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Using data mining to predict success in a weight loss trial

Abstract
Background: Traditional methods for predicting weight loss success use regression approaches, which make
the assumption that the relationships between the independent and dependent (or logit of the dependent)
variable are linear. The aim of the present study was to investigate the relationship between common
demographic and early weight loss variables to predict weight loss success at 12 months without making this
assumption.

Methods: Data mining methods (decision trees, generalised additive models and multivariate adaptive
regression splines), in addition to logistic regression, were employed to predict: (i) weight loss success
(defined as ≥5%) at the end of a 12-month dietary intervention using demographic variables [body mass
index (BMI), sex and age]; percentage weight loss at 1 month; and (iii) the difference between actual and
predicted weight loss using an energy balance model. The methods were compared by assessing model
parsimony and the area under the curve (AUC).

Results: The decision tree provided the most clinically useful model and had a good accuracy (AUC 0.720
95% confidence interval = 0.600-0.840). Percentage weight loss at 1 month (≥0.75%) was the strongest
predictor for successful weight loss. Within those individuals losing ≥0.75%, individuals with a BMI (≥27 kg
m-2) were more likely to be successful than those with a BMI between 25 and 27 kg m-2.

Conclusions: Data mining methods can provide a more accurate way of assessing relationships when
conventional assumptions are not met. In the present study, a decision tree provided the most parsimonious
model. Given that early weight loss cannot be predicted before randomisation, incorporating this information
into a post randomisation trial design may give better weight loss results.
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Abstract  



Background  

Traditional methods for predicting weight loss success use regression approaches which 

make the assumption that the relationships between the independent and dependent (or 

logit of the dependent) variable is linear. The aim of this research was to investigate the 

relationship between common demographic and early weight loss variables to predict 

weight loss success at 12 months without making this assumption.  

Methods  

Data mining methods (Decision Trees, generalised additive models and multivariate 

adaptive regression splines) in addition to logistic regression were used to predict weight 

loss success (defined as ≥5%) at the end of a 12 month dietary intervention using 

demographic variables (BMI, sex and age), percent weight loss at one month and the 

difference between actual and predicted weight loss using an energy balance model. 

Methods were compared by assessing model parsimony and the area under the curve 

(AUC).  

Results  

The Decision Tree provided the most clinically useful model and had a good accuracy (AUC 

0.720 95%CI 0.600,0.840). Percent weight loss at one month (≥0.75 of a percent) was the 

strongest predictor for successful weight loss. Within those losing ≥0.75 of a percent those 

with BMI (≥27kg/m2) were more likely to be successful than those with a BMI between 25-

27 kg/m2.  

Conclusion  



Data mining methods can provide a more accurate way to assess relationships when 

conventional assumptions are not met. Here a Decision tree provided the most 

parsimonious model. Given that early weight loss cannot be predicted before 

randomisation incorporating this information into post randomization trial design may 

give better weight loss results. 

 

Greater early weight loss has consistently been shown to predict long term success in 

weight loss trials(1; 2; 3; 4). From a clinical practice perspective there is a lack of an easy to 

use guideline that would help identify early success and the measurement values that could 

be used to trigger a decision making process to intervene and change therapy for those 

unlikely to lose a clinically beneficial amount of weight. Recently a dynamic energy balance 

model has been developed and used as part of an algorithm (5) to predict whether a subject 

will lose weight in a weight loss trial (6). A limitation of this method, acknowledged by the 

authors and the accompanying editorial (7) is the complexity of applying such a model 

quickly in clinical practice as it relies on the input of several variables into a web or locally 

based algorithm. However, in this initial paper the algorithm was shown to outperform the 

simple process of examining early weight loss as a predictor of success. Early weight loss 

was not shown to be significant in predicting weight loss success, a finding in conflict with 

previous research (1; 2; 3; 8). 

Most previous research investigating predictors of longer term weight loss have used linear 

or logistic regression (1; 2; 3; 4; 8). Linear and logistic regression make the assumption that the 

relationship between the dependent (or logit of the dependent variable for logistic 



regression) and the independent variable is linear and this may not always be the case. 

Data mining methods are increasing in use as an alternative to traditional methods when 

assumptions are not met(9). In addition, although coefficients in linear regression and the 

odds in a logistic regression are relatively easy to understand and communicate they are 

not easy to apply in clinical decision making. Some data mining methods can be used to 

establish cut-off criteria using different variables to predict an outcome or establish the 

importance of difference variables in predicting an outcome. For example Batterham et al 

(10)showed, using a decision tree, that those losing < than 2% of their initial weight in a 

weight loss trial were significantly more likely to drop out than those losing greater than 

this amount. The cut-off of 2% was not selected a priori but was determined by the data 

mining procedure and provides a guide for researchers and clinicians to target participants 

likely to discontinue a program. If at one month the participant has lost less than 2% 

additional interventions or follow ups may be initiated to prevent attrition. The 

relationship here is not linear in that the response depends on whether the weight loss is 

less than 2%. Santos et al(11) used recursive partitioning, where the data is repeatedly split 

into partitions containing similar observations(12) to predict long-term weight loss 

maintenance, however only behavioural and psychological factors (self determination, 

exercise motivation, difference between perceived self and ideal body image, self esteem, 

social support for exercise, depression, quality of life and dietary restraint) measured using 

an extensive battery of questionnaires, which are not collected in our research practice, 

were considered. They identified that better body image and exercise motivation were 

associated with weight loss maintenance. More readily available demographic and clinical 



measures such as early weight loss was not used as a predictive variables in Santos and 

colleagues research. 

Data mining is broadly defined as “the study of collecting, cleaning, processing, analyzing 

and gaining useful insights from data”(13) or “the process of discovering insightful, 

interesting, and novel patterns as well as descriptive, understandable and predictive 

models”(14). There are some examples of the use of data mining in nutrition related 

research for example decision trees have been used to examine the relationship between 

diet and lifestyle factors associated with oesphageal and gastric cancer(15) and dietary 

patterns and their association with childhood obesity(16). However these methods are not 

widely used in the nutrition domain and offer an opportunity to gain additional insights 

from data compared with more traditional methods. 

The aim of this research is to closely examine the relationship between early weight loss 

and weight loss success(defined as greater than or equal to 5% weight loss (17) to 

determine a clinical cutoff to use in practice). Initial weight loss was considered as it has 

previously been shown to be a predictor of weight loss success using linear(2) and logistic 

regression. Other variables, such as demographic factors(1; 2), weight loss history(1; 2), 

psychological factors (for example depression, stress, anxiety(1; 11), quality of life(2; 11)), 

eating disorders(1; 2), physiological measures(blood pressure, glucose and lipids)(4) and 

attendance(1) have been investigated for their role in predicting weight loss success 

however initial weight loss is the only variable consistently shown to predict successful 

weight loss in several studies(1; 2; 3; 4). We investigated whether more sophisticated decision 

making processes using data mining methods will have better accuracy than traditional   



approaches. This analysis will show whether data mining procedures, which do not make 

the same assumptions  of the traditional methods, can be used to develop an easy to use 

decision process for predicting weight loss success. We further propose that this will 

outperform a more complicated algorithm(6) previously published in this area. 

 

Methods  

Data for this analysis was made available from a previously published weight loss trial 

investigating the effectiveness of high vegetable consumption in the context of an energy 

reduction diet for weight loss where the treatment effect (the difference in weight loss 

between the prescribed vegetable consumption and control group) was not significant (18). 

For the analysis reported here, the demographic variables BMI, sex and age were 

considered in addition to percent weight loss at one month and the difference between 

actual and predicted weight loss using the energy balance model developed by Thomas et 

al(5; 6). This algorithm for predicted weight loss includes the weight, height, age, sex and 

target caloric intake of the subject. The variables included were ones considered to be 

easily collected in research or clinical practice. . Data for the 93 participants who completed 

the trial were considered for this analysis. For the GAM and MARS models only data on the 

76 subjects with complete data for all the considered variables were analysed. Summary 

statistics of the study sample and weight loss variables are shown in Table 1. Predicting 

weight loss success is a secondary analysis not considered in the initial study publication.  

The outcome or response variable in this analysis was a binary variable determining 

whether or not each participant had been successful in losing weight (defined as greater 



than or equal to 5% weight loss (17))Models were constructed using several data mining 

methods: Decision trees or classification and regression trees, generalized additive models 

(GAM), and multivariate adaptive regression splines (MARS). The reason for using these 

methods was that we made no a priori assumptions that the relationships were linear. The 

models chosen are popular data mining methods and all covered in detail in the core texts 

on these techniques (9; 19; 20). Decision trees are based on linear regression and partition 

significant independent variables in a binary (two-way) split based on a function 

minimizing the sum of squared errors(21). MARS can be regarded as a modification of the 

decision (or classification and regression) tree method. MARS uses piecewise functions 

(functions with a kink in them to model the non linearity(22)) instead of step functions 

which are used in decision tree models to perform an adaptive regression (20) MARS is a 

non-parametric regression method. GAM is an extension of regression where the linear 

function (the beta coefficients) are replaced by a more general non parametric functions 

(20). The non-linear relationships between the response and significant independent 

variables is usually visualized by using a scatterplot of the partial residuals (where the 

effect of all the other independent variables is removed) and the independent variable 

which is smoothed (the random noise has been reduced)(23; 24).  The more traditional 

methods of logistic regression and a Receiver Operating Characteristic (ROC) or area under 

the curve (AUC) analysis were also used. These models werebased on predicted weight loss 

at one month or the probability of weight loss success at one month. Methods were 

compared using the AUC, which ranges from 0-1 with values closer to 1 indicating a better 

model and when the lower CI is > 0.5 the model is statistically significant. Model parsimony 

and use in clinical practice was also considered in deciding on the best model. For this 



purpose we wished to have the least number of significant predictors which would be easy 

to calculate in a research or clinical context. Prediction model validation (25) was 

established for the decision tree by using k-fold cross validation and the complexity 

parameter to fine-tune the tree based on the cross-validated error to achieve a model 

which is a balance between complexity and interpretability. Further verification of the 

variable importance was confirmed by generating 1000 trees using a random forest 

procedure (19). In the random forest procedure bootstrap resampling is used to generate 

independent trees which are combined to determine the variable importance. Data were 

analysed in R Studio (Version 0.99.489 – © 2009-2015 RStudio, Inc. incorporating R 

version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree" The R Foundation for Statistical 

Computing) (26). The main packages used were 'rpart' and 'rattle' for the decision tree, 

'gam' for the generalised additive model, 'earth' for the binary multivariate additive 

regression splines, and 'stats' ('glm' for the logistic regression). 

Results  

The difference between the predicted and actual weight loss at 1 month was statistically 

significant and the difference between the predicted probability, (calculated using the 

algorithm of Thomas and colleagues(6)) of meeting the 5% criteria and the percentage 

actually meeting the 5% weight loss criteria showed poor agreement using the kappa 

statistic (kappa=-0.024, P=0.807), the predicted probability correctly classified 49 of 63 

who met the 5% criteria and only 6 of 30 who did not meet the criteria. The results of the 

different models are shown in Table 1. The Decision tree (Figure 1) shows that percent 

weight loss is the main predictor of weight loss success. The cutoffs determined by the 



partitioning algorithm suggested those losing ≥0.75 of a percent in the first month being 

the most likely to succeed. Within those who have lost more than this amount those with a 

BMI ≥ 27kg/m2 are more likely to succeed than those with a BMI< 27kg/m2 . The AUC is 

above 0.7 which is considered good (27). The random forest procedure confirmed that the 

percent weight loss at one month and BMI were the most important predictors. The mean 

decrease in accuracy related to percent weight loss at one month was 21, and BMI 11, 

compared with 6, 4, and 3 for the difference between actual and predicted weight, gender 

and age respectively, this value reflects the decrease in classification accuracy if the 

variable is removed with higher values reflecting more impact. Using percent weight loss at 

1 month alone also gives a good AUC, however this model only considers one variable and 

does not consider the relationships with the other predictors. The logistic regression(GLM) 

has only a moderate AUC identifying only weight loss at 1 month as a predictor. The GAM 

and MARS models both show non linear relationships. The GAM model shows the 

relationships with percent 1 month weight loss and the actual versus predicted weight are 

non linear. Figure 2 shows the non linear spline fit for Percent weight loss at 1 month. The 

GAM gives the best accuracy for prediction with the highest AUC and the MARS model also 

has a good AUC. The MARS model selects predicted weight loss at 1 month and BMI as the 

only predictors with the former being of more importance than the later. Both the GAM and 

MARS models can be influenced by collinearity (28). The correlation between percent weight 

loss at 1 month and the difference between the actual and predicted weight loss at 1 month 

was 0.810 P<0.001. Generally, correlations >0.9 can be problematic although it is 

recommended that correlations >0.8 should be investigated (29; 30). In this analysis the GAM 

was affected by this relationship giving inconsistent estimates when both variables were 



included. When including each separately the percent weight loss at 1 month variable was 

a stronger predictor and so the model containing this predictor was considered (the 

coefficient and P value for the model including difference between actual and predicted 

weight loss is also included in Table 1). When percent weight loss was removed from the 

MARS model only BMI was included indicating that collinearity was not affecting this 

model. The MARS model was unaffected by this relationship giving identical results with 

and without the difference between actual and predicted variable. 

Discussion  

Using data mining methods this research demonstrates that the relationship of common 

demographic variables and weight loss success is non linear and developing models to 

predict weight loss success should account for this. A newly developed dynamic energy 

balance model shown to have good accuracy in a lifestyle based intervention was not able 

to improve on simple measures for prediction in the present sample of participants in a 

dietary weight loss trial. A simple decision tree approach incorporating the percent weight 

loss and baseline BMI provided good predictive accuracy in this sample.  

Current research investigating predictors of weight loss success (1; 2; 3; 4; 8) relies heavily on 

the use of linear or logistic regression which assume relationships with continuous 

predictor variables are linear. If the relationship between the log odds and a continuous 

predictor variable in a logistic regression or the independent and dependent variable in 

linear regression is non linear the strength of relationships may be underestimated. 

Sometimes a polynomial or other power term can be fitted however when the relationship 

does not fit one of these defined terms. GAM can improve the model fit by using splines (or 



other methods) to more accurately fit the relationship between the independent and 

dependent variables. Although the logistic regression in this analysis still showed that 

percent weight loss at 1 month was a significant predictor and this is a reasonable 

representation of the data, the logistic regression does not clearly define the relationship 

between this variable and BMI the way the Decision tree does. The use of data mining 

methods in this analysis clearly shows these relationships are non linear and incorporating 

this non linearity improves the models. Despite their ability to model non linear 

relationships these models have other considerations and the GAM model in particular was 

influenced by the correlation of the percentage weight loss at 1 month and the difference 

between the actual and predicted weight loss. The Decision trees are robust to collinearity, 

and this again, with the greater ease of interpretation, suggests they are the preferred 

model in this analysis.  

MARS and GAM were included in this analysis as it is increasingly recognised that some 

relationships in health research are non-linear and methods which accommodate this non 

linearity are growing in use in lifestyle and health research (31; 32; 33; 34; 35; 36). These models 

are also included as they are related to the tree models in the seminal data mining text (20). 

While they can be used to predict weight loss success, the complexity of the algorithms 

make the Decision tree provide a more accurate approach for model parsimony.  

Although BMI is easily assessed prior to commencing a weight loss intervention, early 

weight loss, the strongest predictor of success, percent weight loss at one month, can only 

be established AFTER the trial is commenced. Thus, a rethink of trial design is necessary to 

incorporate this knowledge even though it cannot be included in the initial randomisation. 



New trial designs such as adaptive randomisation or sequential multiple assignment can be 

used to maintain all subjects in the study and at the same time target effects (37; 38). From a 

statistical point of view, this design element could lead to reduced variability in study arm 

outcomes thus improving the effect size and subsequent power, and reducing the required 

initial sample size. Most importantly, however, targeting non responders and implementing 

a treatment change may result in better individual outcomes for the participants and more 

successful therapy for roll out to the general community to treat the obesity epidemic.  

Dynamic energy balance models rely on physical laws to predict the amount of weight loss 

which should occur given the subject characteristics and dietary prescription. Two 

publically available energy balance calculators are widely reported in the literature 

http://www.pbrc.edu/research-and-faculty/calculators/weight-loss-predictor/ (5) and 

https://supertracker.usda.gov/bwp/index.html (39). The former was chosen for this 

anlaysis as this model has been further developed to predict weight loss success. Both 

models suffer from the limitation that access to a computer or smart device is required (7) 

as is input on weight goals and demographic information. The’ Supertracker’ can also 

incorporate information on activity levels, macronutrient intake and input measures of 

body fat and resting metabolic rate. Both are useful in the research setting and potentially 

for goal setting in clinical practice. In this case the use of the predicted probability of 

success at one month gave a prediction accuracy that was not better than chance alone 

using the AUC. Incorporating the difference between the actual and predicted weight loss 

(5) (which can be used as a marker of compliance to the dietary prescription) did not come 

out as a primary predictor in most of the models however by using a GAM model it is clear 

this relationship was not linear and it could be investigated further in other samples.  



There are some limitations to this analysis. Many variables have been associated with 

predicting weight loss(40) and the current analysis was limited to the variables collected for 

the study considered. Dietary prescription was defined in 500kJ increments in order to 

make the recommendations on vegetable intake easier to implement. The rate of attrition 

was moderate (22.5%) in this study compared to others conducted by our research group 

and other facilities (41; 42). This may reflect differences in this study population and the 

results require replication in other populations. Nevertheless, given the ease of calculation 

of a decision tree in both the free package R Studio (R Studio® Inc, Boston MA) and 

commercial packages such as SPSS (IBM Corporation, Armonk NY) it is possible that 

researchers and in fact clinicians with their own unique populations should be 

investigating the use of these tools. Even without the use of an algorithm the real clinical 

message here is that in clients seeking weight reduction low early weight loss and lower 

baseline BMI (25-27) should be targeted for more intense approaches or combinatorial 

approaches (exercise, psychological counselling or potentially pharmacotherapy).  

In summary this analysis demonstrates the potential utility of data mining methods over 

more traditional analyses to produce better models for prediction of weight loss.  It also 

demonstrates that conventional assumptions such as the linearity of relationships may not 

be valid. For example, the results of the decision tree show that weight loss success is 

determined by a cutpoint in weight loss at 1 month of 0.75% and a BMI of 27. The 

scatterplot for the GAM also shows the non-linear relationship between weight loss success 

and percent weight loss at one month. This information is lost if the relationships are 

considered to be linear. Some of the limitations of these methods, in this case with respect 

to collinearity, are also highlighted. When modeling data there is often a trade off between 



accuracy and model parsimony.  In this analysis the simpler decision tree approach 

although slightly less accurate than the GAM and MARS is easy to interpret and not 

susceptible to the collinearity issue observed in the GAM. The models all suggest that 

percent weight loss at 1 month is the strongest predictor of weight loss success at the end 

of the one year study and that within those with greater initial loss, baseline BMI is also 

important. Alternative trial designs and clinical strategies are recommended where this 

information is incorporated to improve weight loss outcomes. 
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Table 1 Descriptive statistics of study sample and model summaries. 

Variable Mean(95%CI) and P value 
BMI at baseline 29.94kg/m2 (29.38,30.50) 
Weight loss at 1 year 7.46% (6.29,8.63) 
Age 49years (47,51) 
Percentage of women 91% (n=85) 
Weight loss at 1 month 2.64% (2.23,3.06%) 
Actual weight at 1 month 82.22kg (79.99,84.44) 
Predicted weight at 1 month 80.03kg (77.89,82.18) 
Difference between actual and predicted weight 2.18kg (1.78,2.59)  P<0.001 
Percentage meeting ≥5% weight loss criteria  68% (n=63) 
Percentage predicted to meet 5% criteria at 1 month 79% (n=73), Κ=-0.024, P=0.807 
  
Model AUC 
Decision Tree (classification and regression tree) 0.720(0.600,0.840) P=0.001 
ROC (probability of success at 1 month) 0.489(0.363,0.614) P=0.863 
ROC (% weight loss at 1 month) (cutpoint -1.68%) 0.740(0.635,0.845) P=0.001 
GLM Coefficient Z value P 0.670(0.545,0.795) P=0.008 
Age -0.042 -1.464 0.143 
Gender -0.349 -1.160 0.246 
BMI 0.134 1.378 0.168 
Weight loss at 1 month -0.974 -2.550 0.011 
Difference between 
actual and predicted 
weight 

0.578 1.412 0.158 

GAM    0.777(0.638,0.915) P<0.001 
 Coefficient F P 
Age -0.004 0.014 0.908 
Gender  -1.003 0.823 0.368 
BMI 0.143 1.366 0.246 
Weight loss at 1 month -0.533 6.744 0.011 
Difference between 
actual and predicted 
weight* 

-0.503 3.722 0.058 

MARS  
equation & coefficients: 1.81-(2.46*bf1)-(17.34*bf2)+(1
8.26*bf3) Where bf1=h(26.82-BMI), bf2=h(% wt loss at 
1 month--0.78), bf3=h(% wt loss at 1 month--0.58) 

0.726(0.583,0.868) P=0.002 

Κ kappa statistic, AUC area under the curve, ROC receiver operating characteristic curve, GLM generalised linear model 
(logistic regression), GAM generalised additive model, MARS multivariate adaptive regression splines, bf basis function, h 
hinge. *values from separate GAM model without percent weight loss at 1 month. 

 

  



 

Figure 1. Decision Tree 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 2. Non linear spline plot for percent weight loss at one month from the 
generalised additive model. 
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