
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part B

Faculty of Engineering and Information
Sciences

2016

Certificate-based encryption with keyword search enabling secure Certificate-based encryption with keyword search enabling secure

authorization in electronic health record authorization in electronic health record

Clementine Gritti
University of Wollongong, cjpg967@uowmail.edu.au

Willy Susilo
University of Wollongong, wsusilo@uow.edu.au

Thomas Plantard
University of Wollongong, thomaspl@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers1

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Gritti, Clementine; Susilo, Willy; and Plantard, Thomas, "Certificate-based encryption with keyword search
enabling secure authorization in electronic health record" (2016). Faculty of Engineering and Information
Sciences - Papers: Part B. 139.
https://ro.uow.edu.au/eispapers1/139

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/139?utm_source=ro.uow.edu.au%2Feispapers1%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages

Certificate-based encryption with keyword search enabling secure authorization Certificate-based encryption with keyword search enabling secure authorization
in electronic health record in electronic health record

Abstract Abstract
In an e-Health scenario, we study how the practitioners are authorized when they are requesting access to
medical documents containing sensitive information. Consider the following scenario. A clinician wants
to access and retrieve a patient's Electronic Health Record (EHR), and this means that the clinician must
acquire sufficient access right to access this document. As the EHR is within a collection of many other
patients, the clinician would need to specify some requirements (such as a keyword) which match the
patient's record, as well as having a valid access right. The complication begins when we do not want the
server to learn anything from this query (as the server might be outsourced to other place). To
encompass this situation, we define a new cryptographic primitive called Certificate-Based Encryption
with Keyword Search (CBEKS), which will be suitable in this scenario. We also specify the corresponding
security models, namely computational consistency, indistinguishability against chosen keyword and
ciphertext attacks, indistinguishability against keyword-guessing attacks and collusion resistance. We
provide a CBEKS construction that is proven secure in the standard model with respect to the
aforementioned security models.

Keywords Keywords
secure, authorization, electronic, health, encryption, record, certificate, enabling, search, keyword

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Gritti, C., Susilo, W. & Plantard, T. (2016). Certificate-based encryption with keyword search enabling
secure authorization in electronic health record. Journal of Internet Services and Information Security, 6
(4), 1-34.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/139

https://ro.uow.edu.au/eispapers1/139

Certificate-Based Encryption with Keyword Search
Enabling Secure Authorization in Electronic Health Record

Clémentine Gritti, Willy Susilo∗, and Thomas Plantard
Centre for Computer and Information Security Research

School of Computing and Information Technology
University of Wollongong, Australia

cjpg967@uowmail.edu.au, {wsusilo, thomaspl}@uow.edu.au

Abstract

In an e-Health scenario, we study how the practitioners are authorized when they are requesting ac-
cess to medical documents containing sensitive information. Consider the following scenario. A
clinician wants to access and retrieve a patient’s Electronic Health Record (EHR), and this means
that the clinician must acquire sufficient access right to access this document. As the EHR is within
a collection of many other patients, the clinician would need to specify some requirements (such
as a keyword) which match the patient’s record, as well as having a valid access right. The com-
plication begins when we do not want the server to learn anything from this query (as the server
might be outsourced to other place). To encompass this situation, we define a new cryptographic
primitive called Certificate-Based Encryption with Keyword Search (CBEKS), which will be suit-
able in this scenario. We also specify the corresponding security models, namely computational
consistency, indistinguishability against chosen keyword and ciphertext attacks, indistinguishability
against keyword-guessing attacks and collusion resistance. We provide a CBEKS construction that
is proven secure in the standard model with respect to the aforementioned security models.

Keywords: Public-Key Encryption with Keyword Search, Certificate-Based Encryption, Consis-
tency, Indistinguishability, Collusion Resistance.

1 Introduction and Motivation

Authorizing medical staff members to access and retrieve medical documents brings security and privacy
issues. We present three scenarios that describe the authorization process in a hospital to enable medical
staff members to acquire access to patients’ Electronic Health Records (EHRs).

Let’s consider our first scenario as follows. A patient, Betty, visits the hospital for a gynecological
checkup. She requests that the checkup will be conducted by a female clinician. On her arrival, a nurse,
Alice, takes Betty’s blood sample and records this information “securely” in Alice’s EHR, which is stored
in the local server of the hospital. The security of the EHR is done by encrypting this information prior
to uploading it to the local server. Once this is done, Alice will need to wait until she is called by the
available female gyneacologist as requested.

Let Carol be a female gyneacologist in the hospital. She has to access Betty’s EHR, and in particular
the blood sample report, in order to discuss with the patient on some potential issues. To do so, Carol
sends a request to the server that contains a descriptive keyword for the record that she needs to access
(e.g. “Betty” in this example) and some information about her access right (e.g. she is a gynecologist in
the hospital). The information will only be delivered (or decryptable) by Carol if her access right is valid

Journal of Internet Services and Information Security (JISIS), volume: 6, number: 4 (November 2016), pp. 1-34
∗Corresponding author: Northfields Avenue Wollongong NSW 2522, Australia, Tel: +61-2-4221-5535, Web: http://

www.uow.edu.au/~wsusilo/

1

http://www.uow.edu.au/~wsusilo/
http://www.uow.edu.au/~wsusilo/

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

and the data that she is looking for (i.e. Betty’s EHR) is available on the local server. This scenario is
depicted in Fig. 1.

Do the keywords w and w' match?
Do the labels L and L match?

L'

w'

L

w

Figure 1: Alice uploads Betty’s records on the
server of the hospital. The records contain an en-
cryption of the keyword w′ that she has chosen
to describe them. Carol sends a file encrypting
her keyword w and her label L (corresponding to
her access right) as a request to retrieve Betty’s
records. The server holds a label L′ according
to the hospital regulation. If the keywords and
the labels match, then the server released the re-
quested records to Carol.

Our second scenario takes place in pediatrics and kids hospital. A child, Dan, has contracted chick-
enpox and his parents decide to bring him to the hospital to check his condition. Since this disease is
also contagious to adults and other children, Dan has to been examined by a pediatrician who is immune
against chickenpox. Thus, this requirement has to be added to the clinician’s access right to let this clin-
ician be able to retrieve Dan’s EHR. At the end of the diagnosis, the clinician will also need to store the
result of the examination in Dan’s EHR.

Our last scenario is due to the communciation difficulty. Eva, who is a Russian tourist and currently
visiting her 80-year-old uncle in Australia, visits the emergency department due to her broken ankle.
Unfortunately, Eva does not speak English but Russian, and she requires a clinician that speaks her lan-
guage. Fortunately, an orthopedist, Frank, satisfies this requirement. By providing his access right that
includes this linguistic feature and a descriptive keyword, Frank will be able to retrieve Eva’s EHR.

These scenarios illustrate a required framework to authorize medical staff members to access and re-
trieve the necessary medical documents to conduct their job. As illustrated earlier, there are two essential
information pieces required, namely the access right of a clinician that has to be in accordance with the
hospital requirements (regarding the patients’ specific requirements for instance) and a keyword selected
by the clinician as the description of the requested medical documents.

1.1 Basic Technical Settings

In order to capture the above scenarios, we consider four entities:

1. An uploader that transfers medical data contents (e.g. EHRs) to a server.

2. A server that stores the uploader’s encrypted medical data contents and delivers these contents to
the receivers if and only if certain conditions are met.

3. Several receivers, that ask the server to retrieve medical data contents.

4. A certifier that delivers certificates to the receivers according to their access right status.

2

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

In practice, the receivers are the medical staff of a hospital while the uploader can be anyone, the certifier
is the IT department of the hospital and the server is the hospital database. The assumption is that we do
not want the administrator of the server to be able to read the documents without proper consents, and
therefore the data will be encrypted. Hence, we adopt the honest-but-curious model for the server.

We suppose that Alice, a nurse working at the hospital, needs to access some medical documents.
To do so, Alice chooses a keyword wR describing the documents that she wants to retrieve, creates a
trapdoor that is a function of the keyword wR and a certificate, and sends this trapdoor to the server as an
access request.

Alice is equipped with a valid certificate in order to conduct this operation. Alice’s certificate is
updated regularly from the broadcasted information provided by the certifier. The update key is created
given a group S of medical staff members and a label LR. Note that the update key is broadcasted to
all the people working at the hospital but only people belonging to the group S can successfully update
their certificates. In addition, the label LR refers to information such as access rights and other privileges
and features, and enables the staff members in S to access and retrieve some documents. Note that the
certificate needs to be refreshed since the label LR and/or the group S might change over the time.

When Alice sends the trapdoor to the server, the latter checks it with a ciphertext encrypting a key-
word wS that describes the requested documents (the keyword wS was chosen by the person who en-
crypted the documents) and the current label LS (the label LS is determined by the hospital). The server
is actually verifying whether the keywords and the labels match (i.e. whether wR = wS and LR = LS). If
so, then the server releases the encrypted documents to Alice; otherwise, the server keeps them on its
local storage.

We illustrate our CBEKS protocol in Fig. 2, 3 and 4 such that the four entities are depicted. First,
the certifier generates the first certificate given to each receiver as an encryption of a label LR

1 (Fig. 2).
It also computes update keys that are sent to all the receivers. Receivers can successfully refresh their
certificates using the update keys if and only if they belong to a group S j specified by the certifier (Fig.
3). Then, the uploader computes a ciphertext C T wS for a keyword wS and transmits it to the server.
Each receiver computes a trapdoor TrapwR

i ,L
R
j

according to a keyword wR
i and the most recent certificate

encrypting the label LR
j ; the receiver then forwards it to the server. At last, the server checks whether the

two keywords match and whether the label embedded into the trapdoor is equal to the current label LS
l ,

i.e. wR
i = wS and LR

j = LS
l (Fig. 4).

C
CertLR

1 ,i
i ∈ [1,m]

Figure 2: A certifier C generates a first certificate
CertLR

1 ,i
for a label LR

1 , and gives it to a receiver i,
where i ∈ [1,m].

1.2 Comparisons with Existing Cryptographic Primitives

Attribute-Based Encryption (ABE) [17] is a cryptographic primitive that involves attributes to generate
secret keys and ciphertexts. Attributes can be seen as the components describing the access right of a
receiver. Observe that no certificate is delivered and no key update is possible in an ABE system. Instead,
secret keys are created with respect to each attribute taken individually and have to be re-generated from
scratch each time that an attribute is added, deleted or modified. We note that treating the attributes
individually each time is cumbersome and inefficient. Moreover, an ABE system is not equipped with
searching capability: no keyword or other requirement is necessary to complete the authorization step.
Thus, such primitive does not seem suitable to satisfy the medical criteria cited above.

3

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

UKLR
j

CertLR
j ,ik

ik ∈ Sj

C i ∈ [1,m]

Figure 3: The certifier C computes an update key
UKLR

j
for LR

j and a group S j ⊆ [1,m] of receivers,
and gives it to all the receivers i ∈ [1,m]. Then, a
receiver i can successfully use UKLR

j
to obtain a

refreshed certificate CertLR
j ,i

if and only if i ∈ S j.

Test if wS = wR
i and LS

l = LR
j

CT wS

wS CertLR
j
,i and wR

i

LS
l

U i

S
TrapwR

i
,LR

j

Figure 4: Afterwards, the uploader U gener-
ates a ciphertext C T wS for a keyword wS, and
transfers it to a server S. With inputs wR

i and
CertLR

j ,i
for LR

j , the receiver i computes a trap-
door TrapwR

i ,L
R
j

and forwards it to the server S,

where i ∈ [1,m]. Finally, given LS
l , C T wS and

TrapwR
i ,L

R
j
, the server S tests whether wS = wR

i

and LS
l = LR

j .

In our previous work [18], we proposed a Certificate-Based Broadcast Encryption (CBBE) protocol,
called File Sharing in Electronic Health Records (FSEHR). This protocol enables medical staff members
(receivers) to communicate among themselves, as well as to retrieve medical documents. Authorization
is given through licences (certificates) that allow the medical staff to practice in the given hospital. We
observe that a FESHR system does not satisfy the medical scenario described in this paper. First, cer-
tificates cannot be collectively updated, but have to be individually re-generated in case of access right
changes. Moreover, a receiver does not search for medical documents, but acquires access to all of them
after successful authorization (even the ones that this receiver is not interested to acquire).

1.3 Our Work

In this paper, we address the problem of authorizing receivers in a sensitive environment to let them ac-
cess and retrieve private documents securely. In order to access data encrypted by an uploader and stored
on a server, a receiver has to provide a trapdoor that embeds two elements: a keyword that describes
the targeted data and a certificate that includes a label as the access right of the receiver. The receiver
will retrieve the encrypted data if and only if the keyword that it has chosen is the same than the one
defined by the uploader and if the label specifying the access right of the receiver is the same than the
current one held by the server. To do so, we define a new cryptographic primitive that we call Certificate-
Based Encryption with Keyword Search (CBEKS). We also specify the corresponding security models,
namely computational consistency, indistinguishability against chosen keyword and ciphertext attacks,
indistinguishability against keyword-guessing attacks and collusion resistance. We provide a CBEKS
construction that is proven secure in the standard model with respect the aforementioned security mod-

4

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

els.
At a glance, by just simply observing the name of the primitive Certificate-Based Encryption with

Keyword Search, one may think that this is a trivial combination between a Certificate-Based Encryption
(CBE) scheme and a Public-Key Encryption with Keyword Search (PEKS). Unfortunately, this is not the
case. This is due to the fact that a CBE scheme [15] requires an interaction between one single certifier
and one single receiver. This is not suitable for CBEKS as we involve many receivers. Furthermore, the
certificates cannot be refreshed using update keys, but rather they need to be re-generated every time.
Hence, the direct use of CBE scheme will not be satisfactory. More importantly, the CBE scheme in
[15] only works in the random oracle model, and to make our CBEKS scheme useful in practice, the
scheme must be proven secure in the standard model (i.e. to guarantee the security since CBEKS deals
with sensitive data). Another attempt is to combine Fang et al.’s secure-channel free PEKS scheme [12]
and our work in [18], which provides the broadcast mechanism. Again, the resulting scheme will not
suffice to satisfy the requirements in CBEKS with a simple modification, and more importantly, if the
modification is successul then the scheme will again be only secure in the random oracle model.

We summarize the advantages and disadvantages of the aforementioned primitives and combinations
of primitives in Table 1. Observe that our CBEKS system satisfies all the requirements and features
highlighted previously.

Cryptographic Primitive Certificate Broadcast Key update Keyword
ABE [17] 5 5 5 5

CBBE [18] 3 3 5 5

PEKS [12] + CBE [15] 3 5 5 3

PEKS [12] + CBBE [18] 3 3 5 3

CBEKS 3 3 3 3

Table 1: Comparisons of the new primitive CBEKS, the existing primitives ABE and CBBE and the
combination of the primitive PEKS with the primitives CBE and CBBE respectively.

1.4 Related Work

Boneh et al. [5] introduced the notion of Public-Key Encryption with Keyword Search (PEKS) in or-
der to solve the problem of searching on encrypted data in a public key environment. Then, Baek et
al. [2] obtained the new primitive Public-Key Encryption (PKE)/PEKS by combining a PEKS scheme
[5] and an ElGamal encryption scheme [10]. Thereafter, several works followed on PEKS and related
primitives such as PEKS with a designated tester (dPEKS) [7, 14, 19, 11, 27, 28, 26, 31]. Baek et al.
[3] improved the concept of PEKS by defining the notion of Secure-Channel-Free PEKS (SCF-PEKS).
Recently, Fang et al. [12] gave a SCF-PEKS scheme that is secure against chosen keyword and cipher-
text attacks and keyword-guessing attacks without random oracle, meaning that this scheme achieves the
strongest security levels.

Fiat and Naor [13] introduced the concept of BE. In such a scheme, a broadcaster wants to share a
message with a dynamically chosen group S of receivers. To do that, it generates a ciphertext such that
only authorized receivers in S can decrypt it. Then, Naor et al. [22] presented a symmetric-key system
and gave both security model and security analysis. Dodis and Fazio [9] designed the first public-key BE
scheme secure against ciphertext-chosen attacks. Later, Boneh et al. [6] proposed a fully collusion resis-
tant scheme proved selectively secure in the standard model. They obtained a scheme with short secret

5

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

keys and ciphertexts by applying computational techniques using groups with bilinear maps. Thereafter,
several works followed [8, 30, 16, 24, 25].

Naor and Nissim [23] proposed a solution to overcome the problem of certificate revocation. Using
an authenticated search data structure, they constructed certificate revocation lists in order to store, update
and retrieve authenticated information related to certificates. Then, Gentry [15] introduced the concept
of CBE such that a certificate can be seen as a decryption key. More precisely, a receiver should use
both its secret key and its certificate to decrypt a ciphertext. The certificate is delivered by a Certificate
Authority (CA) and embeds time periods that tell when the receiver is allowed to retrieve messages.

2 Protocol Definition

In the definition of the protocol, a label is a reference to some information about access rights (e.g.
privileges and features). This label is supposed to be a unique element in Zp, for a prime number p,
meaning that it refers to only one collection of rights and two labels with different collections cannot be
equal.

We assume that the certifier and the server know the labels; however, none of the receivers should
get any information about these elements. We presume that the certifier and the server communicate
securely to agree on all the possible labels. We do not consider how they communicate in this protocol
by making the hypothesis that they can proceed easily and naturally. For instance, in a hospital, let the
certifier be the IT department and the server be the database center, meaning that they both belong to
the administration section of the organization. Thus, there exists a way for the certifier and the server to
share the information about the labels, since they are allowed to know the access rights and the privileges
given to the medical staff members.

A Certificate-Based Encryption with Keyword Search (CBEKS) protocol comprises the following algo-
rithms:

Setup(λ ,m) → (params,skS,skC,{skR,i}i∈[1,m]). This probabilistic algorithm is run by a trusted
group manager to setup the protocol. On inputs a security parameter λ and a total number of receivers
m, output the public parameters params, the server’s secret key skS, the certifier’s secret key skC and the
receivers’ secret keys {skR,i}i∈[1,m].

As suggested above, the server and the certifier might receive information about the label framework.
The public parameters params include the public keys of all the involved entities.

Encrypt(params,wS)→ C T wS . This probabilistic algorithm is run by the uploader to generate the
ciphertext. On inputs the public parameters params and a uploader’s keyword wS, output the ciphertext
C T wS for wS.

Note that the keyword wS is chosen by the uploader that encrypts the message M (e.g. a patient’s
EHR) and uploads the resulting ciphertext C T M along with C T wS on the server. (In this paper, we do
not focus on the encryption process for C T M but rather on the encryption process for C T wS .)

CertGen(params,skC,LR
1 , i)→CertLR

1 ,i
. This probabilistic algorithm is run by the certifier to gener-

ate a receiver i’s first certificate. On inputs the public parameters params, the certifier’s secret key skC, a
label LR

1 and a receiver i, output the receiver i’s first certificate CertLR
1 ,i

for LR
1 .

The certifier might keep some elements used to generate CertLR
1 ,i

, such that the label LR
1 and additional

information, on its local storage in order to create the update key UKLR
2
. Let AILR

1
be the auxiliary

information that the certifier stores.
UpdtKeyGen(params,skC,AILR

j−1
,LR

j ,S j)→ UKLR
j
. This probabilistic algorithm is run by the cer-

tifier to generate the update key for a group S j ⊆ [1,m] of receivers. On inputs the public parameters
params, the certifier’s secret key skC, the auxiliary information AILR

j−1
, a label LR

j where 1 < j and a

6

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

group S j of receivers, output the update key UKLR
j

for LR
j and S j.

The certifier might keep some elements used to generate UKLR
j
, such that the label LR

j and additional
information, on its local storage in order to create the update key UKLR

j+1
. Let AILR

j
be the auxiliary

information that the certifier stores.
The algorithm UpdtKeyGen is run in three cases:

1. There is a new label LR
j replacing LR

j−1 while S j = S j−1.

2. There is a new group S j replacing S j−1 while LR
j = LR

j−1.

3. There are a new label LR
j replacing LR

j−1 and a new group S j replacing S j−1.

In all cases, we write AILR
j−1

, LR
j and S j as the inputs for the algorithm UpdtKeyGen, such that AILR

j−1
was

computed given LR
j−1 and S j−1. (For j = 2, AILR

1
corresponds to the auxiliary information from CertLR

1 ,i
,

for i ∈ [1,m].) We assume that a description of the group S j cam be found in UKLR
j
.

UpdtCert(params,CertLR
j−1,i

,UKLR
j
)→ CertLR

j ,i
. This deterministic algorithm is run by a receiver

i ∈ [1,m] to refresh its certificate. On inputs the public parameters params, the receiver i’s previous
certificate CertLR

j−1,i
for LR

j−1 and the key update UKLR
j

for LR
j and S j where 1 < j, output the receiver i’s

refreshed certificate CertLR
j ,i

for LR
j if i ∈ S j; output ⊥ otherwise.

TrapGen(params,skR,i,wR
i ,CertLR

j ,i
)→ TrapwR

i ,L
R
j
. This probabilistic algorithm is run by a receiver

i ∈ [1,m] to generate the trapdoor. On inputs the public parameters params, the receiver i’s secret key
skR,i, a receiver i’s keyword wR

i and a receiver i’s certificate CertLR
j ,i

for LR
j , output the receiver i’s trapdoor

TrapwR
i ,L

R
j

for wR
i and LR

j .

Test(params,skS,C T wS ,LS
l ,TrapwR

i ,L
R
j
)→ b. This deterministic algorithm is run by the server to

check that the keywords and the labels match. On inputs the public parameters params, the server’s
secret skS, the ciphertext C T wS for wS, a label LS

l where 1≤ l and the receiver i’s trapdoor TrapwR
i ,L

R
j

for

wR
i and LR

j where 1≤ j, ouptut b = 1 if [wS = wR
i]∧ [LS

l = LR
j]; output b = 0 otherwise.

Correctness For all (params,skS,skC,{skR,i}i∈[1,m])← Setup(λ ,m), let the ciphertext be C T wS ←
Encrypt(params,wS) for a keyword wS. Let a receiver i ∈ [1,m] have a first certificate CertLR

1 ,i
←

CertGen(params,skC,LR
1 , i) for a label LR

1 . Given an update key UKLR
j
← UpdtKeyGen(params,skC,

AILR
j−1
,LR

j ,S j) such that i ∈ S j ⊆ [1,m], and a previous certificate CertLR
j−1,i

for a label LR
j−1, the certificate

is refreshed as follows: CertLR
j ,i
←UpdtCert(params,CertLR

j−1,i
,UKLR

j
) for a label LR

j where 1 < j. Then,

let the receiver i create a trapdoor TrapwR
i ,L

R
j
← TrapGen(params,skR,i,wR

i ,CertLR
j ,i
) for a keyword wR

i

and the label LR
j . If j = 1, then we simply use CertLR

1 ,i
←CertGen(params,skC,LR

1 , i) during the trapoor
generation. For a label LS

l , if [wS = wR
i]∧ [LS

l = LR
j] where 1 ≤ j, l, then Test(params,skS,C T wS ,LS

l ,

TrapwR
i ,L

R
j
) outputs 1; otherwise, Test(params,skS,C T wS , LS

l ,TrapwR
i ,L

R
j
) outputs 0.

3 Security Models

Before describing the security levels that we expect for our scheme, we recall the existing security models
in the literature. In [12], the SCF-PEKS scheme is proved secure against chosen keyword and ciphertext
attacks (IND-CKCA) and against keyword-guessing attacks (IND-KGA) in the standard model, as well
as is proved computationally consistent. More precisely, the scheme proposed in [12] is proven secure in
terms of indistinguishability under chosen keyword and ciphertext attacks, meaning that

7

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

1. the server that has not obtained the trapdoors for given keywords cannot tell which ciphertext
encrypts which keyword;

2. the receiver that has not obtained the server’s secret key cannot make any decisions about the
ciphertexts, even though it gets all the trapdoors for the keywords that it holds.

In addition, a security proof is given in [12] to cover the notion of indistinguishability under keyword-
guessing attack, that guarantees that an outsider (neither the server nor the receiver) that has obtained
the trapdoor for a challenge keyword cannot observe the link between the trapdoor and any keywords.
We will demonstrate that our CBEKS scheme reaches similar security notions regarding keywords and
ciphertexts that we adapt to deal with labels and certificates.

In [6], a Broadcast Encryption (BE) scheme achieves fully collusion resistance (CR). More precisely,
this system can broadcast a session key to any group of receivers and remains secure even if malicious
unauthorized receivers collude. Such a property should be achieved to deal with the fact that the certifier
forwards an update key to all the receivers, such that only a group of authorized receivers will success-
fully refresh their certificates.

We now give an overview of the threats and attacks that our CBEKS system should elude:
Security against the Server: The server handles the labels for the test process, meaning that it can

obtain information from the certificates about the access rights given to the receivers. However, the server
should learn nothing about the uploader’s keyword (through the ciphertext) and the receivers’ keyword
(through the trapdoor), except whether they match or not. This is formalized in the IND-CKCA game
played by the server.

Security against the Certifier: As the server, the certifier knows the labels since it has the task
to create the first certificates and update keys. Nevertheless, it should not be able to update itself the
receivers’ certificates. Moreover, even if intercepting ciphertexts and trapdoors, the certifier should not
get any information about the keywords chosen by the uploader and the receivers respectively. This is
formalized in the IND-CKCA game played by the certifier.

Security against the Receiver: The receiver gets the first certificate from the certifier, along with
update keys, such that the latters can be efficiently used if and only if the receiver has been authorized
by the certifier. The receiver should not be able to learn anything about the labels and so, the access
rights embedded into its first certificate and the subsequent update keys. Note that the receiver can
guess whether its refreshed certificate is a correct one or a fake one, since we suppose that the group of
authorized receivers is contained in clear into each update key. Even waylaying a ciphertext, a receiver
should not have the capability to know the embedded uploader’s keyword, and even check that whether
the keywords match. This is formalized in the IND-CKCA game played by the receiver.

Moreover, observe that the trapdoor is generated given a keyword and a certificate to avoid the
following collusion attack. We suppose that the trapdoor only encrypts a keyword and that a receiver
has to provide both its trapdoor and its certificate to the server in order to verifiy the matches of the
keywords and the labels. In this scenario, we can let a first receiver compute the trapdoor encrypting
a keyword and have only obsolete certificates, and a second receiver get a recent certificate that is still
valid. Thus, these two receivers can manage to pass the test by sending to the server the trapdoor and the
fresh certificate respectively.

Security against an Outsider: An outsider is neither the server nor the certifier nor a receiver. This
outsider will guess keywords (for instance, keywords with low entropy) and check its choices in an off-
line way. If the outsider has successfully initiated a keyword-guessing attack, then it can learn which
keywords were chosen by the uploader and by the receivers, and so the security of the protocol might be
broken. This is formalized in the IND-KGA game.

8

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

Collusion Resistance: The update keys are delivered by the certifier in order to let a group of
authorized receivers to resfresh their certificates, regarding either a new label or a new group or both. This
group is supposed to be included into the update key in clear, and the latter is sent to all the receivers. One
important feature that the update key should satisfy is its collusion resistance: even if all the unauthorized
receivers collude, they cannot generate a well-formed refreshed certificate from the update key. This is
formalized in the CR game.

We provide several security games where the adversary plays the role of either the server or the
certifier or a receiver. We also give a security game when the adversary acts as an outsider (neither the
server nor the certifier nor a receiver) or as a group of colluding receivers.

The security models that we define below are computational consistency, indistinguishability against
chosen keyword and ciphertext attack (IND-CKCA), indistinguishability against keyword-guessing at-
tack (IND-KGA) and collusion resistance (CR). Compared to the IND-CKCA and IND-KGA models
given in [12], the adversary has access to more oracles in our case, in order to satisfy the label-based sit-
uation of our protocol. Informally, in addition to the trapdoor queries and the test queries, the adversary
can make first certificate queries, update key queries and refreshed certificate queries. If the adversary
makes an update key query or a refreshed certificate query for a label LR

j , then the challenger computes
the requested element using the previous queried label LR

j−1 or a random label LR
j−1 for a first query.

In the collusion resistance game, we let the adversary select a group S∗ ⊆ [1,m] of receivers before-
hand, and the challenger will reply to the adversary’s queries according to this group S∗.

In summary, depending on the role that it is playing, the adversary is given access to different oracles:

First certificate query: the adversary can ask the challenger for a first certificate query by giving a
label L. The challenger responds by sending back a first certificate Cert for L to the adversary.

Update key query: the adversary can ask the challenger for an update key query by giving a label L.
The challenger chooses a group of receivers S and responds by sending back an update key UK for L and
S to the adversary.

Refreshed certificate query: the adversary can ask the challenger for a refreshed certificate query
by giving a label L. The challenger responds by sending back a refreshed certificate Cert for L to the
adversary.

Trapdoor query: the adversary can ask the challenger for a trapdoor query by giving a keyword w
and a label L. The challenger responds by sending back a trapdoor Trap for w and L to the adversary.

Test query: the adversary can ask the challenger for a test query by giving a ciphertext C T , a
keyword w and two labels L,L′. The challenger responds by sending back the result b ∈ {0,1} to the
adversary.

3.1 Consistency

The definition of consistency follows the ones given in [12, 1] except that the adversary has to choose
more elements along with the two keywords: along with the uploader’s keyword wS, it selects a cor-
responding label LS

l where 1 ≤ l, and along with the receiver’s keyword wR
i , it first selects a receiver

i ∈ [1,m] and then a label LR
1 as well as an index 1 < j indicating the number of times that the certificate

should be refreshed.

Let λ be the security parameter and m the total number of receivers. Suppose there exists an adversary
A that wants to make consistency fail. The consistency is formally defined through the experiment

9

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

Expcons
A (λ) as follows:

(params,skS,skC,{skR,i}i∈[1,m])← Setup(λ ,m);

((wS,LS
l),(w

R
i ,L

R
1 , j, i))←A (params,m) for 1≤ l, 1 < j and i ∈ [1,m];

C T wS ← Encrypt(params,wS);

CertLR
1 ,i
← CertGen(params,skC,LR

1 , i);

UKLR
j
← UpdtKeyGen(j−1)(params,skC,AILR

1
,LR

j ,S j);

CertLR
j ,i
← UpdtCert(j−1)(params,skR,i,CertLR

1 ,i
,UKLR

j
);

TrapwR
i ,L

R
j
← TrapGen(params,skR,wR

i ,CertLR
j ,i
);

If i ∈ Sk for all 1≤ k ≤ j, (LS
l = LR

j), (w
S 6= wR

i) and Test(params,skS,C T wS ,

LS
l ,TrapwR

i ,L
R
j
)→ 1 then return 1,else return 0.

The advantage of A is defined as follows Advcons
A (λ) = Pr[Expcons

A (λ) = 1]. The scheme is said to
be computationally consistent if any probabilistic polynomial time (PPT) adversary A wins the above
experiment with negligible advantage.

N.B. The notation UpdtKeyGen(j−1) denotes that the algorithm UpdtKeyGen is run j− 1 times on
inputs LR

2 ,L
R
3 , · · · ,LR

j respectively, and the notation UpdtCert(j−1) denotes that the algorithm UpdtCert
is run j−1 times on inputs UKLR

2
,UKLR

3
, · · · ,UKLR

j
respectively.

Jeong et al. [20] noticed that the consistency of a SCF-PEKS scheme turns this scheme to not be
secure against keyword-guessing attacks, in case the adversary is the server. Nevertheless, as suggested
in [12], this attack should not be considered. Instead, we regard the keyword-guessing attacks launched
by an outsider (neither the server nor the certifier nor a receiver).

3.2 Indistinguishability of CBEKS against Chosen Keyword and Ciphertext attacks (IND-
CKCA)

Let λ be the security parameter, KeywS be the keyword space, LabS be the label space and CiphS be
the ciphertext space. Let an adversary A and a challenger B play the following three games GameS,
GameC and GameR.

3.2.1 Game played by the Server: GameS.

The adversary A is assumed to be the server (inside attacker).
Setup. B runs the algorithm Setup on inputs λ and m to obtain params,skS,skC, {skR,i}i∈[1,m]. The

challenger sends params and skS to A .
Query Phase 1. A makes the queries as follows:

• First Certificate Query < LR
1 >. A can adaptively ask B for the first certificate query for any

label LR
1 ∈ LabS of its choice. The challenger answers by giving the first certificate CertLR

1 ,i
←

CertGen(params,skC,LR
1 , i) to A for which i ∈ [1,m].

• Update Key Query < LR
j >. A can adaptively ask B for the update key query for any label

LR
j ∈ LabS. The challenger first makes a first certificate query on LR

j−1 to get AILR
j−1

, and answers

10

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

by giving the update key UKLR
j
←UpdtKeyGen(params,skC, AILR

j−1
,LR

j ,S j) to A for which S j ⊆
[1,m].

• Refreshed Certificate Query < LR
j >. A can adaptively ask B for the refreshed certificate query

for any label LR
j ∈ LabS of its choice. The challenger first makes a first certificate query on LR

j−1
to get CertLR

j−1,i
for which i ∈ [1,m] and an update key query on LR

j to get UKLR
j
, and answers by

giving the refreshed certificate CertLR
j
← UpdtCert(params,skR,i,UKLR

j
,CertLR

j−1,i
) to A .

• Trapdoor Query < wR
i ,L

R
j >. A can adaptively ask B for the trapdoor query for any keyword

wR
i ∈ KeywS and any label LR

j ∈ LabS of its choice. The challenger first makes a first certificate
query or a refreshed certificate query on LR

j to get CertLR
j ,i

for which i ∈ [1,m], and answers by

giving the trapdoor TrapwR
i ,L

R
j
← TrapGen(params,skR,i,wR

i ,CertLR
j ,i
) to A .

• Test Query < C T wS ,wR
i ,L

S
l ,L

R
j >. A can adaptively ask B for the test query for any ciphertext

C T wS ∈ CiphS, any keyword wR
i ∈ KeywS and any labels LS

l ,L
R
j ∈ LabS of its choice. The

challenger first makes a first certificate query or a refreshed query on LR
j to get CertLR

j ,i
and then

a trapdoor query on wR
i to get TrapwR

i ,L
R
j

for which i ∈ [1,m], and answers by giving the result

b← Test(params,skS,C T wS ,LS
l ,TrapwR

i ,L
R
j
) to A .

Challenge. Once the adversary decides that the Query Phase 1 is over, it outputs a challenge keyword
pair (w0,w1) such that neither w0 nor w1 has been queried to obtain a corresponding trapdoor in the Query
Phase 1. Upon receiving this pair, B answers by choosing a random bit µ ∈R {0,1} and by computing
a challenge ciphertext C T wµ

← Encrypt(params,wµ). The challenger sends C T wµ
to the adversary.

Note that the challenger randomly selects the bit µ: we assume that the challenger cannot submit the
same bit over and over.

Query Phase 2. A issues a number of queries as in the Query Phase 1. The restriction is that <
wR

i ,L
R
j > are not allowed to be queried as trapdoor queries if < wR

i ,L
R
j >=< w0,LR

j > or < wR
i ,L

R
j >=<

w1,LR
j >, and <C T wS ,wR

i ,L
S
l ,L

R
j > are not allowed to be queried as test queries if <C T wS ,wR

i ,L
S
l ,L

R
j >

=< C T w0 ,w0,LS
l ,L

R
j > or < C T wS ,wR

i ,L
S
l ,L

R
j >=< C T w1 ,w1,LS

l ,L
R
j >.

Guess. The adversary output the guess µ ′ ∈ {0,1} and wins if µ ′ = µ .
We define the adversary’s advantage in GameS by AdvGameS

A (λ) = |Pr[µ ′ = µ]−1/2|.

3.2.2 Game played by the Certifier: GameC.

The adversary A is assumed to be the certifier (outside attacker).
Setup. B runs the algorithm Setup on input λ and m to obtain params,skS,skC, {skR,i}i∈[1,m]. The

challenger sends params and skC to A .
Query Phase 1. A makes the queries as follows:

• Refreshed Certificate Query < LR
j >. The same as in GameS.

• Trapdoor Query < wR
i ,L

R
j >. The same as in GameS, except that the certificate can only come

from a refreshed certificate query.

• Test Query < C T wS ,wR
i ,L

S
l ,L

R
j >. The same as in GameS, except that the certificate can only

come from a refreshed certificate query.

11

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

Challenge. The same as in GameS.
Query Phase 2. The same as in GameS.
Guess. The adversary output the guess µ ′ ∈ {0,1} and wins if µ ′ = µ .
We define the adversary’s advantage in GameC by AdvGameC

A (λ) = |Pr[µ ′ = µ]−1/2|.

3.2.3 Game played by the Receiver: GameR.

The adversary A is assumed to be the receiver (outside attacker).
Initialization. A begins by selecting an index i∗ ∈ [1,m] of the receiver that it wants to play.
Setup. B runs the algorithm Setup on input λ and m to obtain params,skS,skC, {skR,i}i∈[1,m]. The

challenger sends params and skR,i∗ to A .
Query Phase 1. A makes the queries as follows:

• First Certificate Query < LR
1 >. A can adaptively ask B for the first certificate query for any

label LR
1 ∈ LabS of its choice. The challenger answers by giving the first certificate CertLR

1 ,i
∗ ←

CertGen(params,skC,LR
1 , i
∗) to A .

• Update Key Query < LR
j >. A can adaptively ask B for the update key query for any label

LR
j ∈ LabS. The challenger first makes a first certificate query on LR

j−1 to get AILR
j−1

, and answer

by giving the update key UKLR
j
← UpdtKeyGen(params,skC, AILR

j−1
,LR

j ,S j) to A for a group S j

of receivers that includes i∗.

• Test Query < C T wS ,wR
i∗ ,L

S
l ,L

R
j >. A can adaptively ask B for the test query for any ciphertext

C T wS ∈ CiphS, any keyword wR
i∗ ∈ KeywS and any labels LS

l ,L
R
j ∈ LabS of its choice. The

challenger first makes a first certificate query on LR
j to get CertLR

j ,i∗
and generates TrapwR

i∗ ,L
R
j
. and

answers by giving the result b← Test(params,skS,C T wS , LS
l ,TrapwR

i∗ ,L
R
j
,CertLR

j ,i∗
) to A .

Challenge. Once the adversary decides that the Query Phase 1 is over, it outputs a challenge keyword
pair (w0,w1) such that neither w0 nor w1 has been queried to obtain a corresponding trapdoor in the Query
Phase 1. Upon receiving this pair, B answers by choosing a random bit µ ∈R {0,1} and by computing
a challenge ciphertext C T wµ

← Encrypt(params,wµ). The challenger sends C T wµ
to the adversary.

Note that the challenger randomly selects the bit µ: we assume that the challenger cannot submit the
same bit over and over.

Query Phase 2. A issues a number of queries as in the Query Phase 1. The restriction is that <
C T wS ,wR

i∗ ,L
S
l ,L

R
j > are not allowed to be queried as test queries if <C T wS ,wR

i∗ ,L
S
l ,L

R
j >=<C T w0 ,w0,

LS
l ,L

R
j > or < C T wS ,wR

i∗ ,L
S
l ,L

R
j >=< C T w1 ,w1,LS

l ,L
R
j >.

Guess. The adversary output the guess µ ′ ∈ {0,1} and wins if µ ′ = µ .
We define the adversary’s advantage in GameR by AdvGameR

A (λ) = |Pr[µ ′ = µ]−1/2|.

Definition 1. The CBEKS scheme is said to be IND-CKCA secure if AdvGameS
A , AdvGameC

A and AdvGameR
A

are all negligible.

3.3 Indistinguishability of CBEKS against Keyword-Guessing attack (IND-KGA)

Let λ be the security parameter, KeywS be the keyword space, LabS be the label space and CiphS be
the ciphertext space. Let A be an outside adversary that is neither the server nor the certifier nor the
receiver and that makes the keyword-guessing attack by interacting with a challenger B. We consider
the following game.

12

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

Setup. B runs the algorithm Setup on input λ and m to obtain params,skS,skC, {skR,i}i∈[1,m]. The
challenger sends params to A .

Query Phase 1. A makes the queries as follows:

• First Certificate Query < LR
1 >. The same as in GameS from the IND-CKCA game.

• Update Key Query < LR
j >. The same as in GameS from the IND-CKCA game.

• Refreshed Certificate Query < LR
j >. The same as in GameS from the IND-CKCA game.

• Trapdoor Query < wR
i ,L

R
j >. The same as in GameS from the IND-CKCA game.

Challenge. Once the adversary decides that the Query Phase 1 is over, it outputs a challenge keyword
pair (w0,w1) such that neither w0 nor w1 has been queried to obtain a corresponding trapdoor in the Query
Phase 1. Upon receiving this pair, B answers by choosing a random bit µ ∈R {0,1} and a label LR

j , and
by computing a challenge trapdoor Trapwµ ,LR

j
← TrapGen(params,skR,i,wµ ,CertLR

j ,i
) where CertLR

j ,i
is

the certificate issued for LR
j . The challenger sends Trapwµ ,LR

j
to the adversary. Note that the challenger

randomly selects the bit µ: we assume that the challenger cannot submit the same bit over and over.
Query Phase 2. A issues a number of queries as in the Query Phase 1. The restriction is that <

wR
i ,L

R
j > are not allowed to be queried as trapdoor queries if < wR

i ,L
R
j >=< w0,LR

j > or < wR
i ,L

R
j >=<

w1,LR
j >.

Guess. The adversary output the guess µ ′ ∈ {0,1} and wins if µ ′ = µ .
We define the adversary’s advantage in the above game by AdvIND−KGA

A (λ) = |Pr[µ ′ = µ]−1/2|.

Definition 2. The CBEKS scheme is said to be IND-KGA secure if AdvIND−KGA
A (λ) is negligible.

3.4 Collusion Resistance (CR)

Let λ be the security parameter, KeywS be the keyword space, LabS be the label space and CiphS be
the ciphertext space. Let A be a group of colluding receivers that attacks the collusion resistance of the
update keys by interacting with a challenger B. We consider the following game.

Initialization. A begins by selecting a group S∗ ⊆ [1,m] of receivers that it wants to be challenged
on.

Setup. B runs the algorithm Setup on input λ and m to obtain params,skS,skC, {skR,i}i∈[1,m]. The
challenger sends params and {skR,i}i∈[1,m]\S∗ to A .

Query Phase 1. A makes the queries as follows:

• First Certificate Query < LR
1 >. A can adaptively ask B for the first certificate query for any label

LR
1 ∈ LabS of its choice. The challenger answers by giving the certificate CertLR

1 ,i
← CertGen(

params,skC,LR
1 , i) to A for which i ∈ S⊆ S∗.

• Refreshed Certificate Query < LR
j >. A can adaptively ask B for the refreshed certificate query

for any label LR
j ∈ LabS of its choice. The challenger first makes a first certificate query on LR

j−1
to get CertLR

j−1,i
for which i ∈ S ⊆ S∗, then computes an update key UKLR

j
for LR

j , and answers by
giving the refreshed certificate CertLR

j
← UpdtCert(params,skR,i,UKLR

j
,CertLR

j−1,i
) to A .

Challenge. Once the adversary decides that the Query Phase 1 is over, it outputs a challenge label
pair (L0,L1) such that neither L0 nor L1 has been queried to obtain a corresponding certificate or trapdoor
in the Query Phase 1. Upon receiving this pair, B answers by choosing a random bit µ ∈R {0,1} and by
computing a challenge update key UKLµ

← UpdtKeyGen(params,skC,AILµ−1,Lµ ,S∗). The challenger

13

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

sends UKLµ
to the adversary. (We denote by Lµ − 1 the label preceding the label Lµ .) Note that the

challenger randomly selects the bit µ: we assume that the challenger cannot submit the same bit over
and over.

Query Phase 2. A issues a number of queries as in the Query Phase 1. The restriction is that < LR
j >

are not allowed to be queried as first certificate or refreshed certificate queries if < LR
j >=< L0 > or

< LR
j >=< L1 >.
Guess. The adversary output the guess µ ′ ∈ {0,1} and wins if µ ′ = µ .
We define the adversary’s advantage in the above game by AdvCR

A (λ) = |Pr[µ ′ = µ]−1/2|.
Definition 3. The CBEKS scheme is said to be collusion resistant if AdvCR

A (λ) is negligible.

4 Preliminaries

4.1 Bilinear Maps

Let BG be an algorithm that on input a security parameter λ , outputs the parameters (p,G1,G2,GT ,e,g1,
g2) for a bilinear mapping, where G1, G2 and GT are multiplicative cyclic groups of prime order p. Let
g1 be a generator of G1 and g2 be a generator of G2. The function e : G1×G2→GT is a bilinear map if
the following conditions hold:

1. Bilinear: e(ga
1,g

b
2) = e(g1,g2)

ab for all a,b ∈ Zp;

2. Non-degenerate: e(g1,g2) 6= 1;

3. Efficiently computable: There is an efficient algorithm that computes e(h1,h2) for all h1 ∈G1 and
h2 ∈G2.

4.2 Discrete Logarithm Assumption

Let G1 and G2 be two multiplicative groups of prime order p. Let g1 be a generator of G1 and g2 be a
generator of G2. We define the advantage function AdvDL

B,G1
(λ) of an adversary B as Pr[B(g1,ga

1) =

a] where a is randomly chosen in Zp. We similarly define the advantage function AdvDL
B,G2

(λ) of an
adversary B as Pr[B(g2,ga

2) = a] where a is randomly chosen in Zp.
We say that the Discrete Logarithm (DL) assumption holds in (G1,G2) if both AdvDL

B,G1
(λ) and

AdvDL
B,G2

(λ) are negligible for all PPT adversary B.

4.3 Symmetric External Diffie-Hellman Assumption

Let e : G1×G2 → GT be a bilinear map and (p,G1,G2,GT ,e,g1,g2) be the parameters for a bilinear
mapping. We define the advantage function AdvSXDH

B,G1
(λ) of an adversary B as

|Pr[B(g1,gθ
1 ,g

ω
1 ,g

θω
1) = 1]−Pr[B(g1,gθ

1 ,g
ω
1 ,g

σ
1) = 1]|

where θ ,ω,σ are randomly chosen in Zp. We also define the advantage function AdvSXDH
B,G2

(λ) of an
adversary B as

|Pr[B(g2,gθ
2 ,g

ω
2 ,g

θω
2) = 1]−Pr[B(g2,gθ

2 ,g
ω
2 ,g

σ
2) = 1]|

where θ ,ω,σ are randomly chosen in Zp.
We say that the Symmetric External Diffie-Hellman (SXDH) assumption holds in (G1,G2) if both

AdvSXDH
B,G1

(λ) and AdvSXDH
B,G2

(λ) are negligible for all PPT adversary B. We set AdvSXDH
B,G1,G2

(λ)≥ AdvSXDH
B,G1

(λ)+AdvSXDH
B,G2

(λ).

14

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

4.4 Decisional Bilinear Diffie-Hellman Assumption

Let e : G1×G2 → GT be a bilinear map and (p,G1,G2,GT ,e,g1,g2) be the parameters for a bilinear
mapping. We define the advantage function AdvDBDH

B,GT
(λ) of an adversary B as

|Pr[B(g1,gθ
1 ,g

δ
1 ,g2,gδ

2 ,g
ω
2 ,e(g1,g2)

θδω) = 1]−Pr[B(g1,gθ
1 ,g

δ
1 ,g2,gδ

2 ,g
ω
2 ,e(g1,g2)

σ) = 1]|

where θ ,δ ,ω,σ are randomly chosen in Zp.
We say that the Decisional Bilinear Diffie-Hellman Assumption (DBDH) assumption holds in (G1,

G2,GT) if AdvDBDH
B,GT

(λ) is negligible for all PPT adversary B.

4.5 Decisional Bilinear Diffie-Hellman Exponent Assumption

Let e : G1×G2 → GT be a bilinear map and (p,G1,G2,GT ,e,g1,g2) be the parameters for a bilinear
mapping. We define the advantage function Advm−DBDHE

B,GT
(λ) of an adversary B as

|Pr[B(g1,gδ
1 ,g

α
1 , · · · ,gαm

1 ,gαm+2

1 , · · · ,gα2m

1 ,g2,gδ
2 ,g

α
2 ,g

α2

2 , · · · ,gαm

2 ,e(g1,g2)
δαm+1

) = 1]

−Pr[B(g1,gδ
1 ,g

α
1 , · · · ,gαm

1 ,gαm+2

1 , · · · ,gα2m

1 ,g2,gδ
2 ,g

α
2 ,g

α2

2 , · · · ,gαm

2 ,e(g1,g2)
σ) = 1]|

where α,δ ,σ are randomly chosen in Zp.
We say that the m-Decisional Bilinear Diffie-Hellman Exponent Assumption (DBDHE) assumption

holds in (G1,G2,GT) if Advm−DBDHE
B,GT

(λ) is negligible for all PPT adversary B.

4.6 Waters Hash Function

We choose to base our CBEKS construction on Waters IBE scheme [29] since such scheme is efficient
and practical, as well as taking place in the standard model. Indeed, Waters provided a hash function
H : {0,1}n→G1 that is collision resistant, while is not seen as a random oracle.

Let H : {0,1}n→G1 be the hash function used in Waters IBE scheme [29]. First, pick at random n+1
exponents e0,e1, · · · ,en ∈R Zp and then compute hi = gei for i ∈ [0,n]. Let h = (h0,h1, · · · ,hn) ∈Gn+1

1 be
the public description of the hash function H.

In the next CBEKS construction, the algebraic hash function H : {0,1}n → G1 is evaluated on a
keyword string w = (w1, · · · ,wn) ∈ {0,1}n as the product

h(w) = e0 +
n

∑
i=1

(ei ·wi) and H(w) = h0 ·
n

∏
i=1

(hwi
i) = gh(w)

1 .

The part h(w) can be seen as the secret key that protects the keyword.

In [29], Waters compared his IBE scheme with the Boneh-Boyen (BB) IBE system [4] in terms of
security. Let u be a random element in G1 and id be an identity. In BB scheme, id is seen as an element
in Zp whereas in Waters scheme, id = (id1, · · · , idn) ∈ {0,1}n. Boneh and Boyen evaluated the element
u · gid

1 while Waters considered the element u ·∏i∈S idi where S ⊂ [1,n] is the set of all i for which
idi = 1. This difference makes that Waters scheme is fully secure whereas BB scheme is only selectively
secure. Therefore, we use Waters’ trick to construct our CBEKS scheme to obtain the desired security
level.

15

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

5 CBEKS Construction

The following CBEKS construction is inspired from the Boneh-Gentry-Waters (BGW) Broadcast En-
cryption (BE) scheme [6]. A BE scheme allows a sender to forward encrypted information to all the
recipients such that only a group of recipients selected by the sender can recover the original information
in plain. Such property is useful to let the certifier to send encrypted update keys to all the receivers,
while only some of them are able to successfully retrieve these update keys regarding the selection of
the certifier. Thus, we let the certifier choose a group of receivers when it is generating an update key,
such that only the receivers in this group will be able to correctly update their certificate. Therefore, it
seems natural that the construction will lead to BE schemes. The main advantage of the BGW scheme is
the constant size of both the receiver’s secret keys and the ciphertexts. The scheme is proved collusion
resistant and selectively secure against chosen-ciphertext attacks in the standard model.

The construction below is also established on Waters IBE scheme [29], where the algorithm KeyGen
in the IBE scheme corresponds to the algorithm TrapGen in our CBEKS scheme. We let each receiver
choose a keyword and generate a corresponding trapdoor that is given to the server in order to check that
the receiver’s keyword matches the uploader’s one. The Waters scheme is efficient in that the secret key
and the ciphertext have constant size, and the decryption only involves two pairing computations. The
scheme is proved semantically secure in the standard model. Observe that Abdalla et al. [1] showed
that Waters IBE scheme is not anonymous (meaning that the ciphertext might reveal the identity of the
recipient). Moreover, Boneh et al. [5] presented a transformation of an IBE scheme into a PEKS scheme.
Nevertheless, the authors noticed that the IBE scheme is required to be anonymous in order to provide
a PEKS scheme against chosen message attacks. Therefore, such issue directly applied to our CBEKS
scheme; however we manage to overcome it as follows.

First, note that in addition to the keywords that have to match, a receiver should provide a label LR
j

that corresponds to the label LS
l held by the server for a successful test outcome. This means that a

receiver meets two verification steps through the label and the keyword that enhance the security of the
CBEKS scheme.

We now assume that the label of the receiver LR
j matches the label of the server LS

l . As noticed
by Fang et al. [12], we have to ensure that an adversarial receiver cannot modify a ciphertext C T wS

into a new valid ciphertext C T ′
wS without knowing the keyword wS. However, this adversarial re-

ceiver would be able to generate a trapdoor TrapwR
i ,L

R
j

for a guessed keyword wR
i using its secret key

and so could obtain the relation between the modified ciphertext C T ′
wS and the trapdoor TrapwR

i ,L
R
j

through interacting with the server as in a real environment. For this reason, Fang et al. [12] suggested
to introduce a test query in the security model, as well as a strongly unforgeable one-time signature
σ = Sign(ssk,(C T 1,C T 2,C T 3,C T 4,C T 5)) on the tuple (C T 1,C T 2,C T 3,C T 4,C T 5) such
that C T 4 = gκ

1 and C T 5 = (AsvkB)κ for a random exponent κ ∈R Zp and a verification key svk.

Our CBEKS construction is as follows:
Setup(λ ,m)→ (params,skS,skC,{skR,i}i∈[1,m]). Let λ be the security parameter and (p,G1,G2,GT ,

e,g1,g2) be the bilinear map parameters. Pick at random A,B∈R G2 and let OTS=(KeyGen,Sign,Verify)
be a strongly unforgeable one-time signature scheme. Pick at random α ∈R Zp and compute gα i

1 for
i ∈ [1,m]∪ [m+ 2,2m] and gα i

2 for i ∈ [1,m]. Pick at random β ∈R Zp and compute gβ

1 and gβ

2 . Pick

at random γ ∈R Zp and compute gγα i

1 for i ∈ [0,m]. Pick at random a1, · · · ,am,b,c ∈R Zp and compute
ga1

1 , · · · ,gam
1 , gb

2 and gc
1.

Finally, set the public parameters params as equal to:

(p,G1,G2,GT ,e,g1,g2,A,B,{gα i

1 }i∈[1,m]∪[m+2,2m],{gα i

2 }i∈[1,m],g
β

2 ,{gai
1 }i∈[1,m],g

b
2,g

c
1,OTS).

16

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

Set the receiver i’s secret key skR,i as equal to (ai,g
β

1 ,g
γα i

1) for i ∈ [1,m]. Set the server’s secret key skS

as equal to b. Set the certifier’s secret key skC as equal to (c,gγ

1).
Encrypt(params,wS) → C T wS . Let the keyword space be KeywS = {0,1}n where 2n << p.

Choose n+1 random elements e0,e1, · · · ,en ∈R Zp and compute hk = gek
1 for k∈ [0,n]. Set h=(h0,h1, · · · ,

hn) as the public description of the Waters hash function H : {0,1}n→G1, and e = (e0,e1, · · · ,en) is kept
secret by the uploader.

Second, select a one-time signature key pair (ssk,svk)←KeyGen(λ). Pick at random y,κ ∈R Zp and

compute gh(wS)y
1 , (gβ

2 ·g−wS

2)y = g(β−wS)y
2 , (gb

2)
y, gκ

1 and (AsvkB)κ . Then, compute the one-time signature

σ = Sign(ssk,(gh(wS)y
1 ,g(β−wS)y

2 ,gby
2 ,gκ

1 ,(A
svkB)κ)). Finally, set the ciphertext C T wS as equal to:

(C T 0,C T 1,C T 2,C T 3,C T 4,C T 5,σ) = (svk,gh(wS)y
1 ,g(β−wS)y

2 ,gby
2 ,gκ

1 ,(A
svkB)κ ,σ).

CertGen(params,skC,LR
1 , i)→ CertLR

1 ,i
. Pick at random r1 ∈R Zp and compute e(gai

1 ,g
b
2)

cr1LR
1 and

gr1
2 . The certifier sends (e(gai

1 ,g
b
2)

cr1LR
1 ,gr1

2) to the receiver and the latter calculates (gr1
2)

ai (where ai is

one of the components of the receiver i’s secret key skR,i). Moreover, the certifier keeps AILR
1
= gr1LR

1
1 on

its local storage. Finally, set the certificate CertLR,i
1

as equal to:

(C1,1,C1,2) = (e(gai
1 ,g

b
2)

cr1LR
1 ,gair1

2).

UpdtKeyGen(params,skC,AILR
j−1
,LR

j ,S j) → UKLR
j
. Let AILR

j−1
= g

r j−1LR
j−1

1 and S j ⊆ [1,m]. Pick

at random s j,r j ∈R Zp and compute gs j
2 , gr j

2 , (gγ

1 ·∏k∈S j gαm+1−k

1)s j and e(gα
1 ,g

αm

2)s j · e(gc
1,g

b
2)

r jLR
j

e(g
r j−1LR

j−1
1 ,gb

2)
c
=

e(gα
1 ,g

αm

2)s j · e(gc
1,g

b
2)

r jLR
j−r j−1LR

j−1 . The certifier keeps AILR
j
= g

r jLR
j

1 on its local storage. Finally, set
the update key UKLR

j
as equal to:

(uk j,1,uk j,2,uk j,3,uk j,4) = (gs j
2 ,g

r j
2 ,(g

γ

1 ·∏
k∈S j

gαm+1−k

1)s j ,e(gα
1 ,g

αm

2)s j · e(gc
1,g

b
2)

r jLR
j−r j−1LR

j−1).

UpdtCert(params,CertLR
j−1,i

,UKLR
j
) → CertLR

j ,i
. Suppose that i ∈ S j. First, parse the certificate

CertLR
j−1,i

as (C j−1,1,C j−1,2) = (e(gai
1 ,g

b
2)

cr j−1LR
j−1 ,gair j−1

2) and the update key UKLR
j

as (uk j,1,uk j,2,uk j,3,

uk j,4) = (gs j
2 ,g

r j
2 ,(g

γ

1 ·∏k∈S j gαm+1−k

1)s j ,e(gα
1 ,g

αm

2)s j · e(gc
1,g

b
2)

r jLR
j−r j−1LR

j−1). Second, compute:

e(uk j,3,gα i

2)

e(gγα i

1 ·∏k∈S j,k 6=i gαm+1−k+i

1 ,uk j,1)
=

e((gγ

1 ·∏k∈S j gαm+1−k

1)s j ,gαi
2)

e(gγα i

1 ·∏k∈S j,k 6=i gαm+1−k+i

1 ,gs j
2)

= e(gα
1 ,g

αm

2)s j

uk j,4

e(gα
1 ,g

αm

2)s j
=

e(gα
1 ,g

αm

2)s j · e(gc
1,g

b
2)

r jLR
j−r j−1LR

j−1

e(gα
1 ,g

αm

2)s j

= e(gc
1,g

b
2)

r jLR
j−r j−1LR

j−1

Then, compute (uk j,2)
ai = (gr j

2)
ai (where ai is one of the components of the receiver i’s secret key skR,i)

and

C j−1,1 · (e(gc
1,g

b
2)

r jLR
j−r j−1LR

j−1)ai = e(gai
1 ,g

b
2)

cr j−1LR
j−1 · (e(gc

1,g
b
2)

r jLR
j−r j−1LR

j−1)ai

= e(gai
1 ,g

b
2)

cr jLR
j

17

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

Finally, set the refreshed certificate CertLR
j ,i

as equal to:

(C j,1,C j,2) = (e(gai
1 ,g

b
2)

cr jLR
j ,gair j

2).

TrapGen(params,skR,i,wR
i ,CertLR

j ,i
)→TrapwR

i ,L
R
j
. First, parse the certificate CertLR

j ,i
as (C j,1,C j,2)=

(e(gai
1 ,g

b
2)

cr jLR
j ,gair j

2). Keep C j,2 = gair j
2 , pick at random v,x,z∈R Zp and compute e(H(wR

i),g2)
aix, (gb

2)
aiz,

gv
1 as well as

C j,1 · e(H(wR
i),g

b
2)

aix = e(gai
1 ,g

b
2)

cr jLR
j · e(H(wR

i),g
b
2)

aix

(gβ

1 ·g
−wR

i
1)v · (H(wR

i))
aiz = g(β−wR

i)v
1 ·H(wR

i)
aiz

Finally, set the trapdoor TrapwR
i ,L

R
j

as equal to:

(Tj,1,Tj,2,Tj,3,Tj,4,Tj,5,Tj,6) = (e(gai
1 ,g

b
2)

cr jLR
j · e(H(wR

i),g
b
2)

aix,e(H(wR
i),g2)

aix,

g(β−wR
i)v

1 ·H(wR
i)

aiz,gbaiz
2 ,gair j

2 ,gv
1)

Test(params,skS,C T wS ,LS
l ,TrapwR

i ,L
R
j
)→ b. First, parse the ciphertext C T wS as (C T 0,C T 1,

C T 2,C T 3,C T 4,C T 5,σ) = (svk,gh(wS)y
1 ,g(β−wS)y

2 ,gby
2 ,gκ

1 ,(A
svkB)κ ,σ) and the trapdoor TrapwR

i ,L
R
j

as

(Tj,1,Tj,2,Tj,3,Tj,4,Tj,5,Tj,6)= (e(gai
1 ,g

b
2)

cr jLR
j ·e(H(wR

i),g
b
2)

aix,e(H(wR
i),g2)

aix,g(β−wR
i)v

1 ·H(wR
i)

aiz,gbaiz
2 ,

gair j
2 ,gv

1).

Second, test if

Verify(C T 0,σ ,(C T 1,C T 2,C T 3,C T 4,C T 5)) = 1 and e(C T 4,AC T 0B) = e(g1,C T 5).

Then, check that

Tj,1 = e(gc
1,Tj,5)

bLS
l · (Tj,2)

b and
e(Tj,3,C T 3)

e(C T 1,Tj,4)
= e(Tj,6,C T 2)

b.

If all the adove equations hold, then output 1; otherwise, output 0.

Correctness First, we verify that:

e(C T 4,AC T 0B) = e(gκ
1 ,A

svkB) = e(g1,(AsvkB)κ) = e(g1,C T 5)

18

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

Then, we suppose that wS = wR and LS
l = LR

j and we verify that:

Tj,1 = e(gai
1 ,g

b
2)

cr jLR
j · e(H(wR

i),g
b
2)

aix

= e(gc
1,g

air j
2)bLS

l · (e(H(wR
i),g2)

aix)b

= e(gc
1,Tj,5)

bLS
l · (Tj,2)

b

e(Tj,3,C T 3)

e(C T 1,Tj,4)
=

e(g(β−wR
i)v

1 ·H(wR
i)

aiz,gby
2)

e(gh(wS)y
1 ,gbaiz

2)

= e(g(β−wR
i)v

1 ,gby
2) · e(H(wR

i)
aiz,gby

2)

e(gh(wS)y
1 ,gbaiz

2)

= e(g(β−wR
i)v

1 ,gby
2) · e((g

h(wR
i)

1)aiz,gby
2)

e(gh(wS)y
1 ,gbaiz

2)

= e(g(β−wS)v
1 ,gby

2) · e((g
h(wS)
1)aiz,gby

2)

e(gh(wS)y
1 ,gbaiz

2)

= e(gv
1,g

(β−wS)y
2)b = e(Tj,6,C T 2)

b

6 Security Proofs

6.1 Consistency

Theorem 1. The CBEKS scheme is computationally consistent without the random oracle model assum-
ing that the DL assumption holds.

Proof Suppose there exists a PPT adversary A that attacks the computational consistency of the
CBEKS scheme. A challenger B tries to solve the DL problem by playing the consistency game with
the adversary A as follows.

B receives a DL problem instance (g1,g
ai
1 ,g2,g

ai
2) and has to output ai. Let AdvDL

B,G1
(λ) be the

advantage function that B solves the DL problem in G1 and AdvDL
B,G2

(λ) be the advantage function that
B solves the DL problem in G2.

Let (wS,LS
l) and (wR

i ,L
R
1 , j, i) be the tuples that A returns in the consistency experiment. Let a

ciphertext C T wS be

(C T 0 = svk,C T 1 = gh(ws)y
1 ,C T 2 = g(β−wS)y

2 ,C T 3 = gby
2 ,C T 4 = gκ

1 ,C T 5 = (AsvkB)κ)

for a one-time signature key pair (ssk,svk)← KeyGen(λ), two elements A,B in G2 and two random
exponents y,κ in Zp. Let a trapdoor TrapwR

i ,L
R
j

be

(Tj,1 = e(gai
1 ,g

b
2)

cr jLR
j · e(H(wR

i)
ai ,gb

2)
x,Tj,2 = e(H(wR

i)
ai ,g2)

x,Tj,3 = g(β−wR
i)v

1 · (H(wR
i)

ai)z,

Tj,4 = (gai
2)

bz,Tj,5 = (gai
2)

r j ,Tj,6 = gv
1)

for random exponents b,c,r j,v,x,z in Zp. We let H(wR
i)

ai be computed as (gai
1)

h(wR
i).

We assume that the algorithm CertGen was run with input LR
1 and that the algorithms UpdtKeyGen

and UpdtCert were called j− 1 times to obtain CertLR
j ,i

and then TrapwR
i ,L

R
j

since the receiver i is sup-

posed to belong to Sk for all 1≤ k ≤ j. (In addition, we suppose that LR
l = LR

j ; however, we do not need
this hypthesis in our proof.)

19

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

We suppose that the uploader’s keyword and the receiver’s keyword differ, i.e. wS 6= wR
i . The adver-

sary wins exactly when e(Tj,3,C T 3)
e(C T 1,Tj,4)

= e(Tj,6,C T 2)
b. Therefore, we get that:

⇔ e(g(β−wR
i)v

1 ·H(wR
i)

aiz,gby
2)

e(gh(wS)y
1 ,gbaiz

2)
= e(gv

1,g
(β−wS)y
2)b

⇔ e(g(β−wR
i)v

1 ,gby
2) · e(H(wR

i)
aiz,gby

2)

e(gh(wS)y
1 ,gbaiz

2)
= e(gv

1,g
(β−wS)y
2)b

⇔ (β −wR
i)vby+(h(wR

i)−h(wS))aizby = (β −wS)vby mod p

We suppose that b,y 6= 0 mod p (the event that both b and y are equal to 0 mod p happens with proba-
bility 1/p2), so that (β −wR

i)v+(h(wR
i)−h(wS))aiz = (β −wS)v mod p.

• Case 1: h(wR
i) = h(wS) 6= 0 mod p. In this situation, we get that (β −wR

i)v = (β −wS)v, and so
wR

i = wS such that v 6= 0 mod p (with probability 1−1/p). We thus obtain a contradiction as we
have assumed that wS 6= wR

i .

• Case 2: h(wR
i) 6= h(wS). In this situation, we get that (h(wR

i)− h(wS))aiz = v(β −wS−β +wR
i)

mod p, and so ai =
wR

i −wS

h(wR
i)−h(wS)

· v
z mod p, meaning that we have a solution to the DL problem.

• Case 3: h(w) = 0 mod p for w = wR
i ∨wS. Let us fix a keyword w. The exponents e0,e1, · · · ,en

are randomly selected in Zp. Note that the total number of possibilities for w is 2n. Then, we have
that the probability that h(w) = 0 mod p is equal to 2n/p.

Finally, if i ∈ Sk for all 1≤ k≤ j, LS
l = LR

j , wS 6= wR
i and Test(params,skS,C T wS ,LS

l , TrapwR
i ,L

R
j
)→

1, the advantage of A is upper bounded as follows:

Advcons
A (λ) = Pr[Expcons

A (λ) = 1]≤ 1
p2 +

1
p
+

2n

p
+AdvDL

B,G1
(λ)+AdvDL

B,G2
(λ).

6.2 Indistinguishability of CBEKS against Chosen Keyword and Ciphertext attacks (IND-
CKCA)

Theorem 2. The CBEKS scheme is IND-CKCA secure without the random oracle model assuming that
the SXDH assumption holds and that OTS is a strongly unforgeable one-time signature scheme.

Proof The proof of this theorem will result from the proofs of the three lemmas. These lemmas repre-
sent GameS (server), GameC (certifier) and GameR (receiver), respectively.

Lemma 1. The CBEKS scheme is semantically secure against a chosen keyword and ciphertext attack
in GameS without the random oracle model assuming that the SXDH assumption holds.

Suppose that there exists a PPT adversary A in GameS that can attack the CBEKS scheme in the standard
model with advantage AdvGameS

A (λ)≥ ε . We build a challenger B that has advantage at least ε in solving
the SXDH problem in (G1,G2). B receives a random SXDH problem instance (g1,gθ

1 ,g
ω
1 ,g2,gθ

2 ,g
ω
2)

and Z that is either gθω
2 or a random element in G2.

Setup. B computes the public parameters params and the server’s secret key skS as follows.
First, B chooses at random α ∈R Zp and generates gα i

1 for i ∈ [1,m]∪ [m+ 2,2m] and gα i

2 for i ∈
[1,m]. It also randomly chooses a1, · · · ,am,b,c ∈R Zp and computes ga1

1 , · · · ,gam
1 ,gb

2,g
c
1. In addition, the

20

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

challenger picks at random A,B ∈R G2 and chooses a strongly unforgeable one-time signature scheme
OTS= (KeyGen,Sign,Verify).

Finally, the challenger gives A the public parameters params = (p,G1,G2,GT ,e,g1,g2,A,B,{gα i

1
}i∈[1,m]∪[m+2,2m],{gα i

2 }i∈[1,m],gθ
2 ,{gai

1 }i∈[1,m],gb
2,g

c
1,OTS) and the server’s secret key skS = b. Note that

since the exponents in Zp are uniformly chosen at random, these public parameters have an identical
distribution to that in the actual construction and that B has all the necessary values to compute the
secret key skS.

Let the keyword space KeywS be {0,1}n. B chooses n+1 random elements e0,e1, · · · ,en in Zp and
computes hi = gei

1 for i ∈ [0,n]. Let h = (h0,h1, · · · ,hn) be the public description of the hash function H.
The algebraic hash function H : {0,1}n→G1 is evaluated on a keyword string w=(w1, · · · ,wn)∈{0,1}n

as h(w) = e0 +∑
n
i=1(ei ·wi) and H(w) = h0 ·∏n

i=1(h
wi
i) = gh(w)

1 .
Query Phase 1. A makes the following queries:

• First Certificate Query < LR
1 >. If A queries LR

1 to the first certificate query generation oracle, then
B picks at random r1 ∈R Zp and computes e(gai

1 ,g
b
2)

cr1LR
1 and gr1ai

2 . It sends these two elements to
A as the first certificate CertLR

1 ,i
.

• Update Key Query < LR
j >. If A queries LR

j to the update key generation oracle, then B randomly

selects γ,s j,r j in Zp and generates gs j
2 , gr j

2 , (gγ

1 ·∏k∈S gαm+1−k

1)s j for S ⊆ [1,m], and e(gα
1 ,g

αm

2)s j ·
e(gc

1,g
b
2)

r jLR
j−r1LR

1 . The challenger forwards these elements to A as the update key UKLR
j
.

• Refreshed Certificate Query < LR
j >. If A queries LR

j to the refreshed certificate generation oracle,

then B picks at random r j ∈R Zp and sends the elements e(gai
1 ,g

b
2)

cr jLR
j and gair j

2 to A as the
refreshed certificate CertLR

j ,i
.

• Trapdoor Query < wR
i ,L

R
j >. If A queries (wR

i ,L
R
j) to the trapdoor generation oracle, then B

selects v,x,z at random in Zp, generates e(gai
1 ,g

b
2)

cr jLR
j · e(H(wR

i),g
b
2)

aix, e(H(wR
i),g2)

aix, (gθ
1)

v ·
g−wR

i v
1 ·H(wR

i)
aiz, (gb

2)
aiz, gair j

2 and gv
1 as the trapdoor TrapwR

i ,L
R
j
, and gives these elements to A

• Test Query < C T wS ,wR
i ,L

S
l ,L

R
j >. A can adaptively ask B for the test query for any C T wS ,

wR
i , LS

l and LR
j . The challenger first makes a refreshed certificate query on LR

j , then makes a trap-
door query on wR

i and LR
j , and responds to A by sending the result Test(params,skS,C T wS ,LS

l ,
TrapwR

i ,L
R
j
).

Challenge. Once the adversary decides that the Query Phase 1 is over, it outputs a keyword pair
(w0,w1). The challenger answers by choosing a random bit µ ∈R {0,1} and by letting the challenge
keyword be w∗ = wµ . Then, it selects a one-time signature key pair (ssk∗,svk∗)←KeyGen(λ) and an ex-
ponent κ ∈R Zp, and sets C T 0 = svk∗, C T 4 = gκ

1 and C T 5 = (Asvk∗B)κ . It also sets C T 1 = (gω
1)

h(w∗),
C T 2 =Z ·(gω

2)
(−w∗) and C T 3 =(gω

2)
b, and generates a one-time signature σ =Sign(ssk∗,(C T 1,C T 2,

C T 3,C T 4,C T 5)). The challenger sends the challenge ciphertext C T ∗= (C T 0,C T 1,C T 2,C T 3,
C T 4,C T 5,σ) to the adversary.

When Z = gθω
2 , then C T ∗ is a valid challenge ciphertext to A as in the real attack. When Z is

random in G2, then C T 2 = Z · (gω
2)

(−w∗) is a uniform element in G2, and thus the ciphertext gives no
information about the challenger’s bit µ .

Query Phase 2. A continues to make queries as in the Query Phase 1. The restriction is that <
wR

i ,L
R
j > are not allowed to be queried as trapdoor queries if < wR

i ,L
R
j >=< w0,LR

j > or < wR
i ,L

R
j >=<

21

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

w1,LR
j > and <C T wS ,wR

i ,L
S
l ,L

R
j > are not allowed to be queried as test queries if <C T wS ,wR

i ,L
S
l ,L

R
j >

=< C T ∗,w0,LS
l ,L

R
j > or < C T wS ,wR

i ,L
S
l ,L

R
j >=< C T ∗,w1,LS

l ,L
R
j >.

Guess. The adversary outputs a bit µ ′ ∈ {0,1}. If µ = µ ′, then B outputs 1 meaning that Z = gθω
2 ;

otherwise, B outputs 0 meaning that Z is a random element in G2.

Analysis When Z = gθω
2 , then the adversary must satisfy |Pr[µ ′ = µ]− 1

2 | ≥ ε . When Z ∈R G2, then
C T 2 = Z · (gω

2)
(−w∗) is uniformly random in G2, and thus Pr[µ ′ = µ] = 1

2 . It follows that we have
AdvSXDH

B,G1,G2
(λ)≥ ε .

Lemma 2. The CBEKS scheme is semantically secure against a chosen keyword and ciphertext attack
in GameC without the random oracle model assuming that the SXDH assumption holds.

Suppose that there exists a PPT adversary A in GameC that can attack the CBEKS scheme in the standard
model with advantage AdvGameC

A (λ)≥ ε . We build a challenger B that has advantage at least ε in solving
the SXDH problem in (G1,G2). B receives a random SXDH problem instance (g1,gθ

1 ,g
ω
1 ,g2,gθ

2 ,g
ω
2)

and Z that is either gθω
2 or a random element in G2.

Setup. The Setup phase is similar to the one for GameS except the following:

1. B chooses at random β ∈R Zp and computes gβ

2 ;

2. gθ
2 = gb

2 for an unknown exponent b;

3. The certifier’s secret key is set as skC = (c,gγ

1) (the server’s secret key skS is not computed).

Note that B has all the necessary values to compute the secret key skC.
Finally, the challenger gives A the public parameters params = (p,G1,G2,GT ,e,g1,g2,A,B,{gα i

1

}i∈[1,m]∪[m+2,2m],{gα i

2 }i∈[1,m],g
β

2 ,{gai
1 }i∈[1,m],gθ

2 ,g
c
1,OTS) and the certifier’s secret key skC.

Query Phase 1. A makes the following queries:

• Refreshed Certificate Query < LR
j >. If A queries LR

j to the refreshed certificate generation oracle,

then B picks at random r j ∈R Zp and sends the elements e(gai
1 ,g

θ
2)

cr jLR
j and gair j

2 to A as the
refreshed certificate CertLR

j ,i
.

• Trapdoor Query < wR
i ,L

R
j >. If A queries (wR

i ,L
R
j) to the trapdoor generation oracle, then B

selects v,x,z at random in Zp, generates e(gai
1 ,g

θ
2)

cr jLR
j ·e(H(wR

i),g
θ
2)

aix, e(H(wR
i),g2)

aix, g(β−wR
i)v

1 ·
H(wR

i)
aiz, (gθ

2)
aiz, gair j

2 and gv
1 as the trapdoor TrapwR

i ,L
R
j
, and gives these elements to A .

• Test Query < C T wS ,wR
i ,L

S
l ,L

R
j >. A can adaptively ask B for the test query for any C T wS ,

wR
i , LS

l and LR
j . The challenger first makes a refreshed certificate query on LR

j , then makes a trap-
door query on wR

i and LR
j , and responds to A by sending the result Test(params,skS,C T wS ,LS

l ,
TrapwR

i ,L
R
j
).

Challenge. Once the adversary decides that the Query Phase 1 is over, it outputs a keyword pair
(w0,w1). The challenger answers by choosing a random bit µ ∈R {0,1} and by letting the challenge key-
word be w∗ = wµ . Then, it selects a one-time signature key pair (ssk∗,svk∗)← KeyGen(λ) and an expo-
nent κ ∈R Zp, and sets C T 0 = svk∗, C T 4 = gκ

1 and C T 5 = (Asvk∗B)κ . It also sets C T 1 = (gω
1)

h(w∗),
C T 2 = (gω

2)
(β−w∗) and C T 3 = Z, and generates a one-time signature σ = Sign(ssk∗,(C T 1,C T 2,

C T 3,C T 4,C T 5)). The challenger sends the challenge ciphertext C T ∗= (C T 0,C T 1,C T 2,C T 3,
C T 4,C T 5,σ) to the adversary.

22

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

When Z = gθω
2 , then C T ∗ is a valid challenge ciphertext to A as in the real attack. When Z is

random in G2, then C T 3 = Z is a uniform element in G2, and so C T ∗ gives no information about the
challenger’s bit µ .

Query Phase 2. A continues to make queries as in the Query Phase 1. The restriction is that <
wR

i ,L
R
j > are not allowed to be queried as trapdoor queries if < wR

i ,L
R
j >=< w0,LR

j > or < wR
i ,L

R
j >=<

w1,LR
j > and <C T wS ,wR

i ,L
S
l ,L

R
j > are not allowed to be queried as test queries if <C T wS ,wR

i ,L
S
l ,L

R
j >

=< C T ∗,w0,LS
l ,L

R
j > or < C T wS ,wR

i ,L
S
l ,L

R
j >=< C T ∗,w1,LS

l ,L
R
j >.

Guess. The adversary outputs a bit µ ′ ∈ {0,1}. If µ ′ = µ , then B outputs 1 meaning that Z = gθω
2 ;

otherwise, B outputs 0 meaning that Z is a random element in G2.

Analysis When Z = gθω
2 , then the adversary must satisfy |Pr[µ ′ = µ]− 1

2 | ≥ ε . When Z ∈R G2, then
C T 3 = Z is uniformly random in G2, and thus Pr[µ ′ = µ] = 1

2 . It follows that we have AdvSXDH
B,G1,G2

(λ)≥
ε .

Lemma 3. The CBEKS scheme is semantically secure against a chosen keyword and ciphertext attack
in GameR without the random oracle model assuming that the SXDH assumption holds and that OTS is
a strongly unforgeable one-time signature scheme.

Suppose that there exists a PPT adversary A in GameR that can attack the CBEKS scheme in the standard
model with advantage AdvGameR

A (λ)≥ ε . We build a challenger B that has advantage at least ε in solving
the SXDH problem in (G1,G2). B receives a random SXDH problem instance (g1,gθ

1 ,g
ω
1 ,g2,gθ

2 ,g
ω
2)

and Z that is either gθω
2 or a random element in G2.

Let C T ∗ = (svk∗,C T 1,C T 2,C T 3,C T 4,C T 5,σ) be the challenge ciphertext given to the ad-
versary in GameR. Let EvOT S be the event that A makes a test query for C T = (svk∗,C T ′

1,C T ′
2,

C T ′
3,C T ′

4,C T ′
5,σ

′) such that Verify(svk∗,σ ′,(C T ′
1,C T ′

2,C T ′
3,C T ′

4,C T ′
5)) = 1. In the Query

Phase 1, the adversary does not have any information on svk∗. Thus, the probability of a pre-challenge
occurrence of EvOT S does not exceed qto ·Bound where qto denotes the total number of queries made
to the test oracle and Bound is the maximum probability that any one-time verification key svk∗ is
output by KeyGen (which does not exceed 1/p by assumption). In the Query Phase 2, EvOT S pro-
duces an algorithm that breaks the strong unforgeability of the one-time signature. Thus, the probability
Pr[EvOT S] ≤ qto/p+AdvOT S, where AdvOT S denotes the probability defined for a one-time signature
(that should be negligible by assumption).

Initialization. A selects a receiver i∗ ∈ [1,m] as the one it wants to be challenged on.
Setup. The Setup phase is similar to the one for GameS except the following:

1. B chooses at random β ∈R Zp and computes gβ

2 ;

2. gθ
2 = gb

2 for an unknown exponent b;

3. The receiver i∗’s secret key is set as skR,i∗ = (ai∗ ,g
β

1 ,g
γα i∗

1) (the server’s secret key skS is not
computed).

Note that B has all the necessary values to compute the secret key skR,i∗ .
Finally, the challenger gives A the public parameters params = (p,G1,G2,GT ,e,g1,g2,A,B,{gα i

1

}i∈[1,m]∪[m+2,2m],{gα i

2 }i∈[1,m],g
β

2 ,{gai
1 }i∈[1,m],gθ

2 ,g
c
1,OTS) and the receiver i∗’s secret key skR,i∗ .

Query Phase 1. A makes the following queries:

• First Certificate Query < LR
j >. If A queries LR

j to the first certificate query generation oracle, then
B picks at random r1 ∈R Zp and computes e(gai∗

1 ,gθ
2)

cr1LR
1 and gr1ai∗

2 . It sends these two elements
to A as the first certificate CertLR

1 ,i
∗ .

23

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

• Update Key Query < LR
j >. If A queries LR

j to the update key generation oracle, then B randomly

selects s j,r j in Zp and generates gs j
2 , gr j

2 , (gγ

1 ·gαm+1−i∗

1)s j , and e(gα
1 ,g

αm

2)s j · e(gc
1,g

θ
2)

r jLR
j−r1LR

1 . The
challenger forwards these elements to A as the update key UKLR

j
.

• Test Query < C T wS ,wR
i∗ ,L

S
l ,L

R
j >. A can adaptively ask B for the test query for any C T wS =

(C T ′
0,C T ′

1,C T ′
2,C T ′

3,C T ′
4,C T ′

5,σ
′), wR

i∗ , LS
l and LR

j . The challenger first makes a first cer-
tificate query on LR

j , then computes the trapdoor TrapwR
i∗ ,L

R
j
, and tests if Verify(C T ′

0,σ
′,(C T ′

1,

C T ′
2,C T ′

3,C T ′
4,C T ′

5)) = 1 and e(C T ′
4,A

C T ′
0B) = e(g1,C T ′

5). If the above equations hold
and given C T wS =(C T ′

0,C T ′
1,C T ′

2,C T ′
3,C T ′

4,C T ′
5,σ

′) and C T ∗=(C T 0,C T 1,C T 2,
C T 3,C T 4,C T 5,σ), then the challenger meets two cases:

1. If C T ′
0 = svk′ ≡ svk∗ =C T 0, then we get that the tuples (C T ′

1,C T ′
2,C T ′

3,C T ′
4,C T ′

5,
σ ′) and (C T 1,C T 2,C T 3,C T 4,C T 5,σ) are not equal. Thus, the challenger sees an
occurrence of the event EvOT S and aborts.

2. If C T ′
0 = svk′ 6= svk∗ = C T 0, then we get that e(C T ′

4,A
C T ′

0B) = e(g1,C T ′
5) such that

C T ′
5 = (Asvk′B)κ since the ciphertext is supposed to be valid.

Challenge. Once the adversary decides that the Query Phase 1 is over, it outputs a keyword pair
(w0,w1). The challenger answers by choosing a random bit µ ∈R {0,1} and by letting the challenge key-
word be w∗ = wµ . Then, it selects a one-time signature key pair (ssk∗,svk∗)← KeyGen(λ) and an expo-
nent κ ∈R Zp, and sets C T 0 = svk∗, C T 4 = gκ

1 and C T 5 = (Asvk∗B)κ . It also sets C T 1 = (gω
1)

h(w∗),
C T 2 = (gω

2)
(β−w∗) and C T 3 = Z, and generates a one-time signature σ = Sign(ssk∗,(C T 1,C T 2,

C T 3,C T 4,C T 5)). The challenger sends the challenge ciphertext C T ∗= (C T 0,C T 1,C T 2,C T 3,
C T 4,C T 5,σ) to the adversary.

When Z = gθω
2 , then C T ∗ is a valid challenge ciphertext to A as in the real attack. When Z is

random in G2, then C T 3 = Z is a uniform element in G2, and thus the ciphertext gives no information
about the challenger’s bit µ .

Query Phase 2. A continues to make queries as in the Query Phase 1. The restriction is that <
C T wS ,wR

i∗ ,L
S
l ,L

R
j > are not allowed to be queried as test queries if <C T wS ,wR

i∗ ,L
S
l ,L

R
j >=<C T ∗,w0,

LS
l ,L

R
j > or < C T wS ,wR

i∗ ,L
S
l ,L

R
j >=< C T ∗,w1,LS

l ,L
R
j >.

Guess. The adversary outputs a bit µ ′ ∈ {0,1}. If µ ′ = µ , then B outputs 1 meaning that Z = gθω
2 ;

otherwise, B outputs 0 meaning that Z is a random element in G2.

Analysis If the event EvOT S does not occur and when Z = gθω
2 , then the adversary must satisfy

|Pr[µ ′ = µ]− 1
2 | ≥ ε . When Z ∈R G2, then C T 3 = Z is uniformly random in G2, and thus Pr[µ ′ =

µ] = 1
2 . It follows that we have AdvSXDH

B,G1,G2
(λ)≥ ε + qto

p +AdvOT S.

6.3 Indistinguishability of CBEKS against Keyword-Guessing attack (IND-KGA)

Theorem 3. The CBEKS scheme is IND-KGA secure without the random oracle model assuming that
the DBDH assumption holds.

Proof Suppose that there exists a PPT adversary A that can trigger a keyword-guessing attack against
the CBEKS scheme in the standard model with advantage AdvIND−KGA

A (λ). We build a challenger B that
plays the DBDH game in (G1,G2,GT) by interacting with the adversary. B receives a random DBDH

24

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

problem instance (g1,gθ
1 ,g

δ
1 ,g2,gδ

2 ,g
ω
2 ,Z) and outputs a bit ν ′ ∈ {0,1} as a guess to decide whether Z is

either equal to e(g1,g2)
θδω or a random element in GT .

The proof is divided into four games, namely Game 1, Game 2, Game 3 and Game 4, that differ by
slight modifications. In each game, the challenger will output a bit ν ′ that is well defined. Let Gi be the
event that the adversary is successful in Game i, for i ∈ [1,4]. Such process will allow us to conclude.

Game 1 This game is simply the same than the original IND-KGA security game. In the following,
we describe the simulation of the challenger.

At the start of Game 1, B chooses three random exponents θ , δ and ω uniformly in Zp. Nevertheless,
in the next games, B will stop to use θ , δ and ω; instead, it will require gθ

1 ,g
δ
1 ,g

δ
2 ,g

ω
2 along with either

Z = e(g1,g2)
θδω or Z ∈R GT for the security game simulation.

The adversary and the challenger play Game 1 following several steps as in the definition of the
IND-KGA security game. First, the challenger generates the public parameters params and gives them
to A . Then, the adversary initiates the Query Phase 1 and has access to the various oracles: A can make
first certificate, update key, refreshed certificate and trapdoor queries. After this first phase of queries,
the adversary chooses a challenge keyword pair (w0,w1). The challenger chooses a bit µ ∈R {0,1} at
random and sets the challenge keyword as w∗ = wµ . Thereafter, A makes other queries to the same or-
acles such that the trapdoors resulting from trapdoor queries have to embed a keyword that differs from
w∗. Eventually, the adversary returns a bit µ ′ ∈ {0,1} as a guess for µ . If µ ′ = µ , then B returns ν ′ = 1;
otherwise, it returns ν ′ = 0. This completes the description of the challenger’s simulation in Game 1.

We give now more details about the trapdoor queries that A makes, for some keyword w and label
L. Let q ∈ N be the total number of trapdoor queries. Let W̄ be the set containing all the keywords
selected for the trapdoor queries. We assume that the challenge keyword does not belong to W̄ since the
restriction during the Challenge phase specifies that w∗ has not been and will not be queried in the Query
Phase 1 and Phase 2, respectively. Let W ⊆ W̄ be the subset of the requested keywords such that all
multiples from W̄ are removed. We suppose that |W |= q0 ≤ q = |W̄ | such that two keywords in W are
necessarily different. Finally, we define W ∗ = W ∪{w∗}.

Game 2 This game is almost identical to Game 1 except that the challenger sets some elements differ-
ently.

The challenger computes M = 2q and randomly chooses k ∈R [1,n]. B then selects at random a tuple
x = (x0,x1, · · · ,xn) where xi ∈R [0,M−1] for i ∈ [1,n], and a tuple y = (y0,y1, · · · ,yn) where yi ∈R Zp for
i ∈ [1,n]. We assume that these elements are kept secret by the challenger.

Given a keyword of the form w = (w1, · · · ,wn), let us define three functions as follows:

x(w) = x0 +
n

∑
i=1

(xi ·wi), y(w) = (p−Mk)+ y0 +
n

∑
i=1

(yi ·wi), h(w) = x(w)+θy(w).

The challenger generates the hash function H with public description h = (h0,h1, · · · ,hn) ∈Gn+1
1 as fol-

lows. B lets h0 = gx0
1 (gθ

1)
p−Mk+y0 and hi = gxi

1 (g
θ
1)

yi for i ∈ [1,n]. Observe that such setting does not
affect the distribution of the outputs of the hash function H.

We now describe techniques employed in [29, 12] to construct the security proof. As in [12], let
V IEWA be the adversary’s random tape and the transcript of its interactions with its oracles in the sim-
ulation of Game 2. In other words, let us fix all the random elements that A is able to learn during its
execution, including its random coin tosses. More precisely, we fix the public parameters params, the

25

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

challenge bit µ and the randomness used in answering the trapdoor and other queries. This means that
A can be seen as a deterministic algorithm, and thus the set W ∗ can be seen as fixed.

Let Ȳ = (y0,y1, · · · ,yn,k) where the elements are distributed as above. Therefore, if V IEWA is fixed
and the game is conducted again, then Ȳ has the same distribution as for a run of the game without
having V IEWA as fixed. This happens due to the random “masking” values xi.

Forced Abort: Let FAbort be the event that one of the following conditions is true:

1. A asks a trapdoor query for a keyword w and a label L such that y(w) = 0 mod p.

2. A chooses a keyword pair (w0,w1) such that neither w0 nor w1 is equal to 0 mod p.

If FAbort occurs then the challenger aborts and ν ′ is chosen at random.
We will modify the next games in order to force the challenger to abort each time that the above

event happens (so we call the event a forced abort). For every fixed V IEWA, we define τ(V IEWA) =
PrȲ [¬FAbort], where ¬FAbort denotes the complementary event of FAbort.

Let ζlow and ζup be the lower and upper bounds on τ(V IEWA) respectively. We get the following
lemma:

Lemma 4. For every fixed V IEWA , we define ζlow = 1
4(n+1)q and ζup =

1
2q . Thus, we have that

ζlow ≤ τ(V IEWA)≤ ζup.

This lemma is also (partly) used in [21, 29, 12]. Note that a proof of these two bounds can be found in
[12]. We let the reader to refer to [12] for additional information about this lemma and the corresponding
proof.

We now explicit the modifications made between Game 1 and Game 2. We assume that V IEWA is
fixed since we assume that the adversary has terminated the execution. Two events occuring in Game 2
but not in Game 1 can be described as follows:

Forced Abort: After the output of the adversary’s bit µ ′ as a guess for µ , check whether FAbort
happens or not. If it occurs, then a random bit ν ′ is returned and the challenger aborts; otherwise, the
challenger keeps on as before.

Artificial Abort: To discard some unwanted dependency on probabilities, some artificial aborts are
added such that the challenger always aborts with probability approximately equal to 1−ζlow and inde-
pendently of V IEWA . More precisely, after the output of the adversary’s bit µ ′ as a guess for µ , check
whether FAbort happens or not. If it occurs, then a random bit ν ′ is returned and the challenger aborts;
otherwise, the challenger keeps on as follows. B first samples an estimate τ ′(V IEWA) of the probability
τ(V IEWA) that FAbort does not occur. Remember that V IEWA is fixed now, thus the sampling does not
involve running the adversary again. This estimate τ ′(V IEWA) is defined as a random variable and only
depends on the keywords belonging to W ∗ and the randomness used to sample.

We now explicit the two cases that the challenger can encounter:

1. If τ ′(V IEWA)≤ ζlow, then we assume that B keeps on as before.

2. If τ ′(V IEWA)> ζlow, then the challenger aborts and outputs a bit ν ′ with probability equal to 1−
ζlow

τ ′(V IEWA) . (In other words, the challenger does not abort and keeps on as before with probability

equal to ζlow
τ ′(V IEWA) .)

The description of Game 2 is now completed.
The following claim is postulated in [21] and proved by Fang et al. [12]. It enables to bound the

probabilities of G1 and G2:

26

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

Claim 1. We define ρ(λ) ≡ AdvDBDH
B,GT

(λ) · q(n+ 1) > 0. If the experiment takes s(λ) = O(n2(ρ(λ))−2

log((nq ·ρ(λ))−1)) samples when computing the estimate τ ′(V IEWA), then

|Pr[G1]− (
1
2
+(Pr[G2]−

1
2
) ·4q(n+1))| ≤ ρ(λ).

Game 3 This game is similar to Game 2 except that the public parameters and the trapdoors are gener-
ated differently. We suppose now that Z is equal to e(g1,g2)

θδω .
Setup. B computes the public parameters params as follows.
First, B chooses at random β ∈R Zp and computes gβ

2 . It then selects at random α ∈R Zp and gener-
ates gα i

1 for i ∈ [1,m]∪ [m+2,2m] and gα i

2 for i ∈ [1,m]. Futhermore, it picks at random a1, · · · ,am,c ∈R

Zp and computes ga1
1 , · · · ,gam

1 ,gc
1. In addition, the challenger picks at random A,B ∈R G2 and chooses a

strongly unforgeable one-time signature scheme OTS= (KeyGen,Sign,Verify).
Finally, the challenger gives A the public parameters params = (p,G1,G2,GT ,e,g1,g2,A,B,{gα i

1

}i∈[1,m]∪[m+2,2m],{gα i

2 }i∈[1,m],g
β

2 ,{gai
1 }i∈[1,m],gω

2 ,g
c
1,OTS). Note that since the exponents in Zp are uni-

formly chosen at random, these public parameters have an identical distribution to that in the actual
construction.

The challenger also outputs the public description (h0,h1, · · · ,hn) of the hash function H as defined
in Game 2.

Query Phase 1. A can adaptively issue queries as follows.

• First Certificate Query < LR
j >. If A queries LR

j to the first certificate query generation oracle,
then B picks at random r1 ∈R Zp and computes e(gai

1 ,g
ω
2)

cr1LR
1 and gr1ai

2 for i ∈ [1,m]. It sends
these two elements to A as the first certificate CertLR

1 ,i
.

• Update Key Query < LR
j >. If A queries LR

j to the update key generation oracle, then B randomly

selects γ,s j,r j in Zp and generates gs j
2 , gr j

2 , (gγ

1 ·∏k∈S j gαm+1−k

1)s j , for S j ⊆ [1,m], and e(gα
1 ,g

αm

2)s j ·
e(gc

1,g
ω
2)

r jLR
j−r1LR

1 . The challenger forwards these elements to A as the update key UKLR
j
.

• Refreshed Certificate Query < LR
j >. If A queries LR

j to the refreshed certificate generation oracle,

then B picks at random r j ∈R Zp and sends the elements e(gai
1 ,g

ω
2)

cr jLR
j and gair j

2 to A as the
refreshed certificate CertLR

j ,i
.

• Trapdoor Query <wR
i ,L

R
j >. Suppose that A queries (wR

i ,L
R
j) to the trapdoor generation oracle. If

y(wR
i) 6= 0 mod p, then B selects v,z at random in Zp, generates e(gai

1 ,g
ω
2)

cr jLR
j · e(gδ

1 ,g
ω
2)

aix(wR
i) ·

Zaiy(wR
i), e(g1,gδ

2)
aix(wR

i) ·e(gθ
1 ,g

δ
2)

aiy(wR
i), g(β−wR

i)v
1 ·gaizx(wR

i)
1 · (gθ

1)
aizy(wR

i), (gω
2)

aiz, gair j
2 and gv

1 as the
trapdoor TrapwR

i ,L
R
j
, and gives these elements to A .

Challenge. Once the adversary decides that the Query Phase 1 is over, it outputs a keyword pair
(w0,w1). The challenger first chooses a random bit µ ∈R {0,1} and lets the challenge keyword be
w∗ = wµ . It also defines a label L∗. It selects v,z at random in Zp and generates T1 = e(gai

1 ,g
ω
2)

cr jL∗ ·
e(gδ

1 ,g
ω
2)

aix(w∗) ·Zaiy(w∗), T2 = e(g1,gδ
2)

aix(w∗) · e(gθ
1 ,g

δ
2)

aiy(w∗), T3 = g(β−w∗)v
1 ·gaizx(w∗)

1 · (gθ
1)

aizy(w∗), T4 =
(gω

2)
aiz, T5 = gair j

2 and T6 = gv
1 as the elements of the trapdoor Trap∗. The challenger sends the challenge

trapdoor Trap∗ to the adversary.

When Z = e(g1,g2)
θδω , then Trap∗ is a valid challenge trapdoor to A as in the real attack. When Z

is random in GT , then e(gai
1 ,g

ω
2)

cr jLR
j · e(gδ

1 ,g
ω
2)

aix(w∗) ·Zaiy(w∗) is a uniform element in GT , and thus the
trapdoor gives no information about the challenger’s bit µ .

27

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

Query Phase 2. A continues to make queries as in the Query Phase 1. The restriction is that
<wR

i ,L
R
j > are not allowed to be queried as trapdoor queries if <wR

i ,L
R
j >=<w0,L∗> or <wR

i ,L
R
j >=<

w1,L∗ >.
Guess. The adversary outputs a bit µ ′ ∈ {0,1}. If µ ′ = µ , then B outputs 1 meaning that Z =

e(g1,g2)
θδω ; otherwise, B outputs 0 meaning that Z is a random element in GT .

We easily observe that the public parameters and the trapdoors are distributed identically in Game 2
and in Game 3. Therefore, we obtain that Pr[G2] = Pr[G3].

Game 4 Game 4 is similar to Game 3 except that the value Z = e(g1,g2)
θδω is replaced by a ran-

dom value Z in GT , which is chosen at the beginning of the game. Therefore, |Pr[G3]− Pr[G4]| ≤
AdvDBDH

B,GT
(λ).

To explain why, we suppose that the tuple (g1,gθ
1 ,g

δ
1 ,g2,gδ

2 ,g
ω
2 ,Z) is given to the challenger, such

that Z is either equal to Z = e(g1,g2)
θδω or to a random element in GT . When Z = e(g1,g2)

θδω , we
perfectly simulate the adversary in Game 3. When Z ∈R GT , then e(gai

1 ,g
ω
2)

cr jLR
j ·e(gδ

1 ,g
ω
2)

aix(w∗) ·Zaiy(w∗)

is uniformly random in GT , and thus we perfectly simulate the adversary in Game 4. This means that if
A can distinguish between Game 3 and Game 4, then the two possible values for Z can be distinguished
with the same probability. Therefore, when Z is uniformly random in GT , we have that Pr[G4] =

1
2 .

Analysis We have described the simulations of all the games, and now, we can complete the proof by
bounding the advantage of A in the IND-KGA security game as follows:

AdvIND−KGA
A (λ) = |Pr[G1]−

1
2
| ≤ |(Pr[G2]−

1
2
) ·4q(n+1)|+ρ(λ)

≤ |(Pr[G3]−
1
2
)| ·4q(n+1)+ρ(λ)

≤ (|Pr[G4]−
1
2
|+AdvDBDH

B,GT
(λ)) ·4q(n+1)+ρ(λ)

= AdvDBDH
B,GT

(λ) ·4q(n+1)+ρ(λ)

where ρ(λ) = AdvDBDH
B,GT

(λ) ·q(n+1)> 0. Thus, we obtain that AdvIND−KGA
A (λ)≤ AdvDBDH

B,GT
(λ) ·5q(n+

1).

6.4 Collusion Resistance (CR)

Theorem 4. The CBEKS scheme is collusion resistant without the random oracle model assuming that
the m-DBDHE assumption holds.

Proof Suppose that there exists a PPT adversary A that can attack the collusion resistance of the
CBEKS scheme in the standard model with advantage AdvCR

A (λ) ≥ ε . We build a challenger B that
has advantage at least ε in solving the m-DBDHE problem in (G1,G2,GT). B receives a random m-
DBDHE problem instance (g1,gδ

1 ,g
α
1 , · · · ,gαm

1 ,gαm+2

1 , · · · ,gα2m

1 ,g2,gδ
2 ,g

α
2 , · · · ,gαm

2) and Z that is either
equal to e(g1,g2)

δαm+1
or a random element in GT .

Initialization. B receives from A the group S∗ of receivers that the adversary wants to attack.
Setup. B computes the public parameters params and the secret keys skR,i of the receivers in [1,m]\

S∗ as follows. First, B chooses at random β ∈R Zp and computes gβ

1 ,g
β

2 . It then selects at random u∈Zp

and generates gu
1 · (∏k∈S∗ gαm+1−k

1)−1. Suppose that it sets this value equal to gγ

1 for an unknown γ . It

28

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

also picks at random a1, · · · ,am,b,c ∈R Zp and computes ga1
1 , · · · ,gam

1 ,gb
2,g

c
1. In addition, the challenger

picks at random A,B ∈R G2 and chooses a strongly unforgeable one-time signature scheme OTS =
(KeyGen,Sign,Verify).

Finally, the challenger gives A the public parameters params = (p,G1,G2,GT ,e,g1,g2,A,B,{gα i

1

}i∈[1,m]∪[m+2,2m],{gα i

2 }i∈[1,m],g
β

2 ,{gai
1 }i∈[1,m],gb

2,g
c
1,OTS). Note that since the exponents in Zp are uni-

formly chosen at random, these public parameters have an identical distribution to that in the actual
construction.

In addition, B forwards A the secret keys of the receivers in [1,m]\S∗. For all i /∈ S∗, the challenger
generates the secret key skR,i as (ai,g

β

1 ,(g
α i

1)u · (∏k∈S∗ gαm+1−k+i

1)−1). Note that

(gα i

1)u · (∏
k∈S∗

gαm+1−k+i

1)−1 = (gu
1 · (∏

k∈S∗
gαm+1−k

1)−1)α i
= (gu

1 · (∏
k∈S∗

gαm+1−k

1)−1)α i
= (gγ

1)
α i

as required. Moreover, since i /∈ S∗, the product defining the third element of i’s secret key does not
include the element gαm+1

1 . We can so observe that B has all the necessary values to compute the secret
keys skR,i for i /∈ S∗.

Query Phase 1. A makes the following queries:

• First Certificate Query < LR
j >. If A queries LR

j to the first certificate query generation oracle,
then B picks at random r1 ∈R Zp and computes e(gai

1 ,g
b
2)

cr1LR
1 and gr1ai

2 for i ∈ S ⊆ S∗. It sends
these two elements to A as the first certificate CertLR

1 ,i
.

• Refreshed Certificate Query < LR
j >. If A queries LR

j to the refreshed certificate generation oracle,

then B picks at random r j ∈R Zp and sends the elements e(gai
1 ,g

b
2)

cr jLR
j and gair j

2 to A as the
refreshed certificate CertLR

j ,i
for i ∈ S⊆ S∗.

Challenge. Once the adversary decides that the Query Phase 1 is over, it outputs a label pair (L0,L1).
The challenger answers by choosing a random bit µ ∈R {0,1} and by setting the challenge label L∗ =
Lµ . B picks at random r j−1,r j ∈R Zp and computes the challenge update key UK∗ = (gδ

2 ,g
r j
2 ,(g

δ
1)

u,
Z · e(gc

1,g
b
2)

r jL∗−r j−1(L∗−1)). We denote by L∗−1 the label preceding the label L∗.
Therefore, UK∗ is a valid update key to A ’s view, by writing gδ

2 = gs j
2 for an unknown s j ∈Zp. Then,

we get that gδu
1 = (gu

1 · (∏k∈S gαm+1−k

1)−1 · (∏k∈S gαm+1−k

1))δ = (gu
1 · (∏k∈S gαm+1−k

1)−1 · (∏k∈S gαm+1−k

1))s j .

When Z = e(g1,g2)
δαm+1

, then UK∗ is a valid challenge update key to A as in the real attack. When
Z is random in GT , then Z · e(gc

1,g
b
2)

r jL∗−r j−1(L∗−1) is a uniform element in GT , and thus the update key
gives no information about the challenger’s bit µ .

Query Phase 2. A issues a number of queries as in the Query Phase 1. The restriction is that < LR
j >

are not allowed to be queried as first certificate or refreshed certificate queries if < LR
j >=< L0 > or

< LR
j >=< L1 >.
Guess. The adversary outputs a bit µ ′ ∈ {0,1}. If µ ′ = µ , then B outputs 1 meaning that Z =

e(g1,g2)
δαm+1

; otherwise, B outputs 0 meaning that Z is a random element in GT .

Analysis When Z = e(g1,g2)
δαm+1

, then the adversary must satisfy |Pr[µ ′ = µ]− 1
2 | ≥ ε . When Z ∈R

GT , then Z · e(gc
1,g

b
2)

r jL∗−r j−1(L∗−1) is uniformly random in GT , and thus Pr[µ ′ = µ] = 1
2 . It follows that

we have Advm−DBDHE
B,GT

(λ)≥ ε .

29

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

7 Performance and Observations

Our CBEKS scheme remains efficient and practical since the size of the ciphertexts and the trapdoors is
constant. In addition, the secret keys of the involved entities (namely, the receivers, the certifier and the
server) have constant size. Although the public parameters have a size linear in the number m of receivers,
we observe that these elements are set up only once, at the beginning of the protocol. Therefore, this is
not cumbersome for our scheme.

We evaluate the efficiency of our scheme CBEKS in Table 2. We use results of cryptographic opera-
tion implementations (exponentiations and pairings) using the MIRACL library, provided by Certivox for
the MIRACL Authentication Server Project Wiki. All the following experiments are based on Borland
C/C++ Compiler/Assembler and tested on a processor 2.4 GHz Intel i5 520M.

Since we consider asymmetric pairings, we choose a system based on AES with a 80-bit key and a
Cocks-Pinch curve over GFp, for a 512-bit modulus p and an embedding degree equal to 2. We assume
that there are m = 100 receivers and there are n = 48 bits coding a keyword string w = (w1, · · · ,wn) ∈
{0,1}n with 6 characters, such as “urgent”.

Exponentiation in G1 Exponentiation in G2 Exponentiation in GT Pairings
Time/computation 0.51 0.51 0.12 1.14
Setup 205.2 52.02 - -
Encrypt 25.5 2.55 - -
CertGen 51 51 114
UpdtKeyGen 1.02 1.02 0.36 3.42
UpdtCert - - 0.12 4.56
TrapGen 52.52 1.02 2.28
Test - 0.51 0.36 7.98

Table 2: Timings for the asymmetric pairing-based CBEKS scheme. Times are in milliseconds.

We note that the total time in the algorithm Setup is substantial; however this algorithm should be
run only once to generate the public parameters and the static secret keys for all the receivers, certifiers
and servers. The algorithm Encrypt does not require too many computations from the uploader: the time
is mainly a consequence from the fact that the keyword’s elements have to be hashed. Then, the algo-
rithm CertGen is significant since we consider the generation of 100 first certificates; nevertheless, the
same argument from Setup applies for CertGen, i.e. first certificates are generated only once. Both the
algorithms UpdtKeyGen and UpdtCert are run fastly, meaning that the certifier and the receivers can
easily create update keys and update the certificates, respectively. The algorithm TrapGen is relatively
efficient, meaning that a receiver can conveniently request for a medical document. Finally, the total time
for running the algorithm Test is mainly due to the cost of pairing computations, and remains quick.

We recall that we see a label as a reference to some information about the receivers’ access rights.
More precisely, a label is linked to a collection of rights under the form of a unique number in Zp. We
have to ensure that two labels are distinct if they do not refer to the same access right collection.

We argue that the certifier and the server know the labels and agree on their use by securily ex-
changing information among them, while none of the receivers should be aware of the labels’ contents.
Nevertheless, defining unique labels could turn to be a bottleneck. A more effective solution will embed
time periods instead of labels. Indeed, the certifier and the server will proceed by using the current time
period: the former will generate the first certificates and update keys by taking as input the current time
period, while the latter will check the keyword and the validity of a receiver’s certificate by using the

30

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

ciphertext and the current time period. However, defining time periods does not seem straightforward
at first sight. In fact, we have to ensure that a time period is unique given a starting date and an ending
date and that the receivers are not able to modify their certificates themselves in order to make them
valid. Moreover, a receiver’s certificate can be valid for a longer time period than the one used during
the server’s test; hence, we have to find a way to make time periods matching as long as the time period
used by the server is strictly included in the time period embedded into the receiver’s certificate.

We also observe that we give power to the server by letting it know and use labels for verification
processes. One might prefer instead to let the uploader decide the choices of both the keyword and the
label (or the time period according to the above remarks). Hence, in this case, the server would have just
to check that keywords and labels match without being aware of any pieces of information from these
components.

8 Conclusion

In this paper, we introduced the new primitive called Certificate-Based Encryption with Keyword Search
(CBEKS) in order to tackle the problem of authorizing receivers in a sensitive environment to let them
access and retrieve private medical documents (such as EHRs) securely. We constructed a scheme and
proved it secure in the standard model: we showed that our CBEKS scheme is computationally consis-
tent, indistinguishable against chosen keyword and ciphertext attacks, indistinguishable against keyword-
guessing attacks and collusion resistant.

Acknowledgements

This work is partially supported by ARC Linkage Project LP12020052.

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Paillier, and
H. Shi. Searchable encryption revisited: Consistency properties, relation to anonymous ibe, and extensions.
Journal of Cryptology, 21(3):350–391, March 2008.

[2] J. Baek, R. Safavi-Naini, and W. Susilo. On the integration of public key data encryption and public key en-
cryption with keyword search. In Proc. of the 9th International Conference on Information Security (ISC’06),
Samos Island, Greece, volume 4176 of Lecture Notes in Computer Science, pages 217–232. Springer Berlin
Heidelberg, August-September 2006.

[3] J. Baek, R. Safavi-Naini, and W. Susilo. Public key encryption with keyword search revisited. In Proc. of the
International Conference on Computational Science and Its Applications (ICCSA’08), Perugia, Italy, volume
5072 of Lecture Notes in Computer Science, pages 1249–1259. Springer Berlin Heidelberg, June-July 2008.

[4] D. Boneh and X. Boyen. Short signatures without random oracles. In Proc. of the 2004 Annual International
Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’04), Interlaken,
Switzerland, volume 3027 of Lecture Notes in Computer Science, pages 56–73. Springer Berlin Heidelberg,
May 2004.

[5] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword search. In
Proc. of the Annual International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT’04), Interlaken, Switzerland, volume 3027 of Lecture Notes in Computer Science, pages 506–
522. Springer Berlin Heidelberg, May 2004.

[6] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and
private keys. In Proc. of the 25th Annual International Cryptology Conference on Advances in Cryptology

31

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

(CRYPTO’05), Santa Barbara, California, USA, volume 3621 of Lecture Notes in Computer Science, pages
258–275. Springer Berlin Heidelberg, August 2005.

[7] J. W. Byun, H. S. Rhee, H.-A. Park, and D. H. Lee. Off-line keyword guessing attacks on recent keyword
search schemes over encrypted data. In Proc. of the 3rd VLDB Workshop on Secure Data Management
(SDM’06), Seoul, Korea, volume 4165 of Lecture Notes in Computer Science, pages 75–83. Springer Berlin
Heidelberg, September 2006.

[8] C. Delerablée. Identity-based broadcast encryption with constant size ciphertexts and private keys. In Proc.
of the 13th International Conference on the Theory and Application of Cryptology and Information Security
(ASIACRYPT’07), Kuching, Malaysia, volume 4833 of Lecture Notes in Computer Science, pages 200–215.
Springer Berlin Heidelberg, December 2007.

[9] Y. Dodis and N. Fazio. Public key broadcast encryption for stateless receivers. In Revised Papers of the 2003
ACM CCS Workshop on Digital Rights Management Workshop (DRM’02), Washington, DC, USA, volume
2696 of Lecture Notes in Computer Science, pages 61–80. Springer Berlin Heidelberg, November 2003.

[10] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In Proc. of the
Annual International Cryptology Conference on Advances in Cryptology (CRYPTO’84), Santa Barbara, Cal-
ifornia, USA, volume 196 of Lecture Notes in Computer Science, pages 10–18. Springer Berlin Heidelberg,
August 1984.

[11] L. Fang, W. Susilo, C. Ge, and J. Wang. A secure channel free public key encryption with keyword search
scheme without random oracle. In Proc. of the 8th International Conference on Cryptology and Network
Security (CANS’09), Kanazawa, Japan, volume 5888 of Lecture Notes in Computer Science, pages 248–258.
Springer Berlin Heidelberg, December 2009.

[12] L. Fang, W. Susilo, C. Ge, and J. Wang. Public key encryption with keyword search secure against keyword
guessing attacks without random oracle. Information Science, 238:221–241, 2013.

[13] A. Fiat and M. Naor. Broadcast encryption. In Proc. of the 13th Annual International Cryptology Conference
(CRYPTO’93), Santa Barbara, California, USA, volume 773 of Lecture Notes in Computer Science, pages
480–491. Springer Berlin Heidelberg, August 1993.

[14] T. Fuhr and P. Paillier. Decryptable searchable encryption. In Proc. of the 1st International Conference on
Provable Security (ProvSec’07), Wollongong, NSW, Australia, volume 4784 of Lecture Notes in Computer
Science, pages 228–236. Springer Berlin Heidelberg, November 2007.

[15] C. Gentry. Certificate-based encryption and the certificate revocation problem. In Proc. of the Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’03),
Warsaw, Poland, LNCS, volume 2656 of Lecture Notes in Computer Science, pages 272–293. Springer Berlin
Heidelberg, 2003.

[16] C. Gentry and B. Waters. Adaptive security in broadcast encryption systems (with short ciphertexts). In Proc.
of the 28th Annual International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT’09), Cologne, Germany, volume 5479 of Lecture Notes in Computer Science, pages 171–188.
Springer Berlin Heidelberg, April 2009.

[17] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control
of encrypted data. In Proc. of the ACM Conference on Computer and Communications Security (CCS’06),
Alexandria, Virginia, USA, pages 89–98. ACM, October-November 2006.

[18] C. Gritti, W. Susilo, and T. Plantard. Efficient file sharing in electronic health records. In Proc. of the
11th International Conference on Information Security Practice and Experience (ISPEC’15), Beijing, China,
volume 9065 of Lecture Notes in Computer Science, pages 499–513. Springer International Publishing, May
2015.

[19] C. Gu, Y. Zhu, and H. Pan. Efficient public key encryption with keyword search schemes from pairings. In Re-
vised Selected Papers of the 3rd SKLOIS Conference on Information Security and Cryptology (Inscrypt’07),
Xining, China, volume 4990 of Lecture Notes in Computer Science, pages 372–383. Springer-Verlag, August-
September 2008.

[20] I. R. Jeong, J. O. Kwon, D. Hong, and D. H. Lee. Constructing peks schemes secure against keyword guessing
attacks is possible? Computer Communications, 32(2):394–396, February 2009.

[21] E. Kiltz and D. Galindo. Direct chosen-ciphertext secure identity-based key encapsulation without random

32

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

oracles. In Proc. of the 11th Australasian Conference on Information Security and Privacy (ACISP’06),
Melbourne, Australia, volume 4058 of Lecture Notes in Computer Science, pages 336–347. Springer Berlin
Heidelberg, July 2006.

[22] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. In Proc. of
the 21st Annual International Cryptology Conference on Advances in Cryptolog (CRYPTO’01), Santa Bar-
bara, California, USA, volume 2139 of Lecture Notes in Computer Science, pages 41–62. Springer Berlin
Heidelberg, August 2001.

[23] M. Naor and K. Nissim. Certificate revocation and certificate update. In Proc. of the 7th Conference on
USENIX Security Symposium (SSYM’98), San Antonio, Texas, USA, volume 7, pages 217—-228. USENIX
Association, January 1998.

[24] D.-H. Phan, D. Pointcheval, S. F. Shahandashti, and M. Strefler. Adaptive cca broadcast encryption with
constant-size secret keys and ciphertexts. In Proc. of the 17th Australasian on Information Security and
Privacy (ACISP’12), Wollongong, NSW, Australia, volume 7372 of Lecture Notes in Computer Science, pages
308–321. Springer Berlin Heidelberg, July 2012.

[25] D. H. Phan, D. Pointcheval, and M. Strefler. Security notions for broadcast encryption. In Proc. of the 9th
International Conference on Applied Cryptography and Network Security (ACNS’11), Nerja, Spain, volume
6715 of Lecture Notes in Computer Science, pages 377–394. Springer Berlin Heidelberg, June 2011.

[26] H. S. Rhee, J. H. Park, and D. H. Lee. Generic construction of designated tester public-key encryption with
keyword search. Infornation Science, 205:93–109, November 2012.

[27] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee. Improved searchable public key encryption with designated
tester. In Proc. of the 4th International Symposium on Information, Computer and Communications Security
(ASIACCS’09), Sydney, NSW, Australia, pages 376–379. ACM, March 2009.

[28] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee. Trapdoor security in a searchable public-key encryption
scheme with a designated tester. Journal of Systems and Software, 83(5):763–771, May 2010.

[29] B. Waters. Efficient identity-based encryption without random oracles. In Proc. of the Annual International
Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’05), Aarhus, Den-
mark, volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer Berlin Heidelberg, May
2005.

[30] B. Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In Proc.
of the 29th Annual International Cryptology Conference on Advances in Cryptology (CRYPTO’09), Santa
Barbara, California, USA, volume 5677 of Lecture Notes in Computer Science, pages 619–636. Springer
Berlin Heidelberg, August 2009.

[31] W.-C. Yau, R. C. W. Phan, S.-H. Heng, and B.-M. Goi. Keyword guessing attacks on secure searchable
public key encryption schemes with a designated tester. International Journal of Computer Mathematics,
90(12):2581–2587, December 2013.

——————————————————————————

33

Certificate-Based Encryption with Keyword Search Gritti, Susilo, and Plantard

Author Biography

Clémentine Gritti received the BS Degree in pure mathematics in 2010 and the
MS Degree in computer science from Joseph Fourier University, Grenoble, France
in 2012. She is currently a PhD candidate at the University of Wollongong, Australia.
Her current research interests include cryptography and information security, and in
particular public-key cryptographic primitives and provable security.

Willy Susilo received the Ph.D. degree in computer science from the University of
Wollongong, Wollongong, Australia. He is a Professor and the Head of School of
Computing and Information Technology. He is also the Director of Centre for Com-
puter and Information Security Research, University of Wollongong. He has been
awarded the prestigious ARC Future Fellow awarded by the Australian Research
Council. His main research interests include cryptography and information secu-
rity. His main contribution is in the area of digital signature schemes and encryption

schemes. He has served as a program committee member in dozens of international conferences.

Thomas Plantard received the MS and Ph.D. Degrees in computer science from the
Universite de Bordeaux in 2002 and the Universite Montpellier 2, France, in 2005,
respectively. Since September 2006, he has a postdoctoral position at the University
of Wollongong, Australia. His research interests include cryptography and lattice
theory.

34

	Certificate-based encryption with keyword search enabling secure authorization in electronic health record
	Recommended Citation

	Certificate-based encryption with keyword search enabling secure authorization in electronic health record
	Abstract
	Keywords
	Disciplines
	Publication Details

	Introduction and Motivation
	Basic Technical Settings
	Comparisons with Existing Cryptographic Primitives
	Our Work
	Related Work

	Protocol Definition
	Security Models
	Consistency
	Indistinguishability of CBEKS against Chosen Keyword and Ciphertext attacks (IND-CKCA)
	Game played by the Server: GameS.
	Game played by the Certifier: GameC.
	Game played by the Receiver: GameR.

	Indistinguishability of CBEKS against Keyword-Guessing attack (IND-KGA)
	Collusion Resistance (CR)

	Preliminaries
	Bilinear Maps
	Discrete Logarithm Assumption
	Symmetric External Diffie-Hellman Assumption
	Decisional Bilinear Diffie-Hellman Assumption
	Decisional Bilinear Diffie-Hellman Exponent Assumption
	Waters Hash Function

	CBEKS Construction
	Security Proofs
	Consistency
	Indistinguishability of CBEKS against Chosen Keyword and Ciphertext attacks (IND-CKCA)
	Indistinguishability of CBEKS against Keyword-Guessing attack (IND-KGA)
	Collusion Resistance (CR)

	Performance and Observations
	Conclusion

