organic compounds on the 

degradation of bisphenol A (150 µM) in 1-h batch experiments at a pH of 5 using purified laccase from 

Trametes versicolor. They found that the removal of bisphenol A was reduced by 40% by different 

concentrations of sulfide (4.4 mM), sulfite (1.9 mM) and thiosulfate (1.35 mM). In another study by Kim 

and Nicell (2006c), removal of triclosan was reduced by 55% in presence of 1 mM sulfide or sulfite. Such 

reduction in removal of bisphenol A and triclosan in the presence of sulfide and sulfite can be attributed 
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to the competitive use of dissolved oxygen by sulfide/sulfite vs laccase. These impacts of sulfide and 

sulfite can be neutralized by providing sufficient aeration (Kim and Nicell, 2006a). On the other hand, 

radicals generated due to the enzymatic oxidation of phenolic substrates such as bisphenol A could 

oxidize thiosulfate and the resultant transformation products could act as competitive inhibitors, 

consequently reducing the removal of TrOCs  (Wagner and Nicell, 2002).  

Some organic compounds interfere in TrOC degradation as they are also substrates of laccase, leading to 

the competitive occupation of the reactive sites. Examples of such interfering organics include oxalic 

acid, phenols, Ɛ-caprolactam, phenanthrene and citric acid (Ademakinwa and Agboola, 2016; Chang et 

al., 2016; Lorenzo et al., 2005; Si et al., 2013). Indeed, reduction in removals of bisphenol A (5-30%) and 

diclofenac (10-30%) by laccase from Aspergillus oryzae was observed in the presence of different organic 

interfering compounds, namely, Ɛ-caprolactam, phenanthrene and oxalic acid, each at a concentration of 1 

mM (Paul, 2015). On the other hand, in a study by Kim and Nicell (2006a), despite being laccase 

substrates, Ɛ-caprolactam and phenol each at 1 mM concentration did not affect bisphenol A degradation 

by laccase from Trametes versicolor. This was possibly because bisphenol A is a better substrate for 

laccase at the pH of the media (i.e., 5).  

Bisphenol A removal was reported to reduce from 60 to 40-45% in the presence of solvents, namely, 

acetone, methanol and formaldehyde each at a concentration of 10 % (w/w) (Kim and Nicell, 2006a). In 

another study by Hou et al. (2014), 10% (w/w) methanol and acetone were reported to inhibit the removal 

of bisphenol A (150 µM) from 68 to 30-40%.   

It was noted in Section 5.2 that the non-ionic surfactants may have a negligible adverse impact or even an 

enhancing effect on the catalytic efficiency of laccase. Their specific impact on TrOC removal has been 

investigated in a few studies. For example, TX-100, a nonionic surfactant, was observed to improve the 

removal of bisphenol A (Ji et al., 2009), phenol (Zhang et al., 2012) and indole (Azimi et al., 2016). 

Improved transformation of these compounds in the presence of TX-100 can be attributed to increased 

laccase activity as well as the improved solubility of TrOCs. Moreover, transformation products could 
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block the active sites of enzymes, resulting in enzyme inactivation (Purich, 2010): TX-100 protects 

enzymes by limiting their interaction with transformation products (Sakurai et al., 2003). However, TrOC 

removal improvement in presence of TX-100 may depend on its critical micelle concentration  i.e., the 

concentration above which surfactants form aggregates (Arca-Ramos et al., 2012; Eibes et al., 2010). 

Below the critical micelle concentration (e.g., 0.3 mM), TX-100 exists as a monomer and may not 

improve the solubility of TrOCs. While at near or above the critical micelle concentration, TX-100 forms 

aggregates that incorporate TrOCs into its micelles to enhance their solubility, thereby improving their 

bioavailability for degradation by laccase (Edwards et al., 1991; Kim et al., 2007).     

Among the tested metal ions including Cu, Co, Mn, Zn and Fe, each at 1 mM, only Fe inhibited the 

removal of bisphenol A by 10-15% (Kim and Nicell, 2006a). Bisphenol A removal reduction by Fe is 

expected because it can inhibit laccase activity significantly (Section 5.1.2). Despite the significant 

inhibitory effects of Fe on laccase activity (Kumar et al., 2012; Thongkred et al., 2011), only 10-15% 

reduction in bisphenol A removal was possibly because Fe
 
can also oxidize phenolic substrates in absence 

of laccase (Lu et al., 2017).  

At a concentration of 25 mM, fluoride and chloride reduced the degradation of bisphenol A by 50 and 

15%, respectively, while bromide ion did not inhibit bisphenol A removal. Removal of bisphenol A and 

triclosan in the presence of cyanide (1 mM) was reduced by 40 and 55%, respectively (Kim and Nicell, 

2006a; Kim and Nicell, 2006c). Cyanide mainly inhibits laccase activity by dissociating copper ions from 

the active sites of the enzyme. Loss in enzymatic activity then results in its reduced catalytic potential 

(Ragusa et al., 2002).  

Humic acid is found ubiquitously in surface water bodies at concentrations varying from a few tens of  

µg/L to a few tens of  mg/L (Brum and Oliveira, 2007; Tang et al., 2014). As noted in Section 5.2, 

available studies report no impact of humic acid on laccase activity (Sun et al., 2017). However, Sun et 

al., (2016, 2017) investigated laccase (P. ostreatus) catalyzed biotransformation of 17β-estradiol (3.7 µM) 

and triclosan (10 µM) in presence of humic acid at the operating pH of 5.8-6 (Sun et al., 2017; Sun et al., 
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2016). A direct relation between the concentration of humic acid and reduction in substrate removal 

efficiency was observed, meaning that removal of both 17β-estradiol and triclosan reduced with the 

increase in the concentration of humic acid. The removal of 17β-estradiol and triclosan reduced by 30 and 

95%, respectively, in presence of 50 mg/L of humic acid (Sun et al., 2017; Sun et al., 2016). Since humic 

acid can bind TrOCs covalently and/or non-covalently, the increase in the concentration of HA results in 

more TrOC binding, thereby reducing their availability for enzymatic degradation (Behera et al., 2010; 

Gulkowska et al., 2013; Sun et al., 2017). Humic acid can also cause dissociation of copper sites in 

laccase, thereby causing enzyme inhibition (Hou et al., 2014; Keum and Li, 2004). By contrast, it was 

reported that humic acid may facilitate electron transfer between TrOC and enzyme (Sun et al., 2013). 

Indeed little adverse impact or slightly enhanced TrOC removal in presence of humic acid has been 

observed in a few studies. For example, less than 5% reduction in laccase catalyzed removal of bisphenol 

A was observed by Dillon (2014) in the presence of humic acid over a range of 10-40 mg/L. Hou et al. 

(2014) achieved 15-20% improvement in the degradation of bisphenol A (150 µM) at pH=5 using 

commercial laccase from T. versicolor in the presence of humic acid (10-40 mg/L) following 5 h 

treatment in a continuous flow reactor equipped with an ultrafiltration membrane (0.1 µm). However, it is 

not clear if this improvement was due to the retention of some TrOC on the humic acid -cakelayer over 

the membrane or enhancement of enzymatic degradation in presence of humic acid. More research is 

required to elucidate the factors controlling different reported roles of humic acid in enzyme based 

treatment systems.  

Municipal and industrial wastewaters are complex and contain different combinations of organic and 

inorganic interfering compounds. Lu et al. (2017) investigated the transformation of triclosan in the 

presence of both humic acid and metal ions by using purified laccase from Trametes versicolor. They 

found that two monovalent cations (Na and K) and humic acid (2 mg/L) did not show any effect on 

triclosan removal. However, a decline in triclosan removal was observed with the addition of Mg
 
and Ca 

with humic acid (2 mg/L). In a mixture of 1.25 mM Mg/Ca
 
and 2 mg/L humic acid, removal of triclosan 
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was reduced by 25% (Lu et al., 2017) Interaction of divalent cations with humic acid in the reaction may 

result in partial neutralization of humic acid. This could instigate the binding of humic acid onto enzyme 

active sites, thereby reducing the catalytic efficiency of enzymes (Lu et al., 2017). Moreover, as noted 

earlier, binding of TrOCs on to humic acid can further reduce the bioavailability of compounds for 

laccase, thereby reducing their catalytic conversion (Behera et al., 2010; Gulkowska et al., 2013; Sun et 

al., 2017).   

7. Treatment of real wastewater 

Compared to the number of studies investigating the impact of selected dissolved wastewater constituents, 

only a few attempts to assess the enzymatic treatment of TrOCs from real municipal wastewater can be 

found (Auriol et al., 2008; Cruz-Morató et al., 2013; Cruz-Morató et al., 2014; Spina et al., 2015). For 

instance, Garcia-Morales et al. (2015) investigated the removal of nonylphenol, bisphenol A, triclosan 

and 17α-ethinylestradiol from spiked groundwater samples using a crude laccases from Pycnoporus 

sanguineus CS43. They achieved 80-95% removal of nonylphenol, bisphenol A and 17α-ethinylestradiol 

following a 12 h treatment. However, consistent with its persistence reported in other studies (Yang et al., 

2013b), triclosan was removed with an efficiency of 55%. Spina et al. (2015) observed 70-99% removal 

of ketoprofen, naproxen, salicylic acid, estrone, bisphenol A and 2-hydroxybiphenyl from municipal 

wastewater by crude laccase from Trametes. pubescens MUT 2400 within 24 h. Similarly, Tran et al. 

(2013) reported 55% removal of a recalcitrant insect repellent compound, N,N-diethyl-meta-toluamide, 

from municipal wastewater with purified laccase from Trametes versicolor. Notably, only a few of the 

aforementioned studies focusing on the removal of TrOCs from real wastewater have reported detailed 

wastewater characteristics (Supplementary Data Table S2). Furthermore, because the aforementioned 

studies did not compare the performance with suitable ‘control’, the specific impact of the wastewater 

constituents on removal performance could not be clarified. This prevents a uniform comparison of the 

results reported. However, Auriol et al. (2007) reported that removal of steroid hormones in municipal 

wastewater was reduced by 30-45% compared to their removal form solution in ultrapure water. 
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The removal of resistant TrOCs can be improved with the addition of redox-mediators. The highly 

reactive radicals generated in laccase-mediator systems, however, can cause rapid drop in enzymatic 

activity (Ashe et al., 2016; Tran et al., 2013). Similar to that in studies employing synthetic wastewater 

(Ashe et al., 2016; Nguyen et al., 2014a), this impact was also shown in case of municipal wastewater by 

Garcia et al. (2011). They achieved complete removal of oxybenzone from municipal wastewater within 6 

h by a laccase (Trametes versicolor) - mediator (ABTS) system, but 64% of the initial enzymatic activity 

was lost at the end of the experiment i.e., 48 h. Notably, the extent of laccase inactivation observed in 

laccase-mediator system treating oxybenzone in municipal wastewater was similar to that obtained while 

treating oxybenzone in ultrapure water (Garcia et al., 2011), indicating that laccase inhibition caused by 

free redicals generated due to the oxidation of mediators is more significant than the wastewater derived 

interfering compounds. 

Wastewater derived organic and inorganic constituents often affect the stability and catalytic efficiency of 

enzymes by changing the pH and/or temperature of wastewater (Azimi et al., 2016; Zhang et al., 2013). 

Temperature and pH can significantly affect the rate of substrate conversion and stability of enzymes 

(Kim and Nicell, 2006a; Nguyen et al., 2014b). Therefore, it is relevant to discuss the impacts of these 

factors. Temperature and pH for the optimum enzymatic activity depend on the source of their extraction. 

For instance, laccases extracted from Pleurotus ostreatus (Palmieri et al., 2003), Trametes versicolor  

(Han et al., 2005a), and Albatrella dispansus (Wang and Ng, 2004) have been reported to show maximum 

laccase activity at a temperature of 35, 50 and 70 
o
C, respectively. However, in general, the optimum 

temperature for most fungal laccases and peroxidases ranges from 25-30
o
C and 35-40

o
C, respectively 

(Bosco et al., 2002; Wen et al., 2010; Zhang et al., 2008).  

Depending on the source fungus, the optimum pH for high and stable laccase activity ranges from 3.5 – 

6.0 (Dwivedi et al., 2011). For example, the optimum pH for  activity of laccase  from Trametes 

versicolor (Han et al., 2005b; Lorenzo et al., 2005), Physisporinus rivulosus (Hildén et al., 2007) and 

Agaricus blazei (Ullrich et al., 2005) was 3.0-4.5, 4.0 and 5.5, respectively. Best removal of TrOCs 
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ubiquitously detected in wastewater such as triclosan, diclofenac, ketoprofen and bisphenol A was 

achieved at pH range of 4.0-6.0 (Arboleda et al., 2012; Kim and Nicell, 2006c; Marco-Urrea et al., 2010; 

Margot et al., 2013; Nguyen et al., 2014b; Wang et al., 2012). The optimum pH varies for different types 

of TrOCs due to the difference between the redox-potential of the TrOC and enzymes (Deǧerli and 

Akpinar, 2001; Sondhi et al., 2014). In general, removal of TrOCs at varying pH results in a bell-shaped 

curve because TrOC removal reduces with the increase in the pH of the reaction mixture (Margot et al., 

2013; Nguyen et al., 2014b). Reduction in the removal of TrOCs with the increase in pH can be attributed 

to: (i) the change in the redox-potential of enzymatic reactions; and (ii) the binding of hydroxide ions to 

Type II and Type III copper sites of laccase at alkaline pH, thereby blocking the internal electron transfer 

(Ruijssenaars and Hartmans, 2004; Xu, 1997).  

Real wastewater does not only include interfering dissolved inorganics and organics, it can also hamper 

fungal performance due to other microbial contaminants. The aforementioned studies reporting on the 

performance of enzymatic TrOC degradation from real wastewater were short-term and, hence, did not 

focus on the detrimental impacts of bacterial contamination on the performance of whole-cell fungi or 

their enzymes. However, several studies have cast light on this aspect by operating bioreactors under non-

sterile environment using either synthetic (Nguyen et al., 2013; Yang et al., 2013a) or real wastewater 

(Badia-Fabregat et al., 2017; Cruz-Morató et al., 2013; Cruz-Morató et al., 2014; Ferrando-Climent et al., 

2015; Jelic et al., 2012; Zhang and Geißen, 2012). For example, Yang et al. (2013a) investigated the 

performance of whole-cell Trametes versicolor for the removal of bisphenol A and diclofenac in a 

membrane bioreactor under non-sterile conditions using a malt-based synthetic wastewater. They 

observed that the removal of diclofenac was reduced by 40-50% under non-sterile conditions compared to 

its 99% removal achieved in sterile batch experiments. In that study, bacterial contamination was evident 

from microbial analysis. A few recent studies have investigated the removal of pharmaceuticals and 

endocrine disrupting compounds from municipal and hospital wastewater by whole-cell Phanerochaete 

chrysosporium or Trametes versicolor  (Badia-Fabregat et al., 2017; Cruz-Morató et al., 2013; Cruz-
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Morató et al., 2014; Ferrando-Climent et al., 2015; Jelic et al., 2012; Mir-Tutusaus et al., 2016; Zhang and 

Geißen, 2012). In all these studies, bacterial contamination restricted long term operation of the 

bioreactors as the overall removal of the TrOCs gradually reduced compared to that obtained under sterile 

conditions. Two probable modes of bacterial interruption to fungal enzymatic expression can be 

perceived: i) loss of enzyme secretion capacity of fungi owing to the growth disruption under competition 

for substrate and bacterial colonization of the mycelia, and ii) destabilization/ consumption of secreted 

enzyme by bacteria (Espinosa-Ortiz et al., 2016; Libra et al., 2003; Yang et al., 2013a). Bacteria are fast 

growing prokaryotes compared to eukaryotic WRF and can easily outperform WRF in substrate 

utilization (Hai et al., 2009; Libra et al., 2003).  

In addition to bacteria, other species of fungi can interrupt WRF growth and enzymatic activity. For 

instance, Badia-Fabregat et al. (2017) analyzed the composition of microbial communities in a fluidized 

bed bioreactor treating hospital wastewater. They observed other fungal species (e.g. Trichoderma 

asperellum and Trichoderma spp.) to overtake the originally inoculated fungi (Trametes versicolor) in the 

bioreactor. This is the only study demonstrating the dominance of fungal species other than the inoculated 

fungi in the bioreactor. Therefore, more research is needed to analyze the presence of different competing 

species that can suppress the growth of inoculated WRF to formulate strategies to control their 

proliferation in the bioreactor. A number of strategies such as immobilized fungal growth, biomass 

replacement and influent pretreatment as well as the use of micro-screen in the bioreactor to allow 

bacterial washout (while retaining WRF) have been reviewed by Asif et al. (2017) for the control of 

microbial contaminations. However, these strategies could only extend the operation of fungal bioreactors 

without bacterial contamination for a few weeks.  

Based on the discussion above, it can be concluded that WRF and enzymatic processes can be an 

effective option for the treatment of recalcitrant industrial (e.g. pharmaceutical industries) and 

hospital wastewater. Municipal wastewater is rich in easily degradable organics which may 

interfere in the enzymatic degradation of the resistant compounds. In such cases, the enzymatic 
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process could be used as a tertiary treatment for enhanced TrOC removal. Irrespective of the 

source of wastewater, compounds that inhibit enzymatic activity would affect the performance of 

enzymatic degradation. Notably, different configurations of fungal bioreactors such as fluidized 

bed bioreactors, membrane bioreactors and air-lift bioreactors have been studied, and their 

working principles, advantages and limitations have been comprehensively reviewed by 

Espinosa-Ortiz et al. (2016). However, the effect of interfering compounds has been studied 

mainly in batch studies.  Therefore, this review does not cover the reactor type-specific impact. 

8. Future research  

Whole-cell WRF as well as crude/purified enzymes have demonstrated promising results for the treatment 

of TrOCs from synthetic wastewater. However, industrial applications of these treatment processes will 

require enzyme stability in presence of dissolved organic and inorganic interfering compounds. 

Enzymatic stability can be improved by using stabilizers. For instance, polyvinyl alcohol, polyethylene 

glycol (PEG), polythene and polysaccharide (e.g. Ficoll) were able to improve the stability of laccase 

during the treatment of bisphenol A. However, effluent toxicity was increased in the presence of PEG 

(Kim and Nicell, 2006b). Another option is to use encapsulation or carrier materials to improve enzymatic 

stability. In this regard, inert carrier materials may be preferred to avoid adsorption of denaturants. 

Interestingly, the potential of crude enzymes has not been thoroughly explored for the removal of TrOCs 

from wastewater. Since the crude enzyme extract may contain a cocktail of enzymes and natural 

mediators, their use can enhance the spectrum of significantly degradable TrOCs. Moreover, it can reduce 

the cost of the treatment system if renewable waste products such as agricultural residues are used for 

fungal growth. However, the presence of unspent growth media in enzyme solution can increase organic 

loading in enzymatic treatment systems. A recent work demonstrates the feasibility of using 

functionalized TiO2 nanoparticle to directly immobilize crude enzymes. The resultant biocatalytic 
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nanoparticles exhibited improved activity compared with the free crude enzyme solutions, indicating that 

the enzyme was selectively “purified” from the solution mixture. 

Depending on the WRF species, the interfering compounds can induce a variety of inhibitory effects 

(Stajić et al., 2013; Zeng et al., 2015). In this regard, the interaction of organic interfering compounds 

such as oxalic acid, EDTA and organic solvents with WRF needs more attention as only a few studies 

have focused on their inhibitory effects (Bhattacharya et al., 2014). Inhibition mechanisms have been 

elucidated for a limited number of WRF species. Some WRF species can tolerate certain interfering 

compounds via their inbuilt defense mechanisms. However, factors controlling the effectiveness of 

defense mechanisms in WRF species remain to be elucidated.  

In addition to extracellular enzymes, fungal species secrete different organic compounds (e.g. oxalates) 

(Chen et al., 2015; Zhang et al., 2015) that can protect them from metal-induced toxicity, their presence in 

the crude enzyme preparation may enhance the stability of ligninolytic enzymes. However, there is a 

dearth of information regarding this.    

Impacts of individual interfering compounds on the removal of TrOCs by WRF-enzyme-based treatment 

systems has been investigated mostly for phenolic TrOCs, namely, bisphenol A, triclosan and 17β-

estradiol, which are relatively well removed (>70%) compared to the resistant non-phenolic TrOCs  (Hou 

et al., 2014; Kim and Nicell, 2006a; Kim and Nicell, 2006c; Sun et al., 2017; Sun et al., 2016). Hence, the 

impacts of interfering compounds on the removal of non-phenolic TrOCs need to be investigated more 

systematically.   

9. Conclusion  

WRF and their ligninolytic enzymes have demonstrated their potential for efficient removal of a broad 

spectrum of TrOCs in lab-scale experiments under controlled environmental conditions. However, 

dissolved organic and inorganic interfering compounds detected in municipal and industrial wastewater 

can affect the growth of WRF and their enzyme production capacity. Metal ions such as Cu, Mn, Fe and 
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Zn are essential for the growth of WRF at trace concentrations but can inhibit their growth when exposed 

to high concentrations. Depending on the WRF species, non-essential metals such as Pb, Cd and Hg are 

toxic to WRF, causing protein denaturation, DNA damage, lipid oxidation and cell lysis to name a few. 

These mechanisms inhibit the growth of WRF as well as their enzyme production capacity. Organic 

interfering compounds are also toxic to WRF but they have not been studied extensively. In case of the 

extracellular enzymes, inorganic interfering compounds such as NaCl, CuSO4, MnSO4, ZnSO4 and CoSO4 

do not inhibit their enzymatic activity at a concentration of 1-5 mM. For similar concentrations, the salts 

of Fe, Hg and Pb each are potent inhibitors of laccase, reducing the laccase activity by over 50%. Among 

the tested inorganic interfering compounds, sodium azide is one of the most toxic compounds and can 

completely inactivate laccase at a very low concentration (< 0.01 mM). Inorganic interfering compounds 

inhibit the activity of enzymes mainly by: (i) blocking the internal electron transfer; (ii) binding to type II 

and type III sites of copper; and (iii) binding to the thiols groups of proteins. Organic interfering 

compounds such as EDTA, oxalic acid and organic solvents can also inhibit the enzymatic activity of 

laccase, involving inhibitory mechanisms including: (i) competitive inhibition; (ii) protein denaturation; 

and (iii) alteration in the pH of solutions. It is observed that inhibition of WRF and their ligninolytic 

enzymes depends on type of WRF species and experimental conditions as well as on the concentration of 

interfering compounds. Depending on the type and concentration, interfering compounds such as sulfites, 

sulfides, ammonium chloride, sodium fluoride and organic solvents can affect TrOC removal. Based on 

short term experiments, 50-90% removal of TrOCs from real wastewater can be achieved in whole-cell 

WRF or enzyme based treatment systems.   
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Table 1: Characteristics of extracellular ligninolytic enzymes (compiled from Dashtban et al., 2010; 

Sigoillot et al., 2012)  

Ligninolytic 

enzymes 

Molecular 

mass 

(KDa) 

Redox 

potential 

(mV) 

Glycosylation 

(%) 

Isoelectric 

point 
Cofactor 

Laccase  
50 – 80 0.3 – 0.8 

10 – 20 (N- 

Glycosylated) 
3 – 4 O2 

Lignin peroxidase 
35 – 48 1 – 1.2 

20 – 30 (N- 

Glycosylated) 
3.1 – 4.5 H2O2 

Manganese 

peroxidase 
38 – 62 0.8 – 1  

5 – 15 (N- 

Glycosylated) 
3 – 7.2 H2O2 

Versatile 

peroxidase  
40 – 47 >1 N.A.  3.4 – 4.9 H2O2 

“N.A.”: not available  
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Table 2. Minimum range of concentration for inorganic interfering compounds to cause 20 (IC20), 50 

(IC50) and 100% (IC100) laccase inactivation.  

Inorganic interfering 

compounds   
Inhibitory concentrations (mM) Selected references 

 IC20 IC50 IC100  

NaCl  3 – 5 10 – 25 >100 

Ramírez-Cavazos et al. (2014); 

Wang et al. (2010); Schmidt et 

al. (2012)  

KCl  3 – 5 8 – 10 - 
Wang et al. (2010); Murugesan 

et al. (2009); Kumar et al. (2012) 

LiCl  5 – 8 >10 - Murugesan et al. (2009) 

CuSO4  2 – 5 5 – 25 - 

Lorenzo et al. (2005); Sun et al. 

(2017); Schmidt et al. (2012); 

Kumar and Srikumar (2012) 

MnSO4  4 – 8 10 – 25 - 

Ademakinwa and Agboola 

(2016); Farnet et al. (2008); 

Schmidt et al. (2012) 

CdCl2  8 – 10 11 – 15 >40 

Murugesan et al. (2009); Kumar 

et al. (2012); Murugesan et al. 

(2009)  

CaCl2  2 – 5 8 – 10 >20 

Cabana et al. (2007); Cabana et 

al. (2009); Schmidt et al. (2012); 

Ademakinwa and Agboola 

(2016) 

CoCl2  1 – 4 5 – 8 >50 

Cabana et al. (2009); Wang et al. 

(2010); Sadhasivam et al. 

(2008); Ademakinwa and 

Agboola (2016); Murugesan et 

al. (2009) 

MgCl2/MgSO4  4 – 7 8 – 10 - 

Kumar et al. (2012); Kumar and 

Srikumar (2012); Sadhasivam et 

al. (2008); Ademakinwa and 

Agboola (2016) 

FeCl2/FeSO4  - ≤1 2 – 5 

Sun et al. (2017); Kumar and 

Srikumar (2012); Thongkred et 

al. (2011); Wang et al. (2010) 

NiCl2  5 – 9 10 – 15 >50 
Murugesan et al. (2009); 

Ademakinwa and Agboola 
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Inorganic interfering 

compounds   
Inhibitory concentrations (mM) Selected references 

 IC20 IC50 IC100  

(2016) 

HgCl2  < 0.5 0.5 – 1 >10 

Murugesan et al. (2009); Farnet 

et al. (2008); Kumar et al. 

(2012); Sadhasivam et al. (2008) 

BaCl2  ≤1 2 – 5 >10 
Sadhasivam et al. (2008); Wang 

et al. (2010) 

PbCl2  - <2 8 – 15 Kumar et al. (2012) 

SnCl2  ≤5 - - Sadhasivam et al. (2008) 

AlCl3  0.5 – 1 5 – 10 - 
Wang et al. (2010); Sun et al. 

(2017) 

K2CrO4  - ≤0.5 1 – 5 
Sadhasivam et al. (2008); 

Murugesan et al. (2009) 

NaF  
 

0.01 – 0.05 5 – 15 
Ramírez-Cavazos et al. (2014); 

Farnet et al. (2008) 

NaI  - 15 – 25 - 
Ramírez-Cavazos et al. (2014); 

Farnet et al. (2008) 

NaN3 - ≤0.005 0.5 – 5 

Singhal et al. (2012); Kumar and 

Srikumar (2012); Ramírez-

Cavazos et al. (2014); 

Ademakinwa and Agboola 

(2016) 

“-“: indicates data not available.  
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Table 3. Normalized inhibition (% per min) of purified laccases from different WRF species in the presence of organic interfering compounds.  

Organic  
interfering 

compounds 
Concentration  

Purified laccase 

WRF source 

Experimental 

conditions 

(pH/Temp./ 

incubation time) 

Substrate for 

enzymatic activity 
Normalized Inhibition  References 

 (mM)  Units/oC/min  (% per min)  

EDTA 0.01 
C. polyzona 

(MUCL 38443) 
3.0/20/30  ABTS 2 Cabana et al. (2009) 

 0.01 
C. polyzona 

(MUCL 38443) 
3.0/20/30  ABTS 1.97 Cabana et al. (2007) 

 0.1, 1 C. pterogonus 10/60/30  DMP 2.33, 3.27 
Kumar and Srikumar 

(2012) 

 0.1, 1 O. vulgaris 10/60/30  DMP 2.13, 3.33 
Kumar and Srikumar 

(2012) 

 0.05, 0.5, 2.5 A. pullulans NAC8 5/25/15  Guaiacol 1.13, 1.93, 1.87 
Ademakinwa and 

Agboola (2016) 

 0.1, 0.5, 25, 50 M. giganteus  3.0/30/15  ABTS 0, 0.67, 1, 1.33 Schmidt et al. (2012) 

 1, 5, 10 
Pycnoporus sp. 

SYBC-L1 
3/30/5  ABTS +1, 2, 3.8 Wang et al. (2010) 

 1, 5, 10, 25 T. harzianum WL1 4.5/35/30  ABTS 0.57, 1.33, 2.1, 3.17 Sadhasivam et al. (2008) 

 2, 20, 30, 60, 80  T. versicolor CBS  4.5/25/2  
DMP/ 

Syringaldazine 

5, 10, 17.5, 20, 

22.5(DMP)/ 10, 12.5, 

15, 17.5, 20 

(syringaldazine) 

Lorenzo et al. (2005) 

 10, 100 P. ostreatus 5/30/30  ABTS 0.97, 2.57 Kumar et al. (2012) 

 49, 100 P. sanguineus 3/25/5  ABTS 10, 20 
Ramírez-Cavazos et al. 

(2014) 

 0-1% C. albidus 2.5/30/5  ABTS No inhibition Singhal et al. (2012) 

Oxalic acid  
2, 8, 16 (DMP)/ 2, 8 

(syringaldazine) 
T. versicolor CBS  4.5/25/2  

DMP/ 

Syringaldazine 

10, 20, 47.5 (DMP)/ 

12.5, 50 

(syringaldazine) 

Lorenzo et al. (2005) 

 5 A. pullulans NAC8 5/25/15  Guaiacol 6.4 Ademakinwa and 
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Agboola (2016) 

 10, 100 P. ostreatus 5/30/30  ABTS 0.33, 3 Kumar et al. (2012) 

Citric acid 
2, 8, 16 (DMP)/ 0.5, 

2, 4 (syringaldazine) 
T. versicolor CBS  4.5/25/2  

DMP/ 

Syringaldazine 

12.5, 17.5, 49.5 (DMP); 

20, 35, 50 

(syringaldazine) 

Lorenzo et al. (2005) 

 10, 100 P. ostreatus 5/30/30  ABTS 2.23, 3.33 Kumar et al. (2012) 

Methanol 10, 50 % (v/v) A. pullulans NAC8 5/25/15  Guaiacol 2, 5 
Ademakinwa and 

Agboola (2016) 

 
10, 20, 30, 40, 50 % 

(v/v) 
C. albidus 2.5/30/5  ABTS 8, 15, 17, 19, 20 Singhal et al. (2012) 

 25 % (v/v) 
C. polyzona 

(MUCL 38443) 
3.0/20/30  ABTS 1.67 Cabana et al. (2009) 

 25 % (v/v) 
C. polyzona 

(MUCL 38443) 
3.0/20/30  ABTS 1.67 Cabana et al. (2007) 

 
25, 35, 45, 65, 80 % 

(v/v) 
M. quercophilus 4/25/2  ABTS 10, 20, 30, 40, 50 Farnet et al. (2008) 

Acetone  10, 50 % (v/v) A. pullulans NAC8 5/25/15  Guaiacol 1.33, 6 
Ademakinwa and 

Agboola (2016) 

 
10, 20, 30, 40, 50 % 

(v/v) 
C. albidus 2.5/30/5  ABTS 8, 15, 17, 19, 20 Singhal et al. (2012) 

 25 % (v/v) 
C. polyzona 

(MUCL 38443) 
3.0/20/30  ABTS 1.33 Cabana et al. (2009) 

 25 % (v/v) 
C. polyzona 

(MUCL 38443) 
3.0/20/30  ABTS 1.77 Cabana et al. (2007) 

 
25, 35, 45, 65, 80 % 

(v/v) 
M. quercophilus 4/25/2  ABTS 7.5, 27.5, 30, 40, 50 Farnet et al. (2008) 

 47, 72 % (v/v) P. sanguineus 3/25/5  ABTS 10, 20 
Ramírez-Cavazos et al. 

(2014) 

Ethanol 10, 20, 50, 70 (v/v) T. harzianum WL1 4.5/35/30  ABTS 0.11, 0.3, 1.63, 3.33 Sadhasivam et al. (2008) 

 10, 50 % (v/v) A. pullulans NAC8 5/25/15  Guaiacol 2.67, 5.33 
Ademakinwa and 

Agboola (2016) 

 20 % (v/v) P. ostreatus 5/30/30  ABTS 0.83 Kumar et al. (2012) 

 
25, 35, 45, 65, 80 % 

(v/v) 
M. quercophilus 4/25/2  ABTS 2.5, 10, 17.5, 27.5, 50 Farnet et al. (2008) 
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 55, 64 % (v/v) P. sanguineus 3/25/5  ABTS 10, 20 
Ramírez-Cavazos et al. 

(2014) 

SDS 0.01, 0.1, 1, 10 M. giganteus 3.0/30/15  ABTS 0, 0.5, 6.67, 6.67 Schmidt et al. (2012) 

 0.05, 0.5, 2.5 A. pullulans NAC8 5/25/15  Guaiacol 2.53, 4.27, 6.07 
Ademakinwa and 

Agboola (2016) 

 1, 5, 10 
Pycnoporus sp. 

SYBC-L1 
3/30/5  ABTS 20, 20, 20 Wang et al. (2010) 

 20, 100 O. vulgaris 10/60/30  DMP 0.5, 2.83 
Kumar and Srikumar 

(2012) 

 5810, 8000 P. sanguineus 3/25/5  ABTS 10, 20 
Ramírez-Cavazos et al. 

(2014) 

 0.01% (v/v) P. ostreatus 5/30/30  ABTS 3.33 Kumar et al. (2012) 

 0.1-0.5% C. albidus 2.5/30/5  ABTS No impact Singhal et al. (2012) 

Urea 0.1, 0.5, 4, 8 M C. pterogonus 10/60/30  DMP 0, 0.2, 0.13, 1.67 
Kumar and Srikumar 

(2012) 

 0.1, 0.5, 4, 8 M O. vulgaris 10/60/30  DMP 0, 0.23, 0.23, 1.77 
Kumar and Srikumar 

(2012) 

Phenol  1 T. villosa 5.6/25/180  Syringaldazine 0.39 Saha et al. (2010) 

 5 A. pullulans NAC8 5/25/15  Guaiacol 6.67 
Ademakinwa and 

Agboola (2016) 

Humic acid 0-50 P. ostreatus 6/25/5  NA No impact Sun et al. (2017) 

“+” indicates % increase in enzymatic activity  

“NA” indicates that information not available. 

EDTA: ethylenediaminetetraacetic acid; SDS: sodium dodecyl sulfate; ABTS: 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); and DMP: 2,4,6-

Tris(dimethylaminomethyl)phenol   
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(2012); Thongkred et al. (2011); and Wang et al. (2010).  

Figure 8. Inhibition of purified laccase caused by sulphate (a) and chloride (b) salts of different metals. 

Negative values indicate improvement in the enzymatic activity. Data source: Ademakinwa and Agboola 

(2016); Farnet et al. (2008); Kumar and Srikumar (2012); Kumar et al. (2012); Lorenzo et al. (2005); 

Murugesan et al. (2009); Schmidt et al. (2012); Thongkred et al. (2011); and Wang et al. (2010). 

Figure 9. Impact of organic and inorganic interfering compounds on the removal of bisphenol A, 

triclosan and 17β-estradiol by laccase. Arrows indicate the change in impact following an increase in the 

concentration of the interfering compound, as noted on x-axis. Values in parenthesis shown on the 

plotting area indicate concentrations different to that noted on x-axis. Negative values indicate 

improvement in the removal of TrOCs. Data source: Hou et al. (2014); Kim and Nicell (2006a); Kim and 

Nicell (2006c); Sun et al. (2016); and Sun et al. (2017). 
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Table S1: TrOC removal (%) by whole-cell WRF, crude and purified laccase. Data of WRF species which predominantly secrete laccase is included. Removal 

presented as median±standard deviation. Numbers within parenthesis indicate number of data point (nwhole-cell WRF+ncrude laccase+npurified laccase). 

TrOCs (nWhole-cell WRF+ncrude 

laccase+npurified laccase)  
Removal efficiency (%) 

 Whole-cell WRF
1
 Crude laccase

2
 Purified laccase

3
 

Compounds containing strong electron donating group 
Bisphenol A* (2+5+6) 85 ±20 88 ±14 82 ±24 

Estrone* (1+3+8) 80 98 ±11 67 ±17 

17α-Ethynylestradiol* (1+4+8) >60 98.5 ±9 87.5 ±9 

17β-estradiol –17 acetate* (0+3+3) >80 89 ±12 95 ±3 

17β-estradiol* (1+4+8) >65 98.5 ±7 91 ±13 

4-tert-octylphenol* (1+3+3) >90 90 ±3 95 ±3 

Compounds containing both electron withdrawing and donating group 
Sulfamethoxazole (3+1+2) 99 ±2.3 <5 48 ±55 

Ibuprofen (6+3+3) 99 ±0.5 3 ±7 40 ±24 

Salicylic acid* (2+3+3) 37 ±47 2 ±12 40 ±23 

Triclosan* (1+4+4) 80 69 ±14 94 ±4 

Ketoprofen (6+4+3) 99 ±1 7 ±18 22 ±14 

Diclofenac (6+5+7) 99 ±4 52 ±37 41 ±26 

Clofibric acid (4+3+3) 80 ±40 7 ±3 10 ±7 

Pentachlorophenol* (1+3+3)  65 22 ±8 50 ±29 

Naproxen (6+5+6) 99 ±1.8 16 ±42 2 ±9 

Fenoprop (2+3+3) 50 ±68 10 ±8 10 ±8 

Gemfibrozil (2+3+3) 86 ±20 16 ±15 4 ±5 

Atrazine (1+3+5) <20 5 ±7 8 ±34 

Compounds containing strong electron withdrawing group 
Carbamazepine (7+4+6) 60 ±50 4 ±1.8 8.5 ±32 

Primidone (1+3+3) <10 6 ±3.5 3 ±1.9 

Metronidazole (2+2+3) 52 ±68 13.5 ±2 2 ±4 

“*”: represents the compounds with phenolic moieties; “-“: indicates that data is not available. 
1
Data source: Cruz-Morató et al. (2013); Golan-Rozen et al. (2015); Hata et al. (2010); Hirano et al. (2000); 

Kang et al. (2008); Marco-Urrea et al. (2006); Marco-Urrea et al. (2008); Marco-Urrea et al. (2010a); Marco-

Urrea et al. (2010b); Nguyen et al. (2013); Popa et al. (2015); Rodarte-Morales et al. (2011); Suzuki et al. 

(2003); Tran et al. (2010); and Yang et al. (2013). 
2Data source: Ashe et al. (2016); Tran et al. (2010); Kim and Nicell (2006); Nguyen et al. (2013); Nguyen et 

al. (2014a); Spina et al. (2015); Suda et al. (2012); Suzuki et al. (2003); Tran et al. (2010); and Yang et al. 

(2013). 
3
Data source: Lloret et al. (2010); Lloret et al. (2013); Margot et al. (2013); Nguyen et al. (2014a); Nguyen et 

al. (2014b); Nguyen et al. (2014c); Nguyen et al. (2015); Spina et al. (2015); and
 
Tran et al. (2010). 
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Table S2: Characteristics of real wastewater. Data source: Auriol et al. (2007); Auriol et al. (2008); Carletti et al. (2008); 

Cruz-Morató et al. (2013); Cruz-Morató et al. (2014); Mir-Tutusaus et al. (2016); and Spina et al. (2015). 

Parameters  Unit Values 

pH  6.7-8.64 

Conductivity  mS/cm 1.2-4.7 

COD mg/L 39-614 

TOC mg/L 19 

Heterotrophic plate count cfu/ml 1.9 ×10
7
- 4.3×10

9
 

Total nitrogen mg/L 26.5 

Total phosphorus  mg/L 0.2-2.7 

Total suspended solids mg/L 85-350 

Ammonium  mg/L 14-42 

Copper  µg/L 9.8-60 

Cadmium µg/L 0.4-27 

Ferric µg/L 300-2400 

Sodium  mg/L 170 

Calcium mg/L 32.5 

Arsenic  µg/L 2.7-8.8 

Lead µg/L 2-10.5 

Nickel  µg/L 3-61 

Chromium µg/L 8-59 

Zinc µg/L 225-2500 

Aluminum µg/L 400-2600- 

Mercury  µg/L 0.7-3.8 

Nitrite mg/L 0.4 

Nitrate  mg N/L 170-250 

Chloride  mg/L (mM) 240-1500 (7.13-40) 

Sulfate  mM 0.6-1.3 

Fluoride  mM 0.05 

Cyanide  mM 0.002 
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Table S3. Inhibition (%) of purified laccases from different WRF species in the presence of inorganic interfering compounds  

Inorganic 

impurities 

Concentration 

(mM) 
% inhibition WRF 

Experimental 

conditions (pH/Temp. 

(
o
C)/ incubation time) 

Ref. 

Na
+1

 1, 5 0, 0 T. harzianum WL1/ purified Laccase 4.5/35/30 min 
(Sadhasivam et al., 

2008) 

Na
+1

 2, 10 0, 0 P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 

NaCl 8, 10, 20, 30, 150 50, 70, 85, 95, 100 M. giganteus / purified Laccase 3.0/30/15 min (Schmidt et al., 2012) 

NaCl 0.5, 1, 5, 10 10, 25, 36, 90 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

NaCl 65, 2000 50, 100 P. sanguineus/ purified Laccase 3/25/5 min 
(Ramírez-Cavazos et al., 

2014) 

NaCl 1, 5, 10 20, 6, +10 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

NaCl 10 64 
P. coccineus 

Thongkred 013 BCU/ purified Laccase 
3.5/20/60 min (Thongkred et al., 2011) 

NaCl 1, 2, 5, 10 20, 80, 85, 100 M. quercophilus/ purified Laccase 4/25/2 min (Farnet et al., 2008) 

NaF 0.08, 16 50, 100 P. sanguineus/ purified Laccase 3/25/5 min 
(Ramírez-Cavazos et al., 

2014) 

K
+1

 1, 5 3.3, 3.9 T. harzianum WL1/ purified Laccase 4.5/35/30 min 
(Sadhasivam et al., 

2008) 

K
+1

 2, 10 0, 0  P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 

KCl 1, 5, 10 10, 41, 58 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

KI 0.5, 1, 5, 10 0, 0, 8, 8 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

KI 1, 5, 10 31, 100, 100 P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 

LiCl 0.5, 1, 5, 10 9, 9.5, 15, 30 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

AgNO3 1, 5, 10 23, 41, 54 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

Cu
+2

 
1, 2, 8, 16, 30, 60, 

80 

0, 18, 25, 40, 50, 70, 

85 
 T. versicolor CBS / purified Laccase 4.5/25/2 min (Lorenzo et al., 2005) 

Cu
+2

 1 mM 0 
Pleurotus ostreatus/commercial 

laccase 
6/25/5 min (Sun et al., 2017) 

CuSO4 0.1, 1, 50 0, 0, 0 M. giganteus / purified Laccase 3.0/30/15 min (Schmidt et al., 2012) 

CuSO4 1, 5, 10 +42, +40, 20 C. pterogonus/ purified Laccase 10/60/30 min 
(Kumar & Srikumar, 

2012) 

CuSO4 1, 5, 10 +63, 29, 99  O. vulgaris/ purified Laccase 10/60/30 min 
(Kumar & Srikumar, 

2012) 

CuSO4 0.5, 1, 5, 10 5, 16, 36, 72 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

CuSO4 1, 5, 10 +1, 2, 29 Pycnoporus sp. SYBC-L1/ purified 3/30/5 min (Wang et al., 2010) 
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Laccase 

CuSO4 10 2 
P. coccineus 

Thongkred 013 BCU/ purified Laccase 
3.5/20/60 min (Thongkred et al., 2011) 

CuSO4 5 +10 P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 

CuCl2 5, 10, 20, 30 0, +10, 40, 60 M. quercophilus/ purified Laccase 4/25/2 min (Farnet et al., 2008) 

Mn
+2

 
1, 2, 8, 16, 30, 60, 

80 
No impact  T. versicolor CBS / purified Laccase 4.5/25/2 min (Lorenzo et al., 2005) 

Mn
+2

 0, 1 mM 0 
Pleurotus ostreatus/commercial 

laccase 
6/25/5 min (Sun et al., 2017) 

Mn
+2

 1, 5 0.8, 1.2 T. harzianum WL1/ purified Laccase 4.5/35/30 min 
(Sadhasivam et al., 

2008) 

Mn
+2

 2, 10 +32, +20 P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 

MnSO4 0.1, 1, 50 0, 0, +2 M. giganteus / purified Laccase 3.0/30/15 min (Schmidt et al., 2012) 

MnSO4 1, 5, 10 +43, +68, +8 C. pterogonus/ purified Laccase 10/60/30 min 
(Kumar & Srikumar, 

2012) 

MnSO4 1, 5, 10 +180, +302, +240 O. vulgaris/ purified Laccase 10/60/30 min 
(Kumar & Srikumar, 

2012) 

MnSO4 5, 10, 15, 20 10, +10, 0, +20 M. quercophilus/ purified Laccase 4/25/2 min (Farnet et al., 2008) 

MnSO4 1, 5, 10 6, 12, 14 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

MnSO4 10 5 
P. coccineus 

Thongkred 013 BCU/ purified Laccase 
3.5/20/60 min (Thongkred et al., 2011) 

MnCl2 0.5, 1, 5, 10 6, 4.5, 19.5, 24 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

MnCl2 6.25, 15.5, 25, 50 13, 46, 56, 70 A. pullulans NAC8/ purified Laccase 5/25/15 min 
(Ademakinwa & 

Agboola, 2016) 

MnCl2 1, 2, 5 20, 60, 100 M. quercophilus/ purified Laccase 4/25/2 min (Farnet et al., 2008) 

Zn
+2

 
1, 2, 8, 16, 30, 60, 

80 
No impact  T. versicolor CBS / purified Laccase 4.5/25/2 min (Lorenzo et al., 2005) 

Zn
+2

 1, 5 7.6, 11.4  M. giganteus / purified Laccase 3.0/30/15 min (Schmidt et al., 2012) 

Zn
+2

 2, 10 13, 37 P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 

ZnSO4 0.5, 1, 5, 10 +6, +18, +23, +37 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

ZnSO4 1, 5, 10 1, 2, 13 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

ZnCl2 10 µM 57 
C. polyzona (MUCL 38443)/ purified 

Laccase  
3.0/20/30 min (Cabana et al., 2007) 

ZnCl2 10 75 
P. coccineus 

Thongkred 013 BCU/ purified Laccase 
3.5/20/60 min (Thongkred et al., 2011) 

Co
+2

 1, 5 1.8, 3.6 T. harzianum WL1/ purified Laccase 4.5/35/30 min 
(Sadhasivam et al., 

2008) 

Co
+2

 2, 10 0, 19 P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 



71 

 

CoCl2 10 µM 44 
C. polyzona (MUCL 38443)/ purified 

Laccase  
3.0/20/30 min (Cabana et al., 2009) 

CoCl2 0.5, 1, 5, 10 +6, +4, 7, 17 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

CoCl2 6.25, 15.5, 25, 50 61, 62, 71, 87 A. pullulans NAC8/ purified Laccase 5/25/15 min 
(Ademakinwa & 

Agboola, 2016) 

CoCl2 1, 5, 10 24, 60, 80 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

Mg
+2

 1, 5 1.4, 2.8 T. harzianum WL1/ purified Laccase 4.5/35/30 min 
(Sadhasivam et al., 

2008) 

Mg+2 2, 10 13, 41 P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 

MgSO4 1, 5, 10 +9, 0, 5 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

MgCl2 1, 5, 10 +2, +7, 2 C. pterogonus/ purified Laccase 10/60/30 min 
(Kumar & Srikumar, 

2012) 

MgCl2 1, 5, 10 +5, 12, 19 O. vulgaris/ purified Laccase 10/60/30 min 
(Kumar & Srikumar, 

2012) 

MgCl2 6.25, 15.5, 25, 50 +7, 13, 36, 45 A. pullulans NAC8/ purified Laccase 5/25/15 min 
(Ademakinwa & 

Agboola, 2016) 

Ba
+2

 1, 5 0, 0.6 T. harzianum WL1/ purified Laccase 4.5/35/30 min 
(Sadhasivam et al., 

2008) 

BaCl2 1, 5, 10 24, 60, 76 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

Ca
+2

 1, 5 0.6, 3.5 T. harzianum WL1/ purified Laccase 4.5/35/30 min 
(Sadhasivam et al., 

2008) 

Ca
+2

 0, 1 mM 0 
Pleurotus ostreatus/commercial 

laccase 
6/25/5 min (Sun et al., 2017) 

Ca(NO3)2 0.5, 1, 5, 10 +4, +4, +6, 1 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

CaCl2 10 µM 50 
C. polyzona (MUCL 38443)/ purified 

Laccase  
3.0/20/30 min (Cabana et al., 2009) 

CaCl2 10 µM 48 
C. polyzona (MUCL 38443)/ purified 

Laccase  
3.0/20/30 min (Cabana et al., 2007) 

CaCl2 1, 5, 10 3, +3, 2 M. giganteus / purified Laccase 3.0/30/15 min (Schmidt et al., 2012) 

CaCl2 1, 5, 10 +2, 17, 11 O. vulgaris/ purified Laccase 10/60/30 min 
(Kumar & Srikumar, 

2012) 

CaCl2 6.25, 15.5, 25, 50 23, 35, 70, 78 A. pullulans NAC8/ purified Laccase 5/25/15 min 
(Ademakinwa & 

Agboola, 2016) 

CaCl2 1, 5, 10 20, 42, 80 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

CaCl2 10 65 
P. coccineus 

Thongkred 013 BCU/ purified Laccase 
3.5/20/60 min (Thongkred et al., 2011) 
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CaCl2 5, 10, 20, 30 20, 30, 60, 80 M. quercophilus/ purified Laccase 4/25/2 min (Farnet et al., 2008) 

Sn
+2

 1, 5 1.1, 9.7 T. harzianum WL1/ purified Laccase 4.5/35/30 min 
(Sadhasivam et al., 

2008) 

Cd
+2

 2, 8, 16, 30, 60 10, 18, 40, 70, 100  T. versicolor CBS / purified Laccase 4.5/25/2 min (Lorenzo et al., 2005) 

Cd
+2

 2, 10 0, 10 P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 

CdCl2 0.5, 1, 5, 10 0, 7, 18, 20 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

NiCl2 0.5, 1, 5, 10 4, 2, 13, 19 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

NiCl2 6.25, 15.5, 25, 50 40, 54, 76, 87 A. pullulans NAC8/ purified Laccase 5/25/15 min 
(Ademakinwa & 

Agboola, 2016) 

Fe
+2

 2, 10 91, 98 P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 

Fe
+2

 0, 1 mM 50 
Pleurotus ostreatus/commercial 

laccase 
6/25/5 min (Sun et al., 2017) 

Fe
+3

 1, 5 1.5, 2.0 T. harzianum WL1/ purified Laccase 4.5/35/30 
(Sadhasivam et al., 

2008) 

FeSO4 1, 5, 10 90, 100, 100 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

FeSO4 10 98 
P. coccineus 

Thongkred 013 BCU/ purified Laccase 
3.5/20/60 min (Thongkred et al., 2011) 

FeCl2 1, 5, 10 63, 77, 98 C. pterogonus/ purified Laccase 10/60/30 min 
(Kumar & Srikumar, 

2012) 

FeCl2 1, 5, 10 85, 99, 78 O. vulgaris/ purified Laccase 10/60/30 min 
(Kumar & Srikumar, 

2012) 

FeCl2 10 60 
P. coccineus 

Thongkred 013 BCU/ purified Laccase 
3.5/20/60 min (Thongkred et al., 2011) 

FeCl2 1, 5, 10 60, 100, 100 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

Hg
+2

 1, 5 17.2, 25.4 T. harzianum WL1/ purified Laccase 4.5/35/30 
(Sadhasivam et al., 

2008) 

Hg
+2

 2, 10 100, 100 P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 

HgCl2 0.5, 1, 5, 10 55, 60, 84, 94 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

HgCl2 5, 10, 15, 20 0, 40, 70, 100 M. quercophilus/ purified Laccase 4/25/2 min (Farnet et al., 2008) 

Pb
+2

 2, 10 89, 97 P. ostreatus/ purified Laccase 5/30/30 min (Kumar et al., 2012) 

Al
+3

 0, 1 mM 60 
Pleurotus ostreatus/commercial 

laccase 
6/25/5 min (Sun et al., 2017) 

AlCl3 1, 5, 10 13, 41, 53 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

Cr
+6

 1, 5 1.7, 13.8 T. harzianum WL1/ purified Laccase 4.5/35/30 
(Sadhasivam et al., 

2008) 

K2CrO4 0.5, 1, 5, 10 100, 100, 100, 100 G. lucidum/ purified Laccase 5/30/60 min (Murugesan et al., 2009) 

NaN3 0.03, 0.150  97, 100 C. polyzona (MUCL 38443)/ purified 3.0/20/30 min (Cabana et al., 2007) 
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Laccase  

NaN3 0.005, 0.5  74, 61 C. pterogonus/ purified Laccase 10/60/30 min 
(Kumar & Srikumar, 

2012) 

NaN3 0.005, 0.5  48, 47 O. vulgaris/ purified Laccase 10/60/30 min 
(Kumar & Srikumar, 

2012) 

NaN3 0.0005, 0.005, 0.5 20, 38, 82 A. pullulans NAC8/ purified Laccase 5/25/15 min 
(Ademakinwa & 

Agboola, 2016) 

NaN3 6.2×10
-6

, 16 50, 100 P. sanguineus/ purified Laccase 3/25/5 min 
(Ramírez-Cavazos et al., 

2014) 

NaN3 1, 5, 10 100, 100, 100 
Pycnoporus sp. SYBC-L1/ purified 

Laccase 
3/30/5 min (Wang et al., 2010) 

NaN3 2, 5, 10, 20 14, 39, 69, 100 T. harzianum WL1/ purified Laccase 4.5/35/30 
(Sadhasivam et al., 

2008) 

NaN3 0.01% 100 C. albidus/ purified laccase 2.5/30/5 min (Singhal et al., 2012) 
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