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How should a local regime-switching model be

calibrated?

Xin-Jiang HE ∗ Song-Ping ZHU †

Abstract

Local regime-switching models are a natural consequence of combining the con-

cept of a local volatility model with that of a regime-switching model. However, even

though Elliott et al. (2015) have derived a Dupire formula for a local regime-switching

model, its calibration still remains a challenge, primarily due to the fact that the de-

rived volatility function for each state involves all the state price variables whereas

only one market price is available for model calibration, and a direct implementation

of Elliott et al.’s formula may not yield stable results. In this paper, a closed system

for option pricing and data extraction under the classical regime-switching model

is proposed with a special approach, splitting one market price into two “market-

implied state prices”. The success of our approach hinges on the recovery of the two

local volatility functions being transformed into an optimal control problem, which

is solved through the Tikhonov regularization. In addition, an efficient algorithm

is proposed to obtain the optimal solution by iteration. Our numerical experiments

show that different shapes of local volatility functions can be accurately and stably

recovered with the newly-proposed algorithm, and this algorithm also works quite

well with real market data.

∗School of Mathematics and Applied Statistics, University of Wollongong NSW 2522, Australia
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AMS(MOS) subject classification.

Keywords. Local regime-switching model, Closed system, Optimal control problem,

Tikhonov regularization.

1 Introduction

Despite the great success of the Black-Scholes model (cf. Black and Scholes (1973)), in

which the returns of the underlying were assumed to follow a log-normal distribution

and a closed-form pricing formula for European options was derived, some of its simplified

assumptions made to achieve analytical tractability are inappropriate and may lead to large

pricing errors. In particular, one of its main drawbacks is the unrealistic assumption of

constant volatility since the implied volatility extracted from market data tends to exhibit

a “smile” curve with respect to the strike price (cf. Dumas et al. (1998)), indicating

that the assumption of constant volatility needs to be revised. As a result, a number

of modifications have been proposed by introducing non-constant volatility in modeling

underlying prices so that options can be priced with a model closer to reality.

In the literature, the non-constant volatility models can mainly be divided into two

categories, i.e. stochastic volatility and local volatility. The former was investigated by

a number of authors, such as Heston (1993) with a CIR (Cox-Ingersoll-Ross) model to

describe the volatility dynamic, and Hagan et al. (2002) with a SABR model. Moreover,

jump-diffusion dynamics are also combined with stochastic volatility by a number of au-

thors, such as Bates (2000), and Scott (1997). On the other hand, local volatility models

were considered by Dupire (1994), Rubinstein (1994), and Derman and Kani (1994), who

introduced the concept of taking volatility as a deterministic function of the underlying

price and time, the specific form of which can be determined from market data through

a model calibration process. There are a number of attractive features of local volatility

models (e.g., see Derman et al. (1996), Kamp (2009), Musiela and Rutkowski (2006)). For
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example, local volatility models are easy and fast to calibrate since the only source of ran-

domness is the underlying price. Also, the market becomes complete when adopting local

volatility models and thus any contingent claim can be perfectly replicated with a portfolio

consisting of the underlying and bond only. Most importantly, local volatility models can

perfectly match any arbitrage-free set of European option prices. On the other hand, the

generated local volatility surface in any local volatility model is actually static, which may

yield poor hedging results (cf. Fengler et al. (2003), Hagan et al. (2002)), and thus some

hybrid models that combine local volatility and stochastic volatility have been proposed

as a result (Choi et al. (2013) and Van der Stoep et al. (2014)).

Recently, another kind of stochastic volatility models, the regime-switching model, is

becoming quite popular since it proves to better capture the changing beliefs of investors

towards the states of certain financial markets (cf. Hamilton (1990)). It was first intro-

duced by Hamilton (1989) and the volatility in this model can jump between different

states controlled by a Markov chain. Its main attraction comes from a lot of empirical

evidence, which suggests that the dynamics of the underlying price are better captured

by allowing volatility to switch between different states (cf. Chernov et al. (2003), Er-

aker (2004)). Therefore, it has been introduced to the area of financial derivative pricing

and extensively studied by a number of researchers. For example, under regime-switching

models, Naik (1993) and Zhu et al. (2012) worked on the valuation problem of European

options, while Buffington and Elliott (2002) and Bollen (1998) priced American option

contracts. Recently, the regime-switching mechanism has also been introduced into clas-

sical stochastic volatility models to form a regime-switching stochastic volatility models.

In specific, Elliott et al. (2007) introduced regime-switching into the Heston model with

the long-term mean of the volatility process allowed to jump between different states and

analytically evaluated volatility swaps, while the option pricing problem under general

regime-switching stochastic volatility models was considered in Goutte (2013). Another

example is Siu et al. (2008), where the currency options are evaluated under a two-factor
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stochastic volatility model with regime-switching.

However, like in the Black-Scholes model, the assumptions of the classical regime-

switching model with a constant volatility in each state may also need to be relaxed, in

order to better fit to market prices of options. This idea has prompted the development of

the so-called local regime-switching model, where the volatility is a deterministic function

of the underlying price and time rather than a constant that can switch among different

states. Although Elliott et al. (2015) have derived a Dupire equation (denoted by Elliott

formula in the following) for the regime-switching model recently, they do not investigate

the recovery of local volatility functions from market data, which is what we focus on

throughout this paper1.

In fact, it should be emphasized that there are few empirical studies on regime-switching

option pricing models, and it is even unclear on how to calibrate regime-switching models.

Therefore, it is necessary to first develop an approach to implement Elliott’s formula. In

particular, the main two challenges in this model calibration process are a) the derived

volatility function for each state involves all the state price variables whereas only one

market price is available for model calibration; b) a direct implementation of Elliott et

al.’s formula may not yield stable results. Hence, their formula alone does not allow the

recovery of local volatility functions, and what will be presented first is a closed system

on how to price options in real markets with classical regime-switching models, based on

which one market price is split into two market-implied state prices through two financially

meaningful equations. Once we have successfully obtained two market-implied state prices,

another problem will certainly appear that Elliott formula can not be directly implemented

since it may not yield accurate results due to the denominator being directly affected by

the second-order derivative of option prices, the problem of which is similar to the case for

the implementation of the Dupire formula in the Black-Scholes model (cf. Kamp (2009),

1For illustration purpose, we shall focus on discussing the two-state regime-switching model in this
paper; the extension to arbitrary but finite number of states should be in principle very similar to what
we present here.
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Yen and Lai (2014)).

Specifically, under local volatility models, option prices as well as their derivatives

can rarely be analytically derived, which implies that numerical approximations for the

derivatives have to be made in the evaluation of the local volatility. However, the value of

the second-order derivative of the option price with respect to the strike price is usually very

small, and its approximation can result in large errors of the obtained local volatility as it

appears in the denominator (cf. Kamp (2009), Yen and Lai (2014)). The problem further

deteriorates when the approximation of this particular second-order derivative becomes

negative, in which case the local volatility model fails as the calculated volatility is no

longer a real number. For this reason, two main kinds of approaches have been proposed

to solve this problem for the Black-Scholes model.

The first is to express local volatility in terms of a function of implied volatility (cf.

Gatheral (2011)) so that the second-order derivative does not soly appear in the denom-

inator, which means that a small error induced on the second-order derivative does not

necessarily lead to large errors of the entire volatility surface any more. However, this

approach has a shortfall; the implied volatility remains a discontinuous function as a result

of only scarce values of strike price and maturities being available in practice. This means

that to obtain a local volatility function, one still needs to make necessary interpolation and

extrapolation for a set of given data, which is a very difficult task itself with the constraint

that no arbitrage opportunities should be introduced in the process of these numerical

treatments. Another popular method is to use regularized approach to develop different

algorithms so as to stably and accurately recover the local volatility function (cf. Egger and

Engl (2005), Jiang et al. (2003)). Having been aware of the advantage of the regularized

approach over the implied volatility approach, we will also adopt the regularized approach,

and formulate the calibration problem associated with the local regime-switching model

into an inverse problem of PDEs (partial differential equations) in this paper. However, it

should also be stressed that inverse problems are typically ill posed (cf. Vogel (2002)), and
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the situation is even worse in finance since not only option prices available in real markets

are discontinuous, but also inadequate option data in terms of strikes and maturities is

a serious issue that needs to be dealt with (cf. Coleman et al. (2001), Crepey (2003),

De Cezaro et al. (2012), Hofmann and Krämer (2005)). In order to obtain stable results

for this inverse problem, it is further transformed into an optimal control problem with

the Tikhonov regularization (cf. Tikhonov et al. (2013)). Then, two necessary conditions

that the optimal solution should satisfy are derived, based on which a numerical algorithm

for iteration is proposed to obtain the optimal solution. Numerical experiments with syn-

thetic are subsequently carried out to show the accuracy and stability of our algorithm,

after which the performance of our algorithm is further tested with real market data.

The rest of the paper is organized as follows. In Section 2, we will firstly propose

a closed system to price options under the regime-switching model and then the specific

steps to split one market price into two market-implied state prices for an option under this

system will be introduced. In Section 3, the calibration problem will be formulated into an

inverse problem, which is further formed as an optimal control problem and is solved by a

Tikhonov regularization approach. Two necessary conditions are also derived so that the

numerical algorithm can be developed to find the optimal solution. In Section 4, numerical

experiments and market tests for our algorithm are presented, followed by some concluding

remarks given in the last section.

2 A closed system for calibration

In this section, a closed system should be established first for option pricing under regime-

switching models with the constant volatility in each state, based on which how to split one

market price of a European option into two market-implied state prices will be illustrated.

Let St be the price process of the underlying asset, then it follows a two-state regime-
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switching model under the risk-neutral measure as

dSt

St

= rdt+ σXt(S, t)dWt, (2.1)

where Wt is a Brownian motion independent of Xt and r represents the risk-free interest

rate. In addition, Xt is a two-state Markov chain, which jumps between two states, i.e.,

Xt ∈ {(1, 0)′, (0, 1)′}. Here, v′ denotes the transpose of the vector v. If we define σ̄(S, t) =

(σ1(S, t), σ2(S, t))
′ and let < ·, · > be the inner product of two vectors, σXt(S, t) can be

expressed as

σXt(S, t) =< σ̄(S, t), Xt > . (2.2)

Moreover, the transition between the two states follows a Poisson process as

P (tij > t) = e−λijt, i, j = 1, 2, i ̸= j.

Here λij is the transition rate from State i to j, and tij is the time spent in State i before

transferring to State j.

It should be noted that there can be different ways to price options under this model.

One approach is to assume that the market state is observable and the price of an option is

the corresponding state price. However, it is usually difficult to determine which state the

underlying asset price belongs to in practice, and thus it is more reasonable that the states

of a financial market are treated as unobservable. The justification of the latter approach

lies in the stochastic nature of the volatility under a regime-switching model. In fact, for

any stochastic volatility model, the current value of stochastic volatility is an unknown

variable which needs to be estimated from real market data together with other model

parameters. Such an “unobservable” nature has been discussed in the literature (cf. Aı

et al. (2007)). Due to the existence of Markov chain, regime-switching models are a special

kind of stochastic volatility models and thus the volatility in any regime-switching model,
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together with the status of the regime the market is currently in, should all be assumed

unobservable, as we do in this paper.

Some people may argue that we are not able to obtain option prices without knowing

the current state. However, this does not have to be true because when pricing an option,

the probability of the underlying price being in each state at the current time should be

known and be regarded as a model parameter. In this case the market price should be the

expectation of the two state prices. Specifically, if we let C1 and C2 be the two state prices

of a European option, and make π the probability of the underlying price that stays at the

regime 1 at the current time (obviously the probability for the regime 2 is 1− π), then it

is reasonable to argue that the option price C should be

C = C1π + C2(1− π).

On the other hand, it is not clear how a regime switching model should be calibrated

from a given set of data. Unlike the B-S model, where only the volatility needs to be

estimated, the initial state probability, with which the state probability at any later time

can be calculated, should be another parameter that needs to be determined through mar-

ket data, apart from the two constant volatilities and two transition rates, when empirical

studies are conducted for the classical regime-switching model. This can be analogous to

the stochastic volatility model, in which the initial volatility level needs to be estimated

too. In this case model prices can be calculated through C1π + C2(1 − π) and all model

parameters can be estimated through some global optimization approaches by minimizing

the “distance” between market prices and corresponding model prices, which can be done

similarly as a lot of existing empirical studies (cf. Bakshi et al. (1997), Chan et al. (1992)).

Considering all the discussion above, the closed system for option pricing under classical

regime-switching models with the constant volatility in each state has already been set up.

However, this is not enough when we take into account the local regime-switching model
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since both of two state prices need to be used to recover the local volatility of any state

in this model, which implies that one market price of a European option should be split

into two corresponding state prices. Therefore, if we still assume C1 and C2 be the two

market-implied state prices corresponding to the market price Cmarket, we still need an

extra equation to determine C1 and C2, apart from the following equation

Cmarket = C1π + C2(1− π). (2.3)

In fact, the choice for such an equation is quite free as long as this equation always holds

when the regime-switching model degenerates to the Black-Scholes model.

One method that we believe is reasonable is that first of all, λ12 and λ21 and the two

constant volatilities as well as the initial state probability are estimated with historical

underlying and option data (cf. Janczura and Weron (2012), Mitra and Date (2010)), with

which two state prices V1 and V2 can be worked out. It should be remarked that the two

market-implied state prices C1 and C2 does not equal to the calculated V1 and V2 since V1

and V2 are obtained based on the assumption that the volatility in each state is constant.

We then treat V1 and V2 as an approximation of C1 and C2 respectively and the relationship

between them is imposed to serve as another equation

f(V1, V2, C1, C2) = 0. (2.4)

The intuition behind such an approximation is that extracting parameters from real mar-

ket data under classical regime-switching models has already made the model prices Cmodel

calculated with these parameters very close to real market prices, and thus the correspond-

ing state prices should also be a good approximation for the market-implied state prices.

In this sense, one of the simplest examples is

(V1 − V2)− (C1 − C2) = 0, (2.5)

9



the choice of which is based on two main reasons. One is that it obviously meets the

requirement that it always holds when the regime-switching model degenerates to the

Black-Scholes model since in this case V1 = V2 and C1 = C2. Moreover, it is obvious that

the biases between market prices and classical regime-switching model prices are caused

by the difference between each state price of local regime-switching models and that of

classical regime-switching models, and we make a reasonable assumption that the amount

of these biases contributed by each state is the same.

With Equation (2.3) and Equation (2.4), it is not difficult to find that given one set of

market prices, we can split them into two sets of market-implied state prices. Therefore,

we are now ready to proceed to the calibration problem, which will be presented in the

next section.

3 Calibration problem

In this section, a well-posed inverse problem for the calibration of local regime-witching

models will be pointed out, and then a Tikhonov regularization approach will be introduced

to recover smooth local volatility functions with the two sets of market-implied state prices

obtained in the last section. Afterwards, two necessary conditions can be derived in order

to reach the optimal solution, followed by the numerical algorithm showing the procedure

of iteration to obtain the recovered local volatility functions.

3.1 An inverse problem

In this subsection, recovering the local volatility functions will firstly be formed into an ill-

posed inverse problem, which will be further transformed into a well-posed inverse problem,

before it can be properly solved.

If we let V1(S, t;K,T ) and V2(S, t;K,T ) be European call option prices for State 1

and State 2 respectively with K being the strike price and T being the expiry time, a
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system of coupled Black-Scholes equations for the option prices can be derived according

to Buffington and Elliott (2002)


∂V1

∂t
+

1

2
σ2
1S

2∂
2V1

∂S2
+ rS

∂V1

∂S
− rV1 − λ12(V1 − V2) = 0, S > 0, t ∈ [0, T ],

V1(S, T ) = max(S −K, 0),

V1(0, t) = 0,

(3.1)


∂V2

∂t
+

1

2
σ2
2S

2∂
2V2

∂S2
+ rS

∂V2

∂S
− rV2 − λ21(V2 − V1) = 0, S > 0, t ∈ [0, T ],

V2(S, T ) = max(S −K, 0),

V2(0, t) = 0.

(3.2)

Given the two sets of market-implied state prices V ∗
1 (S0, t0;K,T ) and V ∗

2 (S0, t0;K,T ) with

different maturities and strike prices at time t0, we want to recover the local volatility

functions σ1(S, t) and σ2(S, t) for the two states from these market state prices, which

formulate the following inverse problem.

Problem 1 Find the two functions σ1(S, t) and σ2(S, t) such that the solutions to the cou-

pled PDE system (3.1) and (3.2), V1(S0, t0;K,T ) and V2(S0, t0;K,T ), satisfy the following

two equations

V1(S0, t0;K,T ) = V ∗
1 (S0, t0;K,T ),

V2(S0, t0;K,T ) = V ∗
2 (S0, t0;K,T ),

respectively for all T and K.

Unfortunately, it should be noted that Problem 1 is not well-posed (cf. Rebonato

(2005)) since the variables of the coupled PDE system (3.1) and (3.2) are S and t, whereas

V ∗
1 (S0, t0;K,T ) and V ∗

2 (S0, t0;K,T ) are observed with respect to K and T at a particular

time t0 and underlying price S0. Thereby, alternative ways should be found to obtain the
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two local volatility functions. With the help of Elliott et al. (2015), in which a Dupire

equation for the regime-switching model is derived, the coupled PDE system (3.1) and

(3.2) is established with new variables K and T as


∂V1

∂T
− 1

2
σ2
1(K,T )K2∂

2V1

∂K2
+ rK

∂V1

∂K
− λ12V1 + λ21V2 = 0, K > 0, T ≥ t0,

V1(K, t0) = max(S0 −K, 0),

V1(0, T ) = S0,

(3.3)


∂V2

∂T
− 1

2
σ2
2(K,T )K2∂

2V2

∂K2
+ rK

∂V2

∂K
− λ21V2 + λ12V1 = 0, K > 0, T ≥ t0,

V2(K, t0) = max(S0 −K, 0),

V2(0, T ) = S0.

(3.4)

In theory, it is quite easy to work out the local volatility by simply differentiating the

state prices once with respect to strike and expiry respectively, and twice with respect

to the strike. However, the computation may not be stable since it involves the second-

order derivative with respect to the strike and we can not guarantee that the variance be

positive. Furthermore, the state prices are discontinuous and the numerical differentiation

requires interpolation and extrapolation, which can affect the accuracy of the obtained

local volatility. Therefore, another inverse problem should be formulated as summarized

below. In this newly formulated problem, we have simplified the solution procedure for the

inverse problem by assuming that the volatility be independent of time, in order to focus

on the core issue for this paper, i.e., to illustrate how a local regime-switching model can

be calibrated. Of course, as a progressive approach to tackle the complexity arisen from

the multi-dimensionality of an inverse problem, such kind of simplified assumptions has

already been adopted in calibrating local Black-Scholes model with real market data (e.g.,

Bouchouev and Isakov (1997)).

Problem 2 Given the fixed maturity T, find the two functions σ1(K) and σ2(K) such that
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the solution to the coupled PDE system (3.3)-(3.4), V1(K) and V2(K), satisfy the following

two equations

V1(K,T ) = V ∗
1 (K),

V2(K,T ) = V ∗
2 (K),

respectively for all K.

Here, for simplicity, we denote

Vi(K,T ) = Vi(S0, t0;K,T ),

V ∗
i (K) = V ∗

i (S0, t0;K,T ),

for i = 1, 2.

By now, we have already formed a well-posed inverse problem for the recovery of local

volatility functions in the sense that the market data is observed with respect to the strike

price K and the maturity T , which are exactly the same as the variables in the PDE system

(3.3)-(3.4). This has paved the way for us to solve this problem, which is illustrated in the

next subsection.

3.2 Tikhonov regularization

In this subsection, Tikhonov regularization will be used to solve Problem 2. The motivation

for us to adopt this particular regularization technique is that it allows us to obtain stable

solutions to optimal control problems. In particular, the two local volatility functions in

regime-switching models should be determined simultaneously so that the following cost
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function is minimized

J(σ1, σ2) =
δ

2

∫ +∞

0

(
∂σ1

∂K
)2+(

∂σ2

∂K
)2dK+

1

2

∫ +∞

0

[V1(K, τ0)−V ∗
1 (K)]2+[V2(K, τ0)−V ∗

2 (K)]2dK,

(3.5)

where τ = T − t, and δ is called the Tikhonov regularization parameter. Therefore,

Problem 2 derived in the last subsection is now turned into an optimal control problem

that we should find σ̄1(K) and σ̄2(K) such that

J(σ̄1, σ̄2) = inf
σ1,σ2∈A

J(σ1, σ2), (3.6)

where A = {σ ∈ C(R)| ∂σ
∂K

∈ L2(R)}.

Therefore, recovering the two local volatility functions reduces to solve this optimal

control problem, for which we will derive two necessary conditions. If we assume σ̄1(K)

and σ̄2(K) be the solution of the optimal control problem (3.6), it is clear that for any

h ∈ A, both of the following two functions, i.e. J(σ̄1 + λh, σ̄2) and J(σ̄1, σ̄2 + λh), reach

their minimum when λ = 0, which implies

d

dλ
J(σ̄1 + λh, σ̄2)|λ=0 = 0,

d

dλ
J(σ̄1, σ̄2 + λh)|λ=0 = 0. (3.7)

With

d

dλ

[
(
∂(σ̄i + λh)

∂K
)2
]∣∣

λ=0
=

{
2
∂(σ̄i + λh)

∂K
× d

dλ

[∂(σ̄i + λh)

∂K

]}∣∣∣
λ=0

= 2
∂σ̄i

∂K

∂h

∂K
,

and

d

dλ

{
[Vi(K, τ ; σ̄i + λh)− V ∗

i (K)]2
}∣∣

λ=0
=

{
2[Vi(K, τ ; σ̄i + λh)− V ∗

i (K)]× dVi(K, τ ; σ̄i + λh)

dλ

}∣∣∣
λ=0

= [V1(K, τ)− V ∗
1 (K)]ξi(K, τ),
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where ξi(K, τ) = dVi(K,τ ;σ̄1+λh,σ̄2)
dλ

|λ=0, ηi(K, τ) = dVi(K,τ ;σ̄1,σ̄2+λh)
dλ

|λ=0 for i = 1, 2, Equation

(3.7) can certainly yield

δ

∫ +∞

0

∂σ̄1

∂K

∂h

∂K
dK+

∫ +∞

0

[V1(K, τ0)−V ∗
1 (K)]ξ1(K, τ0)+[V2(K, τ0)−V ∗

2 (K)]ξ2(K, τ0)dK = 0,

(3.8)

δ

∫ +∞

0

∂σ̄2

∂K

∂h

∂K
dK+

∫ +∞

0

[V1(K, τ0)−V ∗
1 (K)]η1(K, τ0)+[V2(K, τ0)−V ∗

2 (K)]η2(K, τ0)dK = 0,

(3.9)

To work out the necessary condition (3.8), what we should do first is to calculate the two

functions ξ1(K, τ) and ξ2(K, τ). In fact, Vi(K, τ ; σ̄1+λh, σ̄2), i = 1, 2 should satisfy the PDE

in (3.3) and (3.4), respectively, except that σ1 is replaced by σ̄1+λh. Therefore, by taking

the derivative on both sides of the coupled PDEs governing Vi(K, τ ; σ̄1 + λh, σ̄2), i = 1, 2

with respect to λ and then setting λ = 0, we can find that ξ1(K, τ) and ξ2(K, τ) satisfy

the following coupled PDE system

L1ξ1 , ∂ξ1
∂τ

− 1

2
σ2
1K

2 ∂
2ξ1

∂K2
+ rK

∂ξ1
∂K

− λ12ξ1 + λ21ξ2 = hσ1K
2∂

2V1

∂K2
,

L2ξ2 , ∂ξ2
∂τ

− 1

2
σ2
2K

2 ∂
2ξ2

∂K2
+ rK

∂ξ2
∂K

− λ21ξ2 + λ12ξ1 = 0,

with the initial conditions

ξ1|τ=0 = 0, ξ2|τ=0 = 0.

It should be remarked here that it is very difficult to directly figure out ξ1(K, τ) and ξ2(K, τ)

from the above coupled PDEs as the existence of the unknown function h, and thus we

have to find an alternative way. Now, we let L = (L1, L2), and denote L∗ = (L∗
1, L

∗
2) as

the adjoint operator of L (cf. Elliott et al. (2015)). We further assume ϕ1 and ϕ2 be the

solution to the adjoint PDEs

L∗
1ϕ1 , −∂ϕ1

∂τ
−

∂2(1
2
σ2
1K

2ϕ1)

∂K2
− ∂(rKϕ1)

∂K
− λ12ϕ1 + λ12ϕ2 = 0, (3.10)

L∗
2ϕ2 , −∂ϕ2

∂τ
−

∂2(1
2
σ2
2K

2ϕ2)

∂K2
− ∂(rKϕ2)

∂K
− λ21ϕ2 + λ21ϕ1 = 0, (3.11)
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with the terminal conditions given by

ϕ1|τ=τ0 = V1(K, τ0)− V ∗
1 (K), ϕ2|τ=τ0 = V2(K, τ0)− V ∗

2 (K).

Then, it is not difficult to obtain

Z ,
∫ τ0

0

∫ +∞

0

(ϕ1L1ξ1 + ϕ2L2ξ2)− (ξ1L
∗
1ϕ1 + ξ2L

∗
2ϕ2)dKdτ,

=

∫ τ0

0

∫ +∞

0

(ϕ1
∂ξ1
∂τ

+ ξ1
∂ϕ1

∂τ
) + (ϕ2

∂ξ2
∂τ

+ ξ2
∂ϕ2

∂τ
)dKdτ

+

∫ τ0

0

∫ +∞

0

(ϕ1L̂1ξ1 + ϕ2L̂2ξ2)− (ξ1L̂
∗
1ϕ1 + ξ2L̂

∗
2ϕ2)dKdτ, (3.12)

where L̂(= (L̂1, L̂2)) and L̂∗(= (L̂∗
1, L̂

∗
2)) are derived by removing the derivative with respect

to τ in L and L∗ respectively. As a result, L̂∗ is also the adjoint operator of L̂ with respect

to K, which can lead to

< L̂ξ, ϕ >=< ξ, L̂∗ϕ >, (3.13)

according to the property of adjoint operators with ξ = (ξ1, ξ2) and ϕ = (ϕ1, ϕ2). This

implies ∫ +∞

0

(ϕ1L̂1ξ1 + ϕ2L̂2ξ2)− (ξ1L̂
∗
1ϕ1 + ξ2L̂

∗
2ϕ2)dK = 0. (3.14)

Therefore, Equation (3.12) can be further simplified as

Z =

∫ +∞

0

∫ τ0

0

(ϕ1
∂ξ1
∂τ

+ ξ1
∂ϕ1

∂τ
) + (ϕ2

∂ξ2
∂τ

+ ξ2
∂ϕ2

∂τ
)dτdK,

=

∫ +∞

0

ξ1ϕ1|τ00 + ξ2ϕ2|τ00 dK,

=

∫ +∞

0

[V1(K, τ0)− V ∗
1 (K)]ξ1(K, τ0) + [V2(K, τ0)− V ∗

2 (K)]ξ2(K, τ0)dK, (3.15)

the last step of which is obtained by the substitution of the initial condition for ξ and

the terminal condition for ϕ. On the other hand, Z can be calculated directly through its
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definition as

Z =

∫ τ0

0

∫ +∞

0

(ϕ1L1ξ1+ϕ2L2ξ2)−(ξ1L
∗
1ϕ1+ξ2L

∗
2ϕ2)dKdτ =

∫ τ0

0

∫ +∞

0

ϕ1hσ̄1K
2∂

2V1

∂K2
dKdτ,

(3.16)

since L1ξ1 = hσ1K
2∂

2V1

∂K2
, L2ξ2 = 0, L∗

1ϕ1 = 0, and L∗
2ϕ2 = 0. Thereby, Combining

Equation (3.8), (3.15) and (3.16) yields

δ

∫ +∞

0

∂σ̄1

∂K

∂h

∂K
dK +

∫ τ0

0

∫ +∞

0

ϕ1hσ̄1K
2∂

2V1

∂K2
dKdτ = 0, (3.17)

which should hold for any h ∈ A. This demonstrates that σ̄1 is the weak solution to the

following equation

−δ
∂2σ̄1

∂K2
+

∫ τ0

0

ϕ1σ̄1K
2∂

2V1

∂K2
dτ = 0. (3.18)

In a similar fashion, another necessary condition (3.9) for σ̄2 can also be written in a simpler

form

−δ
∂2σ̄2

∂K2
+

∫ τ0

0

ϕ2σ̄2K
2∂

2V2

∂K2
dτ = 0. (3.19)

By now, we have obtained the optimality conditions for our optimal control problem

(3.6), and thus the problem of recovering the two local volatility functions is now equivalent

to finding the solutions of ϕi, i = 1, 2 to the coupled PDEs (3.10) and (3.11) so that σ̄1 and

σ̄2 are solutions to Condition (3.18) and (3.19) respectively. Hence, in the next subsection,

a numerical algorithm will be designed to find the optimal solution.

3.3 Numerical algorithm

In this subsection, an algorithm is established to obtain the optimal solution to the optimal

control problem (3.6). It should be noticed that the algorithm involves solving a system

of equation (3.3)-(3.4), (3.10)-(3.11) and (3.18)-(3.19).
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Specifically, the semi-infinite operating domain is truncated into a bounded one as

τ ∈ [0, τ0], K ∈ [0, 2S0], (3.20)

where S0 is the underlying price at τ0. Let dτ and dK be the step size in the time direction

and the space direction respectively with N1 =
2S0

dK
,N2 =

τ0
dτ

, and thus the truncated

domain [0, 2S0]× [0, τ0] is discretized uniformly as

Kn = (n− 1)
2S0

N1

, n = 1, 2...N1 + 1,

τm = (m− 1)
τ0
N2

, m = 1, 2...N2 + 1.

We also denote the functions at j-th step iteration as σ̄i,j, Vi,j, ϕi,j, i = 1, 2. Then, given two

sets of market-implied state prices, we are now ready to present the iteration procedure.

1. Let j = 0. The value of a tolerance parameter ϵ used to control the convergence of the

iteration should be set. Also, initial guesses for the volatility functions σi,0, i = 1, 2,

need to be chosen.

2. Two sets of option prices Vi,j(K, τ), i = 1, 2, can be calculated through PDEs (3.3)-

(3.4) corresponding to σi,j, i = 1, 2, with an implicit discretization as

V n,m+1
1,j − V n,m

1,j

dτ
−

(σn
1,j)

2(Kn)
2[V n+1,m+1

1,j − 2V n,m+1
1,j + V n−1,m+1

1,j ]

2(dK)2

− rKn

V n+1,m+1
1,j − V n−1,m+1

1,j

2dK
− λ12V

n,m+1
1,j + λ21V

n,m+1
2,j = 0,

and

V n,m+1
2,j − V n,m

2,j

dτ
−

(σn
2,j)

2(Kn)
2[V n+1,m+1

2,j − 2V n,m+1
2,j + V n−1,m+1

2,j ]

2(dK)2

− rKn

V n+1,m+1
2,j − V n−1,m+1

2,j

2dK
− λ21V

n,m+1
2,j + λ12V

n,m+1
1,j = 0.
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3. With σ̄i,j, i = 1, 2, and the obtained Vi,j(K, τ0), i = 1, 2, in Step 2, ϕi,j, i = 1, 2, can

be calculated by solving PDEs (3.10)-(3.11) with an implicit discretization, which is

similar to that in step 2 and thus the scheme is omitted.

4. By making use of Vi,j(K, τ0), i = 1, 2, and ϕi,j, i = 1, 2, obtained in Step 2 and 3

respectively, the updated local volatility functions σ̄i,j+1, i = 1, 2, can be derived by

solving the coupled ordinary differential equations (3.18)-(3.19). It should be noted

that the integration in the two equations can be carried out with the trapezoidal rule,

which is given as

W n
i,j ,

∫ τ0

0

ϕi,jσ̄i,jK
2∂

2V1

∂K2
τ,

=
dτ

2

N2∑
m=1

[ϕn,m
i,j σn

i,j(Kn)
2
V n+1,m
i,j − 2V n,m

i,j + V n−1,m
i,j

(dK)2

+ ϕn,m+1
i,j σn

i,j(Kn)
2
V n+1,m+1
i,j − 2V n,m+1

i,j + V n−1,m+1
i,j

(dK)2
],

for i = 1, 2. In addition, to make the iteration smoother, we introduce a “false” time

θ in solving the two equations. The algorithm is provided in the following

σn
i,j+1 − σn

i,j

θ
− δ

σn+1
i,j − 2σn

i,j + σn−1
i,j

(dK)2
+W n

i,j = 0, (3.21)

for i = 1, 2.

5. If

||σ1,j+1 − σ1,j||+ ||σ2,j+1 − σ2,j|| < ϵ, (3.22)

then we let σ̄i = σi,j+1, i = 1, 2, and stop the iteration. Otherwise, set j = j + 1 and

go back to Step 2.

After the algorithm is designed, a natural question is how it performs and whether the

recovered volatility functions are accurate. Numerical experiments will be presented in the
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next section.

4 Numerical experiments and market tests

In this section, numerical experiments are firstly conducted to show the accuracy and the

stability of our numerical algorithm, and then the performance of our approach is further

tested with real market data.

4.1 Accuracy tests

In this subsection, results of numerical experiments are presented to realize the designed

algorithm in the last section. In order to demonstrate the accuracy of the algorithm, we

carry out tests with exact solutions of the two volatility functions. To be more specific,

the two “true” volatility functions denoted by σ∗
i (S), i = 1, 2, are pre-set, through which

two sets of state prices Vi(S0, t0;Kn, T ), i = 1, 2, can be generated with the coupled PDE

system (3.1)-(3.2). Afterwards, we treat Vi(S0, t0;Kn, T ), i = 1, 2 as market state prices,

i.e.

V ∗
i (Kn) = Vi(S0, t0;Kn, T ), i = 1, 2, (4.1)

which will be used to recover the volatility functions through our algorithm.

In fact, these tests can be viewed as a pseudo-empirical study, because they were

conducted in such a way that a time series of discrete data is generated from a stochastic

process with two given volatility functions. Then we tried to see if we could recover the

volatility function using the proposed algorithm as an inverse problem. When a hierarchy

of given test functions is employed to go through these tests, starting from the simplest

constant functions, they are the necessary conditions to ensure that the proposed algorithm

is able to cope with much more complicated volatility functions to be recovered from real

market data, as any complicated function can be somewhat viewed as a decomposition of
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these simple functions.

Three test volatility functions were chosen in order to show that our algorithm is able

to recover different shapes of volatility curve. In all these tests, model parameters were set

to be

S0 = 10, t0 = 0, r = 0.05, T = 1, λ12 = 0.1, λ21 = 0.2, N1 = 30, N2 = 50,

δ = 0.2, θ = 10−3, ϵ = 5 ∗ 10−12.

In the first experiment, we start with the lowest order of test function in the hierarchy

of the test functions, i.e., with the volatility being “flat” as

σ1(S) = 0.4, σ2(S) = 0.2. (4.2)

Of course, this does not mean that the volatility function to be recovered in practice

will be of such a simple form. But, if the designed algorithm is even unable to recover

such simplest form of local volatility functions, this algorithm can never be trusted and

should certainly not be adopted for real markets. In other words, this is a necessary

step, as the most fundamental function in the hierarchy of test functions to be tested, in

order to know how accurately our algorithm can “recover” the true volatility functions in

a local regime switching model. Since we don’t know the specific forms of the volatility

functions in reality, more complicated test functions will be used to gain confidence on

the reliability and accuracy of the proposed algorithm to eventually employed to recover

volatility functions when real market data are used.

The recovery results for this are shown in Figure 1. What we can see from Figure 1

is that with the initial guess of 0.35 for State 1 volatility and 0.15 for State 2 volatility

respectively, the two recovered volatility functions are quite fit to the “true” pre-specified

ones with errors only in the order of 10−8, which is rather satisfactory.
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Figure 1: Recovery of the flat-shape volatility
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Figure 2: Recovery of the smile-shape volatility
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When the shape of the true volatility functions is no longer flat, but exhibits a “smile”

curve, which is a common phenomenon observed in real markets (cf. Dumas et al. (1998)),

we also try to recover them using our algorithm and these results are shown in Figure 2.

In this case, the two “true” volatility functions are

σ1(S) = 0.3 +
(S − 10)2

1000
, σ2(S) = 0.2 +

(S − 10)2

1000
. (4.3)

It is clear that with initial guesses being two flat lines, our algorithm is still able to provide

quite accurate results of recovery with errors in the order of 10−4.
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Figure 3: Recovery of the skew-shape volatility

Finally, our algorithm is also tested with the “skew” shape of volatility functions,

because the graph for the volatility can be downward sloping for some markets (cf. Xing

et al. (2010)), such as equity options. Hence, the volatility functions are selected as

σ1(S) = 0.3− (S − 10)3

10000
, σ2(S) = 0.2− (S − 10)3

10000
, (4.4)
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and the results are given in Figure 3. Again, it is not difficult to find that the two skew

volatility functions are also successfully recovered with the two flat initial guesses, and the

errors are in the order of 10−4.

By testing the three typical kinds of volatility functions with different characteristics,

we are confident to draw the conclusion that our algorithm can provide good recovery

results for different shapes of volatility curves and it has the potential to be applied in real

markets.

4.2 Stability test

Apart from the accuracy, another important factor associated with a newly derived numer-

ical algorithm is its stability since there always exists noise in market prices. As a result,

in order to demonstrate the stability of our algorithm, a white noise is added to the “true”

volatility functions, and the procedure will be illustrated in the following. As an example,

we consider the “smile” case used in the last subsection, and we further introduce two

random variables, x and y, both of which follow a standard normal distribution so that

the noised “volatility” functions are specified as

σ1(S) = [0.3 +
(S − 10)2

1000
](1 +

x

15
), σ2(S) = [0.2 +

(S − 10)2

1000
](1 +

y

15
). (4.5)

Then, similar to the tests conducted in the last subsection, we use the noised “volatility”

functions to generate state prices, which will be used as noised market state prices and

recover volatility functions with our algorithm.

Depicted in Figure 4 are the recovery results with the generated noised state prices

with initial guesses being flat lines. As expected, the recovered volatility functions from

the noised state prices no longer fit very well to the un-noised “true” volatility functions

as a direct result of introducing a white noise. However, it should be noted that this figure

can clearly demonstrate the stability of our algorithm as the recovered volatility functions
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Figure 4: Stability test.

are still closely located around the un-noised “true” volatility functions.

4.3 Market tests

Having the accuracy and stability of the newly designed algorithm, we are now ready to test

the performance of our algorithm with real market data, which adds another dimension of

complexity due to an additional procedure that needs to be instrumented to overcome the

difficulty that there are more needed state prices than the available market prices in the

calibration of a regime-switching model as discussed in Section 2 already. Such difficulty

did not arise in the tests presented in the previous two subsections at all because the state

prices are generated with the “true” volatility functions. In other words, there was no need

to determine the market-implied state prices, C1 and C2, in the previous tests, whereas

they now need to be recovered from the market option prices in a real empirical test. This

is achieved by calibrating the standard regime switching model to find V1 and V2 first and
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then use Equation (2.3) and (2.4) to obtain C1 and C2 with a given market option price

Cmarket.

Here, we use the market data of S&P 500 returns and options with prices quoted on 15

May 2013 and the expiry time of the options being 22 Jun 2013 (cf. CBOE (2017)). This

means that the underlying price is S0 = 1658.78, the expiry time T = 0.1041 (current time

is 0), the risk-free interest rate (we use the LIBOR rate as an approximation) r = 0.0027,

and the strike price ranges from 1120 to 1800 with N1 = 136. By making use of one

popular global optimization algorithm, Adaptive Simulated Annealing (cf. Ingber (2000),

Mikhailov and Nögel (2004)), we obtain the estimated parameters as

λ12 = 0.2779, λ21 = 0.4355, σ1 = 0.0495, σ2 = 0.1160, π = 0.1520, (4.6)

from which we can certainly get V1 and V2. In this way, we can obtain the two sets of

market-implied state prices C1 and C2 with Equation (2.3) and (2.5).
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Figure 5: Market test.
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Figure 6: Recovered price vs Market-implied price.

Having obtained the market-implied state prices, the remaining work is to recover local

volatility functions with our algorithm, which is similar to what we have done in numerical

tests. Parameters are set to be N2 = 20, δ = 10−3∗S2
0 , θ = 10−2, ϵ = 10−9, and results are

presented in Figure 5. It is clear that the level of the local volatility in State 1 is generally

lower than that of State 2, and a roughly “smile” like shape can be observed for the two

recovered volatility functions that the level of the volatility is relatively higher when the

options is deep in-the-money and out-of-money while it is lower when the strike price is

close to the underlying price. Moreover, it is interesting to notice that there are sudden

jumps in the recovered local volatility functions when the strike price is close to the current

index. On the other hand, to show whether we have recovered correctly recovered the two

sets of market-implied state prices, we further show the option prices calculated with the

recovered local volatility and those market-implied state prices in Figure 6. Obviously,

with the maximum relative difference being 0.9%, our recovered results can certainly be

regarded as accurate. From another prospective, the accuracy of our algorithm can also be

demonstrated by comparing the implied volatility2 extracted from market prices and that

extracted from model prices (cf. Dai et al. (2016)), and the results are shown in Figure

7. As expected, the implied volatility exhibits a smile curve, and the implied volatility

extracted from market prices agrees well with that extracted from model prices, with the

2Conventionally, implied volatility refers to that “implied” by the B-S model.
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relative difference being no larger than 0.8%. A nearly perfect replication of the volatility

smile exhibits the power of adopting a modern model, such as the regime-switching model,

in option pricing.
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Figure 7: The comparison of implied volatility extracted from market prices and that from
model prices.
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Figure 8: Recovered volatility level with different maturities.

In order to focus on the core issue of this paper, i.e., to propose an appropriate approach

for the calibration of a local regime-switching model, we have made a simplified assumption
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in the illustration of the implementation of our approach that the local volatility functions

is independent of time. Of course, in general, the local volatility function should depend

on not only maturities but also strike prices. Naturally, one wonders if there are cases in

finance practice where our simplified assumption can be justified3. To address this point,

we need to use market option data with two different maturities and demonstrate that

the recovered local volatility functions are insignificantly different. Such an exercise was

conducted on a set of one-day option data (S&P 500 returns and options) with the prices

quoted on 15 April 2013 and the two expiry times of the options being 22 June 2013 and

20 July 2013, respectively.

For this case, the underlying price is S0 = 1552.36, the two expiry times, T1 and T2,

take the value of 0.1863 and 0.2630, respectively. The risk-free interest rate r is 0.0028

and the strike price ranges from 1000 to 1760 with N1 = 76. Again, the first step of the

calibration is to determine the market-implied state prices, C1 and C2, and thus we use

Adaptive Simulated Annealing to obtain the estimated parameters as

λ12 = 0.4996, λ21 = 0.5010, σ1 = 0.1826, σ2 = 0.1222, π = 0.1222, (4.7)

from which we can certainly obtain V1 and V2 as well as C1 and C2 through Equation

(2.3) and (2.5) for each expiry time. With the market-implied state prices in hands, we

are then able to recover the corresponding local volatility functions with our algorithm for

different maturities, the results of which are presented in Figure 8. Apart from a slightly

larger difference between the two recovered local volatility functions corresponding to the

two maturities when the options are slightly in the money, the overall average absolute

differences of the two recovered local volatility functions are very small. Specifically, the

average absolute differences between the recovered volatility functions of the two maturities

are 0.029 and 0.030 for State 1 and State 2 respectively. Of course, while the closeness of

3Note, even there was a couple of cases in which our assumption turns out to be a reasonable assumption,
it does not mean that such an assumption can suit all market situations, as there are bound to be cases
where the local volatility functions need to be assumed to vary with both maturities and strike prices.
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the local volatility functions for two different maturities found in this particular example

supports that our assumption may be reasonable in some cases, this does not mean that

such an assumption should always be adopted in real markets in general.

5 Conclusion

In this paper, we present theoretical results on how to calibrate local regime-switching

models. Although the Dupire-style formula for local regime-switching models has already

been derived (cf. Elliott et al. (2015)), it is shown that this formula alone can not lead

to final results as all the state prices are required whereas only one market price for an

option is available in real markets. As a result, a closed system for option pricing and

model calibration under the classical regime-switching model is firstly proposed with the

market price being the expectation of state prices, based on which one market option price

is successfully split into two market-implied state prices with a special approach. Upon

noticing that the direct implementation of the Dupire formula with all state prices still can

not yield accurate results, the calibration problem is formed as an inverse problem, which is

further transformed into an optimal control problem due to its ill-posedness. With the use

of Tikhonov regularization, two necessary conditions are derived for the existence of the

optimal solution, and an efficient numerical algorithm is proposed for the recovery of local

volatility functions. Finally, numerical experiments with synthetic data are carried out to

demonstrate the accuracy and stability of our newly proposed algorithm. Interestingly, the

local volatility functions recovered with real market data exhibits a smile-shape curve.
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