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ABSTRACT: This work reports photo-demetallation studies of thin-layer, electropolymerized, poly(3,4-

ethylenedioxythiophene (PEDOT) loaded with low levels of: (i) an anionic Mn porphyrin monomer 

(5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato manganese(III) chloride (MnTPPS)), and (ii) an 

anionic Mn porphyrin polymer (poly(5-(4-vinylphenyl)-10,15,20-tris(4-sulfonatophenyl)) porphyrinato 

manganese(III) chloride (MnPVTPPS)).  UV-visible and other measurements confirm that, like 

previously-studied cationic Mn(III) porphyrins embedded within vapour-phase polymerized PEDOT in 

low loadings, de-metallation under light illumination also occurs in these systems.  However, it occurs to a 

significantly lesser degree.  It can be concluded that demetallation appears to be an inherent feature of 

PEDOT coatings containing low levels of Mn porphyrins when they are illuminated with light.  The 

demetallation process does not depend on the mode of polymerisation or the nature of the Mn porphyrin 

dopant.  These findings have potentially important implications in water-splitting photocatalysis by Mn 

porphyrin-doped conducting polymers.   
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1.  INTRODUCTION 

Several selective water-splitting photocatalysts comprising Mn porphyrins doped in conducting polymers, such as 

poly(terthiophene) and poly(3,4-ethylenedioxythiophene (PEDOT), have been described in the scientific literature [1(a)-

(b)].  In a recent publication [1(c)], we reported a novel demetallation of a Mn porphyrin in poly(3,4-

ethylenedioxythiophene) (PEDOT) under light illumination. A proportion of 5,10,15,20-tetraphenylporphyrinato 

manganese(III), Mn(III)TPP+ became demetallated after it was embedded within the conducting polymer using vapour-

phase polymerization, leaving free and protonated TPP (TPP=5,10,15,20-tetraphenylporphyrin).  The proportion that 

was demetallated declined as the loading level of the Mn(III)TPP+ in the PEDOT was increased, consistent with the 

demetallation reaction being driven by light-illumination and being limited by the optical transparency of the PEDOT.  

However, it was not clear whether the mode of polymerisation employed, namely vapour phase polymerisation, or the 

cationic nature of the Mn porphyrin species, were involved in the demetallation process.  The role of the PEDOT was 

also not clear.  PEDOT has been separately reported to be capable of acting as both an electron acceptor and as an 

electron donor under suitable conditions [2].  In this work we report further studies seeking to clarify these questions.  

The preparation, characterisation, and properties of PEDOT:PSS (PSS= poly(sodium 4-styrenesulfonate)) incorporating 

the following have been investigated:  

(i) poly(5-(4-vinylphenyl)-10,15,20-tris(4-sulfonatophenyl)) porphyrinato manganese(III) chloride (MnPVTPPS) 

(Figure 1) [3], and 

(ii) 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato manganese(III) chloride (MnTPPS) (Figure 1).  

In of the above cases, polymerisation was carried out electrochemically (and not by the vapour-phase route).  The 

concentration of the porphyrins in the PEDOT coatings were also set to low loading levels similar to that employed in 

the earlier work [1(c)]. High loading levels of PEDOT incorporating sulfonated MnTPPS have been studied previously 

without noticeable demetallation being observed [1(a)-(b)].  MnPVTPPS is similar to PSS [4-7] and therefore serves as 

a potentially useful counter-ion for electrochemically polymerised PEDOT [5,8].   

UV-visible and other measurements confirmed that de-metallation under light illumination occured in both of the 

above systems, however to a significantly lesser degree than observed in the earlier study [1(c)]. It can be concluded that 

the demetallation reaction is not related to the use of vapour phase polymerisation or the charge on the Mn porphyrin, 

whether anionic or cationic. Instead, demetallation appears to be an inherent feature of PEDOT coatings containing low 

levels of Mn porphyrins under light-illumination. 

 

 
 MnPVTPPS         MnTPPS 

Figure 1. Schematic of (a) poly(5-(4-vinylphenyl)-10,15,20-tris(4-sulfonatophenyl)) porphyrinato manganese(III) chloride sodium 

salt (MnPVTPPS) and (b) its monomeric counterpart 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato manganese(III) chloride 

sodium salt (MnTPPS). 
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Figure 2. Synthesis of poly(5-(4-vinylphenyl)-10,15,20-tris(4-sulfonatophenyl)) porphyrinato manganese (III) chloride sodium salt)  

(MnPVTPPS). 

2.  EXPERIMENTAL 

2.1  Materials and methods 

The following materials were used as supplied: Fluorine doped tin oxide (FTO) slides (Zhuhai Kaivo Electronic 

Components Co.), glass microscope slides (Australia Optics Superstore), 3,4-ethylenedioxythiophene (EDOT) 

monomer, pyridine (Thermo Fisher Scientific Australia), iron(III) p-toluenesulfonate (Fe(III)-pTS) (Sigma Aldrich), 

5,10,15,20-tetraphenylporphyrin (TPP) (Sigma Aldrich Co.), acetone (Sigma Chemicals), ethanol (Sigma Chemicals), 

and sodium sulphate Na2SO4 (Aim Chemicals). De-ionized water was used in all experiments.  TPPS and MnTPPS were 

prepared following a previously published procedure [2,4]. 

2.2  Synthesis of poly(5-(4-vinylphenyl)-10,15,20-tris(4-sulfonatophenyl)) porphyrinato manganese (III) 

chloride sodium salt (MnPVTPPS) 

The synthesis of poly(5-(4-vinylphenyl)10,15,20-tri(4-sulfonatophenyl)porphyrinato manganese (III) chloride sodium 

salt) (MnPVTPPS) was based on a previously described approach [3,9,10].  The synthesis required a number of steps, 

starting with the formation of 5-(4-bromophenyl)-10,15,20-triphenylporphyrin, conversion to the formyl derivative by 

reaction with n-butyllithium and DMF, subsequent vinyl formation by Wittig condensation with 

triphenylmethylphosphonium iodide, polymerisation of the vinyl group with azobisisobutyronitrile (AIBN), sulfonation, 

and finally manganese insertion. A detailed experimental procedure for the formation of 5-(4-bromophenyl)-10,15,20-

triphenylporphyrin and its conversion to 5-(4-vinylphenyl)-10,15,20-triphenyl porphyrin (VTPP) is provided in the 

supplementary section.  

The vinyl porphyrin VTPP (0.49 g, 0.76 mmol) was dissolved in a small quantity of THF (0.7 mL) with AIBN (10-20 

mg, in 12% acetone solution), which was degassed in an ampoule following the freeze pump thaw method.  The mixture 

was submerged in liquid nitrogen until fully frozen, then a vacuum applied for 20 min. The pump was thereafter 

disconnected, with the flask sealed and the mixture gently thawed in a warm water bath. This procedure was repeated 3-

5 times after which the mixture was stirred at 60 °C under Ar atmosphere for 2.5 d. The product was then precipitated 

with acetone and filtered through a sintered glass funnel under vacuum (43 mg, 0.07 mmol, 9% yield). The synthesis had 

to be repeated several times as TLC tests showed only partial polymerisation in successive steps. The final product, 



poly(5-(4-vinylphenyl)-10,15,20-triphenylporphyrin) (PVTPP), was characterised using gel permeation chromatography 

(GPC) with polystyrene fractions, which indicated an average molecular weight of 47 kDa at a fraction of 55%. Smaller 

polymer chains at 3 kDa and single units at 1 kDa were found at respective fractions of 18% and 27%.  As the exclusion 

mechanism of polymers with bulky side groups may differ from that of polystyrene, these results may not be fully 

representative. 

The polymeric porphyrin PVTPP (43 mg, 0.07 mmol) was then sulfonated by dissolving in concentrated H2SO4 (2 

mL) and stirring at 100 °C for 4 h, after which it was left to cool overnight. The mixture was poured into 25 mL of 

Milli-Q water and neutralised with a small quantity of NaOH. It was purified using dialysis tubing (12-14 kDa) and 

Milli-Q water over several days with frequent change of water and the product poly(5-(4-vinylphenyl)-10,15,20-tris(4-

sulfonatophenyl)porphyrin sodium salt) (PVTPPS) obtained by evaporating the solvent and drying in a vacuum oven at 

60 °C (37 mg, 0.04 mmol, 59% yield). 

In the final step PVTPPS (37 mg, 0.04 mmol) was dissolved in Milli-Q water (20 mL) and MnCl2 (0.58 g, 4.61 

mmol) added. This mixture was stirred at reflux for 25 h after which it was dialysed (12-14000 kDa tubing) and the 

solvent evaporated under vacuum, giving the desired product poly(5-(4-vinylphenyl)-10,15,20-tris(4-

sulfonatophenyl)porphyrinato manganese (III) chloride sodium salt)  (MnPVTPPS) (56 mg, 0.05 mmol, 100% yield). 

UV-Vis and MALDI analysis of the compound was in agreement with literature findings [3,9,10]. 

2.3  Electrochemical polymerisation of porphyrin/PEDOT composites, MnTPPS/PEDOT:PSS and 

MnPVTPPS/PEDOT:PSS, on FTO glass 

A method was developed following a literature procedure [5,8] for electrochemical polymerisation (EP) of 

PEDOT:PSS in water. A reagent mixture was prepared containing 5 mM of 3,4-ethylenedioxythiophene (EDOT) (0.71 

mg/ml) and 2.5 mM PSS (by monomer mass 0.46 mg/mL) in water. The EDOT solution was prepared, first, in 10 mL 

volume, carefully sonicated and vortex-stirred until completely dissolved. Approximately 2 mL were transferred to a 

second sample vial containing the PSS. The solution was again sonicated and mixed to ensure proper dissolution of the 

reagents.  

For the samples containing porphyrins, the relevant amount of Mn porphyrin (either MnTPPS or MnPVTPPS) was 

weighed out before and the EDOT/PSS mixture added to dissolve into it. The porphyrins MnTPPS (2.5 mg/ml, 2.25 

mM) or MnPVTPPS (0.86 mg/mL, 0.83 mM) were included in separate EDOT/PSS mixtures.  

An FTO glass electrode was sonicated in acetone, rinsed with water and allowed to dry before fitting a copper cable 

with silver paste and epoxy resin to it. Prior to polymerisation, the electrode was plasma-cleaned for 15 min. 

The above samples were electropolymerised in a small vessel, into which the reagent mixture (~0.9 mL) was injected. 

A BASi miniature Ag/AgCl reference electrode was inserted. The electrodes were connected to an EDAQ466 

potentiostat and cyclic voltammetry (CV) was performed on the sample at -0.4 – +1.2 V (vs Ag/AgCl) for 50 cycles at 

50 mV/s. The sample was submerged in water to wash out impurities, and then left to air dry. Samples were prepared in 

duplicate. The finished film was analysed by UV-Vis spectroscopy and electrochemistry. 

2.4  Electrochemical Testing 

All electrochemical measurements were carried out in 0.1 M Na2SO4 on an EDAQ466 potentiostat.  Linear sweep 

voltammograms were performed at a scan rate of 5 mV/s. The electrochemical cell employed comprised of a rectangular 

chamber with fixed positions for the working electrode, reference electrode (Ag/AgCl) and counter electrode (Pt mesh; 

ca. 1.0 x 1.5 cm).  The distance between the working and counter-electrode was 25 mm.  
The PEDOT and Mn porphyrin/PEDOT samples were subjected to electrochemical testing in a cell filled with 

Na2SO4 (0.1 M) that had been degassed with N2 gas while stirring for 1 h. A SoLux daylight MR16 halogen light bulb 



(12 V, 50 W, 24o; ca. 0.25 sun intensity) was used with a stable output range of 275 - 750 nm.  The lamp only 

approximated sunlight conditions.  The light was passed through a 3 mm glass filter to remove the infra-red component, 

before reaching the sample.  The cut-off filter blocked all wavelengths above 700 nm. 

Before testing, cyclic voltammetry (CV) was performed on the film for 20 cycles at 10 mV/sec in order to stabilise 

the film. LSV sweeps were then performed over the range of 0-0.7 V at a scan rate of 5 mV/sec. Voltages beyond 0.7 V 

(vs Ag/AgCl) were not studied in order to avoid oxidative damage to the film. In a typical experiment, five sweeps were 

done in the dark and then three sweeps with light illumination turned on. This ensured that the LSV spectrum remained 

constant over the course of the data recording as it was otherwise affected by charge imbalances brought on by static 

electricity. The last of the LSV sweeps with and without illumination were used as data. This method was applied to all 

of the films investigated. In all cases the resulting current (in µA) was converted into current density (in µA/cm2) by 

dividing by the geometric area of the film. 

Following the LSV measurement, each sample was tested by CA (chronoamperometry) at the potential of 0.65 V (vs 

Ag/AgCl). In a typical experiment the chosen voltage was applied to the film for 1 h without illumination to equilibrate 

the baseline current. The light was then switched on to measure the resulting photocurrent for 10 min and then turned 

off. The data provided in the section below were taken from 1 min before illumination to 1 min after the end of 

illumination. The data (in µA) was normalised by subtracting the baseline before illumination and the results converted 

to current density (in µA/cm2). 

3.  RESULTS AND DISCUSSION 

3.1  Electropolymerisation of PEDOT:PSS and porphyrin/PEDOT:PSS 

Electropolymerisation of PEDOT:PSS on FTO glass was carried out as described in the experimental section [7].  In 

the first run, control PEDOT:PSS was synthesised. Thereafter MnTPPS or MnPVTPPS (as co-mixtures with PSS) were 

incorporated at low concentrations similar to our previous report [1(c)], with MnTPPS incorporated at 2.5 mg/ml and 

MnPVTPPS at 0.86 mg/mL.  Under these circumstances the molar ratio of the MnTPPS in PEDOT was previously 

determined to be ca. 60 PEDOT repeat units : 1 porphyrin.  Because of the multi-step synthesis required, only a small 

quantity of VTPPS was prepared and only one concentration of MnPVTPPS in PEDOT studied. Due to a paucity of 

material, it was not possible to accurately determine its molar ratio of PEDOT : porphyrin.  

The initial trial of PEDOT:PSS, without porphyrin, under the conditions of the present study, exhibited a CV 

spectrum that was characteristic of gradually increasing capacitive current, indicating a progressive build-up of 

conducting polymer on the electrode (Figure S1). The porphyrins MnTPPS or MnPVTPPS were later separately added 

(both with PSS), generating the materials PEDOT:PSS, MnTPPS/PEDOT:PSS and MnPVTPPS/PEDOT:PSS. The 

films were either deep blue (PEDOT:PSS, Figure S2(a)) or deep green (MnTPPS/PEDOT:PSS; Figure S2(b) and 

MnPVTPPS/PEDOT:PSS Figure S2(c)).  

The electropolymerised (EP) PEDOT:PSS film was tested by Linear Sweep Voltammetry (LSV) and 

Chronoamperometry (CA) under light illumination (Figure 3). The LSV spectrum of the control, porphyrin-free 

PEDOT:PSS film featured a weak photocurrent with onset potential ca. 0.5 V (vs Ag/AgCl).  This was similar to that 

previously observed for vapour phase polymerised (VPP) PEDOT [1(c)].  However, while vapour phase polymerised 

VPP PEDOT typically displayed a photocurrent of ca. 1 µA/cm2 at 0.65 V in LSVs, the electropolymerised EP 

PEDOT:PSS exhibited photocurrent densities up to as high as 8 µA/cm2. This indicated that the EP PEDOT:PSS was 

more light active, even without a porphyrin species present. 
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Figure 3. LSV spectra of PEDOT:PSS (without MnTPPS), (a) in the dark, (b) with light illumination. 

3.2  Photoelectrochemical testing of porphyrin-free, control PEDOT:PSS 

 

The CA photocurrent density measurement of PEDOT:PSS reflected the increased photocurrents observed in the 

LSV experiment, reaching a level of 3.89 µA/cm2 after 10 min of illumination at 0.65 V (Figure 4). This was 

significantly greater than the 0.75 µA/cm2 previously measured for VPP PEDOT [1(c)]. 

 

3.3  Photoelectrochemical testing of MnTPPS/PEDOT:PSS 

 

The EP MnTPPS/PEDOT:PSS film was tested by LSV and CA to measure the photocurrent produced under 

illumination.  The LSV spectrum of MnTPPS/PEDOT:PSS was similar to that of PEDOT:PSS, also displaying an onset 

potential from ca. 0.5 V (vs Ag/AgCl) (Figure 5). In this case however, the photocurrents were very similar to that of 

vapour-phase polymerized MnTPPS/PEDOT reported previously where the onset was ca. 0.55 V (vs. Ag/AgCl) [1(c)]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Chronoamperogram under light illumination at 0.65 V (vs Ag/AgCl) of PEDOT:PSS. (*  = “ light on” ; # = “ light off” ) 
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Figure 5. LSV spectra of MnTPPS/PEDOT:PSS, (a) in the dark, (b) with light illumination. 

The CA photocurrent density measurement for MnTPPS/PEDOT:PSS was 3.29 µA/cm2 at 0.65 V (vs Ag/AgCl) 

(Figure 6), which was, in fact, marginally lower than that of PEDOT:PSS (Table 1), but higher than that of the highest 

performing vapour-phase polymerized MnTPPS/PEDOT (at 1.46 µA/cm2) [1(c)].  

 

 

 

 

 

 

 

 

 

Figure 6. Chronoamperograms under light illumination at 0.65 V (vs Ag/AgCl) for (a) PEDOT:PSS and (b) MnTPPS/PEDOT:PSS 
(*  = “ light on” ; # = “ light off” ) 

 

Sample 
Current Density at 0.65 V 
under light illumination 

(µA/cm2) 

MnTPPS/PEDOT:PSS 3.29 

PEDOT:PSS 3.89 

 

Table 1. Photocurrent density of MnTPPS/PEDOT:PSS at 0.65 V (vs Ag/AgCl). 
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Figure 7. LSV spectra of (I) MnPVTPPS/PEDOT:PSS 1 and (II) MnPVTPPS/PEDOT:PSS 2, (a) in the dark, (b) with light 

illumination. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Chronoamperogram under light illumination at 0.65 V (vs Ag/AgCl) of (a) control PEDOT:PSS, (b) 

MnPVTPPS/PEDOT:PSS 1 and (c)  MnPVTPPS/PEDOT:PSS 2. (*  = “ light on” ; # = “ light off” ) 

 

 

Sample Current Density at 0.65 V 
(µA/cm2) 

MnPVTPPS/PEDOT:PSS 1 5.00 

MnPVTPPS/PEDOT:PSS 2 3.39 

PEDOT:PSS 3.89 

 

Table 2. Photocurrent density of MnPVTPPS/PEDOT:PSS under light illumination at 0.65 V (vs Ag/AgCl). 
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3.4  Photoelectrochemical testing of MnPVTPPS/PEDOT:PSS 

The EP MnPVTPPS/PEDOT:PSS film was tested by LSV and CA to ascertain the photocurrent produced under light 

illumination. The LSV spectra of MnPVTPPS/PEDOT:PSS exhibited, in all cases, a photocurrent onset potential of ca. 

0.5 V (vs Ag/AgCl) (Figure 7).   

During the CA testing of multiple MnPVTPPS/PEDOT:PSS samples, two distinctly different photocurrent profiles 

were detected. Each sample tested fell into one of these profiles, which have been distinguished here as 

MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2.  

One set of samples (MnPVTPPS/PEDOT:PSS 1) displayed a notably larger photocurrent overall than the other set of 

samples (MnPVTPPS/PEDOT:PSS 2).   

When tested by CA at 0.65 V (vs Ag/AgCl) with illumination, samples MnPVTPPS/PEDOT:PSS 1 displayed the 

highest photocurrent density measured so far for this class of material at 5.00 µA/cm2. Interestingly, the duplicate 

samples MnPVTPPS/PEDOT:PSS 2 made using, apparently, exactly the same method yielded only 3.39 µA/cm2, lower 

than that of PEDOT:PSS (Figure 8, Table 2).  Despite strenuous attempts to identify physical factors that were different 

in the preparative procedures for the MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2 samples, no clear 

distinction in this respect could be determined. No such phenomenon was observed when testing the 

MnTPPS/PEDOT:PSS samples. 

3.5  UV-Vis analysis of PEDOT:PSS 

The EP PEDOT:PSS film was analysed using UV-Vis spectroscopy after fabrication. It exhibited the characteristic 

spectrum of PEDOT in oxidised form (Figure S3); this had also been observed before in VPP PEDOT samples [8,11].  

3.6  UV-Vis analysis of MnTPPS/PEDOT:PSS 

The electropolymerised MnTPPS/PEDOT:PSS film was also analysed by UV-Vis spectroscopy. The UV-Vis 

spectrum of MnTPPS/PEDOT:PSS yielded absorbance peaks at 425 nm, 443 nm and 489 nm (Figure 9). These were 

consistent with the previously prepared VPP MnTPPS/PEDOT [1(c)], with the exception that the 489 nm absorbance 

peak fell at ca. 475 nm in that case. The absorbance peaks correspond to the Soret Band of the porphyrin in its initial 

Mn(III)TPPS form (489 nm) as well as the free H2TPPS (425 nm) and a very small shoulder (443 nm) likely 

corresponding to the protonated species H4TPPS2+ [12].  

Compared to the spectrum of MnTPPS in water, which featured the Mn(III)TPPS Soret Band at 466 nm, the 

absorbance peak for the MnTPPS/PEDOT:PSS was significantly red shifted to 489 nm, whereas the Soret band of 

H4TPPS2+ according to the scientific literature [12] aligned perfectly with the small shoulder at 443 nm. The unusually 

large peak at 705 nm, with associated shoulders at 575 nm, 625 nm, and 675 nm, was almost certainly due to H4TPPS2+ 

[12], also significantly red shifted.  As noted previously [1,12], fully protonated porphyrins of this type typically display 

poorly resolved Q-band spectra, with the peak at longest wavelength significantly amplified relative to the other Q-band 

peaks.  

Surprisingly some demetallation, with accompanying protonation of the resulting free porphyrin appeared to have 

also occurred in this system under electropolymerisation conditions.  In our previous work, demetallation of certain 

cationic Mn porphyrins in vapour-phase polymerized PEDOT was observed under light illumination [1(c)].  However, 

the demetallation in the present case was substantially less than that oberved in the previous study.  It does demonstrate 

however, that the demetallation process is independent of the method of polymerisation. 
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Figure 9. UV-Vis spectrum of (a) PEDOT:PSS:MnTPPS and (b) MnTPPS in water. 

 

 
Figure 10. UV-Vis spectra in water of: (a) MnTPPS, (b) TPPS, and (c) the water rinse from MnTPPS/PEDOT:PSS after fabrication. 

 

An analysis was conducted on the water rinsed off the MnTPPS/PEDOT:PSS film after electrodeposition and the 

UV-Vis spectrum of the eluate was compared to the spectra of MnTPPS and TPPS in water solution (Figure 10). The 

comparison showed that the porphyrin species washed out of the film after polymerisation was indeed the free TPPS 

with a Soret Band peak at ca. 410 nm (Figure 10(b),(c)), rather than MnTPPS (Figure 10(a),(c))).   

A small portion of what was likely protonated TPPS was also identified in a band at ca. 440 nm along with an 

amplified Q-band peak at ca. 650 nm. However it should be noted that these washings represented only the loosely 

bound species that adhered to the film in excess after polymerisation, and were not characteristic of the entirety of the 

porphyrins in the sample. The previous UV-Vis spectrum of the MnTPPS/PEDOT:PSS film (Figure 9) had 
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demonstrated unequivocally that large proportions of MnTPPS were still present in the film as evidenced by the 

significant absorbance peak corresponding to Mn(III)TPPS at 489 nm.  

3.7  UV-Vis analysis of MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2 

The samples containing the polymeric porphyrin MnPVTPPS was of great interest as one form of them displayed the 

highest photocurrent so far recorded in studies of Mn porphyrin PEDOT films. As noted above, despite being made by 

an identical procedure using the same sample of MnPVTPPS, two distinctly different types of composites were observed 

– MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2.  The former yielded relatively high photocurrents, while 

the latter yielded photocurrents that were identical to the control PEDOT:PSS.  To try to explain the difference in 

photocurrent performance for MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2, UV-Vis absorbance 

analysis was carried out. 
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Figure 11. Representative UV-Vis spectra of (a) MnPVTPPS/PEDOT:PSS 1, (b) MnPVTPPS/PEDOT:PSS 2 and (c) MnPVTPPS 

in water. 

 

The UV-Vis spectra of MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2 were compared to that of 

MnPVTPPS in water solution (Figure 11). The high performing material, MnPVTPPS/PEDOT:PSS 1, typically 

displayed a dominant absorption peak at 431 nm with a small shoulder at 444 nm and a minor peak at 474 nm. These 

could be attributed to the free base porphyrin H2PVTPPS (431 nm), its acidified form (444 nm), and Mn(III)PVTPPS 

(474 nm) based on the similar Soret Bands observed in the H2TPPS-H4TPPS system. As can be seen in Figure 11(a), the 

higher photocurrent of MnPVTPPS/PEDOT:PSS 1 appears to be associated with demetallated porphyrins and a Mn-free 

coating. 

By contrast, the low performing sample, MnPVTPPS/PEDOT:PSS 2, exhibited only one clear absorbance peak in the 

Soret Band region, at 474 nm. This indicated that the porphyrin in that sample had not been converted to the metal-free 

porphyrin form.  That is, as can be seen in Figure 11(b), the lower photocurrent of MnPVTPPS/PEDOT:PSS 2 appears 

to be associated with a predominance of metallated porphyrins and the presence of Mn in the coating.  The fact that the 

photocurrent of MnPVTPPS/PEDOT:PSS 2 was the same or lower than that of PEDOT:PSS suggests that the observed 



photocurrent may have been due to the PEDOT:PSS alone, with the porphyrin in MnPVTPPS/PEDOT:PSS 2 being 

catalytically inactive.  

The photocurrent density measured for MnPVTTPS/PEDOT:PSS was the highest so far recorded for Mn 

porphyrin/PEDOT systems in our studies. At 0.65 V (vs Ag/AgCl) the photocurrent density for 

MnPVTPPS/PEDOT:PSS was 5.00 µA/cm2 compared to the highest reading of MnTPP/PEDOT at 2.91 µA/cm2 at the 

same voltage [1(c)].  

The samples were examined by UV-Vis and demetallation was found to also occur when film fabrication was carried 

out using electrochemical polymerisation. 

 

4.  CONCLUSIONS AND SUMMARY 

The phenomenon of demetallation of Mn porphyrins at low concentrations and its connection to unusually high 

photocurrents was previously observed in vapour-phase polymerised Mn porphyrin/PEDOT composites [1(c)].  

Demetallation was hypothesized, in that case, to be a result of the cationic nature of the Mn porphyrins used in that 

study, the vapour phase polymerisation process employed, and the the specific conditions of light illumination 

thereafter. The above work confirms however, that demetallation is not associated with vapour phase polymerisation; it 

occurs even when electropolymerisation is used.  Nor is it due to the nature of the charge on the Mn porphyrins, whether 

cationic or anionic since MnTPPS also becomes demetallated in PEDOT:PSS under suitably low loading conditions.   

Moreover, the phenomenon of smaller photocurrents associated with the presence of the Mn(III) species was also 

observed in the MnPVTPPS/PEDOT:PSS.  What makes these results remarkable is that the overall concentration of 

porphyrin present in the MnPVTPPS/PEDOT:PSS polymer coatings was necessarily constant during fabrication. That 

is, whereas demetallation was observed to be dependent on the loading level in vapour phase polymerised 

MnTPP/PEDOT, in the MnPVTPPS/PEDOT:PSS coatings there seems to have been two, concentration-independent 

pathways, one of which led, almost exclusively, to demetallation and the other, almost exclusively, to Mn retention. The 

trigger that led to one pathway over the other remains unclear. What was clear however was that the photocurrent 

generated depended on whether the porphyrin in the sample was in its Mn porphyrin or free base form.  In agreement 

with our previous work [1(c)], it can be concluded that, at low loading levls, the free base TPPS generated in the 

PEDOT undergoes photoelectrolytic degradation creating a photocurrent in the system. 

In the present work we therefore showed that demetallation also occurs, albeit less severely, with anionic Mn 

porphyrin loaded into electropolymerised PEDOT.  It does not derive from the method of polymerisation used, nor is it 

associated with the charge on the Mn porphyrin, whether anionic or cationic. Rather, the demetallation reaction is 

independent of the method of polymerization and the Mn porphyrin dopant employed.  Indeed, it appears to be an 

inherent feature of PEDOT coatings containing low levels of Mn porphyrins when they are illuminated with light.  

These findings have potentially important implications in water-splitting photocatalysis by Mn porphyrin-doped 

conducting polymers. 
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