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ABSTRACT

MRI has superior soft-tissue definition compared with existing imaging modalities in radiation oncology; this has the

added benefit of functional as well as anatomical imaging. This review aimed to evaluate the current use of MRI for lung

cancer and identify the potential of a MRI protocol for lung radiotherapy (RT). 30 relevant studies were identified.

Improvements in MRI technology have overcome some of the initial limitations of utilizing MRI for lung imaging. A number

of commercially available and novel sequences have shown image quality to be adequate for the detection of pulmonary

nodules with the potential for tumour delineation. Quantifying tumour motion is also feasible and may be more

representative than that seen on four-dimensional CT. Functional MRI sequences have shown correlation with flu-deoxy-

glucose positron emission tomography (FDG-PET) in identifying malignant involvement and treatment response. MRI can

also be used as a measure of pulmonary function. While there are some limitations for the adoption of MRI in RT-planning

process for lung cancer, MRI has shown the potential to compete with both CT and PET for tumour delineation and

motion definition, with the added benefit of functional information. MRI is well placed to become a significant imaging

modality in RT for lung cancer.

INTRODUCTION
Radiotherapy (RT) plays a significant role in the treatment
of lung cancer1 and relies on accurate imaging for precise
treatment delivery. Improvements in imaging and the use
of multimodality imaging have improved tumour de-
lineation for RT planning and treatment of lung cancer.2,3

CT is the standard imaging modality in RTwith a relatively
high spatial resolution, but limited specificity. Tumour
definition on CT can be obscured in the presence of ad-
jacent lung collapse or consolidation. The incorporation of
positron emission tomography (PET) with glucose ana-
logue flu-deoxy-glucose (FDG) tracer has significantly
improved the discrimination between benign and malignant
tissue.4 The use of FDG-PET has reduced gross tumour
volumes (GTV) owing to the improved differentiation be-
tween benign and malignant tissue5–7 and reduced in-
terobserver variability in the delineation of GTV.4–13 While
FDG-PET with CT is currently the standard of care for

tumour delineation, there are limitations. The spatial reso-
lution of PET is poor, ranging between 5 and 7mm com-
pared with 2mm for CT.14 This low spatial resolution results
in blurred edges, and tumours ,4mm may be falsely neg-
ative on FDG-PETscans. There is also a lack of consensus on
the FDG-PET visualization method within RT, with a num-
ber of different methods reported in the literature.6–9,13,15

Use of ionizing radiation to acquire images for PET and CT
can be a limiting factor in repeated examinations.

The mobility of tumour and normal anatomy during
respiration can lead to a large degree of uncertainty in
tumour position. In order to visualize and quantify tu-
mour motion, a number of options have been utilized
including fluoroscopy, slow CT scans and breath-hold
devices.16 However, these have largely been superseded
by respiratory-correlated CT or four-dimensional CT
(4DCT).17 4DCT image acquisition is based on acquiring
CT images with an external respiratory trace while the

http://dx.doi.org/10.1259/bjr.20150431
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patient is free breathing. During post processing, the acquired
images are correlated with an external respiratory signal
usually either in the form of a reflective marker and camera
system or a pressure-sensing belt around the abdomen. The
advent of 4DCT in RT planning has overcome some of the
problems associated with imaging the thorax18 and has
allowed for the definition of patient-specific margins for tu-
mour motion.19–21 However, accurate definition of motion on
4DCT is reliant on a consistent respiratory cycle.22

MRI is a well-established diagnostic tool in oncology.23 Unlike
CT where tissue contrast primarily depends on electron density,
MRI contrast can be varied extensively by imaging other in-
trinsic properties of the tissue (e.g. spin lattice and spin–spin
relaxation time, proton density, diffusion etc.). Typically, a MRI
examination will consist of multiple series of scans in several
imaging planes using different pulse sequences which exploit
these properties.24 This allows flexibility in facilitating optimal
tumour visualization and evaluation.23 The benefit of MRI in
delineating soft tissues has been demonstrated for a number of
disease sites in RT23,25,26 and is being incorporated into the
treatment-delivery process with the development of MRI linear
accelerators,27–29 making it a significant imaging modality in
future. The use of MRI in the lung has been complicated by
firstly by respiratory motion and also low proton density of the
lung tissue, which can reduce the signal-to-noise ratio and in-
crease magnetic susceptibility effects.30

Improvements in technology (most notably parallel imaging)
resulting in faster acquisition times and better respiratory-gating
techniques (e.g. navigator echoes) have significantly improved
the quality of lung MRI.31,32 Development of any MRI protocol
for the lung needs minimization of the impact of susceptibility
and motion artefacts on the image quality. A lung protocol for
diagnostic imaging has been described31,33 and it consists of
a combination of T2 and T1 weighted images (Figure 1). T2
weighted images highlight tumour infiltration and nodular
lesions or masses with high fluid content, and T1 weighted
images cover high-signal pulmonary nodules and masses. For
the detection of mediastinal lymph nodes, a T2 weighted scan
with fat saturation is recommended. A healthy lung generally has
low signal intensity on MRI, and the presence of nodules or
masses with increased proton density improves signal and

contrast with the surrounding lung and therefore potential
detection.33,34

OBJECTIVE
The aim of this study was to review the current status and
developments in lung MRI in order to evaluate its potential role
in: (i) target volume delineation, (ii) tumour motion quantifi-
cation (iii) and functional imaging for lung cancer RT and to
identify the sequences necessary to achieve these.

METHODS AND MATERIALS
A literature search was performed using PubMed, Medline and
Google Scholar using the terms listed in Table 1 for articles
published between 1990 and September 2014. The keyword
combinations, A–H, listed in Table 1 were entered into the
search strategies for each of the databases defined above to
identify appropriate literature. The literature review was limited
to articles written in English and on human subjects. The results
were grouped according to three major areas: (1) MRI-based
anatomical imaging with the potential for tumour delineation,
(2) MRI-based tumour motion analysis and (3) MRI-based
functional imaging.

RESULTS
30 publications were identified which met the selection criteria,
3 publications on the anatomical detection of tumour (Table 2),
9 publications on motion analysis using MRI (Table 3) and 18

Figure 1. Comparison of 3-T axial T1 weighted breath-hold at inspiration gradient-echo sequence (volumetric interpolated breath-

hold) (a) and T2 weighted turbo spin-echo navigator sequence (half-Fourier acquisition single-shot turbo spin echo) at the exhale

phase (b). The image in (b) demonstrates tumour infiltration into the mediastinum abutting the superior aspect of the aortic arch.

Table 1. Search keywords

Keywords Keyword combinations

(1) Lung
(2) Cancer
(3) Thorax
(4) Thoracic
(5) Radiotherapy
(6) Radiation therapy
(7) MRI
(8) MRI
(9) MR
(10) Anatomical
(11) Motion
(12) Functional

A: (1 and 2), (5 or 6) and (7 or 8 or 9)
B: (1 and 2) and (7 or 8 or 9)
C: (3 or 4) and (5 or 6) and (7 or 8 or 9)
D: (3 or 4) and (7 or 8 or 9)
E: (A) and (10 or 11 or 12)
F: (B) and (10 or 11 or 12)
G: (C) and (10 or 11 or 12)
H: (D) and (10 or 11 or 12)
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publications on functional MRI for lung tumour and pulmonary
nodules including functional imaging of healthy lung (Table 4).
The majority of the studies were conducted on 1.5-T scanners
using a combination of breath-hold and free-breathing scans
with and without respiratory and/or cardiac gating. Most pro-
tocols used fast-imaging-sequence variants of both the gradient-
echo (GRE) or turbo-spin echo techniques. In most cases,

parallel imaging—using radiofrequency coil encoding—was
applied to further reduce the scan time and limit the breath-hold
duration required. Table 5 highlights the basic sequences used
and their applications and limitations in lung imaging. While
there was evidence available for lung cancer imaging from a di-
agnostic perspective, there was limited evidence in its applica-
tion in radiation oncology imaging.

Table 2. Literature summary of scan protocols for studies evaluating MRI-based anatomical detection of lung cancer

Reference Scanner Protocol
Acquisition

plane
Breathing manoeuvre

Physiology
assessed

Biederer
et al35

1.5T
(Siemens)

3D GRE VIBE Coronal Breath-hold 20 s Vessels and airways

Bruegel
et al36

1.5T
(Siemens)

T2 HASTE,
T2 IR-HASTE,
T2 TSE,
STIR,
VIBE

Axial

Breath-hold 14–19 s at end
inspiration Pulmonary lesions

STIR Respiratory and pulse triggered

Chin et al37 3T (Phillips)
T2 triple-inversion
black-blood TSE,
T1 3D TSE

Axial Breath-hold 16 s Pulmonary nodules

3D, three-dimensional; GRE, gradient-recalled echo sequence; HASTE, half-Fourier acquisition single-shot turbo spin echo; IR-HASTE, inversion
recovery HASTE; STIR, short-tau inversion recovery; TSE, turbo spin echo; VIBE, volumetric interpolated breath-hold.
GE; Milwaukee, WI; Phillips, Amsterdam, Netherlands; Siemens, Erlangen, Germany.

Table 3. Literature summary of studies evaluating MRI-based tumour motion

Reference Scanner Protocol Acquisition plane Breathing manoeuvre Physiology assessed

Biederer
et al38

1.5T
(Siemens)

3D GRE Coronal Phantom study
Porcine heart and lung
collocated into a chest
phantom

Cai et al39
1.5T
(Siemens)

TrueFISP Sagittal Quiet breathing Tumour and lung motion

Cai et al40
1.5T
(Siemens)

TrueFISP Sagittal
Normal breathing cycle—
300-s continuous scan

Tumour and healthy lung

Koch et al41 1.5T (GE)
FSE
fGRE

Sagittal coronal and axial NA Phantom

Liu et al42 1.5T (GE)
fGRE—
modified

Axial, sagittal and coronal Free breathing Pulmonary vessels

Plathow
et al43

1.5T
(Siemens)

TrueFISP
Lung motion—coronal;
tumour motion—sagittal,
coronal

Quiet tidal breathing followed
by maximum inspiration and
expiration

Tumour volume,
lung volume

Plathow
et al44

1.5T
(Siemens)

TrueFISP
Lung motion—coronal;
tumour motion—sagittal,
coronal and axial

Quiet tidal breathing followed
by maximum inspiration and
expiration

Lung and tumour volume

Blackall
et al45

1.5T
(Phillips)

SSFP
Coronal

Breath-hold 15 s at tidal
inhalation and exhalation Lung and tumour motion

FFE Free breathing

Koch et al46 1.5T (GE)
fGRE—
modified

Axial,
sagittal and coronal

Free breathing Pulmonary vessels

3D, three-dimensional; FFE, fast field echo; fGRE, fast gradient echo; FSE, fast spin echo; GRE, gradient echo; NA, not applicable; SSFP, steady-state
free precession; TrueFISP, true fast imaging with steady-state precession.
GE; Milwaukee, WI; Phillips, Amsterdam, Netherlands; Siemens, Erlangen, Germany.
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MRI-based anatomical imaging with the potential for
tumour delineation
No studies specifically looked at lung tumour delineation based on
MRI; however, three articles investigated the utility of MRI in de-
tecting pulmonary nodules.35–37 A T1 weighted three-dimensional
(3D) spoiled GRE sequence with volumetric interpolated breath-
hold (VIBE) demonstrated a pulmonary nodule-detection rate
comparable with CT. However, with participants who were not
compliant with the breath-hold manoeuvre, blurring and ghosting
artefacts impacted image quality.35 Two studies evaluated breath-
hold T1 and T2 weighted turbo spin-echo sequences to detect
pulmonary nodules in the axial plane.36,37 MRI was able to
detect nodules between 5 and 10mm.37

The main challenges for imaging in the lung are susceptibility
and motion artefacts. The sequences described for pulmonary
nodule detection have different applications and limitations in
lung imaging. VIBE35,36 is a 3D fast T1 weighted spoiled GRE
sequence, which is particularly robust in the presence of cardiac
pulsation. With its high spatial resolution, it allows the detection
of relatively small pulmonary nodules in 3D. The inherent speed
of this sequence means it can be acquired in a single breath-
hold.65 It is therefore ideal in pulmonary imaging, where the
entire thorax can be acquired in one breath-hold. It is, however,
very sensitive to respiratory motion, which can result in sig-
nificant motion-related artefacts. Being a GRE sequence, it is
also prone to susceptibility artefacts especially at 3 T. T2
weighted sequences suffer from longer acquisition times
(Table 5) and therefore require gating or multiple breath-holds
to be employed. To help further reduce the scan time of fast spin
echoes, half-Fourier acquisition single-shot turbo spin echo has
been used.36 These sequences combine the speed-up advantages
of acquiring half of the k-space data together with a single
repetition time (TR) or “shot”.65. However, this makes it prone
to blurring, which may be an issue when defining the tumour
volume for RT. Inversion-recovery (IR) sequences36 with black
blood contrast have also been investigated. IR protocols allow
robust differentiation between the fat and water owing to the
added inversion time to null the signal from the fat rather than
using radiofrequency-suppression pulses. This makes it ideal for
identifying the tumour and nodal volume close to the medias-
tinum as subcutaneous fat and bone marrow of the ribs will be
saturated, allowing for greater visibility of the area of oedema
and inflammation. However, it has “longer acquisition times
caused by longer TRs, low signal-to-noise and tissues with
similar T1 values will all be suppressed”.

66

Miller et al32 also highlighted the use of ultrashort echo-time
(UTE) sequences to improve structural imaging. The development
of UTE offers two specific advantages in lung imaging; acquiring
signal at tens of microseconds minimizes susceptibility artefacts
and allows image acquisition at extremely short relaxation times in
lung. The resultant image provides similar contrast to that of CT.
To date, this sequence has not been studied for the definition of
tumour or pulmonary nodules.

MRI-based tumour motion
To capture respiratory motion during free breathing, real-time
imaging is required. The majority of the studies assessingT
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tumour motion utilized a variation of GRE sequences.38–44

While there is evidence to suggest that MRI data are prone to
geometric distortion in the presence of motion,30 two studies
demonstrated results contrary to this.41,45 Imaging in the sagittal
and coronal planes demonstrated minimal error when compared
with the axial plane using a thoracic phantom and a fast
gradient-echo (fGRE) sequence.41 The integrity of the structures
was maintained on free-breathing real-time MRI scans, while
a large error was noted for intracycle tidal volume re-
producibility on breath-hold scans.45

fGRE sequences were shown to be feasible in assessing lung
motion; however, pulmonary vessels rather than lung tumour
were used for assessment.42,46 Respiratory mechanics of the lung
and tumour can also be assessed with a true fast imaging with
steady-state precession (TrueFISP) sequence.43,44 Plathow et al44

demonstrated a variation in motion between tumour- and non-
tumour-bearing hemithorax with the motion magnitude varying
according to the tumour location. Variation in the tumour

motion before and after RT was also assessed and showed no
change, although there was a reduction in the craniocaudal
motion of the tumour-bearing hemithorax.43 The change in the
craniocaudal motion of the tumour-bearing hemithorax was not
reflected in spirometry results.

Two studies compared the motion measured on real-time
MRI with that seen on 4DCT with conflicting results.38,39 In
a phantom study using GRE sequences, Bieder et al38 showed
that the lesion diameter was larger but the lesion displace-
ment smaller on MRI than that on 4DCT. Cai et al39 in-
vestigated the internal target volume error between real-time
MRI and simulated 4DCT data. The results indicated that
owing to the nature of 4DCT acquisition, the excursion of
tumour motion may not be accurately depicted on a 4DCT
scan. The magnitude of internal target volume error corre-
lated with the variability in participants’ breathing. Acquiring
tumour motion data over a prolonged period was shown to be
more accurate than limited breathing cycles.40

Table 5. MRI sequence adaption for lung imaging

Sequence
description

Type Challenges for lung Further improvements

T2 weighted anatomy
Fast spin echo with gating (e.g. TSE/
FSE or HASTE)

Long scan time requires gating or
multiple breath-holds

Self-navigation using amplitude
or phase

T1 weighted anatomy
3D volume gradient echo (e.g. VIBE,
LAVA) without gating

Breath-hold duration
Parallel imaging, partial k-space to
reduce time of scan

Real-time motion
Steady state (e.g. TrueFISP,
bSSFP, FIESTA)

Off-resonance and cardiac artefacts
Select appropriate FOV and use
specific cardiac shim

Diffusion Echoplanar imaging EPI artefacts; low spatial resolution
Shaped excitation to reduce volume of
the tissue

Perfusion
Dynamic fast gradient echo (e.g.
FLASH, FSPGR) with contrast

Has to be run in one or multiple
breath-holds depending on
requirements

Radial k-space to reduce motion
artefacts with/without motion
correction

3D, three-dimensional; EPI, echoplanar imaging; FIESTA, fast imaging employing steady-state acquisition; FLASH, fast low-angle shot; FSE, fast spin
echo; FSPGR, fast spoiled gradient recall echo; FOV, field of view; HASTE, half-Fourier acquisition single-shot turbo spin echo; LAVA, liver acquisition
with volume acceleration; TrueFISP, true fast imaging with steady-state precession; TSE, turbo spin echo; VIBE, volumetric interpolated breath-hold.

Figure 2. 3-T coronal true fast imaging with steady-state precession (TrueFISP) images without (a) and with (b) dedicated cardiac

shim to minimize off-resonance artefacts.
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Steady-state-free precession sequences are ultrafast GREs
designed around very short TRs and have demonstrated the
required temporal and spatial resolution to acquire multiple
images during free breathing to allow quantification of tu-
mour motion.65 These sequences are highly dependent on
field homogeneity; it is therefore essential to perform
shimming of the heart prior to acquisition to help minimize
off-resonance artefacts.65 Figure 2 demonstrates a TrueFISP
sequence with and without the cardiac shim, which helps
minimize artefacts. Trade-offs in temporal resolution be-
tween two-dimensional (100ms) and 3D imaging (1 s) can
lead to blurring, unless a slow-breathing manoeuvre is
performed.67

For tumour motion assessment, an imaging protocol with ul-
trafast GRE sequences and parallel imaging is appropriate
(Table 5). These usually consist of steady-state sequences (such
as TrueFISP, steady-state free precession etc.) for optimum
temporal resolution.

MRI-based functional imaging
Currently, functional imaging in lung RT satisfies two purposes,
identification of nodal disease and differentiation between the
tumour and surrounding consolidation. This, in most cases, is
achieved with FDG-PET imaging. The most commonly employed

functional MRI techniques are diffusion-weighted imaging (DWI)
and dynamic contrast-enhanced (DCE) imaging. Studies looking
at functional imaging included both the tumour and healthy
lung tissue.

DWI is based on sensitizing the sequence to the motion of water
molecules at a microscopic level (described by the b-value of the
image). This motion may be quantified by generating parametric
maps using at least two different b-value images and calculating
the apparent diffusion coefficient (ADC). Qualitative in-
terpretation of DWI is based on the visual assessment of signal
intensity on a high b-value image set; a region of high signal
intensity depicts restricted diffusion in the extracellular space.
Areas of restricted diffusion will translate to areas of low values
on the resulting ADC map.

A number of studies utilized DWI to assess the presence of
malignant lymph nodes47–51 and detection of tumour in the
presence of consolidation.52,53 Most studies compared DWI with
FDG-PET imaging. DWI was not able to improve the detection
of metastatic mediastinal nodal disease for lung cancer com-
pared with PET;47,48 however, it had higher specificity in the
presence of inflammation.48 Pauls et al49 showed that DWI had
80% agreement with PET for nodal stage with 15% of the cases
understaged and 5% of the cases overstaged. In those cases

Figure 3. Axial diffusion-weighted imaging (echoplanar imaging with ZOOMit) with b-value 0 (a), 250 (b), 500 (c) and 750 (d) of

a 69-year-old male patient with lung cancer diagnosed with large-cell carcinoma of the left upper lobe. There is a marked area of

hyperintensity in the left upper lobe characteristic of restricted diffusion. Artefacts are present, but the image quality is sufficient for

tumour edge definition (d) and apparent diffusion coefficient measurement (e).
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where MRI overstaged the nodal disease, restricted diffusion was
noted in both mediastinal and supraclavicular lymph nodes
(4–7mm), with no evidence of elevated glucose metabolism.
Nodal disease was adjacent to the primary tumour volume, in
cases where MRI understaged the disease.49 It should be noted
that neither study had pathological correlation of the imaging
results; both were only assessing the agreement between the two
imaging modalities.48,49 Therefore, there is potential for PET to
be false negative in the case of small tumours.

DWI can also differentiate between malignant and benign me-
diastinal lymph nodes.50 Malignant node detection on pre-
operative DWI was compared with histologically confirmed
malignant lymph node status post operatively.51 A whole-body
version of DWI termed DWIBS (diffusion-weighted imaging
with background signal suppression) has been used to produce
images that are visually similar to FDG-PET,51 and the visual
detection of malignant nodes on the resultant images was sig-
nificantly higher for both enlarged and normal-size lymph
nodes. ADC values also correlated with the visual de-
tection rate.51

Two studies demonstrated the potential of DWI to differentiate
lung cancer from consolidation. Yang et al53 compared DWI
with FDG-PET. DWI was able to detect the difference between
tumour and consolidation in all patient cases, based on the
hyperintensity of the tumour. The ADC map also demonstrated
lower values in the presence of the tumour. An intravoxel in-
coherent motion (IVIM) sequence was also able to differentiate
between tumour and consolidation as compared with both DCE
and FDG-PET.52 IVIM is a modified DWI technique in which
images are acquired with lower than conventional b-values that
are sensitive to blood microcirculation. Both DCE and IVIM
were able to distinguish between cancer and consolidation;
however, there was a poor correlation between IVIM and DCE
parameters.

There is potential for the ADC map to detect early treatment-
related changes better than FDG-PET.54,55 Increase in the ADC
value in the early phase of treatment correlated with final tu-
mour size reduction, indicating potential use in detecting early
treatment response.56 Median progression-free survival in
patients with increased ADC change was shown to be
12.0 months compared with 6.7 months for those patients where
ADC remained stable or decreased.56 To predict disease pro-
gression following stereotactic RT for stage I non-small-cell lung
cancer, Iizuka et al57 performed pre-treatment DWI and FDG-
PET. Patients with low ADC value and higher SUVmax had
greater disease progression, but results were not statistically
significant. From a slightly different perspective, Chen et al58

demonstrated an inverse relationship between minimum and
mean ADC values and tumour cellularity.

The main application of DWI has primarily been in imaging
neurological disorders. However, there is increasing evidence to
utilize it in imaging for cancer detection and treatment moni-
toring.68 Echoplanar imaging (EPI) sequences are commonly
used for DWI but are prone to susceptibility distortion and
ghosting artefacts.65 While a breath-hold scan can be performed

with EPI to eliminate motion artefact using only a single
b-value, it is more common practice to acquire two or more
b-values for the quantification of tumour diffusion. There is
potential to improve EPI for lung DWI (Table 5) in the lung, by
reducing the volume of the excited tissue and limiting artefacts
from tissue outside this field of view. Figure 3 illustrates an
example of DWI using EPI combined with reduced excitation.

DCE involves the acquisition of images before, during and after
administration of a suitable contrast agent. Data may be evalu-
ated and quantified in a number of ways, from simple meas-
urements to complex pharmacokinetic modelling.69 Highly
perfused regions demonstrate a high and rapid uptake and
washout of gadolinium-based contrast. DCE for perfusion as-
sessment of lung cancer requires high temporal resolution in
order to adequately assess the enhancement of the tumour
volume. fGRE sequences are generally utilized with partial or
shared k-space approaches to optimize temporal resolution and
run with multiple short breath-hold manoeuvres over the re-
quired time course. It has recently become feasible to acquire
this data during free breathing by using a radial stack of stars
(Table 5), sampling scheme to compensate or even correct for
motion.70 Free-breathing perfusion data have been shown to be
as reproducible as breath-hold and also better tolerated. How-
ever, further investigation is required for adaption in lung
imaging.71

Two studies highlighted a possible relationship between meta-
bolic activity and cellularity.59,60 Tumour vascularity59 on DCE
and restricted diffusion60 as measured on ADC were found to be
correlated to increased FDG uptake or SUVmax on PET scans.
Hunter et al59 also demonstrated changes in vascular physiology
which were apparent during and after treatment, highlighting
the potential role in clinical management. DCE perfusion
parameters can also allow identification of histological subtypes
for lung cancer.61 A number of contrast-uptake parameters were
used to investigate correlation with tumour subtypes, and these
played a significant role in differentiating non-small-cell lung
cancer (NSCLC) from small-cell lung cancer (SCLC). Time-
dependent kinetic parameters were more relevant in differenti-
ating adenocarcinoma from squamous-cell carcinoma.

Functional MRI data can also be used to assess healthy lung
function prior to the course of treatment. Iwasawa et al62 eval-
uated whether functional MRI could predict post-operative lung
function. A correlation was seen between the perfusion ratio on
MRI and radionuclide study (scintigraphy) and also between the

Table 6. Image modality comparison table

Radiotherapy end point
Imaging modality

CT PET MRI

Tumour volume delineation U 3 U35–37

Tumour motion assessment U16–21 3 U38–46

Functional information 3 U4 U47–63

PET, positron emission tomography.
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predicted FEV1 on MRI and the tested FEV1 post operatively.
MRI can also be a useful tool in evaluating respiratory me-
chanics and volumetry. Using the diaphragm and chest wall
motion as measured on MRI imaging, Plathow et al63 created
a volumetric model to calculate vital capacity and compared this
with spirometry-based vital capacity measurement as lung
function tests. They were able to show a strong correlation be-
tween the vital capacity measurement on MRI and that mea-
sured on spirometry. Similarly, Shibata et al64 investigated the
difference in respiratory motion between healthy individuals and
patients with chronic obstructive pulmonary disease, tracking
pulmonary vessels using an in-house developed algorithm. MRI-
based respiratory motion correlated strongly with spirome-
try data.

While not yet in routine clinical use, MRI using hyperpolarized
gases or oxygen enhancement can allow for ventilation studies of
the lung.34 For hyperpolarized imaging, two noble gases are
predominantly used, 3-helium (3He) and 129-xenon (129Xe).
3He has been used to asses ventilation in post-treatment
assessment72,73 or identifying well-ventilated lung for avoid-
ance of functional lung at the time of treatment planning.74,75
129Xe has the added advantage in that it can be imaged following
ventilation perfusion and it has been shown to highlight gas
exchange impairment.76 Oxygen-enhanced MRI utilizes pure
oxygen as the contrast agent to study ventilation abnormalities.77

DISCUSSION
Improvements in MRI technology continue to enable the im-
aging of low-proton-density lung tissue in the presence of re-
spiratory and cardiac motion. The main challenges of lung RT
are accurate identification of the GTV and nodal volume, par-
ticularly in the presence of pathological changes in the sur-
rounding lung tissue. Accurate measurement of tumour motion
is also necessary to ensure that the RT field encompasses ap-
propriate margins. MRI has the potential to help overcome both
these challenges. Table 6 highlights the potential application of
MRI in the RT process of lung cancer.

However, the universal application of MRI in lung RT is cur-
rently limited by the ability to generate treatment plans on MRI
data sets and create reference images for treatment verification.
Currently, MRI is used for specific lung cancer cases (e.g. Pan-
coast tumours) to aid in anatomical delineation; however, the
CT data set is still used for treatment planning. The image
registration process between CT and MRI is prone to error
owing to changes in the position and shape of the organ and
tumour, even if the scans are contemporaneous. A MRI-only RT
workflow is being considered for many RT sites and will be
necessary for MRI-guided RT systems such as the MRI linear
accelerator. RT treatment-planning systems still require CT or
CT-equivalent data for dose calculation. A number of methods
have been proposed to derive CT equivalent data from MR
images.78 Assigning bulk density to the entire patient anatomy is
the simplest solution, and has been shown to give acceptable
dosimetric accuracy.79 The previously mentioned UTE sequen-
ces may also have a role in improving bone and tissue classifi-
cation and direct CT conversion approaches, which makes their
application in the lung even more interesting.79

In addition, for lung GTV delineation, detection of a pulmonary
nodule or mass is just as important as being able to define the
boundary of the nodule or mass. To allow volume definition,
tumour infiltration into the chest wall and or mediastinum is
required along with detection of involved mediastinal lymph
nodes. A combination of sequences is required to facilitate GTV
delineation. T2 weighted images such as half-Fourier acquisition
single-shot turbo spin echo (HASTE) or short-tau inversion
recovery (STIR) can demonstrate tumour infiltration. T1
weighted images are ideal for identifying mediastinal lymph
nodes. A limitation of these sequences for anatomical detection
is that they are either breath-hold or respiratory-gated images.
The exhale phase in respiratory gating with bellows or naviga-
tion is generally used, as this is the longest period of relaxation
during the respiratory cycle. Knowledge regarding the de-
formation of tumour volume during the respiratory cycle is
important. Hence, a more dynamic approach to imaging is re-
quired or at the very least anatomical scans at inspiration and
expiration to capture the position and shape of the tumour at
the extremes of the respiratory cycle. Imaging requirements for
RT are different from those of diagnostic imaging. Imaging for
RT serves the purpose of tumour and associated nodal volume
delineation rather than detection and staging via diagnostic
imaging. As such, these anatomical image sequences need to be
further assessed in a radiation oncology setting.

There is evidence supporting the value of MRI in quantifying
lung tumour motion. However, the data reported are pre-
dominantly based on sagittal and coronal planes, imaging planes
that in most cases are not compatible with the majority of RT-
planning systems. Furthermore, image acquisition is generally in
two dimensions with either a single plane or the given number
of planes through the region of interest. This can potentially
neglect any out-of-plane tumour motion during respiration and
introduce geometric errors in the planning process. Further
study into 3D registration and incorporation of non-axial data
into treatment-planning systems is needed. While 4DCTremains
the gold standard for lung tumour motion, it is limited by the
number of breathing cycles acquired and any irregularity in
breathing. Real-time MRI can be acquired over a greater number
of respiratory cycles to better understand and capture motion
over time and is not influenced by irregular breathing patterns
as 4DCT currently is.

In terms of functional imaging, FDG-PET remains the gold
standard in defining metabolically active disease, particularly in
mediastinal nodes and in the presence of consolidation. There is
evidence to support DWI with ADC mapping and DCE MRI as
an alternative to FDG-PET for assessing functional tumour ac-
tivity. However, studies to date have all been from a diagnostic
perspective, where the end points are disease presence or ab-
sence. For RT, the definition of the malignant target volume is
necessary. Further research is needed to determine whether MRI
will be a complementary or competing technology for PET
imaging in the lung. The availability of hybrid PET-MR systems
also offers promise for lung imaging.80

While the use of ADC and DWI imaging has been reported
on extensively for lung cancer, it should be noted that
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reproducibility of quoted ADC parameters such as the mini-
mum, maximum and mean is a consideration. Kivrak et al81

demonstrated this in their study of ADC values across six dif-
ferent MRI scanners with a phantom. However, rather than
looking at ADC values, the analysis of histogram distributions81

shows potential and may be better for comparing data acquired
on different scanners.82 Conversely, DWI is reproducible be-
tween scanners and has shown good interobserver and intra-
observer agreement for lung cancer for tumour sizes .2 cm.83

The ability to differentiate histological subtypes is potentially
useful for patients in whom biopsy confirmation of lung cancer
is not possible, usually owing to underlying lung disease. His-
tological subtype is important in determining treatment, and
MRI parameters could have a potential role in this.61

However, improvement in the standard EPI technique is re-
quired to overcome some of the current limitations of suscep-
tibility and motion artefacts.

Fundamentally, breath-hold MRI scans are challenging for
patients with lung cancer owing to their already limited re-
spiratory function. Further improvements in image technology
and navigation for gating may make breath-hold scans obsolete
in these patients.

Lung function tests prior to the start of any treatment to some
extent dictate whether a patient is able to receive radical or
palliative RT. This is usually based on spirometry to assess lung
function. However, two studies63,64 highlighted the potential of
MRI to predict lung function in patients, which could be useful
in patients who cannot undergo spirometry. Hyperpolarized gas-
and oxygen-enhanced MRI can potentially allow for the analysis

of lung microstructure and quantify ventilation and perfusion of
the lung. MRI scans can thus provide an anatomical and functional
representation of pulmonary function, which could potentially be
used in RT planning by avoiding areas of a well-functioning lung
and assessing treatment response. However, both techniques are
currently restricted to research settings with limited clinical use.

MRI shows potential for monitoring of early response during
a course of treatment, information which is currently not uti-
lized in RT. There is evidence in the literature to suggest a link
between early changes as seen on functional MRI and progression-
free survival.56 This information can be used to adapt treatment
to an individual patient’s tumour response.

CONCLUSION
Using a combination of free breathing, breath-hold and gated
scans with parallel imaging techniques, the quality of lung im-
aging has improved, with minimal artefacts from respiratory and
cardiac motion. There are still challenges in adopting MRI for
RT imaging but nevertheless based on the evidence available in
the literature, a potential lung RT-imaging protocol can include
for GTV delineation a T1 and T2 weighted gradient and spin-
echo sequence either as breath-hold or respiratory gated. Motion
assessment is feasible; however, the incorporation of the motion
data to RT planning needs further investigation. DWI can prove
to be an ideal non-invasive imaging technique to assess func-
tional information and assist in GTV delineation. A DCE scan
has the potential to provide additional information on the vas-
cular nature of the tumour volume and healthy lung perfusion.
However, imaging sequences need to be further assessed in the
radiation oncology setting to evaluate and further develop
RT-specific requirements.
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