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Variability in quartz OSL signals caused by measurement uncertainties: Problems
and solutions

Abstract

We simulated the variability in measured quartz optically stimulated luminescence (OSL) signals and
dose response curves (DRCs) caused by measurement uncertainties, including counting statistics and
instrumental irreproducibility. We find that these measurement errors can give rise to large variations in
the observed luminescence signal and contribute to among-aliquot or among-grain scatter in DRCs and
equivalent dose (De) values. Different measurement systems (i.e., luminescence readers) may have
different counting statistics properties and, hence, may exhibit differing extents of variation in the
observed OSL signal, even for the same sample. Our simulation shows that the random measurement
uncertainties may result in some grains or aliquots being ¢ saturated; (that is, the measured natural signal
is consistent with, or lies above, the saturation level of the measured DRC) and that the rejection of these
¢saturated; grains may result in a truncated De distribution, with De underestimation for samples with
natural doses close to saturation (e.g., twice the characteristic saturation dose, D0). We propose a new
method to deal with this underestimation problem, in which standardised growth curves (SGCs) are
established and the weighted-mean natural signal (Ln/Tn) from all measured grains is projected on to the
corresponding SGCs to determine De. Our simulation results show that this method can produce reliable
De estimates up to 5D0, which is far beyond the conventional limit of ;2D0 using the standard SAR
procedure.
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Abstract

We simulated the variability in measured quartzioafiy stimulated luminescence (OSL)
signals and dose response curves (DRCs) causeceagunement uncertainties, including counting
statistics and instrumental irreproducibility. Wed that these measurement errors can give rise to
large variations in the observed luminescence sigmé contribute to among-aliquot or among-grain
scatter in DRCs and equivalent dosg) (alues. Different measurement systems (i.e., hesgence
readers) may have different counting statisticperees and, hence, may exhibit differing exterits o
variation in the observed OSL signal, even for sane sample. Our simulation shows that the
random measurement uncertainties may result in gwaies or aliquots being ‘saturated’ (that is, the
measured natural signal is consistent with, or dilesve, the saturation level of the measured DRC)
and that the rejection of these ‘saturated’ granay result in a truncated.@listribution, with Q
underestimation for samples with natural doseseclms saturation (e.g., twice the characteristic
saturation dose, { We propose a new method to deal with this urslienation problem, in which
standardised growth curves (SGCs) are establisietha weighted-mean natural signgl/Tl,) from

all measured grains is projected on to the cormdipg SGCs to determine,BOur simulation results



show that this method can produce reliablg d3timates up to 5 which is far beyond the

conventional limit of ~2using the standard SAR procedure.

Keywords: counting statistics; standardised growth curvestrinimental irreproducibility; D

underestimation

1. Introduction

Understanding differences in single-grain dose arsp curves (DRCs) is important since
some studies have shown thatd3timation can be dependent on the observed iarigk the shape
of the DRC (or characteristic saturation dosg), @©.9., Gliganic et al., 2012; Duller, 2012; Liadt,
2016; Thomsen et al.,, 2016; Guo et al., 2017). &ftarising the intrinsic variability of
experimentally observed optically stimulated lunsicence (OSL) signals from individual grains of
guartz is, therefore, imperative to assess thahidity of DRCs and the resulting equivalent ddsg) (

values and ages.

A number of previous studies have investigatedmi@lksources of variability in single-grain

OSL signals and how they may affect ilues. Observations typically included relate(&): grain-
to-grain differences in the inherent luminesceneesgivity (signal brightness) of individual grains
(e.g., Roberts et al., 1999; Duller et al., 20@®0bs et al., 2003, 2006); (b) grain-to-grain défees

in decay curve shapes due to variance in the cdtipo®f the OSL signals as observed using
continuous-wave (CW) stimulation (e.g., Robertsalet 1999; Adamiec et al., 2000; Duller et al.,
2000; Jacobs et al., 2003, 2006) and linearly-retteédl (LM) stimulation (e.g., Singarayer, 2005;
Jacobs et al., 2006, 2008); (c) differences inria¢rstability of grains identified through pulsed-
anneal measurements (e.g., Fan et al., 2011; Jatads 2016); (d) changes in decay curve shape
during successive single-aliquot-regenerative-d¢SAR) cycles (e.g., progressive build-up of
background or differential sensitisation of theieas OSL components of the signal) (e.g., Jacobs et

al., 2006, 2013; Gliganic et al., 2012); (e) cheftksthe extent of recuperation or thermal transfier
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OSL signals; and (f) OSL signals arising from difiet mineral grains or from grains with mineral
inclusions that are optically sensitive (e.g., dscet al., 2003; Duller, 2003). A set of objective
rejection criteria (Jacobs et al., 2003; 2006) hasn proposed to deal with many of the problems
discussed above. But even after application ofehadteria, and those proposed subsequently,
significant overdispersion in Dvalues remains under controlled laboratory coodgi(e.g., in dose
recovery experiments). It is likely that furthetrinsic sources of variability affecting the OSligsal

are present in samples of natural quartz, andttieste may lead to the construction of variable or

inaccurate DRCs.

Alternatively, or in addition, there may also besues related to the error estimation
procedures used to calculate the measurement amtex$ associated with the natural dosg),(L
regenerative-dose {} and corresponding test-dose,(and T) signals used to construct the
sensitivity-corrected (LT,) DRCs. The two main sources of measurement unegrtanclude: (a)
counting errors, and (b) instrument irreprodudipierrors. Both of these error terms are propagated
through every measurement of L and T. Countingrecedculations usually assume that both the
photon and dark counts detected by photomultipligves follow a Poisson distribution (e.g.,
Galbraith et al., 1999; Galbraith, 2002), where thdance of the count equals the mean count (i.e.,
the variance-to-mean ratio (VMR) = 1). Howeversthssumption is usually invalid. Several studies
have previously observed additional variance inniiaber of counts, such that the VMR is >1 (e.g.,
Galbraith et al., 1999, 2005; Li, 2007; Adamiecakt 2012; Tudyka et al., 2016). The numerical
simulation results of Bluszcz et al. (2015) suggest the error associated with, Balues can be
severely underestimated if a Poisson distribut®ragsumed. Furthermore, Adamiec et al. (2012)
observed that different measurement systems mapiexdifferent degrees of additional variance in
the photon counts and in the dark counts, and reemded that the uncertainty associated with each
should be estimated independently for different sneament systems. Since calculation of the
instrument irreproducibility error for a specifitstrument includes counting error as a componextt th

should be taken into account when estimating trepioducibility-only error (e.g., Thomsen et al.,
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2005; Jacobs et al., 2006), the observations oftdelaet al. (2012) also have a direct influence on
estimation of that error. The application of ratsts built into the SAR measurement sequence and
used as rejection criteria (such as the recychigrthe OSL IR depletion ratio and the recuperati

ratio) also require the accurate estimation of mesament uncertainties.

In this study, we explain our methods for estim@tioth the counting and instrument
irreproducibility errors, and apply a series of muimal simulations to systematically examine the
effect of these errors on the observed variabitityDSL signals, including signal intensities, DRC
shapes (and Pvalues) and estimation of.values. We also investigate how these measurement
uncertainties may cause difficulties with, Bstimation for samples with natural doses closéhéo
saturation level of the DRC when using a convemid®AR or standardised growth curve (SGC)
procedure (Roberts et al., 1999; Murray and Wirg@9O0; Li et al., 2015a). To potentially overcome
this problem, we propose a new method, based ostremtion of a SGC (Roberts and Duller, 2004;
Li et al., 2015a; 2015b) and test the validity leistmethod using experimental data for a sample

collected from an archaeological site in North édr(Douka et al., 2014; Li et al., 2016).

2. Sample descriptions

Existing experimental data for a sediment samplel(t collected from the Haua Fteah Cave
in Libya, were chosen to validate the numericalusation results presented in this study. Details
about the sample, and the collection, preparatimhdata analysis procedures are provided in Douka
et al. (2014). They measured 1000 aliquots, eantposed of quartz grains of 90-125 um diameter,
using standard single-grain discs with each graie-hcontaining ~8 grains. They reported a
weighted-mean Dvalue of 126 + 2 Gy (n=405) and a corresponding @fg66 + 6 ka. Douka et al.
(2014) also measured 1000 individual grains of 222-um diameter, obtaining a weighted-mean D
value of 131 £ 5 Gy (n=81) and an age of 71 * 7tka;single- and multi-grain results are consistent
at Is. Douka et al. (2014) made some pertinent obsemvatabout the OSL behaviour of the grains,

including the following: (a) among the wide range€d&L decay curve shapes, some had much slower
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rates of decay than others, but carry-over of O§had between successive measurement cycles was
not problematic; (b) the majority of DRCs could b#ed with a single saturating exponential
function; (c) grains show a large range of DRC slkapnd (d) some of the natural OSL signals are
close to, or in, dose saturation: 6.4% of the rgrsiin aliquots and 13.1% of the single grains have
L/T, ratios that lie at, or above, the saturation l@faghe corresponding DRC and can be classified

as either saturated grains or as Class 3 (‘oveegatil) grains (Yoshida et al., 2000).

Li et al. (2016) re-analysed the multi-grain daiafiF11. Based on the observation tfeaver
than 5% of the measured single grains contribu&@)% of the total OSL signalhey deduced that
the measured OSL signal from the multi-grain aliquarises from only one or two grains, thereby
effectively making these measurements surrogatglesgrain measurements. Their analyses also
confirmed the observations of Douka et al. (204} &liquots from the same and different samples
exhibit a wide range of DRC shapes angl€vels. Importantly, Li et al. (2016) determinduht the
multi-grain aliquot DRCs could be divided into taréroad groups (termed ‘early’, ‘medium’ and
‘later’) that saturated at different dose leveleeTearly’ group saturated at low doses (<100 @&,
‘later’ group at much higher doses (>270 Gy) argl ‘thedium’ group at intermediate doses. They
found that each group of DRCs could be well-defibgé SGC (e.g., Roberts and Duller, 2004; Li et
al., 2015a). The three SGCs were identical updose of 50 Gy, above which they started to deviate

significantly.

Li et al. (2016) calculated ages for each groupgisioth full SAR DRCs for each multi-grain
aliquot (‘early’ = 57 + 6 ka, ‘medium’ = 70 £ 7 lkand ‘later’ = 70 £ 7 ka) and the SGC for each
group (454,74 + 7 and 71 + 7 ka, respectivelyiley found that the SAR and SGC ages obtained
for the ‘early’ group were significantly underestitad compared to those for the ‘medium’ and ‘later’
groups; they were also much younger than the aggegned from the multi-grain and single-graig D
values reported in Douka et al. (2014) and the ag€3 + 5 ka based on multiple-elevated-

temperature post-infrared infrared stimulated Iweocence (MET-pIRIR) measurements of



potassium-rich feldspar grains (Jacobs et al., RBHatr HF11, 64% (221 of 344) of the aliquots ia th
‘early’ group were considered fully ‘saturated’e(i. the natural signal was consistent with, or lay
above, the saturation level of the correspondingCRpRaccordingly, finite [ values for age
determination could not be obtained for these aligiiThe ages for the ‘medium’ and ‘later’ groups
are considered reliable: they are consistent vatthether and with the OSL age reported in Douka et
al. (2014) and the MET-pIRIR age (Jacobs et all,7200nly 3.5% of the aliquots in the ‘medium’

group were identified as fully saturated, and th&l’ group contained none.

3. Counting statistics

Adamiec et al. (2012) suggested that the unceytansing from counting statistics should be
measured for individual measurement systems, becdifferent instruments may have photon and
dark counts that exhibit different amounts of vacie. Building on these observations, Bluszcz et al.
(2015) showed that, for their measurement systémasphoton and dark counts were best described
by Negative Binomial (NB) distributions, insteadRyifisson distributions. They proposed a method to
correct for this variance in a luminescence sigratulated on the basis of a Poisson distribution,

using a correction factoKf ;) determined as follows:
B
Kper = (Kpe — K3p) 7t Kon (1)

where | is the signal (including both the photon countsd ashark counts) detected by the
photomultiplier, B is the dark count obtained by measuring a blask di room temperature and
without any stimulation source, aig. andK?,h are the ratios between variance and mean values fo
the dark counts and photon counts, respectivelyaiidc et al., 2012). If the count data follow a
Poisson distribution, the values Kf. andK%h are equal to unity, but if the count data exhibit

additional variance then these values will be >1.



We used the method described in Adamiec et al.p@idetermine the values &3 anngh

for the luminescence system (Ris@2) used to meaberanulti-grain OSL signals for HF11. To
estimate the dark count, a blank disc was held@nrtemperature (~20°C) and the counts recorded
for 500 s without any light stimulation. For thegbbin counts, a blue filter pack, comprised of Stchot
BG39 and Corning 7-59 filters was placed in frohthee photomultiplier and a constant photon flux
was achieved by switching on the calibration lightitting diode (LED) and measuring the counts for

500 s at room temperature.

Histograms and probability distributions of theldand photon count rates are shown in Fig. la
and 1b, respectively. The probability distributioase fitted using a negative binomial (NB)

distribution function of the following form:

N (PRI T Y _
P(X =) = S0 O G x=0,1,23, ... )

WhereI represents the gamma functionjs the count numbel is a constant (the number of
successful Bernoulli or binomial trials), and pthie mean of the distribution. The variance of thig N
distribution isu + u?/k. The Risg2 dark counts are well described by adi#®ibution (Fig. 1a),
whereas the photon counts from the calibration L&® slightly negatively skewed. The estimated
K3, andKf,h values of 3.69 and 1.88, respectively, suggedt Rsw2 has count data with greater
variance than expected for a Poisson distribut@mrrection factors should, therefore, be incorpaatat
into the error calculation, based on egn. (1),albOSL signals measured using this system. We note
that thek?, andKf,h values for Risg2 are similar to those obtained'Edger’ at the University of
Bern (Adamiec et al., 2012), but they are highantthe values obtained for the other two readers at
that laboratory; we observed a similar range ofi@slfor the four measurement systems tested in our

laboratory.

4. Instrumental irreproducibility



Instrumental irreproducibility is an estimate of riability in OSL signals arising solely from
the instrument; this includes variability assoaiavdth heating, light stimulation, movement of disc
between successive measurements, and repositiohthg laser for single-grain measurements. The
uncertainty associated with instrument irreprodilitjbis assumed to be the same for different
samples measured on the same instrument. Thenmestturreproducibility error associated with the
measurement of single grains of quartz using tleemilaser attachment on Risg systems has been
investigated previously (Duller et al., 1999; Troiset al., 2000; Thomsen et al., 2005; Jacobs et a
2006). These studies used slightly different apghea, but in essence instrument irreproducibility
was determined by repeatedly irradiating, prehgadimd optically stimulating the same grain (e.0., 1
times or more) to obtain a set of ¥alues or L/T, ratios. The variance of the latté*j was expected
to be the sum of the variances for instrumentabioducibility and counting statistics, so the ferm

(0ins°) could be estimated using the following equation:

ainsz =5%— OCSZ (3)

whereo 5% represents the variance arising from countingissied. Relative standard errors for
instrument irreproducibility of between about 2rfl&8.5% per OSL measurement have been reported
for single-grain quartz OSL measurements (e.g.sdati et al., 2000; Thomsen et al., 2005; Jacobs et
al., 2006). As the calculation of this value, hoetevs dependent on the error arising from counting
statistics (Eqn. 3), then the estimate of instrunieaproducibility may be incorrect if the darkdan
photon counts for the particular measurement systenassumed to have a Poisson distribution but
are, in fact, more dispersed; the effect will betipalarly acute when the luminescence sensitigity

the grains is relatively low and, the OSL counts&ose to background.

5. Numerical smulation



5.1. Description of simulation method

The main aim of this stimulation is to test thdéeef of o.s ando;,s on the scatter of
experimentally observed OSL signals. We used alaimiethod to that proposed by Bluszcz et al.
(2015) to generate pseudo-random counts, usingutitein random number generation function in R
(R Core Team, 2016). Fig. 2 is a summary flowcbéarthe steps involved in the simulation, which

involves the following steps:

1) Fit experimental single-grain, Bata with a gamma function. We first quantified thminescence
sensitivity (inherent grain brightness) distributiof sample HF11 to use data from a real sample as
the basis for our simulation. We usegd(the net OSL signal from a test dose of ~8.5 Gykepresent
sensitivity; T, was calculated from the OSL counts in the inii& s of optical stimulation (2 s in
duration), minus a ‘late light’ background reprasenby the final 0.2 s. We then assumed a gamma

distribution to describe the sensitivity data @@ing Cunningham et al., 2015) of the followingrfor

xa—le—x/ﬁ

O =" 4)

wherex is the count numbey; is a shape parameter afids a scale parameter. Fig. 3 shows the
probability distribution of J for a total of 734 aliquots of sample HF11. A widege of sensitivities
is observed, ranging from 134 to >30,000 cts/0.Zre distribution is well-described by a gamma

distribution (red line in Fig. 3), withr andp values of 2.3217 and 2.5843, respectively.

2) Generate of single-grain OSL sensitivities framamma distribution. The luminescence sensitivity

of the " modelled graini() is generated by randomly drawing from the gamis&idution obtained

in Step 1. This value is considered the ‘true’ gesty of the grain.

3) Generate OSL signals based on a pre-determifi®¥d fDnction The standard SAR procedure is

modelled by generating a series of OSL signalsafamnge of doses (including ‘natural’,(1)],
‘regenerative’ [L(i)] and ‘test dose’ [}(i) and T,(i)] signals), based on an assumed DRC function. To

simplify the model, we assumed that the DRC foll@xsingle saturating exponential function of the
9



form Y = A[1-exp(-X/Dy)], whereY is the test-dose corrected signgls the regenerative dode, is

the characteristic saturation dose, @@ a constant. We also assumed that there is msitisdy
change or thermal transfer/recuperation betweenesstve OSL measurements. Each of the OSL
signals (I, or T,) is represented by 3 components: dark countsféB),decaying signalfland slow-
decaying signal {. B is constant throughout all OSL measurememid i determined independently
(see section 3 and Fig. 1)id assumed to be fully bleached during each OSasaement, so it can
be modelled according to the pre-determined DRCtfan, which can be described as follows:
1—exp(—l%)

o) (5)

_D_O

I (1) = n; 1—exp

wheren; is the sensitivity of thd"igrain, D is the ‘natural’ or ‘regenerative’ dosB, is the test dose,
and Dy is the characteristic saturation dosgisl dose-dependent and assumed to decay negligibly
during each OSL measurement; accordingly, it cabeomodelled using a DRC function. To model
the contribution ofd we investigated the experimental data;@nid L for sample HF11. We found a
positive correlation betweendnd L, with the majority of JI; ratios falling in the range 0-0.05 (Fig.
4). To estimate the value of Wwe then multiplied;lby the median value (0.024) of thé;Iratios.

This method, however, predicts a negligiklevhen } is small (e.g., only a few hundred counts) and
this is not true, especially for zero-dose sigtltd are dominated by the slow-decaying component.
To avoid this problem, we added a constant couet @& 70 cts/0.2 s to all modelled values ©f |

based on the minimum experimental values @drithe HF11 aliquots.

4) Add g, to the OSL signals. We assumed that both the daurkts and photon counts follow a NB

distribution. However, the B, land | distributions have to be generated from separaie N
distributions with different values for the meardarariance. The dark count numbers can be drawn
from a NB distribution with mean B and variari¢&. B, while the count number for has meaty and
variancnghlf, and the count number foy has mearn, and variancé(ghls. The initial OSL counts
(L)) for thei™ grain can, thus, be obtained using the followimgriula:

10



Li(®) =1 () + Is() + B; (6)

wherel (i), I;(i) andB; are drawn from their corresponding distributiol&e variance of Lcan

then be estimated as:

Var(L;) = KZy (I + I5) + K3cB (7)
Similarly, the background signal {).for the I" grain can be obtained using the following formula:
Lp(®) = I;() + B; (8)
and its variance can be estimated as:

Var(Lg) = Kppls + K5cB 9)

We emphasise that the initial signal)(and background signal £ must be estimated separately to

allow for variations caused by counting error.

5) Addog;, to the net OSL signal. Once the initial and baokgd signal counts have been generated

in Step 4, the net OSL signal is generated by drgviiom a normal distribution with mean equal to
L;(i) — Lg(i) and a relative standard deviation equal to thégmsdo;, (e.g., 0.02 or 2%). The

standard error of the net OSL signal is then eséthas:

\/Var(LL-) + Var(Lg) + (L; — Lg)%0%, (10)

6) Construct DRCs using the sensitivity-correctesl BGignals. The standard SAR procedure is then

simulated to generate a series gfll, and T, and T values using the method described in Steps 2-5.

The L/T, ratios, and their associated uncertainties ame ¢chkulated.

7) Steps 2—6 are repeated a number of times (exg500) to simulate a sediment sample containing

grains with different OSL sensitivities.
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5.2. Simulation of DRCs

We simulated DRCs to quantify variability in Balues and DRC shape as a resuit,gfand
oins- IN this simulation, we used a representative desgience similar to that used for HF11 by
Douka et al. (2014); the simulation sequence ctetsisf six regenerative doses at 1.5 (in place of a
zero-dose cycle), 30, 67.5, 120, 180 and 270 Ggpeat dose at 120 Gy, and a fixed test dose of 8.5
Gy. We modelled the DRCs using tkiéh andK 3. values for three different measurement systems—
Risg2 (presented in this study) and ‘Ermintrudel &ioench’ (reported by Adamiec et al., 2012)
(Table 1). For each measurement system, we assaic@astant dark count rate of 15 cts/0.2 s (based
on Ris@2) and simulated the DRCs for four combimegtiof iy andoy,,¢: (1) Dy = 50 Gy andr,, =
2%; (2) Dy = 50 Gy and;,,s = 4%; (3) @ = 200 Gy and;,; = 2%; and (4) P= 200 Gy and;,,; =
4%. So, the regenerative dose range corresporiidp (combinations 1 and 2) or 1.35D

(combinations 3 and 4).

Table 1 summarises the simulation data and sefriall four y ando;,; combinations and
three measurement systems. The left-hand panElg.i® shows the simulated/Ly ratios for 500

grains at different regenerative doses for eachefour combinations of £andag;,,¢ using the’(ﬁh

andKj values for Risg2. The red line in each plot represthe common DRC when the data points
for all 500 grains are fitted with a single satimgtexponential function. The right-hand panel&iig.

5 are histograms of fralues calculated for each individual DRC (n = &éach panel) for each of
the four simulation combinations. The same datsaet presented for the other two measurement

systems in Fig. S1 and S2.

We make the following two important observatiors:there are significant grain-to-grain
variations in the /T, ratios; and (b) there are also significant grahgitain variations in the D
values calculated from individual DRCs. The latgaige between about 35 and 70 Gy for the 50 Gy

D, simulations (Fig. 5b,d), with ranges of 140-330(6g. 5f) and 130-380 Gy (Fig. 5h) for the 200
12



Gy D, simulations using;,,s = 2% and 4%, respectively. Although the mearvlllues are consistent
with the applied Rvalues in all simulated scenarios, the standavéhtiens increase with an increase

in g;, and also with an increase iR.D

We also observe that the common DRCs (red lin€$gn5, S1 and S2) have meap\alues
that are indistinguishable from 50 or 200 Gy, dmat &l three measurement systems have similar
extents of grain-to-grain scatter in thgT, ratios and correspondingsDalues. This indicates that the
main source of variability in the DRCs for the slatad sample arise from,,, which is probably
because most of the simulated grains (based oexirerimental data from sample HF11) have bright
signals (Fig. 1), se. is relatively small. For samples that containrgéa proportion of dim grains,
ocs may contribute significantly to scatter, becausehe relatively larger contribution from dark
counts to the observed OSL signal. For some reddeys Risg2 and Ermintrude), tkig, values are
comparatively larger, thus exerting a relativelgé influence on DRC shapes and the spreagin D
values. The simulation results also show that DR&pss and the correspondingualues are
significantly affected by the range of regeneratieses (i.e., the maximum regenerative dose) used
for construct the DRCs. The wider range of simualddgvalues obtained for {3 200 Gy is likely
due, at least in part, to the restricted rangegénerative doses compared to the tryedlue; that is,
the maximum regenerative dose applied (270 Ggilig 1.350. Measuring higher regenerative

doses may allow the trug,Dalue to be better constrained.

5.3. Simulation of Pvalues

We have demonstrated that the variability gyvBlues in our simulations can be explained by
differences iro.s ando;,;. We now need to determine how this variabilityDa value and DRC
shape might affect the accuracy aof &timates. To do so, we used the same methodhuEebove

to model a range of surrogate ‘natural’ doses (@) @rresponding DRCs based on a simulated SAR
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sequence. We modelled P values ranging from Qugito 50, that is, if the [@ value is 50 Gy, then
we simulated 500 grains at P values of between 1 f0@0D,) and 250 Gy (5F). For each chosen P
value, the sensitivity distribution of 500 grainaswandomly generated from the gamma distribution
shown in Fig. 3, with the same distribution useddach group of grains. To mimic the standard SAR
procedure, each grain was also given 7 regenerdtises scaled to the size of P (i.e., 0.01P, 0.2P,
0.45P, 0.8P, 1.2P and 1.8P, with a repeat dose8R) @nd a test dose of 8.5 Gys anda;,; were
added to each of the signals (section 5.2). IndaidRCs were fitted and [values estimated for
each grain using the built-in functimal SARED() provided in the R-package ‘numOSL’ (Peng et

al., 2013; Peng and Li, 2017).

Simulated R values for 500 grains at each of four P values (80, 150 and 200 Gy) are
shown as radial plots in Fig. 6a—d. These resuiased on théjh andK32. values for Risg2g;,
= 2% and a Pvalue of 50 Gy, so that P = 50 Gy representg FD= 100 Gy, 150 Gy and 200 Gy
represent 2R 3D, and 40, respectively. All grains with the lowest P (50)Gielded finite I3 values,
and most of these (~97%) are consistent with RsalTBe weighted-mean[¥alue of 49.8 £ 0.2 Gy,
calculated using the central age model (CAM; Gatlbret al., 1999), is indistinguishable from P (Fig
6a). For a P value of 100 Gy, all but 3 of the mgayielded finite [ values; the resulting CAM D
value of 97.6 + 0.5 Gy only underestimates P digffig. 6b). For the larger P values, 150 and 200
Gy, which correspond to 30and 40, only 64% and 30% of the grains yielded finitg \&lues,
respectively (Table 1) and these gave CAMvBIues that are significantly smaller than P (yuad

13% and 30%, respectively) (Fig. 6¢,d).

A compounding effect of variability in DRCs duedg; andag;,s is the increased likelihood
that, at doses much greater than,2D/T, may sometimes intercept the DRC and sometimes not.
This will lead to I distributions that can be described as ‘truncatsalthat only the leading edge of
a distribution of Q@ values (i.e., the finite Dvalues) is included in the weighted-meanv@lue for a

sample. Such truncated distribution will give rieean underestimation of P, even if all grains shar
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the same DRC or pvalues as in this simulation. Fig. 7 shows thé L ratios and corresponding
DRCs for 4 simulated grains from the group with avBlue of 50 Gy and where P = 200 Gy @tD
two grains (#1 and #8) gave finite alues, whereas the other pair (#2 and #134)uliredaturated.
The number of ‘saturated’ grains in each group wlifferent natural doses (i.e., P = RBDy,, 4D,

and 50 respectively) are summarised in Table 1.

Fig. 8 shows the CAM Dvalues (black circles) calculated using differeambinations of
Do (50 and 200 Gy) ang,,; (2% and 4%), but the sarﬁéh andK?. values (Risg2). The CAM D

values are consistent with P up to,2Begardless of the size ofyr g, (Fig. 8a—d). This is
consistent with the conservative upper limit fog &timation suggested by Wintle and Murray
(2006). Above >2F) the CAM L. values systematically underestimate P and the edegf
underestimation increases until a constant (maximd/M D, value is attained. Using,,; = 2%
results in a maximum CAM Dvalue of ~140 Gy for a of 50 Gy, and ~530 Gy at,3- 200 Gy;
these I values are about 30% and 34% smaller than thegwonding P values, respectively (Fig.
8a,c). The same pattern is observed whgnis increased to 4%, except that the maximum CAM D
value is smaller and the degree of underestimatidhis greater. Maximum CAM Drvalues of ~120
Gy and ~490 Gy are obtained for grains withvalues of 50 and 200 Gy, respectively (Fig. 8b,d),
representing a ~40% underestimation of P. Fig.r8834 show that similar patterns in estimated D

values are observed using Ihﬁ,l andK3, values for Ermintrude and Moench.

6. A new method for D, estimation

The simulation results suggest that the unceréairgissociated witla s ando;,; can give
rise to considerable variation in the shapes ofsmexi DRCs (and in theirgalues), the [T, ratios
and, consequently, the.Balues, even though all grains in the simulatiamehcommon DRCs (and
Do values) and P values. This variability poses #siqdar problem when [T, ratios are >2R as the
L/ T, ratio for some grains may be consistent withjeoabove, the saturation level of the

corresponding measured DRC (e.g., grains #2 andl i#lBig. 7). These ‘saturated’ grains will yield
15



infinite D, values and, hence, be rejected from the finadlimation, resulting in truncation of the
full D distribution and an underestimation of the sanipléassuming that all grains share the same

DRC or [y value).

To circumvent the problem associated with satunadfosome grains above gBnd the
truncation of the Pdistribution, we propose a new method fqreStimation based on the full
(‘'untruncated’) distribution of [T, ratios for all aliquots or grains. This methodltsiion previous
methods to establish SGCs (Roberts and Duller,;20G0t al., 2015a, 2015b, 2016), and can be
divided into several steps. The first three stepssamilar to the SGC Destimation procedure of Li et

al. (2016), but Steps 4 and 5 are new to the mgthogbsed here:
1) Apply the SAR procedure to individual grains oqalvts to calculate {T,, and L/Ty ratios.

2) Separate the grains or aliquots into three diffegeoups (‘early’, ‘medium’ and ‘later’)
based on their relative saturation characteristieghat grains or aliquots in the same group
share a common DRC. This can be achieved by usefAT, ratios calculated for two

different regenerative doses (Li et al., 2016).

3) Establish SGCs for the three groups, using the sspgres (LS)-normalisation procedure of
Li et al. (2016), which involves the following ste) fit L/ T, ratios for all grains or
aliquots using a best-fit model; b) re-normalise t'T, ratios for each grain or aliquot
using scaling factors that minimise the differebetween the re-scaleg/T, ratios and the
fitted DRC; as each grain is treated individuadlifferent scaling factors are determined for
each grain; and (c) repeat the fitting and re-ndisaton procedures iteratively until there is
negligible change in the relative standard deviatibthe re-normalised,LT, ratios. This
LS-normalisation procedure can be implemented usiasNORM ) function in the R

package ‘numOSL’ (Peng et al., 2013; Peng andQ1,72.

4) Re-normalise the [T, ratios for individual grains or aliquots. For teameasured using a
full SAR cycle, re-normalisation can be achievedrtiplying L/T, by the scaling factors
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determined in Step 3, to establish the SGC. Giamalsaliquots for which only LT, and one
additional regenerative-dose signalTl) were measured can be re-normalised using the

following equation:

Lln
TI

n

f(D,)
L /T

r r

L
=N x 11
T, (1)

Where L/T', denotes the re-scaled/T, ratio,f(x) denotes the SGC established by LS-
normalisation, and [and L/T, denote the additional regenerative dose and itegjponding

sensitivity-corrected OSL signal, respectively.

5) Project the weighted-mean re-scalgfll, ratios for individual groups on to their

corresponding SGCs to estimate thevBlue for each group.

In this new method, no grains are rejected bectnggeare ‘saturated’; apparent ‘saturation’ can
arise simply from random errors associated witmtiag statistics and instrumental irreproducibility
By including all grains, a full and untruncatedtdizution of the re-normalised,[T, ratios is
obtained. As all grains (or aliquots) from the sayreup share the same DRC, and as we assume that
all grains (or aliquots) have the same natural dibem the distribution of their [T, ratios should be

randomly distributed around a value correspondinipé natural dose (P).

We first tested the new method using the simulatiaia set presented in Section 5.3. The
L/T,and L/T, ratios for 500 grains at four values of P (50,,180 and 200 Gy) are shown in the
left-hand panels of Fig. 9, while the right-hanag@a show histograms of the distribution gfTL,
ratios. These results are based orid%wandK%C values for Risg2, afvalue of 50 Gy and,,; =
0.02. A range of )T, ratios is obtained, even though all grains in@epaave the same P, distributed
normally around a central value. We applied the CidMalculate the weighted-meagpT, ratio for
each P, and these are shown as horizontal lintke ileft-hand panels of Fig. 9. To calculate the D
value for each set of grains, the CAMT, ratio is projected on to the best-fit DRCs (reu$).

These Rvalues are shown in Fig. 8 (as red squares) fardint combinations of 50 and 200 Gy)

ando;,s (0.02 and 0.04). All Pvalues based on the CAM/LL, ratios are consistent with P at,2
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even for P values as high asigl/e note that the size of the Gncertainties increases considerably

P values >4p(Fig. 8).

We also used the same simulation data set to &sti®GC [ values for 500 individual
grains at P values of 50, 100, 150 and 200 Gy,rbjegting individual /T, ratios on to the best-fit
SGCs (red lines in the left-hand panels of Fig.T9e results are shown as blue triangles in Fig. 8.
The SGC method yielded a similar pattern gfivalues to that obtained using standard SAR (black
circles): reliable RPvalues (i.e., indistinguishable from P), are aledi up to 2[y but underestimation
of D occurs when P increases relative o ®larger underestimation in s obtained from the SGC

compared to SAR, consistent with previous obsemaatdf experimental data (Li et al., 2016).

7. Comparison with experimental datafor HF11

To further test the new method, we applied ithe experimental OSL data collected for
sample HF11. The aliquots from this sample haveipusly been divided into ‘early’, ‘medium’ and
‘later’ groups, according to the saturation chasastics of their DRCs (Li et al., 2016). Weighted-
mean SAR [ estimates of 108.1 + 7.2, 133.6 + 3.1 and 13481 Gy were calculated for the
‘early’, ‘medium’ and ‘later’ groups, respectivelyThe ‘early’ group underestimated the, D
significantly compared to the other two groups lbeeaa large proportion (~60%) of the aliquots was
‘saturated’ and the Ddistribution truncated (Li et al., 2016). The ‘med’ and ‘later’ groups
contained few saturated aliquots and their SARv8lues were considered reliable. The left-hand
panels in Fig. 10 show the re-normalisedTl and LS-normalised [T, ratios (blue squares and
black circles, respectively) for the aliquots tlwaimprise each of the three groups. The between-
aliquot variation in the YT, ratios is similar to that observed in the simalat{Fig. 9), which implies
that aliquots in the same group share a common BR@, SGC can be constructed for each group.
There is, however, larger scatter in the re-nomedlil/T, ratios for the experimental data (Fig. 10),

than in the simulated data (Fig. 9). This resulbhds unexpected, because a number of additional
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extrinsic sources of variability can influence aumal sample and such factors are not includediin o

simulation.

The distributions of re-normalised, /L, ratios for each group of aliquots are shown as
histograms (Fig. 10, middle panels) and radialgp{big. 10, right-hand panels). We used the CAM to
estimate the weighted-mean re-normalisedl | values (horizontal dotted lines in the left-hand
panels). These were projected on to the correspgrelizCs to obtain Drvalues of 127.3 + 5.8, 143.7
+ 3.1 and 134.2 + 4.3 Gy for the "early’, ‘mediuand ‘later’ groups, respectively. The latten@lue
is consistent atd with the SAR R value for the ‘later’ group (134.3 £ 4.1 Gy) ame SGC Qvalue
for the ‘medium’ group is similar, albeit slightlgrger at 8. The SGC Rvalue for the ‘early’ group
is also similar to the SGC.values obtained for the ‘medium’ and ‘later’ greupecause the use of
re-normalised KT, ratios circumvents the problem of underestimatioe to rejection of ‘saturated’

aliquots; this is consistent with our observatibased on the simulations (Fig. 8).

The overdispersion values for the re-normalisefl Lratios are 12%, 9% and 15% for the
‘early’, 'medium’ and ‘later’ groups, respectivelyhese values are considerably smaller than those
obtained for the SAR Dand SGC D distributions, which range from 26 to 44% (Li ét, 2016),
presumably because of the non-linear relationskeivéen OSL signal and dose. That is, a small

change in the natural signal will produce a largange in Rin the non-linear range of the DRC.

8. Discussion

Differences in the shape of DRCs for different gsabr aliquots are often used to explain
variations in their intrinsic physical propertiesd., [} value). Our simulations demonstrate that the
experimentally observed OSL signals and correspgn@iRCs can be influenced significantly by
measurement uncertainties (specifically ando;,,) and the measurement strategy used to determine
the D, values (such as the number and range of regeveeddses applied). To correctly characterise

the intrinsic luminescence behaviours of differgrdins, measurement uncertainties must be taken
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into account appropriately. This includes the safgarstimation of o.¢ for each measurement
system, to establish whether the count data follovPoisson distribution or exhibit additional
variance. If the latter, then appropriate correttiactors based on valueskf, andkf,h should be
applied to estimate the counting error associaiéid@ach luminescence signal (Egn. 1); this waloal
influence estimation o#;,,. Accounting foro.s andg;,; is important for understanding the
variability in observed luminescence behaviour, afgb for correctly estimating the uncertainties
associated with the measured OSL signals and irggpult, values. Explanations of Ddistribution
patterns and choices of appropriate age modelsraieally dependent on the correct estimation of

the measurement errors and other sources of \ari@#albraith and Roberts, 2012).

For sediment samples, the sensitivity-corrected Gighals and DRCs are subject to several
sources of variation. Sensitivity changes may otmiween successive luminescence measurements,
due to the repeated laboratory application of feat irradiation as part of the SAR procedure.
Sensitivity changes between SAR cycles may resutfifferent count numbers (and thus different
ocs values), and changes in DRC shape,ifisTnot strictly proportional to the preceding signal.
Furthermore, variable degrees of sensitivity chargfeeen measurement of &nd T, may result in
large between-grain (or between-aliquot) scattdr,iii, ratios, even though the grains (or aliquots)
may have the same DRC og {alue. Li et al. (2015a,b) suggested that suctiesceould be reduced
by normalising of the DRCs using a singlgTl ratio, the so-called ‘re-normalisation’ methode th
LS-normalisation procedure represents an improveneethis approach (Li et al., 2016). Thermal
transfer may also play an important role in causiagations in the shape of DRCs, especially in the
low-dose region of a DRC where the size of therttadlly transferred signal is largest compared to the
size of the regenerative dose signals. Finallyctiraposition of the quartz OSL signal (e.g., reati
proportions of fast, medium and slow componentsy aiao contribute to the variability observed in
DRCs, given that different components of quartz M3ie been shown to differ considerably in their

DRC shapes (e.g., Jain et al., 2003; SingarayeBailey, 2003).
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In this study, our simulations are based on thekiping assumption that there is no sensitivity
change or thermal transfer between or within SARigueement cycles, and that all grains have the
same [ value and signal composition. The only betweeringneariable incorporated in our
simulation is luminescence sensitivity, based andkperimental data for sample HF11 (Fig. 3). So,
although large variations in DRC shape were obsemethe simulations (Fig. 5), this variability
should be considered the minimum expected for arabsample. Li et al. (2016) found that, even
after LS-normalisation, the samples from Haua Ftéabe in Libya, still had a ~2.5% variation in the
sensitivity-corrected signal between different adits from the same DRC group. This remaining
variability could not be explained by the measuneimencertainties, which suggests that additional
sources of variation contribute to the observettscdortunately, variations of this magnitudenid
prevent application of the SGC method, from whielable estimates of Dwvere obtained (Li et al.,

2016).

An important outcome of our simulation is the destoation that the variance associated with
ocs anda;, may give rise to somed T, ratios consistent with, or higher than, the sdioindevel of
the corresponding DRCs. The resulting truncatedliBtribution may yield an underestimate of the
true D. value (as only the leading edge of thedstribution is included) and this can be diffictd
diagnose based only on the distribution patternBgo¥alues (Fig. 6). Several methods have been
proposed to deal with such samples. One approachrénk grains according to theip Balues and
then calculate Dvalues for grains with Pvalues that satisfy a particular criterion. It Haesen
suggested that reliable.Bstimates can be obtained from the ‘plateau’ regica plot of @ against
Do (e.g., Thomsen et al., 2016; Guo et al., 2017),this method will only work if [ values are
determined reliably and if grains differ in themé Dy values. As demonstrated in our simulation (Fig.
5), the measuredDralues can be highly variable, even when all gr&iave the same trug Balue.
Furthermore, not all DRCs can be fitted using alsirsaturating exponential function, se fbay not
be comparable across all grains or aliquots. Aerméitive approach is to group aliquots or grains

according to the ratio of the I, ratios calculated for two different regenerativeses (Li et al.,
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2016); D values are then determined for the groups withhtgber saturation doses, fewest saturated
grains and consistent.alues. This approach avoids reliance gnab the selection criterion, but

both methods require a large number of grains sufficiently high saturation doses.

In this study, we propose a new method that indudi grains in the weighted-mean re-
normalised W/T, ratio, which is then projected on to the assodig®C. Based on numerical
simulations, we show that this method can prodetialle 0 results well beyond the conservative
limit of 2Dy (i.e., up to 4 or 50). We confirmed this finding by analysing experirt@rdata from
sample HF11. The pvalue for the ‘early’ group of aliquots (~36 Gyi &t al., 2016), prevented
reliable D estimation beyond ~70 Gy (i.e., @using conventional SAR or SGC procedures. Using
our new method, a Drvalue of 127.3 + 5.8 Gy (corresponding to ~3)6i9 obtained, demonstrating
the potential of this method for dating sampleshwntural doses larger than 2t is worth noting,
however, that a large number of grains are requiveproduce a precise estimate of the weighted-
mean L/T, ratio and, thus, minimise the error in the caltadaD. value for samples approaching the

saturation level of the SGC.

Age models, such as the CAM (Galbraith et al., J9%%e been used mostly in OSL dating for
D, estimation. Our simulation results show that tAeMCappears to also work well with T, ratios,
although a firm statistical foundation for applyitigese age models to luminescence signals hae yet t
be established. Given the fact that the CAM is @blproduce reliable estimates of the meaiT L
ratio for well-bleached samples such as HF11, vieipate that other age models (e.g., the minimum
age model and finite mixture model; Galbraith arab&ts, 2012) may also be applicable 6T}
ratios; to do so requires an appropriate overdsspevalue for a well-bleached sample with the same
mineral composition as the dated sample and, idealsimilar age (Galbraith et al., 2005; Galbraith

and Roberts, 2012).

Finally, the method of Pestimation proposed here is based on the estat#ishof SGCs, so the
reliability of D, estimates based on weighted-meafT Lratios relies heavily on constructing reliable
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SGCs. For quartz OSL, there may be several grobigeams with different DRCs, so a SGC should
be established for each group (Li et al., 2016 €ombination of SGCs and weighted-megfT |
ratios not only allows P estimation beyond the conventional 2bmit for the standard SAR
procedure, but can also save on instrument tinig;jshespecially useful when dating a large number
of samples with similar luminescence behavioursdated, or when measuring a large number of
grains or aliquots for each sample. But as SGC oastlnevitably sacrifice useful information, such
as the extent or efficacy of sensitivity correct{@ng., the recycling ratio), recuperation and QSL
depletion, they should be used only after samplbatieur has been fully verified through

comparisons with results obtained from full SAR smw@aments on a subset of grains or aliquots.

9. Conclusions

Counting statistics and instrumental uncertaintiag important roles in the observed
variability of measured luminescence signals aedstiape of corresponding DRCs. Such variability
depends in part on the measurement system usealjdeeimdividual instruments can have different
variances in relation to both counting statisticd astrumental irreproducibility. These measureimen
uncertainties may cause significant underestimait€s for samples with natural doses of »20ue
to the rejection of ‘saturated’ grains. The latiesblem can be avoided by constructing SGCs and
projecting the weighted-mean/LL, ratio for all grains on to the corresponding SGIdgs enables
reliable estimates of 1o be obtained at doses well above the convertionia of 2Dy—
conservatively up to 4fand possibly as high as &But further tests on known-age and well-
bleached natural samples are needed to confirforteeler applicability of the approach provided

here.
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Figure captions

Figure 1: Histograms of (a) dark counts in 1 srivaés (bin size = 10 s) and (b) calibration LED fuho
counts in 0.1 s intervals (bin size = 50 s). Theydrars/area show the negative binomial probability
distributions with parameters fitted by the metloddhoments. Summary statistics are shown in eaoblpa
Note that the negative binomial distribution fite tdata well in (a) but not in (b), where the datamore

negatively skewed.
Figure 2: Flowchart for simulation of OSL signaiglacorresponding DRCs.

Figure 3: Histogram of Tsignal intensity for 734 aliquots of sample HFIhe inset plot shows the

cumulative density function (CDF) for these datajol are fitted by a gamma distribution (red linegh

the best-fite andp values indicated.

Figure 4: Histogram showing the ratios betweerstbe/-decaying signal {l and fast-decaying signal)(for

734 single aliquots of sample HF11. The inset ghmws the correspondingaind L signal intensities.

Figure 5: Simulated DRCs for a total of 500 graimeach panel, based on ﬂﬁél andKjvalues for Risg?2
and the four combinations ofy@alue and instrumental uncertaingyd: (a) Dy= 50 Gy,oins = 0.02; () RB=
50 Gy,oins = 0.04; (e) @= 200 Gy,oins = 0.02; (g) B= 200 Gy,oi,s = 0.04. (b), (d), (f) and (h) show the
distributions of [3 values for individual simulated DRCs for the 508igs in panels (a), (c), (e) and (g),

respectively.

Figure 6: Radial plots showing the distributionssiulated @ values for 500 grains at four surrogate
natural doses (P values): (a) 50 Gy (b) 100 Gylgf) Gy and (d) 200 Gy. The simulations uKégI and

K3, values for Ris@2, a Pvalue of 50 Gy and.svalue of 0.02. The black lines and grey shadinghi
radial plots represent the weighted mean of the dats calculated using CAM and the associated *2

standardised estimate band, respectively. Thelpiak represent the P values.
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Figure 7: Sensitivity-corrected natural signalai¢hsquares) and corresponding DRCs (red lineg) for

simulated grains from the group with P = 200 GyeSésimulations are basedlqj), andKZ. values for

Risg2, a @ value of 50 Gy and an instrumental uncertainfy)(of 2%.

Figure 8: Modelled SAR Dvalues (black circles), SGC.®alues (blue triangles) and Balues based on
mean L/T, ratios (red squares) plotted against the naturse @P). The data in each panel are based on
different combinations of §(50 and 200 Gy) anel.s (0.02 and 0.04), but the sankiﬁ,, andKZ. values (for
Risg?2). The Rando,s values used for these simulations are shown ih panel, with each data point based

on the weighted-mean of 500 simulated grains; vtettdmean Pvalues were calculated using the CAM.

Figure 9: Sensitivity-corrected natural{L,, blue squares) and regenerativg'Tl, black circles) ratios for
500 grains at four natural doses: (a) 50 Gy, (€) G, (e) 150 Gy and (g) 200 Gy. The corresponding
distributions of L/T, ratios are shown in panels (b), (d), (f) and (&3pectively. Results are based on the

Kﬁh andKj-values for Risg2, afvalue of 50 Gy and,s value of 0.02.

Figure 10: Re-normalisedy T, ratios and DRCs for different aliquots from theeth groups (‘early’,
‘medium’ and ‘later’), recognised for sample HFI,d and g). The distributions of re-normalisedT|.
ratios for the three groups are shown as histogi@mne and h) and as radial plots (c, f and i). Ghey
shading in each of the radial plots representstthetandardised estimate band, centred on the teeigh

mean re-normalised.T , ratio, calculated using the CAM.
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Figure 2

Fit experimental single-grain T, data with a gamma function

U

Randomly generate single-grain sensitivities (cts/Gy) from
the gamma distribution

g

Generate OSL intensities (cts) for a given natural or
regenerative dose based on a pre-determined DRC function
(e.g., saturating exponential function), and add
noise from counting statistics and instrumental
irreproducibility

U

Construct sensitivity-corrected DRCs based on the SAR
procedure, incorporating a series of regenerative doses and
a fixed test dose
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Figure 9
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Table 1: Summary of the mean alues of simulated DRCs and the number of ‘esatyrated’ grains for different groups of simulagedins with different natural
doses, based dqfh andK 3. values for three instruments asgl values of 2% and 4%.

I nstrument K;Zm K3, Instrumgntal TrueD, Simulated Dy? Number of saturated grains®
uncertainty
(Ging) (Gy) (Gy) P =2D, P =3D, P =4D, P =5D,
Risg?2 1.88 3.69 2% 50 499+ 3.0 3 (0.6%) 178 (35.6%) 350 (7009%) 409 (81.8%)
200 201.8+20.9 7 (1.4%) 163 (32.6%) 328 (65.6%) 404 (80.8Pb)
4% 50 50.0 + 4.2 46 (9.2%) 292 (58.4%) 382 (76.4%) 424 (84.8%)
200 203.6 £ 28.9 40 (80%) 269 (53.8%) 394 (78.8%) 429 (85.8%)
Ermintrude 1.23 4.49 2% 50 50.3+3.0 7 (1.4%) 158 (31.6%) 341 (68.2%) 400 (800%)
200 199.9+£16.7 5 (1.0%) 148 (29.6%) 330 (6609%) 412 (82.4%)
4% 50 50.3+4.2 25 (50%) 280 (560%) 385 (770%) 427 (85.4%)
200 202.7 +26.5 33 (6.6%) 275 (550%) 391 (78.2%) 420 (84%)
Moench 1.04 1.17 2% 50 499+26 4 (0.8%) 138 (27.6%) 335 (670%) 402 (80.4%)
200 201.0 + 16.8 4 (0.8%) 140 (280%) 353 (70.6%) 426 (85.2%
4% 50 50.1+4.0 34 (6.8%) 286 (57.2%) 409 (81.8%) 419 (83.8P0)
200 204.4 + 26.6 33 (6.6%) 286 (57.2%) 389 (77.8%) 421 (84.2%)

2 The simulated Pvalues are based on the mean of 500 simulatedsgi@i each combination mgh andK2. values and instrumental uncertainties. The unicgytéor each value represents one

standard deviation.

® A total of 500 grains was simulated for each grolle percentage of saturated grains is shown englaeses.
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