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Abstract 

The pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease and 

amyotrophic lateral sclerosis, is believed to be caused by the aggregation of non-native 

proteins. The small heat shock proteins (sHsps) are a class of molecular chaperones 

which act as the first line of defence against intracellular protein aggregation. Defining 

the structure-function relationship of sHsps is critical to understanding the molecular 

mechanisms by which they inhibit protein aggregation. This thesis primarily utilised 

native mass spectrometry (MS) to study the structure and dynamics of the human sHsps 

Hsp27 (HSPB1) and αB-crystallin (αB-c, HSPB5). 

Post-translational modifications (PTM) regulate the function of sHsps by inducing a 

range of structural changes from the secondary to the quaternary level. Serine 

phosphorylation of Hsp27 occurs at residues 15, 78 and 82. However, the site-specific 

effect of phosphorylation at each site and how the degree of phosphorylation affects 

Hsp27 structure and function had not been extensively characterised. One aspect of this 

thesis was to explore how phosphorylation affects the structure and function of Hsp27 

by using mutations that mimic phosphorylation (MMP), where serine residues were 

substituted for aspartic acid. Utilising native MS and other biophysical techniques, this 

work shows that increasing the number of MMP alters the dimer-oligomer equilibrium 

of Hsp27, such that the proportion of dimer increases. The increase in dimer abundance 

correlates with an enhanced capacity of Hsp27 to inhibit amorphous and fibrillar 

aggregation of client proteins. Thus, based on this work it is concluded that 

phosphorylation of Hsp27 in vivo induces dissociation of large oligomers into chaperone 

‘active’ dimers. Phosphorylation of Hsp27 can therefore be regarded as a ‘molecular 



 

v 
 

switch’; during periods of cellular stress phosphorylation of Hsp27 occurs in order to 

help maintain intracellular proteostasis. 

Whilst establishing that the dimer is likely the chaperone-active species of Hsp27, it was 

unclear whether dissociation of the oligomer (i.e. changes in quaternary structure) or 

changes in the conformation of the dimer (i.e. changes in tertiary structure) was 

responsible for the enhanced chaperone activity of phosphorylated Hsp27. By using 

MMP of Hsp27, ion-mobility MS was utilised to observe the conformation of Hsp27 

dimers and oligomers. Increased levels of MMP resulted in an increase in both the 

unstructured state and stability of Hsp27 dimers; however, there were no differences in 

a larger oligomeric (12-mer) form. These changes in the tertiary structure of Hsp27 

dimers did not translate to gross changes in the conformation of Hsp27 oligomers with 

MMP. It is concluded that the observed increase in unstructured state of Hsp27 dimers 

upon phosphorylation enhances the flexibility of the dimer, potentially improves its 

capacity to recognise and interact with misfolded client proteins to prevent aggregation. 

Another key PTM of Hsp27 is the stabilisation of the dimer via an inter-molecular 

disulfide bond mediated by Cys137. Reduction of this disulfide-bond in mutated forms of 

Hsp27 has been associated with motor neuropathies. The effect of reduction on the 

quaternary structure of Hsp27 was examined by thiol-blocking of Cys137. Reduction and 

thiol-blocking substantially shifts the oligomeric distribution and equilibrium of Hsp27 

toward smaller odd-sized stoichiometries. This shift in the distribution ultimately results 

in an increased abundance of monomeric Hsp27. Overall, the data demonstrates that 

PTMs are crucial in modulating the structure and dynamics of Hsp27, which in turn 

regulates its chaperone activity and its role in proteostasis. 
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The N-terminal domain (residues 1 – 65) of αB-c regulates its oligomerisation and 

contributes to its polydispersity. The quaternary dynamics of αB-c also serve as a 

determinant of chaperone activity. Mutations in the N-terminal domain of αB-c at 

residues 54-60 were designed to identify residues involved in maintaining αB-c 

oligomers and chaperone function. These N-terminal domain mutant isoforms had a 

similar secondary structure to αB-c WT, with the exception of a 54-60 inversion mutant, 

which had decreased hydrophobic exposure compared to αB-c WT. All mutant isoforms 

were found to have a similar oligomeric distribution to αB-c WT, again with the 

exception of the 54-60 inversion mutant, which formed larger oligomers. The quaternary 

structure of the αB-c isoforms correlated strongly with chaperone activity; all the mutant 

isoforms had a similar ability to αB-c WT to inhibit the amorphous aggregation of insulin 

and seeded fibrillar aggregation of α-synuclein, except for the 54-60 inversion mutant, 

which had a decreased capacity to prevent the amorphous aggregation of insulin. 

Together, the data indicates that the quaternary structure of αB-c is a major 

determinant of chaperone function. 

Overall, the results of this work demonstrate that the N-terminal domain is crucial in 

regulating the structure, function and interactions of the mammalian sHsps Hsp27 and 

αB-c. This is highlighted by the effect phosphorylation has on the structure and 

functional dynamics of Hsp27 in which increasing levels of phosphorylation induces 

oligomeric dissociation and enhancing chaperone activity. This work shows that the 

quaternary dynamics of Hsp27 and αB-c underlie their chaperone activity and therefore 

play a crucial role in maintaining intracellular proteostasis. Native MS-based techniques 

provide an ideal tool to probe these fundamental aspects of this highly dynamic family of 

molecular chaperone proteins.  



 

 

vii 
 

List of Abbreviations 

αB-c   αB-crystallin 

αCD   α-crystallin domain 

αS   α-synuclein 

Aβ   amyloid β peptide 

AP   antiparallel interaction 

ATD   arrival time distribution 

CID   collision-induced dissociation 

CIU   collision-induced unfolding 

DTT   dithiothreitol 

E. coli   Escherichia coli 

EDTA    ethylenediaminetetraacetic acid 

h   hours 

Hsp   heat shock protein(s) 

Hsp27   heat shock protein 27 

IM-MS   ion mobility – mass spectrometry 

LB    Luria Bertani 

MS   mass spectrometry 

MS/MS   tandem mass spectrometry 

m/z   mass to charge ratio 

nanoESI-MS  nanoelectrospray ionisation – mass spectrometry 

NH4OAc   ammonium acetate 

NMR   nuclear magnetic resonance 

PB    phosphate buffer 

PBS    phosphate buffered saline 

PES   polyethersulfone 

PMF   peptide mass fingerprint(s) 

PMSF   phenylmethylsulfonyl fluoride 

PTM   post-translational modification 

Q-TOF   quadrupole - time of flight 

s   seconds 

 



 

viii 
 

SEC   size-exclusion chromatography 

SDS-PAGE  sodium dodecyl sulfate - polyacrylamide gel electrophoresis 

sHsp   small heat shock protein(s) 

TCEP   tris(2-carboxyethyl)phosphine 

TEM   transmission electron microscopy 

TEMED    tetramethyl-ethlenediamine 

V    volts 

WH   waveheight 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Electrophoresis


 

 

ix 
 

List of Tables 

Table 1.1: Known disease-related mutations of Hsp27 and αB-c………………………………………………...26 

Table 5.1: Far UV-CD spectroscopy deconvolution of αB-c isoforms………………………………………….114 

Table 8.1: Drift time analysis of Hsp27M dimers and 12-mers by IM-MS…………………………………….158 

 

List of Figures 

Figure 1.1: Representation of the free energy landscape of protein folding. .................................. 3 

Figure 1.2: TEM image and a high-resolution model of amyloid fibrils ........................................... 5 

Figure 1.3 The nucleation-dependent mechanism of amyloid fibril formation ............................... 6 

Figure 1.4: Primary sequence alignment of members of the human sHsp family ......................... 10 

Figure 1.5: Core domain crystal structures of Hsp27 and αB-crystallin ......................................... 11 

Figure 1.6: The role of sHsps in maintaining proteostasis ............................................................. 13 

Figure 1.7: Oligomerisation dynamics of Hsp27 differ to that of αB-c ........................................... 20 

Figure 1.8 Potential inter-dimer interactions of oligomeric αB-crystallin based on a hybrid model

 ........................................................................................................................................................ 22 

Figure 1.9: Workflow diagram outlining how native MS can be used to investigate the structure 

and dynamics of large multimeric proteins such as the sHsps ...................................................... 30 

Figure 1.10: The role of phosphorylation of intracellular sHsps .................................................... 38 

Figure 3.1: Mutations that mimic phosphorylation decrease the size of Hsp27 oligomers .......... 62 

Figure 3.2: Collision-induced dissociation mass spectrometry of Hsp27 phosphomimics ............ 65 

Figure 3.3: Oligomeric distribution of Hsp27 phosphomimics by MS ............................................ 67 

Figure 3.4: MS-derived dissociation curves and far-UV CD spectroscopy of Hsp27-WT and its 

phosphomimics .............................................................................................................................. 69 

Figure 3.5: MMP of Hsp27 enhances its chaperone activity .......................................................... 72 

Figure 4.1: Analytical size-exclusion chromatography and intrinsic tryptophan fluorescence of 

Hsp27M ............................................................................................................................................ 82 

Figure 4.2: Arrival time distribution analysis and collision-induced unfolding trajectories of Hsp27 

using ion mobility – mass spectrometry ........................................................................................ 84 

Figure 4.3: ATD analysis of Hsp27M dimers and 12-mers by IM-MS ............................................... 86 

Figure 4.4: Observing the collision-induced unfolding of Hsp27M dimers by IM-MS ..................... 88 

Figure 4.5: Observing the differences in collision-induced unfolding dynamics of Hsp27M dimers 

by IM-MS ........................................................................................................................................ 89 

Figure 4.6: Unfolding of Hsp27M dimers by collision-induced unfolding and as monitored by IM-

MS ................................................................................................................................................... 90 

Figure 4.7: Hsp27-WT and Hsp27-3D are capable of undergoing subunit-exchange .................... 92 

Figure 4.8: Limited proteolysis of Hsp27-WT and Hsp27-3D analysed by SDS-PAGE .................... 93 

Figure 4.9: Hsp27-WT oligomers are less accessible to proteolysis by trypsin than Hsp27-3D 

dimers ............................................................................................................................................. 95 

Figure 4.10: TCEP-reduction and IA-blocking of Cys137 shifts the oligomeric equilibrium of Hsp27 

towards smaller odd-numbered oligomers .................................................................................... 98 

Figure 5.1: SDS-PAGE and denatured MS to assess the purity of αB-c N-terminal mutants ....... 112 



 

x 
 

Figure 5.2: Far UV-CD spectroscopy of αB-c N-terminal mutant isoforms reveals differences in 

secondary structure compared to the wild-type protein ............................................................. 113 

Figure 5.3: N-terminal αB-c variants are less thermostable and adopt a different tertiary and 

quaternary structure compared to WT ........................................................................................ 115 

Figure 5.4: Native MS reveals changes in quaternary structure between αB-c variants ............. 117 

Figure 5.5: The ability of the N-terminal αB-c variants to inhibit the amorphous and fibrillar 

aggregation of client proteins ...................................................................................................... 119 

Figure 6.1: Modifications at the primary sequence level significantly alter the quaternary 

structure and dynamics of Hsp27 and αB-c which modulate chaperone activity........................ 136 

Figure 8.1 (related to Chapter 3, Figure 3.3, page 67): Collision-induced dissociation mass 

spectrometry of Hsp27 phosphomimics ...................................................................................... 156 

Figure 8.2 (related to Chapter 3, Figure 3.5, page 72): Chaperone activity of Hsp27-WT and 

phosphomimics against amorphous BSA aggregation ................................................................. 157 

Figure 8.3 (related to Chapter 4, Figure 4.5, page 89): Internal RMSD determination of the 

collision-induced unfolding dynamics of Hsp27M dimers by IM-MS ............................................ 158 

Figure 8.4 (related to Chapter 5, Figure 5.4, page 117): Collision-induced dissociation mass 

spectrometry of αB-c N-terminal domain mutants ...................................................................... 159 

Figure 8.5 (related to Chapter 5, Figure 5.5, page 119): The aggregation propensity of the N-

terminal αB-c variants in the absence of amorphous and fibrillar client proteins ...................... 160 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 
 

Table of Contents 

Author Declaration ................................................................................................................... i 

Acknowledgments ................................................................................................................... ii 

List of Publications .................................................................................................................. iii 

Abstract……………… ................................................................................................................... iv 

List of Abbreviations…… .......................................................................................................... vii 

List of Tables.…… ..................................................................................................................... ix 

List of Figures…… ..................................................................................................................... ix 

Chapter 1: Introduction ................................................................................................... 1 

1.1 Protein folding, misfolding and aggregation ............................................................... 2 

1.1.1 Protein folding ............................................................................................................ 2 

1.1.2 Protein misfolding and aggregation ........................................................................... 3 

1.2 Protein Quality Control (PQC) .................................................................................... 7 

1.2.1 ATP-dependent heat shock proteins .......................................................................... 7 

1.3 Small heat-shock proteins (sHsps) ............................................................................. 8 

1.1 Hsp27 (HspB1) ........................................................................................................ 14 

1.1.1 Structure ................................................................................................................... 14 

1.1.2 Function .................................................................................................................... 16 

1.2 αB-crystallin (HspB5) ............................................................................................... 18 

1.2.1 Structure ................................................................................................................... 18 

1.2.2 Function .................................................................................................................... 23 

1.3 Diseases associated with protein aggregation in which sHsps are implicated ............ 25 

1.4 Delineating the structure of sHsps ........................................................................... 27 

1.4.1 Native MS overcomes structural heterogeneity ...................................................... 28 

1.4.2 Native MS of the α-crystallin core domain of sHsps ................................................ 30 

1.4.3 Oligomerisation and polydispersity of sHsps ........................................................... 31 

1.5 Use of MS to study the structure-function relationship of sHsps ............................... 36 

1.6 Aims ....................................................................................................................... 39 

Chapter 2: Materials and Methods ................................................................................ 41 

2.1 Materials ................................................................................................................ 41 

2.2 Gel electrophoresis ................................................................................................. 41 

2.2.1 SDS-PAGE .................................................................................................................. 41 

2.2.2 Native-PAGE ............................................................................................................. 42 

2.3 Expression and purification of Hsp27 and αB-c isoforms ........................................... 42 



 

xii 
 

2.3.1 Extraction .................................................................................................................. 43 

2.3.2 Purification ............................................................................................................... 43 

2.4 Expression and purification of monomeric α-synuclein ............................................. 44 

2.4.1 Extraction .................................................................................................................. 44 

2.4.2 Purification ............................................................................................................... 45 

2.4.3 Preparation of α-synuclein seed fibrils ..................................................................... 46 

2.5 General biophysical studies ..................................................................................... 46 

2.5.1 Analytical size-exclusion chromatography (SEC) ...................................................... 46 

2.5.2 Intrinsic tryptophan and bis-ANS fluorescence ........................................................ 46 

2.5.3 Far-UV CD Spectroscopy ........................................................................................... 47 

2.5.4 Dynamic light scattering (DLS) .................................................................................. 47 

2.5.5 Bulk - Fluorescence resonance energy transfer (Bulk-FRET) experiments to measure 

subunit-exchange ..................................................................................................................... 48 

2.6 Mass Spectrometry-based studies ........................................................................... 48 

2.6.1 Denatured mass spectrometry (MS) ........................................................................ 48 

2.6.2 Native MS ................................................................................................................. 49 

2.6.3 Ion-Mobility MS (IM-MS) .......................................................................................... 50 

2.6.4 Oligomeric dissociation MS ...................................................................................... 51 

2.6.5 Limited proteolysis – MS .......................................................................................... 52 

2.6.6 Reduction and thiol-blocking .................................................................................... 52 

2.7 Functional studies ................................................................................................... 53 

2.7.1 Aggregation assays ................................................................................................... 53 

2.7.2 Cell lysate aggregation assays .................................................................................. 54 

Chapter 3: Phosphomimics destabilises Hsp27 oligomeric assemblies and enhance 

chaperone activity ................................................................................................................. 58 

3.1 Introduction ............................................................................................................ 58 

3.2 Methods ................................................................................................................. 60 

3.3 Results .................................................................................................................... 61 

3.3.1 Oligomeric size and polydispersity is decreased with mutations that mimic 

phosphorylation ....................................................................................................................... 61 

3.3.2 Oligomeric plasticity of Hsp27 phosphomimics ....................................................... 68 

3.3.3 Mutations that mimic phosphorylation enhance Hsp27 chaperone activity ........... 70 

3.4 Discussion ............................................................................................................... 72 

Chapter 4: Post-translational modifications alter the structure and dynamics of Hsp27 

dimers and oligomers ............................................................................................................ 79 



 

xiii 
 

4.1 Introduction ............................................................................................................ 79 

4.2 Methods ................................................................................................................. 80 

4.3 Results .................................................................................................................... 81 

4.3.1 Bulk measurement techniques show minor changes in Hsp27 tertiary and 

quaternary structure with serine substitutions that mimic phosphorylation .......................... 81 

4.3.2 Increased serine substitutions alter the conformation and unfolding dynamics of 

Hsp27 dimers ............................................................................................................................ 83 

4.3.3 Hsp27-3D and Hsp27-WT undergo subunit-exchange and structural elements are 

more exposed in Hsp27-3D than WT ....................................................................................... 91 

4.3.4 Blocking of Cys137 alters the oligomeric distribution of Hsp27 .............................. 96 

4.4 Discussion ............................................................................................................... 99 

Chapter 5: N-terminal mutations alter the structure and chaperone function of αB-

crystallin............  ................................................................................................................... 108 

5.1 Introduction ........................................................................................................... 108 

5.2 Methods ................................................................................................................ 110 

5.3 Results ................................................................................................................... 110 

5.3.1 Mutations confer changes in secondary and tertiary structure of αB-crystallin ... 110 

5.3.2 N-terminal mutations alter the quaternary structure of αB-crystallin .................. 116 

5.3.3 N-terminal mutations are just as chaperone able compared to wildtype αB-

crystallin  ................................................................................................................................ 118 

5.4 Discussion .............................................................................................................. 120 

Chapter 6: Overall Discussion ....................................................................................... 127 

6.1 The site-specific effect phosphorylation has on Hsp27 structure and chaperone 

function ............................................................................................................................ 127 

6.2 Post-translational modifications modulate the structure and dynamics of Hsp27 

dimers and oligomers ........................................................................................................ 128 

6.3 The role of the N-terminal domain (residues 54-60) on the structure and chaperone 

function of αB-c ................................................................................................................ 132 

6.4 Concluding Remarks and Future Directions ............................................................. 136 

Chapter 7: References .................................................................................................. 142 

Chapter 8: Appendices ................................................................................................. 156 

8.1 Appendix I –Hsp27 structure and function supplementary material ......................... 156 

8.2 Appendix II – Hsp27 structural dynamics supplementary material ........................... 158 

8.3 Appendix III – αB-c N-terminal mutation structure and function supplementary 

material ............................................................................................................................ 159 

8.4 Appendix IV – Media and buffer compositions ........................................................ 161 



 

xiv 
 

 

 

 

 

 

 

 

Chapter 1: 

Introduction 



Chapter 1: Introduction 

1 
 

Chapter 1: Introduction 

The aggregation and deposition of proteins into intracellular inclusions or extracellular 

plaques is associated with numerous diseases, including Alzheimer’s disease, Amyotrophic 

Lateral Sclerosis and some cardiac myopathies (Dobson, 1999, Evgrafov et al., 2004, Vicart 

et al., 1998). The pathogenesis of these diseases is believed to be caused by the aggregation 

of non-native (misfolded or partially-folded) proteins, thereby disrupting cell/tissue function 

(Caughey and Lansbury, 2003, Guo et al., 2009, Walsh et al., 2002). It is well known that the 

body has control mechanisms that act to ensure that proteins are kept in their native 

(functional) state, thereby avoiding aggregation. Chaperones play a key role in this protein 

quality control (PQC) network, preventing protein aggregation and, in some cases, refolding 

misfolded proteins back to their native state (Buchner, 1996). The small heat shock proteins 

(sHsps) are a class of molecular chaperones that are one of the first lines of defence against 

protein aggregation in cells. Characterisation of the structure and function of sHsps is critical 

in understanding how these proteins minimise aggregation and contribute to overall PQC in 

the cell. What has made this difficult in the past is that the sHsps are typically large, 

oligomeric dynamic proteins and therefore challenging to study using traditional structural 

biology approaches. However, with the development and use of native mass spectrometry 

(MS) as a structural biology tool, the structure and dynamics of non-covalent 

macromolecular assemblies can now be interrogated. The focus of the work described in 

this thesis was the use of native MS to study the structure and dynamics of the human 

sHsps Hsp27 and αB-crystallin. 
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1.1 Protein folding, misfolding and aggregation 

1.1.1 Protein folding 

Proteins are polypeptide chains that are typically folded into tertiary structures in which the 

hydrophobic regions are shielded from the aqueous environment (Dobson, 2003). This is 

essential to ensure the stability and optimal function of the protein. When proteins are not 

folded correctly, function becomes impaired and, in some cases, this results in disease 

(Dobson, 2003, Stirling et al., 2003). Small proteins typically fold spontaneously, however, 

large proteins (i.e. >100 amino acid residues) typically fold through a series of transition 

states, forming stable intermediates that display distinct secondary structures (Dobson, 

2003, Radford and Dobson, 1999, Stirling et al., 2003).  

Early work on protein folding revolved around understanding the kinetics which drive the 

process and identified protein folding as a sequential and spontaneous process with defined 

intermediates (Anfinsen, 1973, Kim and Baldwin, 1982). The initiating step of protein folding 

involves hydrogen-bonding between key residues in the primary structure of the protein; 

this drives the formation of secondary structures such as α-helices and β-sheets. The 

polypeptide backbone subsequently undergoes hydrophobic collapse, forming a stable 

intermediate (molten globule), in which most of the hydrophobic regions are protected from 

the aqueous environment (Anfinsen, 1973, Csermely et al., 2003, Fink, 1999, Yang and 

Gruebele, 2003). The inner hydrophobic core is then rearranged and water is removed to 

form the native tertiary structure. The advances in methodologies used to study protein 

folding, such as solid state nuclear magnetic resonance (NMR) spectroscopy and ab-initio 

computer modelling, have introduced the concept of the ‘energy landscape’ with regards to 

protein folding (Figure 1.1) (Dobson, 2003, Krishna et al., 2004). This energy landscape 
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model describes why, when a polypeptide chain folds, native conformations, which are 

more thermodynamically stable, are favoured (Figure 1.1) (Dinner et al., 2000).  

 

Figure 1.1: Representation of the free energy landscape of protein folding. 
Synthesised peptides ‘funnel’ towards their native conformation, distinguished by a state of minimal 
free energy (enthalpy and entropy). Various ‘funnels’ indicate possible pathways that proteins may 
take (degradation, aggregation and native conformations). Regions highlighted as chaperone 
‘holding’ (sHsps) and ‘folding’ (e.g. Hsp60, Hsp70) indicate the points where these chaperones act in 
the folding landscape. Modified from(Gregersen et al., (2006). 

1.1.2 Protein misfolding and aggregation 

Factors that induce the unfolding and misfolding of proteins include mutations and post-

translational modifications, as well as environmental changes (e.g. temperature, pH and 

oxidation state) (Dobson, 1999). These non-native states have an increased amount of 

exposed hydrophobicity (which would normally be buried into the core of the native state of 

the protein), and therefore a high propensity to self-associate, leading to aggregation 

(Stirling et al., 2003). The formation of these aggregates, which can be amorphous or fibrillar 
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in nature, is believed to disrupt cell function and be cytotoxic (Stefani and Dobson, 2003). 

Such aggregates are a hallmark of numerous neurodegenerative diseases, such as 

Alzheimer’s disease, Amyotrophic Lateral Sclerosis and lens cataract (Iwaki et al., 1992, Liu 

et al., 2006, Renkawek et al., 1994b).  

Amorphous aggregates arise from the disordered accumulation of misfolded monomeric 

units which have increased regions of exposed hydrophobicity, such that the aggregate has 

no defined 3D structure (Dobson, 2004). Models have been proposed for the mechanisms 

by which bovine α-lactalbumin forms amorphous aggregates (based on experiments that 

measured the turbidity of the solution at 340 nm as a reporter of aggregation) (Stranks et 

al., 2009). Bovine α-lactalbumin forms amorphous aggregates under reducing conditions 

and is commonly used in aggregation assays in vitro to assess the ability of molecular 

chaperones to prevent protein aggregation (Lindner et al., 1997, Treweek et al., 2005). The 

model to describe the aggregation of α-lactalbumin suggests that monomeric units 

associate with the growing aggregate, resulting in increased aggregate surface area and an 

increase in the rate of aggregation (Stranks et al., 2009). In addition, this model suggests 

that monomers can associate to the growing aggregate from any direction, and thus 

formation of the amorphous aggregate occurs three-dimensionally (Stranks et al., 2009). 

Fibrillar aggregates arise from the ordered aggregation of partially-folded proteins and/or 

peptides (Kelly, 1997).  The most common type of fibrillar aggregate are amyloid fibrils, 

which are structurally ordered filaments ~10 nm in width and 0.1–10 µm in length 

(Figure 1.2A) (Makin et al., 2005, Ross and Poirier, 2004). X-ray fibre diffraction analysis 

identified a generic structural motif in amyloid fibrils consisting of β-sheets running 

perpendicular to the long fibril axis and hydrogen-bonds running parallel to this long axis 
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(Fitzpatrick et al., 2013, Serpell et al., 1997, Sunde et al., 1997). These structural motifs 

result in the diagnostic ‘cross β-sheet’ array of fibrillar aggregates. Morphologically, most 

fibrils exhibit a twisted appearance when observed by atomic force microscopy and 

transmission electron microscopy (TEM) (Figure 1.2) (Fitzpatrick et al., 2013, Ross and 

Poirier, 2004).  

 

Figure 1.2: TEM image and a high-resolution model of amyloid fibrils 
A: TEM image of amyloid fibrils formed using transthyretin (TTR) peptides (residues 105-115) (scale 
bar 50 µm) B: TEM image of the amyloid fibril was reconstructed using cryo-EM. C: NMR atomic-
resolution structure of the fibril showing the core structure of each filament (the β-sheet stack lying 
perpendicular to the fibril axis, forming a cross β-sheet array). Modified from(Fitzpatrick et al., 
(2013). 

 

It is broadly accepted that both forms of protein aggregation occur via a nucleation-

dependent mechanism involving well-defined phases (Figure 1.3) (Makin et al., 2005, 

Markossian et al., 2009). With regards to fibril formation, misfolded proteins mutually 

associate to form a nucleus, the rate limiting step in the process and determinant of the lag 
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phase of the reaction. Continuous attachment of monomers to this nucleus leads to the 

formation of assemblies referred to as protofibrils (Markossian and Kurganov, 2004, 

Markossian et al., 2009, Wilson et al., 2008). Protofibrils then recruit other misfolded 

monomeric units, leading to an elongation phase in which the fibrils grow at a rapid rate 

(Dobson, 2003, Markossian and Kurganov, 2004, Wilson et al., 2008). Upon reaching a point 

where fibril recruitment is maximal (high fibril concentration, low monomer concentration), 

a plateau phase in the reaction is reached. This is characterised by the lateral association of 

fibril filaments and the formation of mature amyloid fibrils (Figure 1.3) (Chiti and Dobson, 

2006, Wilson et al., 2008).  

  

Figure 1.3 The nucleation-dependent mechanism of amyloid fibril formation 
Amyloid fibril formation consists of three phases. The lag (nucleation) phase (light blue) is the time in 
which a nucleus and protofibrils are produced. The elongation phase (blue) involves protofibrils 
recruiting other non-native monomeric proteins to their ends causing rapid fibril growth. The 
plateau phase (dark blue) is a point where protofibrils laterally associate and a mature amyloid fibril 
is formed. Modified from(Chiti and Dobson, (2006), Fitzpatrick et al., (2013), Wilson et al., (2008). 
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1.2 Protein Quality Control (PQC) 

The formation of ordered and disordered protein aggregates is an indicator of a failure in 

the pathways that normally act to maintain protein homeostasis (proteostasis) in the cell. 

One super family of proteins that are crucial in preventing protein aggregation (and 

therefore maintaining proteostasis) are the heat shock proteins (Hsps), a large family of 

molecular chaperone proteins that were initially categorised based on their apparent 

monomeric molecular mass.  

1.2.1 ATP-dependent heat shock proteins 

Members of the Hsp family in which the chaperone activity is dependent on ATP hydrolysis 

include Hsp40, Hsp60, Hsp70 and Hsp90. Both Hsp70 and Hsp90 are cytosolic ATP-

dependent chaperones that fold synthesised polypeptides into their native conformation, 

whereas Hsp60 aids in providing further stability of native structures (Langer et al., 1992a).  

As the growing polypeptide emerges from the ribosome, it is presented to monomeric 

Hsp70 which recognises short hydrophobic motifs along the polypeptide. Hsp70 shields this 

exposed hydrophobicity from interacting with other regions within the polypeptide as well 

as other non-native cellular proteins (Landry et al., 1992b). The folding function of Hsp70 is 

ATP-dependent and is also regulated by its co-chaperone Hsp40. This co-chaperone 

recognises and binds to newly synthesised polypeptides from the ribosome, and in doing so, 

recruits Hsp70 for folding (Beckmann et al., 1990). Once partially folded, co-factors and ATP-

hydrolysis act to release the polypeptide from Hsp70. The polypeptide may then complete 

the process of folding into its native state or may require further stabilisation by Hsp60 

folding machinery or undergo another round of interaction with Hsp70 (Langer et al., 1992a, 

Thulasiraman et al., 1999). 
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Hsp60 helps to stabilise and fold partially folded polypeptides formed following interaction 

with Hsp70. Hsp60 essentially forms a chamber, with Hsp10 acting as a ‘lid’ for this 

chamber. When inside the Hsp60-Hsp10 chamber, the polypeptide is shielded from the 

external environment, which enables folding to occur (Cheng et al., 1989, Fenton et al., 

1994, Hartl et al., 1992, Langer et al., 1992b). The folding and stabilisation of the 

polypeptide is also mediated by shielding of hydrophobic patches; inside the chamber the 

polypeptide undergoes a series of conformational changes which drive correct folding 

(Martin et al., 1993). Once the polypeptide has folded, Hsp10 dissociates from Hsp60 to 

release the protein into solution (Mayhew et al., 1996). If, following one round of folding 

within the Hsp60-Hsp10 chamber, the polypeptides are still in a non-native conformation, 

the polypeptide may re-enter the chamber and repeat the above processes until a native 

conformation is achieved.  

1.3 Small heat-shock proteins (sHsps) 

The small heat-shock proteins (sHsps) are a family of ATP-independent chaperones that also 

play a key role in proteostasis. The expression of sHsps is up-regulated under a wide range 

of cellular and physiological stresses (Jakob et al., 1993).  Mammalian sHsps are typically 

large, polydisperse and dynamic oligomers that undergo constant subunit-exchange in vivo. 

The sHsps are dynamic proteins; they have a relatively low monomeric mass, ranging from 

10-42 kDa, but typically exists as large multimeric assemblies which undergo constant 

subunit-exchange (Jakob et al., 1993). For example, the ubiquitously expressed and most 

studied mammalian sHsps, Hsp27 and αB-crystallin (αB-c), form large polydisperse 

assemblies built from monomeric (in the case of αB-c) or non-reduced disulfide-bonded 

dimeric (in the case of Hsp27) subunits. The sHsp family members are defined by the 
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presence of a conserved central α-crystallin domain (αCD). This central domain is flanked by 

an N-terminal domain and a C-terminal domain (which includes a C-terminal extension), 

both of which vary in sequence and length between sHsp members (Figure 1.4) 

(Bloemendal, 1977, de Jong et al., 1974). The αCD of numerous members of the sHsp family 

has been intensively studied, with numerous crystal structures resolved (Figure 1.5) 

(Bagneris et al., 2009). A key feature of most sHsps is a C-terminal IXI motif (Ile159-Pro160-

Ile161 in αB-c) (Figure 1.5, blue sticks), which is absent in Hsp20 and Hsp22 (Figure 1.4). In 

αB-c this motif has been shown to bind into a hydrophobic groove in the αCD and this leads 

to dimer-dimer assembly into a triangular array (Clark et al., 2011, Jehle et al., 2010). This 

motif in αB-c allows the formation of higher order assemblies, through the assembly of 

hexameric units to form large oligomers, as proposed by a model based on NMR data (Jehle 

et al., 2011).  
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Figure 1.4: Primary sequence alignment of members of the human sHsp family  
The αCD (grey) is flanked by the N-terminal domain and a C-terminal domain. The αCD is composed 

of 8 β-sheets (numbered 2-9, orange arrows); β4-β5-β7-sheets are involved in charged 
interactions with neighbouring monomers to form the dimer interface (see Figure 1.7). Serine 
residues in the N-terminal region that undergo phosphorylation in vivo are highlighted (green). The 
C-terminal IXI/V motif (magenta) is involved in higher- order oligomerisation [note the absence of 
this motif in HspB3 (HspL27), HspB6 (Hsp20) and HspB8 (Hsp22)]. A dimer interface arginine (R120 of 
αB-c and R140 of Hsp27), mutations of which are associated with numerous congenital diseases 
(detailed in Table 1.1) is shown in red. The cysteine (C137) involved in forming Hsp27 disulfide-linked 
dimers is shown in cyan. The site of point mutations and an inversion mutation of the N-terminal 
region of αB-c (residues 54-60) that were the subject of work described in this thesis (Chapter 5) are 
highlighted in yellow. Sequences were aligned using ClustalW multiple sequence alignment software 
(Thompson et al., 1994). 
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Figure 1.5: Core domain crystal structures of Hsp27 and αB-crystallin  
The core domains of Hsp27 (pdb entry 4MJH) and αB-c (pdb entry 45MT) are similar and have a 
curved β-sheet sandwich structure. The Hsp27 core domain exhibits more curvature along the β-
sheet network near the dimer interface (dashed line) compared to αB-c and has an intermolecular 
disulfide-bond via Cys137 of the β7-sheet of each monomer (yellow spheres). A region in the C-
terminal domain, which contains the IXI/V motif (blue sticks), can anchor into the β4-β8 groove and 
this is thought to stabilise the oligomer. Crystal structures modified from(Hochberg et al.,(2014). 

 

The large, dynamic and polydisperse behaviour of mammalian sHsps prevents their 

crystallisation, the most common and high resolution technique used for determining 

protein structure.  The formation of large sHsp oligomers is thought to arise from the 

association of monomeric and/or dimeric ‘building blocks’ (Baldwin et al., 2011b, Baldwin et 

al., 2011c, Braun et al., 2011, Jehle et al., 2011). The polydispersity of sHsps is attributed to 

the equilibrium between associated and dissociated forms of these building blocks (e.g. 

Hsp27 and αB-c), which undergo constant subunit-exchange where the stoichiometries of 

the oligomers ranges extensively. Numerous studies have suggested that this dissociated 

(monomeric and/or dimeric) form of these sHsps is believed to be the ‘chaperone-active’ 

unit (Figure 1.6) (Hochberg et al., 2014, Jovcevski et al., 2015, McDonald et al., 2012). 
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However, it has not been conclusively shown that the dimer is solely responsible for 

chaperone activity. Thus, more work is needed to explore the structure-function 

relationship of sHsps. In order to define the structure-function relationship of sHsps, the 

focus of this work described in this thesis was on the archetypal human sHsps, Hsp27 and 

αB-c.  
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Figure 1.6: The role of sHsps in maintaining proteostasis  
The unfolding and/or misfolding of proteins can lead to their association and subsequent formation 
of amorphous or fibrillar aggregates. The sHsps (e.g. Hsp27 and αB-c) interact with partially unfolded 
intermediates and mature aggregates, via either stable or transient interactions, to prevent further 
aggregation. These complexes can subsequently be shuttled into other proteostasis pathways (e.g. 
proteasome degradation) or refolding pathways, which are driven by ATP-dependent chaperones 
(Hsp40/Hsp70/Hsp90). The quaternary structure of sHsps is modulated by an association and 
dissociation equilibrium between smaller and larger oligomers. This equilibrium is controlled by 
numerous factors, including cell stress (e.g. oxidative stress, pH, temperature) and post-translational 
modifications (PTMs), all of which increase the amount of dissociated Hsp27 or αB-c (via enhanced 
oligomer dissociation or increased subunit-exchange rate) able to interact with a range of client 
proteins. Modified from(Ecroyd and Carver, (2009). 
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1.1 Hsp27 (HspB1) 

1.1.1 Structure 

Hsp27 is a 205 amino acid sHsp that is constitutively expressed in epidermal, muscle and 

cancer cells (Garrido et al., 1997, Jonak et al., 2011). Hsp27 undergoes stress-induced 

phosphorylation at three key serine residues (S15, S78 and S82), which is thought to 

regulate its structure and chaperone function (Arrigo, 2011, Landry et al., 1992a). When 

studied in vitro Hsp27 has been reported to form large polydisperse oligomers with an 

average molecular mass of 530 - 800 kDa, corresponding to oligomers containing between 

24 – 35 monomeric units (Garrido, 2002, Rogalla et al., 1999). The presence of these large 

oligomers in cells has also been demonstrated by fractionating HeLa cell lysates by size-

exclusion chromatography (SEC) and probing for fractions containing Hsp27 by western 

blotting (Arrigo, 2011). However, the large oligomers observed by SEC and western blotting 

potentially show that Hsp27 is forming complexes with cellular proteins and not exclusively 

forming large oligomers. Interestingly, Hsp27 is one of the few sHsps (the others being αA-

crystallin and Hsp20) to contain a cysteine residue (Cys137). In Hsp27 this single cysteine is 

located within the β7 sheet of the αCD and has been shown by non-reducing SDS-PAGE 

(Almeida-Souza et al., 2010, Baranova et al., 2011) and MS (Jovcevski et al., 2015) to form a 

disulfide bond with an adjacent Hsp27 monomer. This covalent interaction, coupled with 

the ionic/electrostatic interactions along the dimer interface of the αCD, provides further 

structural stability to the Hsp27 dimer.  

Recently, the oligomeric state of Hsp27 has been shown to be influenced by its 

concentration in solution (Lelj-Garolla and Mauk, 2006), such that dilution (to the low µM 

range) results in the dissociation of the large oligomer into dimers (McDonald et al., 2012). 
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This suggests that the oligomeric assembly of Hsp27 is stable at high concentrations (> 15 

µM). The concentration-dependent dissociation of Hsp27 oligomers is further enhanced by 

PTM (primarily phosphorylation). Interestingly, this concentration-dependent dissociation of 

large oligomers is not observed for αB-c and Hsp20 at a similar range of concentrations 

(Bukach et al., 2004). This indicates that the associative forces that maintain the oligomeric 

assembly of αB-c and Hsp20 are much stronger compared to Hsp27. A possible reason why 

Hsp27 oligomers dissociate from the large oligomer so readily is that the structural motifs 

responsible for maintaining inter-dimer contacts (primarily the N-terminal domain and the 

C-terminal domain) within an oligomer are significantly different to those that do so in αB-c 

or Hsp20. One way in which the dimeric building block is maintained in Hsp27 is the inter-

molecular disulfide-bond at Cys137 that is present on the β7 sheet along the dimer interface 

(Figure 1.5).  

Serine phosphorylation of Hsp27 primarily occurs in the N-terminal domain and the majority 

of these post-translational changes are performed by MAPKAPK kinases (Landry et al., 

1992a). Hsp27 phosphorylation can occur at three serines (S15, S78 and S82) in response to 

cellular stress (Arrigo, 2011, Landry et al., 1992a). Previous work has suggested that 

phosphorylation of Hsp27 at two serines (S15 and S78 in this instance) dissociates the large 

oligomer and leads to the formation of smaller oligomers, possibly tetramers (Doshi et al., 

2010, Jonak et al., 2011). This dissociation was observed by analytical-SEC; however, this 

technique is unable to discern the exact stoichiometries of these dissociated oligomers, 

which could potentially range from monomers to hexamers. Using analytical-SEC and 

analytical ultracentrifugation, the triple phosphorylation mimic of Hsp27 (i.e. Hsp27-

S15/78/82D) was reported to also predominantly forms small oligomers ranging from 
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dimers or tetramers (Jovcevski et al., 2015, McDonald et al., 2012, Rogalla et al., 1999). 

However, these low resolution approaches are unable to determine the exact size of the 

oligomers present or the relative abundance in solution. This ambiguity is compounded by 

the polydispersity of Hsp27, such that neither analytical-SEC nor analytical 

ultracentrifugation can accurately resolve each of the oligomers present in solution.  

The site-specific and precise mechanism by which phosphorylation of these serine residues 

prevents the oligomerisation of Hsp27 has yet to be determined. The location of these sites 

may be a key factor as these phosphorylated residues appear not to be directly involved in 

the cross β-sheet interactions that mediate dimer formation by the αCDs in respective 

monomers where numerous models have indicated that the N-terminal domain is either 

buried within an oligomer (Jehle model) (Jehle et al., 2011, Peschek et al., 2009) or on the 

surface of an oligomer (Braun model) (Braun et al., 2011). Comparisons between the 

proposed models have been extensively reviewed previously (Delbecq and Klevit, 2013). The 

negative charges introduced by phosphorylation at S15, S78 and S82 may cluster in the 

quaternary structure of the oligomer such that they lead to charge repulsion between 

neighbouring dimers preventing them from forming larger oligomers. This would favour the 

Jehle model where such a model implies that the unstructured N-terminal domain is 

responsible for maintaining oligomeric assembly and that phosphorylation modulates the 

quaternary dynamics of Hsp27 oligomers.  

1.1.2 Function 

Under stress conditions, Hsp27 has been shown to inhibit protein aggregation of numerous 

client proteins (Aquilina et al., 2013, Bukach et al., 2009, Hochberg et al., 2014, Kampinga et 

al., 1994, Ojha et al., 2011, Rogalla et al., 1999). For example, previous work has shown that 
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Hsp27 is capable of abrogating the aggregation of toxic amyloid-β (Aβ) peptides in vitro 

(Ojha et al., 2011). Due to the dynamic nature of Hsp27 oligomerisation, these previous 

studies could not identify the species responsible for chaperone activity (i.e. it remains to be 

established whether the dissociated species or larger oligomers interact with client 

proteins). Previous work has also highlighted that Hsp27 plays a role in various other cellular 

functions, e.g. enhancing stability of the cytoskeleton (Pivovarova et al., 2007, Pivovarova et 

al., 2005) and inhibiting apoptosis (Doshi et al., 2010, Pivovarova et al., 2007). Wildtype 

(WT) Hsp27 binds to the barbed end of filamentous-actin resulting in the inhibition of 

filamentous-actin polymerisation in vitro (Doshi et al., 2010). It is postulated that this acts to 

stabilise the actin cytoskeleton, however, there is no conclusive evidence in vivo that Hsp27 

binds directly to actin ends (Doshi et al., 2010, Graceffa, 2011). There is also no conclusive 

evidence to indicate whether dimers or oligomers (or both) are responsible for actin 

stabilisation in this study. Moreover, the phosphorylation state of Hsp27 that potentially 

interact with actin filaments in the cells was not established. 

Hsp27 has been reported to associate with numerous cell death signalling molecules during 

multiple stages of apoptosis, such as the serine-threonine kinase Akt and the FAS death 

receptor (Garrido et al., 1999, Wu et al., 2007). For example, Hsp27 prevents caspase 

activation (and hence apoptosis) by inhibiting the interaction of cytochrome C with 

procaspase-9 (Garrido et al., 1999), such that the apoptosome complex fails to form 

(Garrido et al., 1999). Hsp27 also suppresses signalling in the mitochondria by forming a 

complex with p38 mitogen-activated protein kinase and MAPKAPK-2. By suppressing 

mitochondrial signalling, serine-threonine kinases are activated which phosphorylate Hsp27, 

inhibiting apoptosis (Rane et al., 2001, Rane et al., 2003, Wu et al., 2007). Overall, the 
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various roles that Hsp27 plays in the cell share a common theme with respect to its 

function. All these properties essentially show that Hsp27 acts as a stabilising protein, i.e. 

Hsp27 binds to a wide variety of proteins in order to stabilise them. The anti-apoptotic 

properties of Hsp27 have also been thought to play a role in numerous cancers. Hsp27 

expression is increased substantially in cancer cells where it acts to inhibit apoptosis, thus 

increasing cancer cell viability (Arts et al., 1999, Cornford et al., 2000, Parcellier et al., 2005). 

As a result, therapeutic approaches to decrease the levels (e.g. by siRNA) or activity (by 

drugs) of Hsp27 in cancer cells have been explored recently (Rocchi et al., 2006, Schepers et 

al., 2005, Xia et al., 2009).  

1.2 αB-crystallin (HspB5) 

1.2.1 Structure 

α-crystallin is a sub-family of sHsps originally isolated from the vertebrate eye lens 

(Bloemendal, 1977). Initially, the isolation of these proteins proved to be intriguing, as these 

proteins were isolated as a large water-soluble assembly with a mass range from 200 kDa to 

> 1 MDa (Haley et al., 1998). It was found that α-crystallin is made up of two protein 

subunits, αA-crystallin (αA-c, HSPB4) and αB-crystallin (αB-c) (Siezen et al., 1978). These two 

proteins share 57% sequence similarity and are present in the vertebrate lens at a ratio of 

~3:1 (αA-c:αB-c) (Horwitz et al., 1999). αB-c is also constitutively expressed in brain, liver, 

lung and muscle tissue (Kato et al., 1991) and its level of expression is dramatically regulated 

in response to stress and certain pathological states (Clark and Muchowski, 2000, Sun and 

MacRae, 2005). The polydisperse homo-oligomeric forms of αB-c range from 10-mers to 40-

mers (Aquilina et al., 2003) with an average molecular mass of approximately 600 kDa 

(corresponding to a 30-mer) as assessed by analytical-SEC (Aquilina et al., 2003). 
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Phosphorylation of αB-c also primarily occurs at three serine residues (S19, S45 and S59) 

(Kato et al., 2001) and this increases its polydispersity, reduces the size of the oligomers and 

increases the rate of subunit-exchange (Aquilina et al., 2004, Ecroyd et al., 2007, Rogalla et 

al., 1999). The polydispersity of the α-crystallins (as well as Hsp27 and Hsp20) is abolished 

by extensive deletion (~50%) of the N- and C-terminal domains (Bagneris et al., 2009, 

Laganowsky et al., 2010). Jehle et al. (2010) showed, using a combination of solid state-NMR 

and small-angle X-ray scattering (SAXS), that human αB-c is a curved dimer with a ~121° 

angle between the series of β-sheets (β4-β5-β6+7) present in the αCD (Jehle et al., 2010).  

Both sides of the dimer have regions of ionic interaction, leading to the hypothesis that 

specific residue pairs (e.g. G99-H119 and G117-H101) form pH-dependent electrostatic 

interactions on both sides of the dimer, resulting in its curvature and increased stability 

(Jehle et al., 2010). Later structures of the human αB-c core domain confirmed that the 

dimer is curved and indicated that the dimer interface can adopt three different elongated 

antiparallel interaction (AP) registries (termed API, APII, APIII), which result in a shift of two 

residues in the β6+7 sheet (Bagneris et al., 2009, Hochberg et al., 2014, Laganowsky et al., 

2010) (Figure 1.7). These subtle variations in the register may play a role in determining 

chaperone efficacy. 
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Figure 1.7: Oligomerisation dynamics of Hsp27 differ to that of αB-c 
Oligomerisation of Hsp27 and αB-c is primarily mediated by a combination of N-terminal 

(charged/hydrophobic interactions; green) and C-terminal (IXI motif mediated interactions; red) 

interactions between monomers and dimers. After synthesis and folding, sHsp monomers associate 

to form dimers, which are stabilised by electrostatic interactions (αB-c and Hsp27) and disulfide 

bonds (Hsp27; yellow) (refer to Figure 1.5 for crystal structures). Dimers of αB-c can adopt a range of 

elongated antiparallel interaction (AP) registries (termed API, APII, APIII) along the dimer interface, 

whereas Hsp27 only adopts an APII conformation (Bagneris et al., 2009, Hochberg et al., 2014). The 

concentration-dependent oligomerisation is unique to Hsp27, demonstrating that the strength of 

the N-terminal and C-terminal interactions that maintain the oligomeric structure are weaker in 

Hsp27 than in αB-c. Phosphorylation of the N-terminal domain of both sHsps leads to an increase in 

subunit-exchange rate, which enhances chaperone activity (Aquilina et al., 2013, Ecroyd et al., 2007, 

Jovcevski et al., 2015, Morris and Aquilina, 2010). However, phosphorylation of Hsp27 also leads to 

oligomer dissociation, with phosphorylation at three serines leading to complete dissociation of the 

oligomer (Jovcevski et al., 2015, McDonald et al., 2012, Rogalla et al., 1999).        
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The implementation of a ‘hybrid’ approach (i.e. using a variety of biophysical techniques 

such as cryo-EM, NMR and structural homology modelling) helped to address and 

extensively study the structural heterogeneity of αB-c. These hybrid studies have also 

highlighted another facet of the oligomerisation dynamics of αB-c; the N-terminal region, in 

particular residues 54 – 70, of one αB-c dimer appears to interact with a neighbouring αB-c 

dimer through a yet to be determined process (Figure 1.8) (Jehle et al., 2011). This same N-

terminal region of αB-c is thought to play a key role in binding to partially folded clients, as 

determined by limited proteolysis-MS (Aquilina and Watt, 2007, Sreelakshmi and Sharma, 

2005). Structural and functional studies of point mutations (including those that mimic 

phosphorylation, i.e. serine to aspartic acid or glutamic acid) and inversion/deletions within 

this region, have in general, resulted in a decrease the polydispersity of αB-c oligomers 

(Aquilina et al., 2004, Biswas et al., 2007, Ecroyd et al., 2007, Numoto et al., 2012, 

Santhoshkumar et al., 2009). A notable example is a mutant isoform of αB-c in which 

residues 54 – 60 were inverted (Santhoshkumar et al., 2009, Sreelakshmi and Sharma, 

2006). When this mutant was analysed by SEC coupled to multi-angle light scattering (SEC-

MALS) it appeared to exist as a near monodisperse population of αB-c oligomers with an 

average molecular mass of 356 kDa (17-mer) (Santhoshkumar et al., 2009, Sreelakshmi and 

Sharma, 2006). Deletion of these residues (i.e. 54 – 60) from αB-c also decreased the 

polydispersity of αB-c, but not to the same extent as the inversion mutation (Sreelakshmi 

and Sharma, 2005, Sreelakshmi and Sharma, 2006). Moreover, intrinsic tryptophan 

fluorescence of the inversion mutant was significantly lower compared to the WT protein, 

suggesting that the N-terminal domain was less exposed to solution (Sreelakshmi and 

Sharma, 2006). The rate of subunit-exchange (with αA-c WT)  of the 54 – 60 inversion 

mutant of αB-c was also decreased compared to αB-c WT, suggesting that the structure and 
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dynamics of this mutant isoform is significantly different to that of the WT protein 

(Sreelakshmi and Sharma, 2006).  

      

Figure 1.8 Potential inter-dimer interactions of oligomeric αB-crystallin based on a hybrid model  
A proposed model of an αB-c 24-mer derived from cryo-EM, NMR and structure prediction 
modelling. The model depicts the predicted tertiary structure of full-length αB-c dimers interacting 
with neighbouring dimers in the higher-order oligomer (zoomed inset). The specific regions in the 
loop region between β1 and β2 sheets (residues 54-70) which are predicted to interact with 
neighbouring dimers to help maintain the oligomeric assembly of the 24-mer are highlighted in the 
dotted circles. Modified from(Jehle et al., (2011).   

 

Previous work, again using SEC-MALS, has also indicated that deletion of residue A57 

decreases the oligomeric polydispersity of αB-c compared to αB-c WT, however it does not 

significantly affect the intrinsic tryptophan fluorescence of the protein, nor chaperone 
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activity (Biswas et al., 2007). Overall, the drastic changes in structure and function of αB-c 

that result from deletion or mutation in residues 54-70 warrants further examination as to 

the key residues that modulate αB-c oligomerisation in the N-terminal domain.  

1.2.2 Function 

Initially, the function of αB-c was to primarily aid in lens transparency and the refractive 

index of the lens (Delaye and Tardieu, 1983). With time, the chaperone function of αB-c was 

key in maintaining lens transparency and shown to be an effective chaperone when 

thoroughly examined across a range of amorphous and fibrillar client proteins (Ahmad et al., 

2008, Cox et al., 2016, Kulig and Ecroyd, 2012, Mainz et al., 2015, Muchowski et al., 1997). 

Numerous papers have investigated the effect of post-translational modifications on αB-c, 

with a particular focus on the effects phosphorylation has on chaperone activity, 

polydispersity and oligomeric state (Aquilina et al., 2004, Ecroyd et al., 2007, Rogalla et al., 

1999). Mutations that mimic phosphorylation (MMP) of αB-c (S19D, S19/45D and 

S19/45/59D) have been shown to either increase or decrease its chaperone activity 

compared to the WT protein (Ahmad et al., 2008, Aquilina et al., 2004, Ecroyd et al., 2007). 

The overall effect of phosphorylation on the chaperone function of αB-c remains highly 

controversial; a number of studies have reported conflicting data with regards to the effect 

phosphorylation has on the chaperone activity of αB-c. For example, previous studies have 

demonstrated that phosphorylation enhances (Ahmad et al., 2008, Ecroyd et al., 2007, 

Peschek et al., 2013) or reduces (Aquilina et al., 2004, Ito et al., 1997) chaperone activity. 

However, the variation in the results from different studies was later explained by work 

demonstrating that the effect of phosphorylation on the chaperone activity of αB-c is 

specific to the client protein being used to assess the activity and dependent on the number 
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of sites of phosphorylation (Ecroyd et al., 2007). Client proteins possess different tertiary 

and quaternary structures and it is thought that the binding affinity of αB-c for client 

proteins is, in general, higher when the client proteins are more destabilised, resulting in an 

increase in chaperone activity (Ecroyd et al., 2007, Koteiche and McHaourab, 2003).  

More recently, focus has shifted towards the mechanisms involved in abrogating protein 

aggregation, as in vitro assay conditions (e.g. buffer components, pH, temperature and 

oxidative state) can influence not only the aggregation of the client protein, but also the 

interaction between chaperone and client (e.g. stable versus transient interactions). The 

choice of client protein, the type of aggregation (amorphous versus fibrillar) and buffer 

conditions all influence the relative chaperone activity of sHsps (Ecroyd et al., 2007). For 

example, substrate proteins such as BSA and insulin are commonly used in in vitro 

chaperone assays to assess chaperone activity since they are capable of forming amorphous 

or fibrillar aggregates depending on the solution conditions under which they are incubated. 

However, in the case of insulin, harsh conditions, including high temperatures (> 50°C) and 

low pH (< 3.0), are required to induce the formation of fibrillar aggregates in vitro. Thus, the 

physiological relevance of the ability of chaperones to prevent insulin aggregation into fibrils 

under these conditions is questionable. Recently, the acidic calcium-binding milk protein α-

lactalbumin has been shown to be a suitable substrate protein for assessing the chaperone 

activity of sHsps as it can be induced to form amorphous or fibrillar aggregates in near-

physiological (and very similar) buffer conditions in vitro  (37°C, pH 7.0 -7.4) (Carver et al., 

2002, Kulig and Ecroyd, 2012, Lindner et al., 1997). Moreover, it has been shown that αB-c 

abrogates both the amorphous and fibrillar aggregation of α-lactalbumin (Kulig and Ecroyd, 

2012).  More recent work has identified regions of αB-c that are responsible for the 
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recognition and binding to client proteins (Mainz et al., 2015). NMR chemical shift analyses 

showed that the disordered N-terminal domain of αB-c was responsible for stably binding to 

lysozyme to prevent amorphous aggregation of this protein, whereas the β3, β4, and β8 

sheets of the core domain were involved in transient interactions with the Aβ1-42 peptide to 

prevent the formation of fibrils (Mainz et al., 2015).  

1.3 Diseases associated with protein aggregation in which sHsps are implicated 

Proteins are often required to undergo a series of unfolding and refolding events as part of 

their normal life-cycle, for example when crossing membranes or during cellular stress. In 

situations where sHsps and folding chaperones (Hsp60, Hsp70) are unable to function 

optimally, proteins have the potential to form amyloid fibrils and/or amorphous aggregates, 

leading to the onset of numerous protein misfolding/conformational diseases (Figure 1.6) 

(Dobson, 1999). Moreover, mutations in Hsp27 and αB-c have been shown to cause disease. 

For example, congenital conditions such as desmin-related cardiomyopathy and nuclear 

cataract have been associated with mutations in αB-c (R120G and D140N, respectively) (Liu 

et al., 2006, Vicart et al., 1998) (Table 1.1). Mutations in Hsp27 have been associated with 

the neurological disorders Charcot-Marie-Tooth disease (S135F and R136W), a hereditary 

neuropathy resulting in peripheral nerve degeneration, and distal hereditary motor 

neuropathy (R127W, S135F, T151I and P182L) (Evgrafov et al., 2004). A summary of the 

disease-related mutations in Hsp27 and αB-c is given in Table 1.1.  
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Table 1.1: Known disease-related mutations of Hsp27 and αB-c.  
Numerous point mutations as well as deletions and truncations, have been associated with 
congenital diseases. Highlighted are the location of these mutations with regards to the N-terminal 
(cyan), αCD (red) and C-terminal (green) regions of sHsps.  

 

sHsp Mutation(s) Associated Disease Ref. 

HspB1  
(Hsp27) 

P39L 
G48R 
L99M 

R127W 
S135F 
R140G 
K141Q 
T151I 
T180I 
P182S 
P182L 

Distal hereditary motor 
neuropathy 

(Evgrafov et al., 2004, Houlden 
et al., 2008, Ikeda et al., 2009, 

James et al., 2008, Kijima et al., 
2005) 

 R127W 
S135F 

R136W 
T180I 

Charcot-Marie-Tooth disease 
type 2 

(Luigetti et al., 2010, Tang et 
al., 2005) 

HspB5  
(αB-crystallin) 

R11H 
R56W 
R120G 
D140N 
A171T 

450delA 

Various forms of cataracts (Berry et al., 2001, Chen et al., 
2009, Devi et al., 2008, Khan et 

al., 2010, Liu et al., 2006) 

 R120G 
G154S 
R157H 

Dilated cardiomyopathy (Inagaki et al., 2006, Pilotto et 
al., 2006) 

 S21AfsX24 
R120G 
Q151X 
G154S 

464delCT 

Myofibrillar myopathy and 
desmin-related 

cardiomyopathy 

(Selcen and Engel, 2003, Vicart 
et al., 1998) 

 

In addition to mutations in sHsps causing disease, immunohistochemical studies have 

repeatedly shown that sHsps co-localise with protein aggregates that are associated with 

disease. For example, Hsp20, Hsp27 and αB-c are found in amyloid plaques in post-mortem 

Alzheimer’s disease brain tissues (Clark and Muchowski, 2000, Iwaki et al., 1992, Renkawek 

et al., 1994a, Renkawek et al., 1994b). The presence of these chaperones in senile plaques is 

thought to be due to them having a protective role by inhibiting further aggregation and 

reducing toxicity (Binger et al., 2013, Renkawek et al., 1994a, Renkawek et al., 1994b, 

Shammas et al., 2011, Waudby et al., 2010). The presence of molecular chaperones in 
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protein aggregates can also be considered as a toxic ‘loss of function’ since the chaperones 

are sequestered into the aggregate and therefore are not available in the cell to perform 

other critical functions. Moreover, mutations in sHsps may contribute to aggregation due to 

the mutations destabilising the dimer interface (resulting in more monomer compared to 

dimer) or enhancing subunit-exchange (increasing the amount of dissociated species) to 

such an extent that the chaperone becomes ‘hyperactive’, contributing to disease onset. 

The presence of an excess of these dissociated 'active' species may also interfere with other 

proteostasis pathways, thereby overloading the PQC network, leading to disease. The 

overall message coming from this previous work is that, when chaperones fail to prevent 

protein aggregation this can lead to their deposition and co-localisation into aggregates and 

plaques. As a result of the ability of sHsps to inhibit aggregation and stabilise proteins in 

general, these chaperones have been targeted for the development of therapeutics to 

combat neurodegenerative diseases, an area that has been the subject of recent reviews 

(Basha et al., 2012, Boncoraglio et al., 2012, Edwards et al., 2011, Garrido et al., 2012).  

1.4 Delineating the structure of sHsps 

Structural characterisation of proteins is crucial in defining their function. Characterising the 

structure of proteins allows researchers to identify residues and/or domains of functional 

importance. Techniques that are commonly used to structurally characterise proteins 

include X-ray crystallography, solid-state and solution-state nuclear magnetic resonance 

(NMR), nanoelectrospray ionisation MS (nanoESI-MS) and matrix assisted laser 

desorption/ionisation MS (MALDI-MS) (Aquilina et al., 2003, Aquilina et al., 2005, Bagneris 

et al., 2009, Baldwin et al., 2011a, Jehle et al., 2010, Liu et al., 2015). Other techniques, such 
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as analytical-SEC and native gel electrophoresis (native-PAGE), can provide additional 

information on protein structure. 

1.4.1 Native MS overcomes structural heterogeneity 

A complete view of the tertiary and quaternary structure of the full-length human sHsps 

that form polydisperse oligomers has long been a goal of structural biologists that study 

these sHsps. The partially disordered and polydisperse nature of sHsps hinder traditional 

approaches to characterise the tertiary and quaternary structures of these proteins. To 

date, the vast majority of work has involved low-resolution techniques such as SEC-MALS, 

analytical ultracentrifugation and native-PAGE (Bukach et al., 2009, Bukach et al., 2004, 

Datskevich et al., 2012). In light of this, alternate high-resolution approaches have been 

used to further investigate the structure and dynamics of these polydisperse assemblies.  

Native mass spectrometry (MS) is one technique that offers great potential for the study of 

multimeric protein assemblies and has been successfully used to study the quaternary 

structure of sHsps, including αB-c (Aquilina et al., 2003, Aquilina et al., 2004, Aquilina et al., 

2005, Benesch et al., 2006, Benesch et al., 2008, Hochberg et al., 2014) and Hsp27 (Aquilina 

et al., 2013, Heirbaut et al., 2016, Hochberg et al., 2014, Jovcevski et al., 2015). In doing so, 

data from native MS has shed new light on the structure and dynamics of these proteins 

(Hilton and Benesch, 2012). In native MS the protein of interest is placed into a volatile 

buffer (commonly ammonium acetate), and is then transferred from this solution-phase into 

the gas-phase via ionisation of the solution into droplets (achieved by the application of 

electrical potential to the sample), which undergo subsequent desolvation and fission, 

resulting in multiply charged protein ions that maintain a ‘native-like’ state (Figure 1.8). The 

multiply charged ions observed from nanoESI-MS are the result of differential ionisation of 
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exposed basic amino acid residues (lysine, arginine, histidine and the peptide backbone). 

Following the above processes, proteins are subsequently separated based on their mass to 

charge ratio (m/z) (Figure 1.9). The resolving power of native MS enables a wide range of 

structural features to be measured, such as oligomeric distribution and polydispersity (using 

collision-induced dissociation-MS; CID-MS), unfolded/unstructured states (tertiary 

structure), assembly stability (using collision-induced unfolding-MS) and quaternary 

conformation of proteins (the latter two via. ion-mobility – MS) (Figure 1.9). 

To determine the oligomeric distribution of a polydisperse protein such as the sHsps (e.g. 

αB-c) by MS, a CID approach was previously used, whereby the ionised protein is subjected 

to collisions with an inert gas (nitrogen or argon) in the collision cell of a mass spectrometer 

(Benesch, 2009, Shukla and Futrell, 2000). The CID process results in asymmetric 

dissociation of oligomers with increased collision energy, such that the fundamental unit 

(usually a monomer) that dissociates from a complex carries a large proportion of charge 

relative to its mass. CID is capable of removing up to three monomers from any mammalian 

sHsp oligomeric assembly; regions of the spectrum corresponding to ‘stripped’ oligomers 

are therefore commonly referred to as the n-1, n-2 and n-3 regions, where n is the number 

of subunits that constitute any sized oligomer (Aquilina et al., 2003). 
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Figure 1.9: Workflow diagram outlining how native MS can be used to investigate the structure 
and dynamics of large multimeric proteins such as the sHsps 
Proteins are prepared in a volatile buffer (200 mM NH4OAc) and, during desolvation and droplet 
fission, the proteins transfer from the solution-phase to the gas-phase. Basic amino acid residues 
that are exposed become ionised and the resultant multiply charged protein ions are transferred 
through the mass spectrometer, which detects various species based on their mass to charge ratio 
(m/z). Collision-induced dissociation (CID), whereby an accelerating potential in the presence of an 
inert gas (such as argon or nitrogen) is used to remove (‘strip’) subunits from the large assemblies, 
allows quantification of oligomeric distribution and abundance (blue box). Ion mobility (IM) – MS can 
provide information of the conformational state of protein assemblies by comparing the arrival time 
distribution (ATD) of different species. The stability of individual protein species can also be analysed 
by IM-MS by observing their unfolding dynamics as a result of collision-induced unfolding (CIU) 
(orange box).  

 

1.4.2 Native MS of the α-crystallin core domain of sHsps 

Native MS of the αCD (residues 68 – 153) of αB-c has revealed that, rather than being 

exclusively dimeric, the αCD exists in equilibrium between monomers and dimers (Hochberg 

et al., 2014). The proportion of dimer increases with concentration, which indicates that 
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even these stable αB-c core domains are in a state of oligomeric equilibrium. Moreover, 

using a mixture of unlabelled and 13C-labelled constructs and native MS, the αB-c WT core 

domain constructs were also found to undergo rapid subunit-exchange (Hochberg et al., 

2014). Under non-reducing conditions, an E117C mutant (Glu117 is equivalent to Cys137 in 

Hsp27) of the αB-c core domain was found to be exclusively dimeric due to disulfide bond 

formation across the interface (Hochberg et al., 2014).  

1.4.3 Oligomerisation and polydispersity of sHsps 

The extent of the polydispersity of sHsps was first quantified in detail by a MS study that 

investigated the oligomeric distribution of bovine αB-c (isolated from eye lenses) (Aquilina 

et al., 2003). It was found that αB-c primarily forms oligomers of 24-33 subunits (Aquilina et 

al., 2003), however, oligomers as small as 10-mers and up to 40-mers were also detected. 

This was the first detailed description of the range of oligomeric species (stoichiometries) 

present in this polydisperse system. Similar distributions were observed in human αB-c and 

C-terminally truncated forms of recombinant human αA-c (Aquilina et al., 2005).  

Oligomerisation and polydispersity of the sHsps is both temperature and pH dependent 

(Aquilina et al., 2005, Baldwin et al., 2011c, Ecroyd et al., 2007). Thermodynamic and kinetic 

MS studies have demonstrated that the strength of the intra-dimer interfaces of αB-c 

oligomers is pH dependent. Thus, the preference for even-sized oligomers is reduced with 

acidification (Baldwin et al., 2011a, Baldwin et al., 2011c). A recent comprehensive 

structural model of αB-c oligomers postulated that the oligomerisation of αB-c is the result 

of two key components; the intra-dimer interface (site of dimerization) and the inter-dimer 

‘edge’ (dimer-dimer contact regions) (the Baldwin model) whereby αB-c is a symmetrical 

oligomer and proposes that all monomers are equivalent to one another (i.e. tertiary 
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structure of the monomer is identical within the oligomer) (Baldwin et al., 2011c). Based on 

the respective free energies, the relative strength of these components influences the 

distribution of oligomers. This work also proposed that it is the exchange of monomers, not 

dimers, between different sized oligomers that contribute to the polydispersity of sHsps 

(Baldwin et al., 2011c). By combining MS and NMR data, it has also been proposed that 

subunit-exchange is limited by the interactions of the C-terminal domain, in particular the 

canonical IXI motif, with the β4+β8 groove of the αCD. These interactions are responsible 

for anchoring monomers within an oligomeric assembly (Baldwin et al., 2011a, Hilton et al., 

2013, Jehle et al., 2011) (Figure 1.5). Evidence that the C-terminal domain aids in 

maintaining oligomer assembly (Pasta et al., 2004) was further supported by work showing 

that the IXI motif binds to the hydrophobic β4+β8 groove (Delbecq et al., 2012, Jehle et al., 

2011, Laganowsky et al., 2010). Overall, the interaction between the C-terminal domain 

with the β4+β8 groove appears to be transient, consistent with the observation of rapid 

binding kinetics (in the millisecond scale) (Baldwin et al., 2011a, Hochberg and Benesch, 

2014). Moreover, monomers within a αB-c oligomer were found to exist in a single 

conformation indicating that they do not undergo any distinct change in tertiary structure 

when bound within an oligomer compared to when they are ‘free’ in solution (Baldwin et 

al., 2011a). However, little work has been done to investigate the tertiary and quaternary 

structure of full-length sHsp dimers.   

Other models of the αB-c oligomer (24-mer) have been proposed by other groups which 

differ from the Baldwin model. Both the Braun (based on solid state NMR, cryo-EM and 

structural homology modelling experiments) (Braun et al., 2011) and Jehle (based on solid 

state NMR, SAXS and negative-stain EM experiments) (Jehle et al., 2011) models depict the 
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24-mer as an asymmetrical oligomer whereby each monomer is not equivalent (i.e. tertiary 

structure of the monomer is not identical within the oligomer) and that the C-terminal 

domains are exposed on the surface of the oligomer. Where the two models differ 

significantly is in the position of the N-terminal domain. The Jehle model shows that the N-

terminal domain is buried within an oligomer (Jehle et al., 2011, Peschek et al., 2009) whilst 

the Braun model is on the surface of an oligomer (Braun et al., 2011). Both of these models 

also postulate that the formation of the 24-mer must occur with a formation of a hexameric 

ring, which is stabilised by inter-dimer interactions between the αCD and the C-terminal 

domain (Braun et al., 2011, Jehle et al., 2011, Peschek et al., 2009). Following the formation 

of this hexameric ring, the 24-mer is formed from four hexamers, and are stabilised via 

interactions of the N-terminal domain (Braun et al., 2011, Jehle et al., 2011, Peschek et al., 

2009). Overall, all the models presented do not account for the role of the N-terminal 

domain in αB-c oligomerisation experimentally and is based on assumptions and structural 

prediction/homology modelling. This is a major pitfall in these proposed models as the N-

terminal domain of αB-c is readily modified by PTMs, and these modifications have been 

shown to alter the quaternary structure/dynamics, in turn, altering its functions as a 

chaperone. In the context of αB-c, the Baldwin model is more accurate whereby each 

monomer is equivalent to one another and accounts for the strengths between the intra-

dimer interface (site of dimerization) and the inter-dimer ‘edge’ (dimer-dimer contact 

regions) under various conditions/states (i.e. pH and phosphorylation). These interfaces 

ultimately govern oligomerisation, and consequently, subunit-exchange rates, irrespective 

of stoichiometry (i.e. the interactions that maintain a 24-mer would be the same as those 

that maintain any other sized oligomer). Also, there may be significant differences in the 

model when applied to Hsp27, especially as the interfaces involved appear to be 
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significantly weaker than αB-c as Hsp27 oligomerisation is heavily regulated by both 

concentrations and N-terminal PTMs (Rogalla et al., 1999; Theriault et al., 2004). Overall, 

the differences between each model demonstrate the complexity of this system which is 

confounded by the partially disordered state of αB-c oligomers.  

Whilst it well established that αB-c is a polydisperse oligomer in solution, the precise nature 

of the architecture and conformation of these oligomers remained elusive until recently. 

The rapid advances in attaining high resolution data from MS and other approaches (IM- 

MS, NMR, cryo-EM and X-ray crystallography) has recently been exploited in order to define 

the three-dimensional shape of the polydisperse oligomers of αB-c (Baldwin et al., 2011b). 

Determining these features helped rationalise the polydispersity of αB-c in vitro. For 

example, by combining data from both tandem-MS and ion-mobility MS, numerous 

polyhedral architectures were identified for 24-, 26- and 28-mers of αB-c, all of which 

readily interconvert (via dissociation and association of dimers/monomers) without drastic 

changes in the overall architecture (Baldwin et al., 2011b). It should be noted that the gas-

phase (i.e. MS) data on sHsp structure and dynamics correlate well with solution-phase 

(NMR, SEC, cryo-EM) data, demonstrating that the data obtained from MS based 

approaches is relevant when studying αB-c and sHsp structure (Baldwin et al., 2011b, 

Benesch et al., 2010). Overall, these models have helped define the shape and dynamics of 

the polydisperse assemblies formed by αB-c and provide a platform for the study of other 

sHsps, as well as other large oligomeric polydisperse proteins.   

Another key feature of the sHsps is their ability to interact with other family members to 

form heterogeneous oligomers. A well-known in vivo example of this is the formation of α-

crystallin, a hetero-oligomer of αA-c and αB-c (at a ratio of 3:1 αA-c:αB-c). Understanding 
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the subunit-exchange dynamics of these assemblies is crucial in relation to their chaperone 

activity. Previous work that investigated subunit-exchange of the α-crystallins used 

fluorescence resonance energy transfer (FRET) based experiments, which required labelling 

of the protein prior to measuring the rate of subunit-exchange (Bova et al., 1997, Bova et 

al., 2000). The labelling of proteins with fluorophores can be overcome through the use of 

MS to monitor subunit-exchange between sHsp oligomers. However, there have been 

instances where MS based approaches require labelling (15N or 13C) of the sHsp to attain 

baseline resolution between peaks, particularly when investigating homo-oligomeric 

subunit-exchange of Hsp26 from yeast by MS (Benesch et al., 2010). The first instance in 

which α-crystallin subunit-exchange was observed and quantified by MS showed that 

complete exchange of αA-c and αB-c subunits occurred in ~30 min (Aquilina et al., 2005). 

Further work using MS to monitor α-crystallin subunit-exchange demonstrated that αB-c 

subunits more readily dissociated from the larger α-crystallin assemblies that αA-c subunits 

(Morris and Aquilina, 2010). This led to the proposal that the αB-c subunits are more solvent 

exposed and have fewer inter-dimer contacts in the hetero-oligomer than αA-c subunits 

(Morris and Aquilina, 2010). Thus, the associative forces that maintain contacts between 

subunits in the α-crystallin oligomer are weaker for αB-c subunits than those formed by αA-

c subunits. 

Recent work using deuteration-assisted small-angle neutron scattering and native MS has 

led to an alternative model of subunit-exchange whereby ‘travelling subunits’ are 

responsible for exchange, a process that is strongly temperature dependent (Inoue et al., 

2016). This work proposed that the abundance of small species (i.e. monomer, dimer and 

trimer) increased with temperature. However, it was concluded that from this work that 
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there was no loss in the abundance of the larger oligomers, despite the increased 

abundance of smaller species. The observed increase in the abundance of smaller species 

may be attributed to enhanced ionisation efficiency and/or partial unfolding induced by 

temperature during the native MS (Inoue et al., 2016).   

Native MS of mixtures of Hsp27 and αB-c, which hetero-oligomerise in vivo (Arrigo et al., 

2007, Kato et al., 1992, Sakuma et al., 1998), showed that αB-c and Hsp27 undergo 

complete subunit-exchange to form a heterogeneous species and the rate of subunit-

exchange increases with temperature (Aquilina et al., 2013). The rates of subunit-exchange 

determined by MS were comparable to those attained from FRET studies of Hsp27/αA-c and 

αA-c/αB-c hetero-oligomers (Bova et al., 2000), however there was no need to label the 

sHsps in the MS-based experiment. This is critical as recombinant forms of αA-c and Hsp27 

can form disulfide-linked dimers post-purification, which can modulate the quaternary 

dynamics of these assemblies. Taken together, it is clear that studying sHsp oligomers is a 

crucial first step in understanding their dynamic behaviour (Figure 1.9). 

1.5 Use of MS to study the structure-function relationship of sHsps 

Recent structural data on human sHsps have helped provide clues as to the molecular 

mechanism of their chaperone function. MS has also played a key role in these experiments. 

For example, by using a limited proteolysis and MS approach, it was found that the N-

terminal domain of αB-c bound to aggregation-prone α-lactalbumin is more resistant to 

proteolytic cleavage than αB-c ‘free’ in solution (Aquilina and Watt, 2007). In this work a 

phenylalanine-rich region, residues 17-28, of the N-terminal domain of αB-c was identified 

as mediating substrate binding. In this same study, the C-terminal domain of αB-c (in 

particular residues R157 – R163) was also somewhat resistant to proteolytic cleavage and 
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therefore implicated in substrate binding (Aquilina and Watt, 2007). The key advantage of 

using MS over other techniques to determine key regions involved in chaperone and 

substrate interactions is that it accurately identifies peptides released via proteolytic 

cleavage.    

MS has also been used to show that in vitro refolding of urea-denatured α-crystallin changes 

the quaternary structure of the protein compared to protein that has not been denatured 

(Benesch et al., 2008). In particular, when compared to the control (non-denatured), the 

oligomeric distribution of the refolded α-crystallin demonstrated a loss in dimeric 

substructure. This correlated with a decrease in the chaperone activity of refolded α-

crystallin compared to non-denatured α-crystallin (Benesch et al., 2008). Moreover, the 

results of this work suggest that the ratio of monomeric to dimeric units in the substructure 

of the α-crystallin oligomers may regulate the chaperone activity of the protein.  

The effects of PTMs have on the oligomeric structure of sHsps have also been examined by 

MS. For example, phosphorylation of αB-c at three serines (S19, S45 and S59) does not 

result in the complete dissociation of oligomers, nor reduce its polydispersity (Ecroyd et al., 

2007, Peschek et al., 2009, Peschek et al., 2013). The increased levels of phosphorylation of 

αB-c results in an increase in the rate of subunit-exchange, which leads to an increase in the 

abundance of dissociated species, enhancing its interaction with destabilised substrate 

proteins (Ecroyd et al., 2007, Peschek et al., 2013). In the case of Hsp27, upon 

phosphorylation at three serines (S15, S78 and S82) almost complete dissociation of 

oligomers was observed by MS (Jovcevski et al., 2015). This dissociation also correlated with 

enhanced chaperone activity (Hayes et al., 2009, Jovcevski et al., 2015). Generally, 

phosphorylation of sHsps has been regarded as a molecular switch, which activates 
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oligomeric dissociation and/or enhances subunit-exchange (by destabilisation of inter-dimer 

contacts), such that more chaperone-active species are present. The large sHsp oligomers 

act as storage forms of the chaperone-active species (Figure 1.9 and 1.10). It is quite 

possible that both non-phosphorylated and phosphorylated forms of sHsps are able to 

oligomerise together and undergo subunit-exchange, which adds yet another level of 

complexity to the structure-function relationship of these dynamic proteins.  

 

Figure 1.10: The role of phosphorylation of intracellular sHsps 
Phosphorylation of Hsp27 and αB-c is mediated by MAPKAPK-2, -3 and -5 during periods of cell 

stress (e.g. temperature, pH).  The production of the phosphorylated forms of these sHsps results in 

a range of structural changes, such as an increase in subunit-exchange rate and oligomer 

dissociation. Due to the dynamic nature of sHsps, both non- and phosphorylated forms may undergo 

subunit-exchange with each other to form a wide range of heterogeneous species. All populations 

are capable of interacting with a range of client proteins to prevent their aggregation, however, 

phosphorylation may act to change and broaden the range of client proteins that these sHsps are 

capable of interacting with in cells. Modified from(Treweek et al., (2015). 
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1.6 Aims 

The sHsps are a very crucial part of the proteostasis network in cells. It is critical that the 

molecular mechanisms by which they acts as molecular chaperones is well understood. The 

overall aims of this work were to use MS-based techniques to interrogate the structure-

function relationship of these dynamic and polydisperse proteins. In order to investigate the 

structure, function and interactions of the human sHsps Hsp27 and αB-c, this work had 

three specific aims: 

(i) To examine the site-specific effect that phosphorylation has on the structure and 

chaperone function of Hsp27.  

(ii) To probe the roles post-translational modification (i.e. phosphorylation and 

disulfide-linkage) have on the structure and dynamics of Hsp27. 

(iii) To investigate the role of the region encompassing residues 54-60 in the N-terminal 

domain in the structure and chaperone function of αB-crystallin. 
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Chapter 2: Materials and Methods 

 

2.1 Materials 

Unless otherwise stated, all reagents used were obtained from Amresco (Ohio, USA) or 

Sigma-Aldrich (St. Louis, USA) and all were of analytical grade.  

Hsp27 phosphomimics (S15D, S78D, S82D, S15/78D, S15/82D, S78/82D and S15/78/82D) 

were kind gifts from Dr. Megan Kelly and Assoc. Prof. Heath Ecroyd (both from the 

University of Wollongong, Australia). The amorphous and fibrillar aggregation assays 

(section 2.7.1) and cell lysate aggregation assays (section 2.7.2) using the Hsp27 

phosphomimics were performed by Dr. Megan Kelly.  

2.2 Gel electrophoresis 

2.2.1 SDS-PAGE 

Protein samples were visualised by SDS-PAGE, consisting of a 4% (v/v) stacking gel and 15 % 

(v/v) resolving gel. Electrophoresis was performed using a Mini Protean 3 system (BioRad, 

California, U.S.A), which was powered by a Bio-Rad power pack 300 power supply (BioRad, 

California, U.S.A). Protein samples were combined with a SDS-PAGE loading buffer (25 mM 

Tris-HCl, 1% w/v bromophenol blue, 30% w/v glycerol, 10% w/v SDS, 5% v/v β-

mercaptoethanol, pH 6.5) at a ratio of 1:1, followed by incubation at 90°C for 5 min prior to 

loading into wells of the gel. Each gel was loaded with 5 µL of unstained SDS-PAGE broad 

range molecular mass standards (BioRad, California, U.S.A) to determine protein molecular 

mass. Separation was achieved at 150 V until the dye reached the bottom of the gel. Gels 

were stained with Coomassie blue stain solution (10% v/v methanol, 40% v/v acetic acid, 

0.02% w/v brilliant blue) for 1 h, followed by destaining in Coomassie blue destain solution 
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(10% v/v methanol, 40% v/v acetic acid) until proteins were visible. Imaging of proteins was 

performed using a Gel Logic 2200 PRO imaging system (Carestream, New York, U.S.A).  

2.2.2 Native-PAGE 

Native-PAGE was performed as described previously (Cassiman et al., 1981). Essentially, gels 

consisted of a 4% (v/v) stacking and 6% (v/v) resolving gel. 50 μM of each protein was mixed 

with an equal volume of native-PAGE loading buffer (20 µL) (0.5 M Tris-HCl pH 6.8; 30% w/v 

glycerol; 1% w/v bromophenol blue) and loaded into wells. Separation was performed at 

150 V using a Mini Protean 3 system (BioRad, California, U.S.A) for 2.5 h. Staining and 

imaging was performed as described previously (section 2.1.1).  

2.3 Expression and purification of Hsp27 and αB-c isoforms 

The gene encoding human Hsp27 (HSPB1; UniProt accession number P04792) was 

expressed in E. coli BL21(DE3) using a plasmid kindly gifted by Dr. W. C. Boelens and Dr. W. 

W. de Jong (University of Nijmegen, The Netherlands), in which HSPB1 was cloned into the 

BamHI and NdeI restriction sites of pET3a (Novagen, Darmstadt, Germany). The Hsp27 

phosphomimic-encoding constructs (S15D, S78D, S82D, S15/78D, S15/82D, S78/82D and 

S15/78/82D) were generated by site-directed mutagenesis of the wild-type gene by 

GenScript (New Jersey, U.S.A). Protein expression was induced at OD600 ~0.6-0.8 with 

0.5 mM IPTG and cells were cultured at 37°C for 4 h with shaking. Cells were pelleted at 

5,000 x g, 4°C for 15 min and stored at -20°C ready for extraction.  

The gene encoding human αB-c (HSPB5; UniProt accession number P02511) was expressed 

in E. coli BL21(DE3) using a plasmid kindly gifted by Dr. W. C. Boelens and Dr. W. W. de Jong, 

in which HSPB5 was cloned into pET24d(+) (Novagen, Darmstadt, Germany). The N-terminal 

mutants of αB-c (P58A, S59A, S59K, R56S/S59R and Invert 54-60) were generated by site-
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directed mutagenesis of the WT gene by GenScript (New Jersey, USA). Expression and 

harvesting was performed as described above. 

2.3.1 Extraction 

Cell lysis and protein purification was performed as previously described (Horwitz et al., 

1998b) with minor changes. Briefly, cell pellets were resuspended in ice-cold lysis buffer 

(50 mM Tris-HCl, 100 mM NaCl, pH 8.0) (3 mL buffer per gram of pellet) on ice. To the cell 

lysate, an EDTA free protease inhibitor cocktail (1:100 v/v) and lysozyme (50 µM per gram of 

pellet) was added and lysates were kept on ice for 30 min with occasional stirring. 

Deoxycholic acid (10 mM per gram of pellet) was added and lysates were incubated for 

30 min at 37°C with shaking. DNase I (10 µM per gram of pellet; Roche Diagnostics Basel, 

Switzerland) was added and the lysates incubated at room temperature until no longer 

viscous. Lysates were centrifuged at 17,000 x g for 15 min at 4°C (Sorvall RC6 centrifuge, 

F21-8x50Y rotor). Supernatant was retained and ultracentrifuged at 100,000 x g for 30 min 

at 4°C. The supernatant was treated with DTT (10 mM), PEI (0.12% v/v) and EDTA (1 mM) 

and incubated at room temperature for 10 min followed by centrifugation at 17,000 x g for 

10 min. The supernatants were then syringe filtered through a 0.22 µm PES membrane filter 

prior to anion-exchange chromatography.  

2.3.2 Purification 

All chromatography was performed using either an AKTA FPLC system (Amersham 

Biosciences, Amersham, U.K) or Next Generation Chromatography (NGC) FPLC system 

(BioRad, California, U.S.A). Filtered supernatants were loaded onto a HiPrep 16/60 DEAE 

FastFlow anion-exchange column (Amersham Biosciences, Amersham, U.K) equilibrated in 

20 mM Tris-HCl, 1 mM EDTA, 0.02% NaN3, 0.1 mM PMSF, pH 8.5. Protein was eluted at 

2.0 mL/min using a stepwise elution (10%, 20% and 100%) of the same buffer but containing 
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1 M NaCl. Fractions containing Hsp27 or αB-c, as determined by 15% SDS-PAGE, were 

pooled and concentrated to ~3 mL using a Vivaspin 20 (GE Healthcare, Illinois, U.S.A.), with 

molecular weight cut-off of 30,000 Da, by centrifugation at 2,900 x g at 4°C. Concentrated 

samples were syringe filtered through a 0.22 µm PES membrane before loading samples 

onto a HiPrep 26/60 Sephacryl S-300 HR SEC (GE Healthcare, Illinois, U.S.A.) equilibrated in 

either 200 mM NH4OAc (pH 6.8) or 50 mM phosphate buffer (pH 7.4). Proteins were eluted 

from the column at 1.0 mL/min using the same buffer. Fractions containing Hsp27 or αB-c, 

as determined by 15% SDS-PAGE, were pooled and concentrated using a Vivaspin 20 as 

described above. Concentrated samples were stored at -20°C until use. Protein 

concentration was determined by using an extinction coefficient (ε0.1%) of 1.65 for Hsp27 

and 0.85 for αB-c (Shashidharamurthy et al., 2005). 

2.4 Expression and purification of monomeric α-synuclein 

Expression and purification of monomeric α-synuclein (αS) (SNCA; UniProt accession 

number P37840) was performed as previously described (Buell et al., 2014). Briefly, αS was 

expressed in E. coli BL21 (DE3) using a plasmid gifted by Mr James Brown (University of 

Cambridge, UK), in which SNCA was cloned into the NdeI and HindIII restriction sites of  the 

pT7-7 plasmid (Addgene, Massachusetts, USA). This sequence contained a TAC to TAT 

mutation at codon 136 to prevent cysteine misinsertion and subsequent dimerization 

(Masuda et al., 2006). Protein expression was induced at OD600 ~0.6-0.8 and cells were 

harvested at 37°C for 4 h with shaking. Cells were pelleted at 6,000 x g, 4°C for 15 min and 

stored at -20°C ready for extraction. 

2.4.1 Extraction  

Cell pellets were resuspended in cell lysis buffer (20 mL/litre of culture) containing 100 mM 

Tris-HCl (pH 8.0), 10 mM EDTA and an appropriate amount of protease inhibitor cocktail. 
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Cells were lysed by three cycles of freeze-thaw followed by sonication (30% amplitude for 

15 s on and 30 s off for a total of 5 cycles). Lysates were incubated in a water bath at 95°C 

for 20 min and centrifuged at 22,000 x g at 4°C for 20 min. Supernatants were subsequently 

treated with streptomycin sulfate (100 µM) at 4°C for 20 min with stirring and then 

centrifugation at 22,000 x g at 4°C for 20 min. The supernatant was collected and 

streptomycin sulfate addition and centrifugation repeated once more. The supernatant was 

treated with 0.4 g/mL ammonium sulfate at 4°C for 30 min with stirring to precipitate αS, 

which was collected by centrifugation at 22,000 x g at 4°C for 20 min. The pellet was 

resuspended in a ~10 mL of 25 mM Tris-HCl (pH 7.7) prior to dialysis overnight at 4°C against 

a buffer consisting of 20 mM Tris-HCl, 1 mM EDTA, 0.02% NaN3 (pH 8.5).  

2.4.2  Purification 

Filtered extract was loaded onto a MonoQ 5/50 GL anion-exchange column (GE Healthcare) 

equilibrated in 20 mM Tris-HCl, 1 mM EDTA, 0.02% NaN3 (pH 8.5). Protein was eluted at 

0.5 mL/min using a gradient elution (0 - 50%) of the same buffer but containing 2 M NaCl. 

Fractions (2 mL) containing αS, as determined by 15% SDS-PAGE, were pooled and 

concentrated using a Vivaspin 20 with molecular weight cut-off of 10,000 Da by 

centrifugation at 8,000 x g at 4°C. Samples were syringe filtered through a 0.22 µm PES 

membrane before loading (3 mL) onto a HiLoad 16/600 Superdex 75 Prep Grade SEC (GE 

Healthcare) equilibrated in 50 mM phosphate buffer (pH 7.4). Proteins were eluted at 

1.0 mL/min using the same buffer. Fractions containing purified αS, as determined by 15% 

SDS-PAGE, were pooled and concentrated to 100 – 200 µM (to prevent oligomerisation and 

aggregation) and snap frozen for storage at -80°C. Protein concentration was determined by 

using the theoretical extinction coefficient (ε0.1%) of 0.4, based on the amino acid sequence 

(Gasteiger E., 2005). 
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2.4.3 Preparation of α-synuclein seed fibrils 

After purification, monomeric αS (150 µM in 50 mM phosphate buffer, pH 7.4) was heated 

and stirred at 45C for 24 h prior to sonication (30% amplitude for 15 s on and 30 s off for a 

total of 3 cycles). This process was repeated once more prior to snap freezing the seeds with 

liquid nitrogen, which were then stored at -80C.  

2.5 General biophysical studies 

2.5.1 Analytical size-exclusion chromatography (SEC) 

The average oligomeric size of Hsp27 and αB-c isoforms was determined by analytical-SEC. 

Samples (approximately 50 μM) were loaded onto either a Superdex 75 10/300 GL or 

Superose 6 10/300 GL analytical-SEC (both from GE Healthcare), which had been 

equilibrated in 50 mM phosphate buffer and 100 mM NaCl (pH 7.4), at a flow rate of 0.3 

mL/min at room temperature. The size exclusion columns were calibrated using standards 

(Bio-Rad) containing bovine thyroglobulin (670 kDa), bovine γ-globulin (158 kDa), chicken 

ovalbumin (44 kDa) and horse myoglobin (17 kDa). 

2.5.2 Intrinsic tryptophan and bis-ANS fluorescence 

Intrinsic tryptophan fluorescence was used to examine changes in the tertiary and 

quaternary structure of Hsp27 (Hsp27 contains the following tryptophan residues; W16, 

W22, W42, W45, W51 and W95) and αB-c (αB-c contains the following tryptophan residues; 

W9 and W60) (see alignment Figure 1.5). bis-ANS fluorescence was used to determine the 

relative amount of exposed regions of hydrophobicity. Tryptophan fluorescence and bis-ANS 

fluorescence spectra were attained using a Cary Eclipse fluorescence spectrophotometer 

(Varian, USA).  Proteins were prepared to a final concentration of 10 µM in 50 mM 

phosphate buffer (pH 7.4). Proteins were incubated at room temperature for 15 min prior to 

tryptophan fluorescence analysis. bis-ANS (final concentration 20 µM) was then added and 
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the samples incubated for 3 min at room temperature prior to measurement of the bis-ANS 

fluorescence. The excitation wavelength was set at 295 nm and 350 nm and emission 

wavelength was recorded from 300-400 nm and 400-600 nm for tryptophan fluorescence 

and bis-ANS studies, respectively. The slit widths for excitation and emission spectra were 

both set at 5 nm.  

2.5.3 Far-UV CD Spectroscopy 

Far UV-CD was utilised to determine secondary structure motifs of Hsp27 and αB-c isoforms. 

Spectra were acquired using a Jasco Far UV spectropolarimeter (Jasco, Japan). All proteins 

were measured at room temperature using a 1 mm quartz cuvette (Hellma Analytics, 

Germany). Acquisition settings were as follows: 100 nm/min continuous scanning, 1 nm 

bandwidth, 0.2 data pitch, 6 scans were acquired and averaged with Savotsky-Golay 

smoothing (25 convolutions). All proteins were prepared to a final concentration of 10 μM 

in 10 mM phosphate buffer (pH 7.4). Far UV-CD spectra were buffer corrected and 

subsequently deconvoluted using BeStSel deconvolution software (Micsonai et al., 2015).  

2.5.4 Dynamic light scattering (DLS) 

To determine the mean particle size (Z-average) and relative thermal stability of the sHsps in 

solution, DLS was performed. Proteins were prepared in 50 mM phosphate buffer (pH 7.4) 

at 50 µM and incubated at 37°C for 1 h prior to measurement. Samples were plated (100 µL) 

into 96-well microwell plates and analysed using a Zetasizer Auto Plate Sampler system 

(Malvern, Malvern, U.K.). Thermal stability was assessed by using an inbuilt temperature 

gradient with 2.5°C for 10 min increments ranging from 25°C to 95°C. The melting 

temperature of each isoform was defined as a 2-fold increase in hydrodynamic diameter 

from the measurement taken at 25°C. Experiments were repeated twice and data shown are 

representative from these two experiments.  
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2.5.5 Bulk - Fluorescence resonance energy transfer (Bulk-FRET) 

experiments to measure subunit-exchange 

Bulk-FRET was used to determine whether Hsp27-WT and Hsp27-3D were capable of 

subunit-exchange. Hsp27-WT was labelled with Alexa Fluor-488 and Alexa Fluor-647 (both 

lysine labelled) dyes (Thermo Fisher Scientific; Massachusetts, USA) and Hsp27-3D was 

labelled with Alexa Fluor-488. Individual stocks of labelled proteins were made up to 25 µM 

in 50 mM phosphate buffer (pH 7.4). Samples were equilibrated by incubation at 37°C for 1 

h and placed on ice for 20 min to halt subunit-exchange (Bova et al., 1997). Subunit-

exchange was monitored using a POLARstar plate reader (BMG Lab Technologies) based on 

the change in FRET over time. Equimolar ratios of the putative subunit-exchange pairs (i.e. 

Hsp27-WT-488 + Hsp27-3D-647; Hsp27-WT-488 + Hsp27-WT-647) were plated into a black 

384-microwell plate and FRET monitored for 90 min at 37°C by measuring the levels of 

fluorescence with a 490/650 nm excitation/emission  filter set. The ratio of fluorescence 

intensity at any point in time (F(t)) to fluorescence intensity at time zero (F(0)) (i.e. F(t)/F(0)) 

was calculated. An increase in this fluorescence ratio was indicative of subunit-exchange. 

Subsequent reaction curves were fitted with a one-phase association (exponential) curve to 

determine the subunit-exchange rate constant (k). Subunit-exchange was also confirmed by 

analytical-SEC (section 2.5.1) whereby samples were taken directly from the 384-well 

microplates and loaded onto a Superdex 200 10/300 GL column pre-equilibrated with 50 

mM phosphate buffer (pH 7.4) with multi-wavelength detection set at 280, 495 and 650 nm 

at a flow rate of 0.4 mL/min.  

2.6 Mass Spectrometry-based studies 

2.6.1 Denatured mass spectrometry (MS) 

Denatured MS was performed on a Synapt G1 HDMS (Waters) using a nanoelectrospray 

ionisation source. Proteins were denatured using formic acid (1 % v/v final concentration) 
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and acetonitrile (40% v/v final concentration) and samples were incubated overnight at 

room temperature to ensure complete denaturation. Instrument conditions were set as 

previously described (Aquilina et al., 2003). Key instrument parameters were as follows: 

capillary voltage (kV): 1.5; sampling cone (V): 50; extraction cone (V): 4; trap/transfer 

collision energy (V/V): 6/4; trap gas (L/hr): 2.5; backing gas (mbar): ~2.0. Each protein was 

electrosprayed from gold-coated borosilicate glass capillaries (Harvard Apparatus; 

Massachusetts, USA) prepared in-house. The mass spectrometer was calibrated using 

caesium iodide (10 mg/mL) and all spectra were analysed using MassLynx V4.1 software 

with minimal smoothing applied to raw spectra. 

2.6.2 Native MS 

Native MS was performed on a quadrupole time-of-flight (Q-ToF) 2 MS and Synapt G1 HDMS 

(Waters) using a nanoelectrospray ionisation source. Instrument conditions were set as 

previously described which have been optimised to maintain native structure of large 

protein assemblies (Aquilina et al., 2013). Key instrument parameters on both mass 

spectrometers were as follows: capillary voltage (kV): 1.60-1.65; sampling cone (V): 150-200; 

extraction cone (V): 7-10; trap/transfer collision energy (V/V): 25/15; trap gas (L/hr): 6.5; 

backing gas (mbar): ~5.0-7.0. For CID experiments, the voltages in the collision cell were 

increased in 20 V increments (from 20 - 200 V). Prior to native MS, all sHsp isoforms were 

buffer-exchanged into 200 mM NH4OAc (pH 6.8) using a Superdex 200 10/300 GL column. 

Oligomeric distribution spectra were acquired at a concentration of 40 μM, due to the 

concentration-dependence of the oligomeric state of Hsp27 (Theriault et al., 2004), whilst 

the dilution MS experiments were performed at range of concentrations from 0.7 to 47 μM. 

Each protein was nanoelectrosprayed and respective spectra were analysed as described 

previously (section 2.6.1). 
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2.6.3 Ion-Mobility MS (IM-MS) 

Ion mobility-MS was performed on a Synapt G1 HDMS (Waters) using a nanoelectrospray 

ionisation source. To investigate the quaternary architecture of Hsp27 assemblies, softer 

front end conditions on the MS were required to minimise gas-phase compaction and 

unfolding prior to detection. Key instrument parameters were as follows: capillary voltage 

(kV): 1.60-1.65; sampling cone (V): 40; extraction cone (V): 2.0; trap/transfer collision energy 

(V/V): 15/10; trap gas (L/hr): 6.0; backing gas (mbar): ~6.5. The parameters for the IM were 

as follows: IM cell wave height (V): 8-10; IM cell wave velocity (m/s): 300; transfer t-wave 

height (V): 8; transfer t-wave velocity (m/s): 200. Proteins were buffer exchanged and 

prepared as described earlier (section 2.4.5). Cytochrome C and myoglobin (both equine; 

Sigma-Aldrich) were used as IM calibrants for small oligomeric assemblies (monomers to 

tetramers) as previously described (Ruotolo et al., 2008). 

To investigate the collision-induced unfolding (CIU) dynamics of Hsp27 dimers, given that all 

the single phosphomimic isoforms were structurally and functionally similar (as were all the 

double phosphomimic isoforms), the S15D, S15/82D and S15/78/82D mutants were 

selected as representatives of the 1D, 2D and 3D isoforms, respectively (and are referred to 

as Hsp27-1D, Hsp27-2D and Hsp27-3D). Hsp27-WT was excluded from this analysis as the 

population of free dimer at the concentrations used (50 µM) was too low to be detected by 

IM-MS. In these experiments the dimer13+ was selected to ensure no overlap from other 

charged species, and IM spectra was acquired under the conditions stated above such that 

the trap and transfer collision energy was increased in 5 V increments from 15 – 60 V. Ion 

mobility heat maps and CIU difference plots were generated using CIUsuite with default 

settings (Eschweiler et al., 2015). To determine the relative proportion of unfolded dimer 

with increasing activation energy, unfolding curves were produced. The IM chromatograms 
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at each activation energy increment were measured and normalised to the highest 

intensity. The relative abundance of unfolded dimer was determined by the intensity of any 

unfolded species present (i.e. any observed intensity that is not attributable to the folded 

dimer).  

The IM data for the large oligomer (12-mer31+) were calibrated using egg white avidin and 

human transthyretin (both Sigma-Aldrich) and acquired as described previously (Baldwin et 

al., 2011b, Ruotolo et al., 2008). Key instrument parameters were as follows: capillary 

voltage (kV): 1.60-1.65; sampling cone (V): 40; extraction cone (V): 2.0; trap/transfer 

collision energy (V/V): 15/10; trap gas (L/hr): 6.0; backing gas (mbar): ~6.5. IM parameters 

were as follows: IM cell wave height (V): 10-14.5; IM cell wave velocity (m/s): 300; transfer 

wave height (V): 8; transfer wave velocity (m/s): 200. Arrival time distribution (ATD) and 

drift time data was acquired and calculated using Driftscope 2.1 (Waters) as described 

previously (Ruotolo et al., 2008).  

2.6.4 Oligomeric dissociation MS 

The oligomeric dissociation of Hsp27-WT, 1D and 2D mutants was observed by MS as 

described previously (Rose et al., 2011). The peak areas corresponding to Hsp27 dimers (AD) 

and oligomers (ranging from tetramers to 24-mers; AO) were summed to determine the 

total peak area of each spectrum (AT):  

AD + AO = AT 

The relative proportion of dimer relative to oligomer (PD) was determined by dividing the 

dimer peak area (AD) by the total peak area of the whole spectrum (AT):  

AD/AT = PD 
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The dissociation curves were fitted using the one phase decay function. For each protein, at 

least 5 data points were plotted and this experiment was repeated 3 times. All curve fitting 

analyses was performed using Prism 5.0 (GraphPad) software. 

2.6.5 Limited proteolysis – MS 

Purified proteins were subjected to proteolysis by trypsin (Roche Diagnostics; Basel, 

Switzerland) at a molar ratio of 1000:1 (Hsp27:protease) in 50 mM phosphate buffer (pH 

7.4) at 37°C. At designated time points (0, 10, 20, 30 and 60 min) 10 µL aliquots of the 

digestion reaction were removed and digestion was quenched by addition of SDS-PAGE 

loading buffer (for analysis by SDS-PAGE). Samples for SDS-PAGE were analysed and imaged 

as described earlier (section 2.2.1). In some experiments proteolysis of Hsp27 by trypsin at 

the above stated molar ratio, which was analysed by MS, was performed in 200 mM 

NH4OAc (pH 6.8) and digestion was quenched by addition of formic acid and DTT (to final 

concentrations of 10% v/v and 1 mM, respectively) and sprayed under denatured MS 

conditions (section 2.6.1). Peptides from digestion were identified by the peaks in each 

spectrum and compared to the theoretical digestion of Hsp27-WT and Hsp27-3D 

(performed using BioLynx Protein/Peptide editor V4.1). Peptide identification was based on 

the charge of the peptide (± 1 Da) when compared to the theoretical size of the peptide.  

2.6.6 Reduction and thiol-blocking 

Hsp27-WT (100 µM) was incubated with 1 mM tris(2-carboxyethyl)phosphine (TCEP) for 

30 min at room temperature prior to the addition of 100 mM iodoacetamide (IA). Samples 

were incubated on ice for 15 min prior to buffer-exchanging by running the sample over a 

Superdex 200 10/300 GL column  (GE Healthcare), which had been pre-equilibrated in 

200 mM NH4OAc (pH 6.8), at a flow rate of 0.4 mL/min at room temperature. 
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2.7 Functional studies 

2.7.1 Aggregation assays 

The aggregation and precipitation of target proteins, reported via either ThT fluorescence 

(amyloid fibril) or light-scattering (amorphous aggregation) assays, was monitored by using 

sealed 96-microwell plates and a FLUOstar Optima plate reader (BMG Lab Technologies). To 

assess the protective effects of Hsp27 phosphomimics against aggregation the amorphous 

aggregation of insulin (100 μM), incubated at 37°C in 50 mM phosphate buffer (pH 7.4), or 

BSA (50 μM), incubated in PBS, was initiated by the addition of DTT (20 mM). Chaperones 

were added at molar ratios of 8:1 (insulin:Hsp27) or 2:1 (BSA:Hsp27). Aggregation was 

monitored by measuring the change in apparent absorbance due to light scattering at 340 

nm, which was negligible in the absence of insulin or BSA. The formation of amyloid fibrils 

by κ-casein was monitored using an in situ ThT-binding assay (Ecroyd et al., 2008). 

Chaperones were added at a molar ratio of 1:1 to κ-casein (25 μM) in 50 mM phosphate 

buffer (pH 7.0). Samples were incubated with 10 μM ThT at 37°C and fluorescence levels 

measured with a 440/490 nm excitation/emission filter set. The change in ThT fluorescence 

in the absence of κ-casein was negligible in this assay.  

The chaperone activity of the N-terminal αB-c mutants was also assessed via ThT 

fluorescence (amyloid fibril) or light-scattering (amorphous aggregation) assays, using 

sealed 384-microwell plates and a FLUOstar Optima plate reader (BMG Lab Technologies). 

Amorphous aggregation of insulin (100 μM), incubated at 37°C in 50 mM phosphate buffer 

(pH 7.4), was initiated by addition of DTT (20 mM). The αB-c isoforms were added at molar 

ratios of 1:1 and 1:0.75 (insulin:αB-c). Aggregation was monitored by measuring the change 

in apparent absorbance due to light scattering at 340 nm.  
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To examine the ability of the N-terminal αB-c mutants to prevent amyloid fibril formation an 

αS elongation assay was performed (Buell et al., 2014). Essentially, this assay measures the 

ability of chaperones to inhibit the elongation of αS fibrils using short preformed αS seed 

fibrils (section 2.4.3). Fibril elongation was monitored using an in situ ThT-binding assay. 

Chaperones were added at a molar ratio of 2:1 and 4:1 (αS:αB-c) to the monomeric pool of 

αS (50 μM) in 50 mM phosphate buffer (pH 7.4) with 10% w/w αS seed fibrils. Samples were 

incubated with 50 µM ThT at 37°C and fluorescence levels measured with a 440/490 nm 

excitation/emission filter set.  

In all protein aggregation assays, the relative ability of each chaperone to prevent 

aggregation was evaluated by comparing the change in light scatter at 340 nm or ThT 

fluorescence at the conclusion of each assay, as previously described (Ecroyd and Carver, 

2008). The change in light scatter at 340 nm or ThT fluorescence in each sample was used to 

calculate the relative efficacy of the Hsp27 or αB-c isoforms compared to the WT 

counterparts. All assays were performed at least three times and data are reported as mean 

± SEM of these independent assays. Data were analysed by one-way ANOVA and Dunnett’s 

multiple comparisons post-hoc test using Prism 5.0 (GraphPad) software.  

2.7.2 Cell lysate aggregation assays 

The cell lysate aggregation experiments were based on a previous method with minor 

modifications (Peschek et al., 2013). Briefly, Neuro-2a cells were collected and washed in 

PBS and stored at -20°C until required. Cells were resuspended in ice cold hypotonic buffer 

(40 mM phosphate buffer, pH 7.4) containing protease inhibitors (Pierce, Massachusetts, 

USA) and placed on ice for 15 min. The cell suspension was then repeatedly passed through 

a gel-loading pipette tip to disrupt the cells before being placed at -20°C for 30 min. The 
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sample was thawed, the lysate cleared by centrifugation, and a 20 × stock of PBS used to 

adjust the salt concentration to physiological levels. The concentration of proteins in each 

sample was adjusted with PBS so that the A280 nm was 2.0, prior to the addition of Hsp27 

(or an equivalent volume of buffer or concentration of BSA). Samples were heated at 45°C 

for 1 h, centrifuged (12,000 × g, 10 min, 4 °C), the pellet washed with an equivalent volume 

of PBS then resuspended again with the same volume of PBS. Protein aggregation was 

assessed by 15% SDS-PAGE, performed as described above. The intensity of selected bands 

was quantified using GelAnalyzer2010 (www.gelanalyzer.com). These experiments were 

performed at least three times and data are reported as mean ± SEM of these independent 

assays. Data were analysed by unpaired t-test using Prism 5.0 (GraphPad) software. 
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Chapter 3: Phosphomimics destabilises Hsp27 oligomeric assemblies and 

enhance chaperone activity 

 

3.1 Introduction 

Hsp27 is a systemically expressed mammalian small heat-shock protein (sHsp) which 

typically exists as large, polydisperse assemblies (Hickey et al., 1986, Sun and MacRae, 

2005). In conjunction with the two other dominant non-lenticular sHsps, αB-c and Hsp20, 

Hsp27 is a key component of the cell’s proteostasis network where it acts as a molecular 

chaperone. Overall, the association between Hsp27 and neurodegenerative diseases 

demonstrates that its chaperone function is critical to proteostasis.  

Hsp27 is unique amongst the sHsps in that it can form covalent disulfide-bonded 

homodimers, whereas the dimers of the other sHsps are linked by a charged network along 

the β6+7 sheets (Bagneris et al., 2009, Hochberg et al., 2014). Previous work has shown that 

under conditions of cellular stress (Almeida-Souza et al., 2010), disulfide-bonded dimers of 

Hsp27 can form in the cell. Under such conditions, the quaternary dynamics of Hsp27 may 

differ significantly to αB-c since the exchanging unit of Hsp27 is a covalently-linked dimer as 

opposed to the more facile, non-covalent exchange of monomers for αB-c (Baldwin et al., 

2011c). The N-terminal region of Hsp27 undergoes phosphorylation in vivo at numerous 

serine residues (Arrigo, 2011, Ito et al., 1997, Lambert et al., 1999, Miesbauer et al., 1994), 

with serines 15, 78 and 82 being those most predominantly modified, in a process mediated 

by MAPKAPK-2 and MAPKAPK-3 kinases (Arrigo, 2011, Landry et al., 1992a). 

Phosphorylation at these sites is induced by cellular stress and leads to alterations to the 

quaternary structure and dynamics of Hsp27, such that, when it is phosphorylated at all 

three of these serine residues, or at two serines in rodent Hsp27 (Lambert et al., 1999), 
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there is a decrease in the size of the Hsp27 oligomer (Hayes et al., 2009, McDonald et al., 

2012, Rogalla et al., 1999).  

Initial studies into the impact of phosphorylation on Hsp27 structure and function indicated 

that phosphorylated Hsp27 is less effective than WT protein at inhibiting citrate synthase 

and insulin aggregation (Rogalla et al., 1999), although later studies reported that 

phosphorylation corresponded with an increase in substrate binding affinity and ability to 

inhibit the amorphous aggregation of insulin (Hayes et al., 2009). Phosphomimicking forms 

of Hsp27 show a decrease in oligomer size (Lambert et al., 1999), enhanced chaperone 

activity and an increased ability to bind to destabilised forms of T4L lysozyme (Hayes et al., 

2009, McDonald et al., 2012, Rogalla et al., 1999, Shashidharamurthy et al., 2005). However, 

to-date there has not been a comprehensive survey performed on the specific effects of 

phosphorylation at each of these three serine residues on Hsp27 oligomer size, oligomer 

distribution and chaperone function.  

Native MS provides a method to gain a detailed insight into the tertiary and quaternary 

features of dynamic proteins (Benesch and Ruotolo, 2011). This approach has enabled the 

determination of oligomeric distributions of polydisperse ensembles of sHsps (Aquilina et 

al., 2003, Aquilina et al., 2013, Baldwin et al., 2011c), and to define the stoichiometries of 

plant sHsp and substrate complexes (Stengel et al., 2010). More recently, native MS was 

used to quantify the dissociation of modified and unmodified superoxide dismutase 1 

dimers, a process thought to be critical to the aggregation of this protein in association with 

ALS (McAlary et al., 2013). Thus, MS is an ideal technique for the study of the dynamic and 

polydisperse Hsp27 oligomers.        
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This study explores in detail the potential impact phosphorylation at each of these three 

serine residues has on the quaternary structure and chaperone function of Hsp27. It does 

this through the use of mutations that mimic phosphorylation (MMP), i.e. phosphorylatable 

serine residues were mutated to aspartic acids; which are commonly used to study sHsp 

phosphorylation (Aquilina et al., 2004, Ecroyd et al., 2007, Hayes et al., 2009, McDonald et 

al., 2012, Rogalla et al., 1999) and allows the site-specific effects to be studied in vitro. A 

previous study demonstrated that Hsp27 MMPs exhibit similar structural and functional 

properties compared to the phosphorylated form (Hayes et al., 2009).  

3.2 Methods 

Human Hsp27-WT and serine to aspartic acid mutations at residues 15, 78 and/or 82 (to 

mimic phosphorylation) were generated. These represent each of the seven possible Hsp27 

isoforms (Hsp27M) produced by phosphorylation at one, two or three serines. All the Hsp27 

isoforms were expressed and purified as described previously (section 2.3). Native-PAGE 

(section 2.2.2), analytical-SEC (section 2.5.1), CD-spectroscopy (section 2.5.3) and native MS 

(section 2.6.2) were used to examine the structure of Hsp27-WT and Hsp27M. The 

concentration-dependent propensity of Hsp27 oligomeric assemblies to dissociate were also 

examined using a MS approach (section 2.6.4). The chaperone activity of these Hsp27 

isoforms against amorphous and fibril aggregation was assessed using in vitro aggregation 

assays (section 2.7.1). The ability of Hsp27 to prevent protein aggregation in whole cell 

lysates was also examined (section 2.7.2). 
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3.3 Results 

3.3.1 Oligomeric size and polydispersity is decreased with mutations that 

mimic phosphorylation  

Previous studies have indicated that specific kinase-mediated phosphorylation of Hsp27 can 

occur at three serine residues (S15, S78 and S82) and that levels of phosphorylation and 

disulfide-bonding are up-regulated by conditions of cellular stress (Almeida-Souza et al., 

2010, Gaestel et al., 1991, Landry et al., 1992a). We sought to confirm the increase in Hsp27 

phosphorylation upon stress using HeLa cells subjected to heat (45 °C for 2 h). Blotting with 

phosphoserine-specific antibodies demonstrated that S78 and S82 were phosphorylated 

under basal conditions and that phosphorylation of S15 is dramatically increased in 

response to heat stress (Figure 3.1A, left panel). In order to elucidate the impact of this 

modification to the structure and function of Hsp27, we expressed recombinant Hsp27 with 

serine to aspartic acid mutations at residues 15, 78 and 82 to mimic phosphorylation and 

generated each of the seven possible Hsp27 isoforms (Hsp27M). 
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Figure 3.1: Mutations that mimic phosphorylation decrease the size of Hsp27 oligomers  
A: Western blotting of HeLa cell extracts (left panel) under non-stressed (U) and heat-stressed (HS, 
45°C for 2 h) conditions indicating that phosphorylation of Hsp27 occurs at serine residues 15, 78 
and 82 (rHsp27: recombinant Hsp27). Discontinuous native-PAGE (right panel) of Hsp27-WT (50 μM) 
and its phosphomimic variants reveals a decrease in oligomer size as the number of MMP increases. 
B: Analytical-SEC demonstrates a decrease in oligomer size of Hsp27-1D (left panel, Superose 6) and 
Hsp27-2D (right panel, Superdex 75) compared to WT. Hsp27-WT and Hsp27M were loaded at equal 
concentrations (50 µM). The elution volumes at which molecular weight standards eluted are 
indicated above. C: The dissociation of large oligomers of Hsp27-WT (orange box) into smaller 
oligomers (blue box) upon dilution was also observed using analytical-SEC (left panel); the increasing 
abundance of small oligomers upon dilution (dilution was performed prior to loading) was used to 
determine the propensity of oligomeric dissociation (right panel). D: Western blotting of cell lysates 
(L) fractionated by analytical-SEC showing the decrease in average oligomer size between Hsp27-WT 
and Hsp27-3D when expressed in HEK293 (left panel) or Neuro-2a (right panel) cell lines (elution 
fractions indicated by numbering below). 
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Analytical-SEC revealed that Hsp27-WT eluted early from the column as a broad peak, 

corresponding to an average molecular mass of ~590 kDa (Figure 3.1B). The MMP caused 

substantial reductions in the size of Hsp27, where the single Hsp27M isoforms eluted as very 

broad peaks corresponding to molecular masses between 100-420 kDa (Figure 3.1B, left 

panel), whilst the broad eluent peak of the double Hsp27M isoforms had an average mass of 

90 kDa (Figure 3.1B, right panel). Significantly, Hsp27-S15/78/82D (Hsp27-3D) eluted as a 

single peak at a volume (Superose 6: 11.2 mL and Superdex 75: 17.4 mL) corresponding to 

that of a protein of size ~45 kDa, concordant with a Hsp27 dimer (Figure 3.1B). Native gel 

electrophoresis also confirmed that MMP at one residue did not greatly affect the average 

size of Hsp27 oligomers (Figure 3.1A, right panel), whereas when present on two or three 

residues they substantially decreased the average size of the Hsp27 oligomer, as evidenced 

by their significantly increased migration compared to WT. Previously, SEC was used to show 

that Hsp27-WT undergoes concentration-dependent dissociation in vitro (Rogalla et al., 

1999, Theriault et al., 2004). This attribute was therefore exploited to observe the 

propensity of Hsp27 oligomers dissociating into their constitutive units by SEC via the 

relative abundance of large and small oligomers across a range of concentrations (Figure 

3.1C, left panel). 

We also investigated whether the differences observed in the oligomeric size and 

distribution between Hsp27-WT and Hsp27-3D were detectable in cells. Human embryonic 

kidney (HEK293) and mouse neuroblastoma (Neuro-2a) cells were transiently transfected in 

order to express either Hsp27-WT or Hsp27-3D, prior to fractionation of cell lysates by SEC 

and probing with Hsp27-specific antibodies (Figure 3.1D). In both cell lines, Hsp27-WT was 

detected in a broad range of fractions, indicating its presence as polydisperse oligomers in 

cells. By contrast, the majority of the Hsp27-3D was detected in fractions that eluted later 
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from the column, indicating that it predominately exists as smaller oligomers, in the range 

of 45–90 kDa (Figure 3.1D). 

Whilst SEC demonstrated that MMP decrease oligomer size and polydispersity, in order to 

more fully elucidate the oligomeric distribution of Hsp27M, MS analyses of these proteins 

were performed using conditions which preserve their native state upon transfer from 

solution into the gas phase (low collision energy, 30 V) (Figure 3.2) (Aquilina et al., 2003). 

Collision-induced dissociation was also used to exploit the phenomenon of asymmetric 

partitioning, which occurs when one or more highly-charged subunits (unfolded dimer) are 

dissociated from an oligomeric assembly (high collision energy, 200 V) (Figure 3.2). This 

technique is therefore extremely effective for the analysis of polydisperse assemblies, such 

as the sHsps, since the spectrum is greatly simplified when overall charge is reduced 

(Aquilina et al., 2003, Benesch et al., 2008). 
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Figure 3.2: Collision-induced dissociation mass spectrometry of Hsp27 phosphomimics  
A: The spectrum acquired at low collision energy (30 V) illustrates the polydisperse nature of 
Hsp27M, in this case Hsp27-S15D, with a large unresolved peak envelope observed between 7,000 
and 14,000 m/z (blue), as well as signals from dimer (red) and tetramer (orange). At higher 
accelerating voltage (200 V) signal in the n-2 region became apparent and the n region resolved 
substantially. B: The unambiguous charge state distributions in the n region were used to 
comprehensively identify and assign the abundance of oligomers present, ranging from dimers to 
24-mers (charge state in superscript; left panel). The n-2 region (right panel) was of limited use in 
describing the distribution of Hsp27M as the strictly dimeric nature gave rise to considerable charge 
state overlap ([n]+ and [n-1]+) when compared to previously studied mammalian sHsps. 
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Typically in other polydisperse assemblies (e.g. αB-c and Hsp27 under reducing conditions), 

signal from the monomer-stripped (n-1) and dimer-stripped (n-2) oligomer regions are 

unambiguously resolved, with the latter being used to determine oligomer distribution and 

abundance (Aquilina et al., 2013). However, due to the disulfide-bonded dimeric 

substructure of Hsp27 in these experiments, its spectra under non-reducing conditions 

showed significant charge state overlap in the n-2 region (Figure 3.2B, right panel) as well as 

the absence of an n-1 region (Figure 3.2A). Surprisingly, the intact oligomer (n) region was 

completely resolved by collisional cleaning and thus the size and abundance of all oligomers 

present could be identified from this region (Figure 3.2B, left panel). 

Previous MS data demonstrated that Hsp27-WT (under DTT-induced reduced conditions) 

exists as a polydisperse assembly of even-sized oligomers, ranging from 16- to 30-mers, with 

the 20-mer being the most abundant (Aquilina et al., 2013). Much like Hsp27-WT, the 

Hsp27M isoforms were comprised of even-sized oligomers; however, they were significantly 

shifted to a smaller range of assemblies. In the case of the single Hsp27M forms, oligomers 

ranged from dimers to 24-mers, and up to 22-mers for the double Hsp27M isoforms (Figure 

3.3A) (Appendix I; Figure 8.1). This region also showed that the 14-mer was the most 

abundant large oligomer (≥ 6-mers) present in each of the Hsp27M analysed in this study, 

except for Hsp27-S78/82D, where the 8-mer was the most abundant (Figure 3.3A). 
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Figure 3.3: Oligomeric distribution of Hsp27 phosphomimics by MS  
A: Oligomeric distributions of Hsp27M were determined by collision-induced dissociation mass 
spectrometry, with large oligomers ranging from hexamers to 24-mers. B: Native mass spectrometry 
of Hsp27-WT, present as a mixture of dimers (red) and large polydisperse oligomers (~10,000 m/z), 
and Hsp27-3D, which is predominantly dimeric. C: DTT-induced reduction of Hsp27-3D shows that 
the majority of the dimers (D; red) fall apart into monomers (M; black). 

 

Using relatively low-resolution biophysical approaches, the oligomeric state of Hsp27-3D has 

previously been reported to range from small oligomers to dimers (Hayes et al., 2009, 

Lambert et al., 1999, Rogalla et al., 1999, Shashidharamurthy et al., 2005). Significantly, our 

MS data conclusively demonstrates that for Hsp27-3D the equilibrium between large 

oligomers and dissociated species is significantly shifted, such that it exists predominately as 

a monodisperse dimer at concentrations of up to 50 μM (Figure 3.3B). This dimer is 
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covalently linked through a disulfide bond, as the addition of DTT resulted in a sizeable 

proportion of these dimers dissociating into monomers (Figure 3.3C). 

3.3.2 Oligomeric plasticity of Hsp27 phosphomimics  

Work, including our own (Figure 3.1C), has indicated that at low concentrations in solution, 

Hsp27-WT dissociates into its constituent subunits (McDonald et al., 2012, Rogalla et al., 

1999, Theriault et al., 2004). However, due to the dynamic nature of these assemblies, it has 

proved difficult to investigate this process in a quantitative manner. The ability of MS to 

quantify the relative abundance of individual species within a heterogeneous mixture 

provided a powerful tool to study the concentration-dependent dissociation of Hsp27. 

Under identical instrument conditions, the relative intensities of ions above 4,000 m/z 

(arising from all oligomers with n ≥ 4) were diminished with successive dilution for each 

Hsp27M form. Moreover, at the higher concentration of 25 μM, the abundance of dimer was 

observed to be approximately commensurate with the degree of serine substitution; 

ranging from 15% for WT to 38% for Hsp27-2D (Figures 3.4A-C). Based on the concentration-

dependent ratio of dimers to oligomers, we observed that the propensity of Hsp27 

dissociation increased with the number of MMPs. Only intermediate oligomers were 

observed for Hsp27-2D (6-mers and 8-mers) during the dilution MS experiments and no 

monomer was observed across all Hsp27 isoforms. Our data therefore suggest that upon 

phosphorylation, the Hsp27 assemblies are less constrained by associative forces inherent 

to the quaternary structure of WT, permitting the more facile detachment of sub-oligomeric 

species, in particular the dissociation of dimers from an oligomeric assembly. 

We reasoned that this shift in oligomeric dissociation propensity may have arisen from 

variations in the secondary structure of Hsp27-WT and its phosphomimics. Far-UV CD 
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spectroscopy shows alterations of Hsp27 secondary structure with successive serine 

substitutions (Figure 3.4D). A negative ellipticity minimum was observed at 218 nm, 

consistent with antiparallel β-sheet structure. A positive maximum at 230 nm was also 

apparent, corresponding to random coil secondary structure. The amount of random coil 

became markedly more pronounced with increased modification and appears to be absent 

in Hsp27-WT (Figure 3.4D). The observed maximum for Hsp27M is indicative of the 

dissociated state of Hsp27, in which the structural elements are accessible to the polarised 

light, giving rise to the enhanced signal across all wavelengths. 

 

Figure 3.4: MS-derived dissociation curves and far-UV CD spectroscopy of Hsp27-WT and its 
phosphomimics  
Increased dissociation of large oligomers to dimers was observed upon dilution. A-C: Hsp27-WT (A), 
Hsp27-1D (S15D; B) and Hsp27-2D (S15/82D; C) were representative of each degree of 
phosphomimicry. Increasing the number of MMP led to an increase in oligomeric dissociation 
propensity (n = 3; mean ± SD). D: Far-UV CD spectroscopy of Hsp27M: the spectra of the Hsp27-1D 
(red) and Hsp27-2D (orange) forms were of sufficient similarity to be represented by single traces. 
The spectrum of Hsp27-3D (blue) showed greater negative ellipticity than Hsp27-1D and Hsp27-2D, 
however all Hsp27M isoforms exhibited increased random coil (~235 nm) compared to Hsp27-WT 
(black). 
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3.3.3 Mutations that mimic phosphorylation enhance Hsp27 chaperone 

activity  

Having established that significant structural changes occur to Hsp27 as a result of MMP, we 

sought to observe its functional consequences on Hsp27 chaperone activity. Protein 

aggregation assays in the presence of Hsp27-WT and Hsp27M isoforms were conducted such 

that the concentration of Hsp27 was well above the concentration where Hsp27 oligomers 

completely dissociate (i.e. final concentration was 12.5 μM or higher). Insulin and bovine 

serum albumin (BSA) were used to assess the efficacy of Hsp27M isoforms in preventing 

amorphous aggregation, and κ-casein fibrillar aggregation of target proteins. In the absence 

of chaperone, amorphous aggregation of insulin commenced after 4 min and increased 

rapidly, until ~20 min at which point it plateaued (Figure 3.5A, inset). Neither a change in 

light scatter (insulin or BSA) nor ThT fluorescence (κ-casein) was detected when the sHsps or 

buffer were incubated alone in these experiments. Overall, an increase in the number of 

MMPs was accompanied by an enhanced ability of Hsp27 to prevent both amorphous and 

fibrillar aggregation of target proteins (Figure 3.5A). The single Hsp27M isoforms showed 

mixed chaperone effectiveness, with S78D and S82D in the insulin assay and S82D in the BSA 

assay better able to protect against aggregation compared to Hsp27-WT (Figure 3.5A) 

(Appendix I; Figure 8.2). Each of the double Hsp27M mutants and Hsp27-3D was significantly 

more effective at inhibiting amorphous and fibrillar aggregation of the target proteins than 

Hsp27-WT (Figure 3.5A). 

The capacity of Hsp27-WT and 3D to prevent the heat-induced precipitation of proteins 

from cell lysates was also examined (Figure 3.5B-C). In the absence of chaperone, Neuro-2a 

lysate proteins precipitated from solution to form an insoluble pellet (Figure 3.5B, lane H). 

Addition of Hsp27-WT or Hsp27-3D, at concentrations ranging from 2.5-10 μM, inhibited the 
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heat-induced precipitation of the lysate proteins, whilst BSA afforded no protection (Figure 

3.5B). Densitometry analysis of the most intense protein band (Figure 3.5B, red box) evident 

in the precipitate by SDS-PAGE revealed that significant protection of lysate proteins was 

afforded by Hsp27-3D at 5 μM and 10 μM compared to WT (Figure 3.5C). Interestingly, 

Hsp27-WT afforded the same level of protection as Hsp27-3D at 2.5 μM (Figure 3.5C). This 

finding is consistent with the dimer abundance data, which demonstrates that at this 

concentration ~ 50 % of Hsp27-WT also exists as a dimer. Therefore, the abundance of 

dimer appears central to the protection of target proteins under heat stress conditions. 
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Figure 3.5: MMP of Hsp27 enhances its chaperone activity  
A: Chaperone efficacy was determined relative to Hsp27-WT for each target protein. Inhibition of 
amorphous insulin aggregation was monitored by the change in light scatter at 340 nm, whilst 
fibrillar κ-casein aggregation was monitored by the change in ThT fluorescence emission at 490 nm. 
Variants that showed a significant increase in activity compared to Hsp27-WT are indicated (*= p < 
0.05; **= p < 0.01; ***= p < 0.001) (n = 3 – 5; mean ± SEM). B: Precipitates from non-heated (NH) 
and heated (H) Neuro-2a cell lysates in the presence and absence of Hsp27-WT, Hsp27-3D or BSA at 
various concentrations (above in μM) were observed by SDS-PAGE. Chaperones and/or controls 
were added to the cell lysates and heated to 45°C for 1 h; a specific band (red box) was chosen for 
quantitative analyses. C: The selected band was analysed to determine the protection afforded by 
Hsp27-WT and Hsp27-3D on heated Neuro-2a cell lysates. Significant increases in protection 
compared to Hsp27-WT are indicated (*= p < 0.05) (n = 3; mean ± SEM). 

 

3.4 Discussion 

The primary aim of this work was to produce the first systematic explication of the site-

specific effects of Hsp27 phosphorylation. To achieve this, we constructed phosphomimics 

using aspartic acid substitutions at the three known phosphorylation sites (S15, S78 and 

S82), to obtain seven distinct variants which likely occur in vivo. Our examination of the 

proteins’ quaternary organisation and chaperone function revealed that two serine 

substitutions substantially reduced the average size of Hsp27 oligomers, while Hsp27-3D 
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was observed to be predominantly dimeric. In this state, the chaperone activity was 

demonstrably enhanced, conforming to a model in which the dimer is a more efficient 

chaperone than the polydisperse assemblies. This finding hints at a mechanism for Hsp27 

activity in which the dimer-dimer contacts maintained in multimeric Hsp27 are disrupted by 

phosphorylation, and when exposed, contribute to the stress response with exceptional 

efficiency (Gaestel et al., 1991, Landry et al., 1992a). 

We therefore employed MS to definitively resolve the structural variations induced by 

MMPs. Using a MMP approach does present some limitations in that this modification only 

introduces a single negative charge whereas a phosphoserine adds two. Phosphorylation of 

Hsp27 in vitro results in a complex mixture of unphosphorylated as well as singly and doubly 

phosphorylated isoforms (Hayes et al., 2009). Therefore using MMPs allows a systematic 

approach to study the effect of phosphorylation at each serine residue. The MS data is in 

agreement with previous analytical-SEC work, showing that Hsp27-S15D and Hsp27-

S78/82D form large, polydisperse species (Rogalla et al., 1999), compared to Hsp27-WT. We 

observed a shift towards smaller oligomeric species across all single and double Hsp27M 

isoforms, which has also been observed in rodent Hsp27 (Lambert et al., 1999). The majority 

of the published literature which has investigated the effects of phosphorylation on Hsp27 

structure and function has focused on the Hsp27-3D isoform. Debate has risen with regards 

to its oligomeric state, claims ranging from dimers, as determined by analytical 

ultracentrifugation, to tetramers, observed using SEC (Hayes et al., 2009, Rogalla et al., 

1999, Shashidharamurthy et al., 2005). Our combination of SEC and MS data definitively 

shows that Hsp27-3D predominantly exists as disulfide-linked dimers under non-reducing 

conditions, which dissociate into monomers upon reduction. Overall, the shift in distribution 

and presence of smaller oligomers in each of the single and double Hsp27M isoforms, and 
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the dimeric preference of Hsp27-3D, indicates that phosphorylation at any of the three 

serine residues significantly alters the dimer ⇌ oligomer equilibrium compared to WT. 

Hsp27 undergoes concentration-dependent dissociation in the μM range (Figure 3.4). 

Similar behaviour was observed with Hsp26 from yeast where the oligomeric equilibrium is 

concentration and temperature-dependent, shifting towards monomers and dimers, leading 

to enhanced chaperone activity (Benesch et al., 2010). As a result, we reason that the 

strength of the dimer-dimer interface of Hsp27 oligomers are significantly weaker compared 

to the oligomer-forming interfaces of other sHsps, such as αA-c and αB-c (Baldwin et al., 

2011c, Hilton et al., 2013). We observed Hsp27-WT as a broad distribution of oligomers in 

both transfected HEK293 and Neuro-2a cell lysates. This phenomenon may also have other 

implications in the cell, where Hsp27 may be compartmentalised intracellularly at 

concentrations that manipulate its oligomeric state, independent of phosphorylation. Kinase 

activation and subsequent phosphorylation of Hsp27 would enable higher concentrations of 

Hsp27 to exist at cellular locales in a dissociated state in response to cellular stress. 

As our MS approach enables us to identify and quantify individual oligomers within the 

heterogeneous ensemble, we have used it to observe the dissociation propensity of these 

large oligomers (≥ 6-mers) into dimers. This process could equally be applied to identify and 

quantify the abundance of any sized Hsp27 oligomer (and indeed other oligomeric 

assemblages) with concentration. Similar dissociation propensities were observed for 

Hsp27-WT via MS to those obtained by analytical-SEC, however, MS accurately resolves the 

concentration-dependent ratio of dimers to oligomers as SEC is unable to distinguish 

between small oligomers (dimers to 6-mers) in solution (small oligomers, Figure 3.1C). This 

confirms that MS is a suitable tool for observing the dissociation of these large polydisperse 
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proteins. Overall, the increased dissociation propensity of Hsp27 with MMP is consistent 

with the hypothesis that multiple phosphorylation events act cumulatively to reduce the 

barrier to dissociation. 

MS and SEC data indicates that the double and triple Hsp27M variants exhibit a significant 

shift towards the presence of dimers. We believe that the location of these modified serines 

is clustered in close proximity within the N-terminal domain, to a point where 

phosphorylation at any of the three serine residues results in similar changes to the 

secondary and quaternary structure. The far-UV CD spectroscopy data supports this as there 

was no major change in secondary structure observed amongst all the single or double 

Hsp27M isoforms. The observed increase in random coil, with increasing MMPs, indicates 

that these modifications are attributed to either differences in secondary structure of Hsp27 

dimers or that the secondary structure of free dimers is able to be resolved more readily 

than large oligomers. The structural alterations that are caused by phosphorylation-induced 

destabilisation of Hsp27 have been difficult to elucidate due to the dynamic nature of this 

sHsp. Since three serine phosphorylation sites are located in the unstructured N-terminal 

region of Hsp27, we hypothesise that these residues may be clustered in the tertiary 

structure of the protein and are more solvent exposed, inhibiting oligomerisation through 

negatively charged inter-dimer repulsions. This is in stark contrast to αB-c, another sHsp 

that is phosphorylated in the N-terminal domain, in which increasing the number of MMP 

does not result in such a dramatic change in oligomer size, but does lead to enhanced 

chaperone activity (via increased subunit-exchange, thus increasing the abundance of 

dimers) (Ecroyd et al., 2007, Peschek et al., 2013). Both mechanisms however are consistent 

with a model in which phosphorylation enhances chaperone function by increasing the 

amount of dissociated species able to interact with target proteins. Conversely, class II 
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cytosolic sHsps, found in plants, have been shown to be active when highly assembled 

(Basha et al., 2010). It should be noted that these plant sHsps do not have phosphorylation 

sites compared to mammalian sHsps, which may indicate that a combination of charged and 

hydrophobic interactions may potentially be involved in recognition and binding of 

destabilised client proteins. 

Our functional studies demonstrate that the ability of Hsp27 to prevent both amorphous 

and fibrillar protein aggregation increases with the number of MMP. Also, in conjunction 

with data on oligomer dissociation, we observed a strong correlation between enhanced 

chaperone activity and increased dimer abundance. Since the chaperone function of all the 

single Hsp27M isoforms was equivalent in these assays (as was the case for the double 

Hsp27M isoforms) we suggest that no single serine residue has a dominant role in regulating 

the chaperone efficacy of Hsp27. Rather, the number of phosphoserine residues is the 

critical factor and this regulates the chaperone activity by promoting oligomeric dissociation 

into dimers. Such a model is supported by our data showing that Hsp27-WT was equally 

effective as Hsp27-3D at preventing the heat-induced precipitation of cell lysate proteins at 

concentrations (i.e. 2.5 μM) at which approximately half of the Hsp27-WT exists as free 

dimers. At higher concentrations the proportion of Hsp27-WT dimer was decreased and it 

was less effective than Hsp27-3D in this assay. Overall, we propose that phosphorylation at 

two or three serine residues would liberate the disordered N-terminal domain of Hsp27 

dimers, making them more accessible for interaction with destabilised target proteins, 

thereby enhancing chaperone activity. 

Interrogation of the suite of Hsp27 isoforms with MMP proved a valuable approach in 

studying the impact phosphorylation has on the structure and function of Hsp27. Our results 
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are consistent with a model in which phosphorylation destabilises Hsp27 oligomers leading 

to an increase in the abundance of efficacious dimers, which correlates with enhanced 

activity. It appears that the large oligomers act as reservoirs of these chaperone-active 

dimers. Phosphorylation can therefore be regarded as a molecular switch, activating Hsp27 

during periods of cellular stress and helping to maintain intracellular proteostasis. 
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Chapter 4: Post-translational modifications alter the structure and dynamics 

of Hsp27 dimers and oligomers 

4.1 Introduction 

It is generally accepted that the quaternary structure and dynamics of sHsps underlie their 

molecular chaperone function. This has previously been shown extensively for αB-c, but is 

less clear for Hsp27. This thesis has previously established the structure-function 

relationship of phosphorylated Hsp27 using MMP (section 3.1), whereby the dissociation of 

oligomers and chaperone activity was enhanced with an increasing number of MMP. As a 

result, it is proposed that the dimer is the chaperone-active unit of Hsp27. However, it is 

unclear whether the dissociation of oligomers into dimers (i.e. changes in quaternary 

structure) or phosphorylation-induced changes in the conformation and/or dynamics of the 

dimer itself (i.e. changes in tertiary structure), or both, are responsible for the enhanced 

chaperone activity of phosphorylated Hsp27. Moreover, there has been little work 

conducted to date exploring the structural dynamics of Hsp27 at the tertiary and quaternary 

level.  

The aim of the work presented in this Chapter was to explore the impact that post-

translational modifications (PTMs), primarily phosphorylation and disulfide-bonding, have 

on the tertiary and quaternary structure and dynamics of Hsp27. To do so, isoforms of 

Hsp27 with MMP (as described in Chapter 3) were exploited. Isoforms of Hsp27 with an 

increasing number of MMP were examined using ion mobility – mass spectrometry (IM-MS) 

to ascertain the conformational state(s) of two oligomeric forms (dimers and 12-mers). In 

addition, the unfolding dynamics of Hsp27 dimers was examined via collision-induced 

unfolding (CIU) in order to observe any differences with MMP.  
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It has previously been reported that disease-associated mutations in Hsp27 result in 

increased amounts of Hsp27 monomer as a result of an increased susceptibility of the 

disulfide-bond (formed at Cys137), which covalently links monomers into dimers along the 

dimer interface, to be reduced. (Almeida-Souza et al., 2010, Evgrafov et al., 2004). It was 

proposed that this increased monomerisation makes Hsp27 ‘hyperactive’ resulting in 

aberrant interactions with cellular proteins, leading to disease (Almeida-Souza et al., 2010). 

However, the effect(s) reduction of the disulfide-bond involving Cys137 has on Hsp27 

quaternary structure has not been thoroughly investigated. Thus, this study also compared 

the quaternary structure of oxidised Hsp27 with Hsp27 following reduction and thiol-

blocking of Cys137.  

4.2 Methods 

Human Hsp27-WT and Hsp27M were expressed and purified as described previously 

(section 2.2). Intrinsic tryptophan fluorescence (section 2.5.2), analytical-SEC (section 2.5.1) 

and limited proteolysis (section 2.6.5) provided solution-phase information on the tertiary 

and quaternary structure of the Hsp27 isoforms. The unfolding dynamics of Hsp27 dimers 

was investigated by using a combination of native MS (section 2.6.2) and IM-MS (section 

2.6.3). The rate of subunit-exchange between Hsp27-WT and Hsp27-3D was determined by 

bulk-FRET analysis (section 2.5.5). The effects of disulfide-bonding on Hsp27 quaternary 

structure was assessed by reducing and thiol-blocking (with iodoacetamide, section 2.6.6) 

Cys137. The reduction and blocking efficiency was determined by denatured MS (section 

2.6.1). The quaternary structure of the non-reduced and reduced and thiol-blocked Hsp27 

forms were subsequently analysed by native MS (section 2.6.2). 
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4.3 Results 

4.3.1 Bulk measurement techniques show minor changes in Hsp27 tertiary 

and quaternary structure with serine substitutions that mimic 

phosphorylation  

The work described in Chapter 3 outlined the structural changes that occur to Hsp27 upon 

introduction of site-specific serine substitutions that mimic phosphorylation. This work 

showed that successive MMP result in an increased propensity for Hsp27 oligomers to 

dissociate into dimers. This increased abundance of dimers with MMP strongly correlates 

with enhanced chaperone activity. To determine whether other changes occur to the 

tertiary and quaternary structure of Hsp27 upon introduction of MMP further biophysical 

studies were conducted on these isoforms. Intrinsic tryptophan fluorescence studies 

revealed that Hsp27 isoforms with one and two MMP had an enhanced tryptophan 

fluorescence compared to Hsp27-WT, however, this was not accompanied by a shift in the 

emission maximum (Figure 4.1A-B). There was a further increase in tryptophan fluorescence 

for Hsp27-3D over that observed for the single and double Hsp27M isoforms, indicating that 

tryptophan residues become more exposed with three MMP (Figure 4.1A-B). Overall, the 

subtle changes in tryptophan fluorescence observed for MMP can be attributed to increased 

rates of subunit-exchange, rather than changes in tertiary structure, with increasing number 

of MMP.  

Analytical-SEC of Hsp27M in ammonium acetate (NH4OAc) (i.e. the buffer used for all the MS 

experiments) in general parallels that observed when phosphate buffer is used (see Chapter 

3, Figure 3.1B); an increase in the number of MMP reduces the size of Hsp27 oligomers 

(Figure 4.1C-D). Single Hsp27M isoforms eluted at an elution volume identical to that of 

Hsp27-WT (~670 kDa) (Figure 4.1C). A peak corresponding to oligomers with an average 

mass of 158 kDa species was also present for the S15/78D and S15/82D isoform smaller 
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oligomers (Figure 4.1D). Hsp27-S78/82D eluted as a single peak that was smaller than 

Hsp27-WT, but with no distinct 158 kDa species (Figure 4.1D). Interestingly, Hsp27-3D co-

eluted as two very broad peaks from 40 – 158 kDa (Figure 4.1C-D), in contrast to what was 

observed previously (see Chapter 3, Figure 3.1B) in which Hsp27-3D was found to elute as a 

single peak corresponding to a dimer. A potential reason for this discrepancy may be the 

differences in both pH and buffer systems (phosphate and ammonium acetate buffers; pH 

7.4 compared to pH 6.8 respectively). Previous studies have shown that differences in pH (± 

1 pH) alter quaternary structure and subunit-exchange dynamics in αB-c (Baldwin et al., 

2011c).  

 

Figure 4.1: Analytical size-exclusion chromatography and intrinsic tryptophan fluorescence of 
Hsp27M  
A-B: Intrinsic tryptophan fluorescence of single Hsp27M (A) and double Hsp27M isoforms (B) (50 µM) 
in 50 mM phosphate buffer (pH 7.4) showing an increase in tryptophan exposure with successive 
serine substitutions C-D: Analytical-SEC of single Hsp27M (C) and double Hsp27M (D) (50 µM) in 
200 mM NH4OAc (pH 6.8) where successive serine substitutions enhance oligomer dissociation. Both 
Hsp27-WT and Hsp27-3D are also included for relative comparison.  
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4.3.2 Increased serine substitutions alter the conformation and unfolding 

dynamics of Hsp27 dimers  

Characterising the secondary, tertiary and quaternary structure of partially disordered 

proteins by classical techniques (e.g. intrinsic tryptophan fluorescence, bis-ANS fluorescence 

and far-UV CD spectroscopy) only provides relatively low resolution, bulk-averaged 

measurements. As a result, alternate approaches are required to probe the structure of 

these assemblies with greater resolution. IM-MS is an extremely useful tool to analyse the 

size, shape and conformation of proteins (Ruotolo et al., 2008). By isolating a particular 

species of interest, in this case the dimer13+ (~3,510 m/z) or the 12-mer31+ (~8,800 m/z), 

both unique mass/charge state species (i.e. this charge-state ion does not overlap with 

other species), differences in the oligomeric forms can be probed (in terms of shape and 

conformation) with increasing numbers of MMP (Figure 4.2A). To preserve the native-like 

state of these oligomeric forms, low activation energy (i.e. low sample and extraction cone 

voltages) in the mass spectrometer was utilised prior to IM separation and detection (Figure 

4.2). When this is achieved, an arrival time distribution (ATD) of a particular species 

(dimer13+ and 12-mer31+) is generated, which can be used to calculate a collisional cross-

sectional (CCS) area (Figure 4.2B). Changes in ATD (if any) can then be observed with 

increasing activation (collision) energy, which results in an increase in the drift time of the 

dimer. An increase in CCS area is indicative of unfolding and is referred to as collision-

induced unfolding (CIU). The unfolding process can be visualised to determine distinct 

conformations that a dimer may adopt during unfolding (i.e. folded, compaction, unfolded 

intermediate and unfolded), as well as the relative stability of a species as a function of 

activation energy (Figure 4.2B). By performing these IM-MS analyses at a set wave velocity 

(the velocity at which a species is pushed along the IM chamber of the mass spectrometer) 
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and at a range of wave heights (WH in V), differences in the mobility of that species as it 

travels through the IM chamber can be interrogated.  

  

Figure 4.2: Arrival time distribution analysis and collision-induced unfolding trajectories of Hsp27 
using ion mobility – mass spectrometry 
A: Native MS of Hsp27-S15D, as a representative, demonstrating the approach used to observe the 
conformation and unfolding dynamics of Hsp27 dimers. The 13+ charge state of dimers (3,510 m/z; 
red box) and the 31+ charge state of the 12-mer (8,800 m/z, blue box) were selected for analysis. 
B: Heat map analysis shows the various conformations that Hsp27 dimers take up in the gas-phase 
under low activation energy. The increase in activation (collision) energy results in the initial 
compaction of dimers, which then unfold with further increases in activation energy. The unfolding 
intermediates can be observed prior to complete unfolding of the dimer (generic collision-induced 
unfolding, CIU, pathway illustrated above the heat map). 
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Figure 4.3A shows the arrival time distribution (ATD, i.e. drift time) of the Hsp27 dimer13+ 

with successive MMPs at a set wave height (WH, in V) under low activation energy and 

gentle source conditions (i.e. native-like/folded state; Figure 4.2B). The increase in drift time 

(observed at WH8) and/or a broadening of the ATD peak at all WHs with an increasing 

number of MMP indicates that the Hsp27 dimer has a greater CCS area with successive 

MMP (Figure 4.3A) (Appendix II; Table 8.1). Hsp27-WT was not able to be included in this 

analysis as the proportion of free dimer in solution at the concentrations required for this 

experiment (50 µM) was too low to be detected under the instrument settings used in these 

experiments. In any case, the data with the Hsp27M isoforms demonstrates that with 

successive MMP the tertiary structure of Hsp27 dimers changes such that they have a larger 

CCS area (Figure 4.3A) (Appendix II; Table 8.1). The data is consistent with a slight increase 

in both flexibility and unstructured state of Hsp27 dimers with MMP. In contrast, there was 

no distinct shift in either the drift time nor ATD peak broadness (and hence the CCS area) 

observed for the 12-mer31+ between the Hsp27M and Hsp27-WT isoforms indicating that 

there is no observable difference in the structure of this oligomer with MMP compared to 

Hsp27-WT (Figure 4.3B).  
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Figure 4.3: ATD analysis of Hsp27M dimers and 12-mers by IM-MS 
A: ATD analysis of Hsp27M dimers13+ at low activation energy (15 V) showing that the dimer becomes 
more unstructured (increasing drift time and/or peak width) with an increasing number of MMP. B: 
ATD analysis of Hsp27-WT and Hsp27M 12-mers31+ at low activation energy (15 V) which shows that 
the drift time and peak width (and hence conformation) of the 12mer does not vary significantly 
with increasing numbers of MMP. In A and B, each Hsp27 isoform was analysed at a range of wave 
heights (WH in V). 

 

To further assess the differences in the quaternary structure and increased flexibility of 

Hsp27 dimers upon phosphorylation, IM-MS was used to visualise the unfolding dynamics of 

these dimers at different WHs using CIU in the gas-phase. By applying increasing voltage in 

the collision cell of the mass spectrometer, whilst maintaining low activation energy in the 
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source, the unfolding of Hsp27 dimers with increased collision energy was observed (Figure 

4.4). In addition, dissociation (symmetric/asymmetric) of the dimer was not observed by IM-

MS as no other species were observed during these experiments. Across all isoforms, it 

appears that the (disulfide-linked) dimer unfolds in a similar manner and without any 

preference of one monomer unfolding prior to the other evidenced by only a single 

conformation/species being observed after 40 V (i.e. non-asymmetrical unfolding where 

two species/unfolding events would be observed with increasing activation energy, 

indicative of one monomer unfolding prior to the other) (Figure 4.3-4.4). Also, compaction 

of the dimer in Hsp27-2D and Hsp27-3D was observed at 30 V at WH8 and WH10, prior to 

unfolding (Figure 4.4B-C and H-I). However, the amount of activation energy required to 

unfold the dimer increases with successive MMP, such that Hsp27-3D is the most resistant 

to unfolding of all the Hsp27 isoforms (45 V at WH8 and WH9, compared to 40 V for Hsp27-

1D and 2D at these wave heights) (Figure 4.4C and F; Figure 4.6). In order to determine the 

differences in the unfolding dynamics of Hsp27 dimers, unfolding maps of the pair-wise 

comparison of Hsp27M isoforms (i.e. Hsp27-1D versus 2D and Hsp27-1D versus 3D etc.) were 

generated. These enabled quantitative differences in the ATD of the unfolding dimer with 

increasing activation energy to be measured (Figure 4.5). Interestingly, the folded and 

unfolded states of Hsp27-3D differ when compared to Hsp27-1D and -2D across multiple 

wave heights; more activation energy is required for the unfolding of the Hsp27-3D dimer 

compared to the Hsp27-1D or -2D dimers (Figure 4.6). The unfolding trajectories of Hsp27-

1D and Hsp27-2D compared to Hsp27-3D at the 9 V wave height resulted in a RMSD value of 

11.62 % and 13.52 %, respectively (internal RMSD 5.44 %; Appendix II; Figure 8.4) (Figure 

4.5E-F). This indicates that the unfolding dynamics of Hsp27-3D differ substantially to that of 

Hsp27-1D and Hsp27-2D. Overall, these data suggest that successive MMP induce changes 
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in the quaternary structure of Hsp27 dimers, including an increase in stability and flexibility. 

These changes may facilitate the enhanced chaperone activity of phosphorylated Hsp27 

compared to Hsp27-WT.   

 

Figure 4.4: Observing the collision-induced unfolding of Hsp27M dimers by IM-MS 
The CIU of the Hsp27M dimer13+ (monitored via changes in the drift time of species in the IM 
chamber) was examined with increasing activation energy (V). The heat maps indicate that no 
distinct intermediates between folded and unfolded states are present as the dimer unfolds in the 
gas-phase as a function of activation energy at the same wave height (WH in V) (WH8: A-C; WH9: D-
F; WH10: G-I). Across all wave heights, only a single unfolding transition is observed (white dashed 
line), indicating that both monomers (which are disulfide-linked via Cys137) unfold simultaneously in 
the gas-phase. CIU heat maps were generated using CIUsuite with default settings (Eschweiler et al., 
2015).      
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Figure 4.5: Observing the differences in collision-induced unfolding dynamics of Hsp27M dimers by 
IM-MS 
CIU of Hsp27M dimers was monitored with increasing activation energy. Heat maps highlight the 
differences in the unfolding of the dimer13+ in the gas-phase between two isoforms at the same 
wave height (WH in V) (WH8: A-C; WH9: D-F; WH10: G-I). RMSD values (%) (bottom right corner) 
indicate the difference in the unfolding of the dimer between each pair analysed (pairs analysed 
stated above in heat map scale where greatest difference attributed to one isoform indicated by 
either dark blue or red). The greatest difference in the unfolding dynamics was observed when 
Hsp27-1D or Hsp27-2D were compared with Hsp27-3D. Difference plots and RMSD values were 
calculated using CIUsuite with default settings (Eschweiler et al., 2015).  
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Figure 4.6: Unfolding of Hsp27M dimers by collision-induced unfolding and as monitored by IM-MS 
Unfolding of Hsp27M dimers was performed using CIU by increasing the activation energy in the trap 
region of the mass spectrometer. The abundance of unfolded dimer (y-axis) was determined by 
tracking the loss of folded dimer with increased activation energy. The dimer appears to be more 
stable (i.e. requires increased activation energy to reach 50% unfolded) with increasing MMP. Each 
Hsp27 isoform was analysed at a range of wave heights (WH in V) (WH8: A; WH9: B; WH10: C) (n = 
1).  
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4.3.3 Hsp27-3D and Hsp27-WT undergo subunit-exchange and structural 

elements are more exposed in Hsp27-3D than WT  

To further explore the dynamics between Hsp27-WT and Hsp27-3D, a bulk-FRET based assay 

was used to determine whether Hsp27-3D was capable of subunit-exchange with Hsp27-

WT. It was observed that Hsp27-3D was capable of subunit-exchange with Hsp27-WT and 

the rate of exchange (0.2740 ± 0.02 min-1) was faster than WT homo-oligomeric subunit-

exchange (0.2289 ± 0.01 min-1) (Figure 4.7A). To confirm that labelled Hsp27-WT and Hsp27-

3D were indeed undergoing subunit-exchange, samples from the bulk-FRET experiments 

were collected and analysed by analytical-SEC with multi-wavelength detection. Analytical-

SEC showed that the mixed sample of Hsp27-WT and -3D resulted in a peak eluting from the 

column at an elution volume (~8 mL), typical of Hsp27-WT oligomers, and that this peak 

contained both Hsp27 isoforms (Figure 4.7B-C).  
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Figure 4.7: Hsp27-WT and Hsp27-3D are capable of undergoing subunit-exchange  
A: Bulk-FRET assays indicating that subunit-exchange of Hsp27-WT with Hsp27-3D occurs at a rate 
faster than WT exchange (n = 3; mean ± SEM). Subunit-exchange was performed at 37 °C at a 1:1 
molar ratio (25 µM total protein concentration) in 50 mM phosphate buffer (pH 7.4). The emission 
fluorescence from Alexa labels was used as a measure of subunit-exchange. B: Analytical-SEC of 
Hsp27-WT (CF488) with Hsp27-WT (CF647) after bulk-FRET subunit-exchange C: Analytical-SEC of 
Hsp27-3D (CF488) with Hsp27-WT (CF647) after bulk-FRET subunit-exchange. Both B and C were at a 
1:1 molar ratio (25 µM total protein concentration) in 50 mM phosphate buffer (pH 7.4). Absorbance 
was measured at multiple wavelengths (280, 495 and 650 nm). 

 

To further investigate whether there were structural differences between Hsp27 species 

present in different oligomeric forms, limited proteolysis with trypsin was performed on 

Hsp27-WT and Hsp27-3D (which consist mainly of large oligomers and dimers, respectively, 

under the conditions and concentrations (50 µM) used in these experiments). Proteolysis of 

both Hsp27 isoforms was observed upon addition of trypsin (1000:1 molar ratio; 

Hsp27:trypsin) by SDS-PAGE (Figure 4.8). However, Hsp27-3D was more susceptible to 
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proteolysis than Hsp27-WT, evidenced by the more rapid degradation of Hsp27-3D over 

time, as the ~25 kDa species is still present after 20 min in Hsp27-WT compared to Hsp27-

3D. After 30 min of incubation in the presence of trypsin, a distinct band of ~10 kDa was 

observed by SDS-PAGE in both Hsp27-3D and Hsp27-WT treatments, which persisted for the 

next 30 min of the assay (Figure 4.8). 

 

Figure 4.8: Limited proteolysis of Hsp27-WT and Hsp27-3D analysed by SDS-PAGE  
SDS-PAGE of trypsin proteolysis (1000:1 molar ratio, Hsp27:trypsin) of Hsp27-WT (WT) and Hsp27-3D 
(3D) at 37°C (in 50 mM phosphate buffer, pH 7.4) indicates Hsp27-3D (predominantly dimeric) is 
more prone to proteolysis than Hsp27-WT (predominately large oligomers) under these conditions. 
A control of Hsp27-WT not exposed to trypsin (C) is also shown on the gel. 

 

In order to identify the proteolytic products present at each time point, MS was utilised for 

identification of the peptides (Figure 4.9). The rationale for this experiment was that the 

initial stages of proteolysis (10 min digestion time) would indicate which residues of an 

oligomer (Hsp27-WT) compared to a dimer (Hsp27-3D) is less exposed. Even during the 

dead-time of the experiment (i.e. 0 min, which corresponds to the time taken to add the 

trypsin, mix the sample and then stop the proteolysis reaction by adding PMSF), numerous 

peptides were observed by MS. Following 10 min of trypsin exposure, both the unstructured 
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N-terminal (residues 13, 21, 27 and 38) and the flexible C-terminal (residues 172, 189 and 

198) domains of Hsp27-WT were readily accessible to cleavage by trypsin (Figure 4.9B). In 

addition, parts of the αCD were accessible to cleavage by trypsin at residues 112 and 127 in 

Hsp27-WT (Figure 4.9). The N-terminal domain of Hsp27-3D is more accessible to trypsin 

cleavage compared to WT, evidenced by shorter peptides (corresponding to cleavage at 

residues 5, 6, 13, 21, 28, 38, 75 and 80) being detected at 0 min (Figure 4.9). Both the C-

terminal domain and αCD of Hsp27-3D are also more accessible to trypsin cleavage 

compared to Hsp27-WT, as smaller fragments from this region were identified in Hsp27-3D 

than WT (Figure 4.9). The digestion patterns observed between Hsp27-WT and 3D indicate 

that WT oligomers are more resistant to proteolysis than Hsp27-3D dimers. The data overall 

is consistent with a model in which phosphorylation results in an increase in the flexibility of 

Hsp27 dimers, however, some protection from cleavage may be afforded by the binding 

interfaces involved in oligomerisation. 
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Figure 4.9: Hsp27-WT oligomers are less accessible to proteolysis by trypsin than Hsp27-3D dimers  
Peptides from trypsin proteolysis (1000:1 molar ratio, Hsp27:trypsin) of Hsp27-WT and Hsp27-3D at 
37°C (in 200 mM NH4OAc, pH 6.8) were identified by the peaks in each spectrum and compared to 
the theoretical digestion of Hsp27-WT and Hsp27-3D (performed using BioLynx Protein/Peptide 
editor V4.1). The core domain of Hsp27 (pdb entry 4MJH, red) as well as the N-terminal (residues 80-
90 shown in grey) and C-terminal (residues 179-185 shown in blue) domains are indicated. Peptides 
generated after 10 min of proteolysis by trypsin and identified by MS are shown. The data show that 
potential trypsin cleavage sites in WT oligomers are less accessible to proteolysis than in Hsp27-3D. 
The sites of MMP of Hsp27 are aligned against all peptides identified (black dashed line) as well as 
the disulfide-bond formed between two monomers at Cys137 (orange dashed line).  
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4.3.4 Blocking of Cys137 alters the oligomeric distribution of Hsp27  

The role of dimerization via disulfide-bonding of Cys137 in the overall quaternary structure 

and chaperone function of Hsp27 remains unclear. Monomerisation, as a result of disulfide-

bond reduction, has been shown to occur in Charcot-Marie Tooth disease-related mutants 

of Hsp27 (Almeida-Souza et al., 2010). The increase in the amount of monomer was 

postulated to induce hyperactivity of Hsp27, which then leads to defects in motor neurons. 

In order to further probe the relationship between monomerisation (via disulfide-bond 

reduction) and the quaternary structure of Hsp27 a reduction and free thiol-blocking 

approach was taken. Specifically tris(2-carboxyethyl)phosphine (TCEP), a potent reducing 

agent to ensure complete reduction of all disulfide bonds, and iodoacetamide (IA) were 

used to reduce and block Cys137 in order to prevent the disulfide-bond from reforming.  To 

confirm complete reduction and blocking of Cys137, an aliquot of the reaction was taken 

and analysed by denatured MS. In the absence of TCEP and IA, Hsp27-WT is predominantly 

dimeric, and this is mediated by the disulfide-bond in the dimer, which was confirmed by 

non-reducing SDS-PAGE (Figure 4.10A) (charge state overlap between unfolded monomer 

and dimer, as well as the cleavage of Met1 from recombinant expression of Hsp27 in E. coli, 

cannot distinguish monomer and dimer levels by denatured MS) (Figure 4.10B, top panel). 

Denatured MS of Hsp27-WT following treatment with TCEP and IA demonstrated that there 

was complete reduction of the disulfide-bond such that no unfolded dimer was observed 

(Figure 4.10B, bottom panel). There was an observable increase in mass of the unfolded 

monomer in this sample attributable to thiol-blocking by IA, which adds ~286 Da to the mass 

of the monomer.  

Following confirmation of the reduction and blocking of Cys137 by TCEP and IA treatment, 

native MS was utilised to investigate the role this disulfide-bond has in modulating the 
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quaternary structure of Hsp27. Under low collision energy and in the absence of TCEP and IA 

(i.e. non-reduced Hsp27), Hsp27-WT is made up of even-sized oligomers ranging from 

dimers to 24-mers, as previously reported (Figure 4.10C, top panel) (Jovcevski et al., 2015). 

Following treatment with TCEP and IA, there were observable shifts in the oligomeric 

distribution of Hsp27, whereby the relative abundance of monomer compared to dimer 

increases at low collision energies (Figure 4.10C, bottom panel). The reduction and blocking 

of Cys137 does not disrupt the dimer interface of Hsp27, such that the dimeric structure can 

still be formed by non-covalent interactions. Also, a significant number of small oligomers, 

ranging from trimers to 9-mers, were observed following reduction and thiol-blocking of 

Hsp27, which were not observed previously in Hsp27-WT treated with DTT (Aquilina et al., 

2013) (Figure 4.10C, bottom panel).  This observation indicates that the dimer interface is 

weakened due to the reduction of the disulfide-bond. Significantly, for both treatments it 

was observed that Hsp27 is capable of forming large polydisperse oligomeric assemblies, 

demonstrating that the reduced form of Hsp27 is still capable of forming large assemblies.  



Chapter 4: Hsp27 Structural Dynamics 

98 
 

 

Figure 4.10: TCEP-reduction and IA-blocking of Cys137 shifts the oligomeric equilibrium of Hsp27 
towards smaller odd-numbered oligomers  
A: The core domain of Hsp27 (pdb entry 4MJH) exhibits a curved β-sheet sandwich structure near 
the dimer interface (bottom panel, dashed line) and has an intermolecular disulfide-bond via Cys137 
of the β7-sheet of each monomer (yellow spheres). B: SDS-PAGE of Hsp27-WT after treatment with 
tris(2-carboxyethyl)phosphine (TCEP) and loaded onto the gel where the SDS-PAGE loading buffer 
was added to Hsp27 in the absence (NR) and presence (R) of reducing agent (DTT). C: Denatured MS 
of Hsp27-WT without the addition of TCEP and IA shows that Hsp27-WT is made up of disulfide-
linked dimers (top panel), whereas the addition of TCEP and IA results in dimer dissociation such that 
only monomers are present (bottom panel). D: Native MS shows that the covalent dimeric-building 
block of oligomers results in the formation of even-sized oligomers (top panel) whilst TCEP and IA 
treatment results in a shift in the oligomer equilibrium towards smaller (and including odd-sized) 
oligomers (bottom panel). 
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4.4 Discussion 

The role of Hsp27 in intracellular proteostasis is inherently dependent on its structural 

dynamics, whereby changes in structure at the tertiary and quaternary level are linked with 

its chaperone activity. This work has utilised MMP to investigate the site-specific role 

phosphorylation has on the structure and chaperone function of Hsp27, demonstrating that 

increased levels of phosphorylation induce oligomer dissociation into dimers which 

correlates to enhanced chaperone activity (Chapter 3 and(Jovcevski et al., 2015). The work 

presented in this chapter extends the findings from this previous study by defining the 

conformation and dynamics of Hsp27 oligomers, in particular chaperone-active dimers. This 

was done to increase our understanding of the impact PTMs have on the structure of Hsp27 

dimers and larger oligomers, and to elucidate how these changes potentially manifest as an 

increase in chaperone activity. Previous published work in this area has focused on the 

conformation and dynamics of other ubiquitous human sHsps, in particular αB-c, in order to 

define the factors that contribute to its polydispersity and function (Baldwin et al., 2011a, 

Baldwin et al., 2011b, Baldwin et al., 2011c, Jehle et al., 2011, Peschek et al., 2013). 

However, Hsp27 has received comparatively little attention, despite it also being 

ubiquitously expressed in tissues and having roles in critical cellular processes, including 

inhibiting protein aggregation and apoptosis (Rane et al., 2003, Wu et al., 2007). Moreover, 

there have been no detailed studies investigating the dynamics of a full-length sHsp dimer, 

which is commonly referred to as the ‘basic unit’ of large sHsp oligomers. 

The overall findings of this work demonstrate that there are distinct differences in the 

structure of Hsp27 dimers as a result of MMP, whereby with an increasing number of MMP 

the Hsp27 dimer becomes relatively more unstructured (i.e. flexible) and more stable. These 

structural changes to the dimer upon phosphorylation may contribute to enhanced 
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chaperone activity (as reported in Chapter 3 of this thesis), whereby dimers of 

phosphorylated Hsp27 have an increased capacity to interact with misfolded client proteins 

to attenuate aggregation. Importantly, however, the changes observed as a result of MMP 

at the level of the dimer, were not detected in a larger oligomer (12-mer), i.e. the 

conformation of this 12-mer oligomer was similar for Hsp27-WT and Hsp27M isoforms.  

Since the dimer is Hsp27 is disulfide-bonded it presented an opportunity to study the 

dynamics of this oligomeric building block and therefore was the focus of this work. 

Standard biophysical approaches, such as intrinsic tryptophan fluorescence and analytical-

SEC, only provide low-resolution structural information on proteins and this is hampered 

further when dealing with large heterogeneous assemblies such as the sHsps. Both the 

single and double Hsp27M isoforms exhibited greater intrinsic tryptophan exposure 

compared to WT and this increased further for Hsp27-3D at the same concentration (Figure 

4.1).  However, the levels of tryptophan fluorescence between the single and double 

Hsp27M isoforms were near identical. Whilst an enhanced tryptophan exposure with 

successive MMP was observed, specific differences in the tertiary structure between Hsp27-

1D and Hsp27-2D isoforms could not easily be identified with this approach. For example, 

fluorescence studies, such as tryptophan fluorescence, are unable to discern between 

individual oligomeric species and thus, increased tryptophan exposure cannot be attributed 

to a particular species. As a result, the data may reflect the increased proportion of 

dissociated species that arise due to an increase in the number of MMP, which is similar 

between single and double Hsp27M isoforms at the concentrations used in this work. The 

analytical-SEC data also shows that the quaternary structure of Hsp27 can also be 

modulated by both pH and buffer systems, particularly Hsp27-3D, where the protein elutes 

as a mixture of small oligomers and dimers in ammonium acetate. The native MS data (also 



Chapter 4: Hsp27 Structural Dynamics 

101 
 

performed in ammonium acetate) was unable to detect any oligomers larger than dimers. 

This may be a result of the associative forces that maintain Hsp27-3D oligomers in 

ammonium acetate during the solution-phase (i.e. during SEC) are lost during transition into 

the gas-phase (i.e. during native MS) in the same buffer system.  

The ability to observe ‘free’ Hsp27 dimers by native MS allowed investigation into how the 

conformation of the full-length dimer varies due to MMP. By exploiting IM-MS, and a 

comparison of the ATD of various Hsp27M isoforms (under identical instrument conditions), 

it was observed that successive MMP result in either an increase in drift time or the 

expansion of the ATD peak width of the dimer. Together, these data indicate that with an 

increasing number of MMP, Hsp27 dimers become more unstructured and hence more 

flexible. Importantly, no discernible differences in the ATD were observed for the 12-mer 

oligomer between these Hsp27 isoforms. Together these results suggest that at the level of 

the dimeric building block, cumulative serine phosphorylation of Hsp27 leads to increasing 

oligomeric dissociation, which in turn causes the dissociated dimer to be more unstructured 

or loosened. However, within higher-order oligomers there is no detectable change in the 

shape or stability of the oligomers as a result of phosphorylation. This possibly indicates that 

the N-terminal domain of Hsp27 is buried within the oligomer irrespective of 

phosphorylated state. The IM-MS data on Hsp27 dimers and 12-mers was reproducible as 

the data was acquired on the same instrument, under identical instrument conditions on 

the same day. When tested on another day under identical instrument conditions on the 

same instrument, the increase in both ATD and peak widths at half height were observed 

with increasing MMP. This was also the case for the CIU experiments where an internal 

RMSD value was determined, indicating that there was a ~5% error between subsequent 

CIU experiments (Appendix II, Figure 8.3). It should be noted that a single CIU plot is derived 
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from the acquisition of 10 IM-MS plots (at a single WH) which is then combined and 

overlayed to generate a single heatmap.      

Interestingly, the unfolding dynamics (and by inference, stability) of the Hsp27 dimer 

differed with an increase in the number of MMP, such that greater activation energy was 

needed to unfold the Hsp27-3D dimer compared to the Hsp27-1D or -2D dimer.  Also, as the 

activation energy was increased, compaction of the dimer was observed for Hsp27-3D (and 

to a lesser extent for Hsp27-2D) by a slight decrease in drift time prior to unfolding (Figure 

4.4). The compaction of proteins in the gas-phase results from a range of events such as 

side-chain reorientation, deformation of secondary/tertiary structure or buffer and water 

molecules being removed from an assembly, all of which can cause a slight collapse in the 

globular state of the protein. The distinct compaction observed in Hsp27-2D and 3D may be 

a result of the relatively unstructured N-terminal domains of the dimer, which are believed 

to be freely exposed in its tertiary structure (Jehle et al., 2011), collapsing or folding into the 

αCD of the dimer during compaction prior to unfolding in the gas-phase. Overall, the 

increase in disorder as well as the enhanced stability of the dimer may contribute to 

enhanced target protein recognition and stabilisation.  

Limited proteolysis of Hsp27-WT and Hsp27-3D was performed to elucidate the structural 

elements that may be more exposed in dimeric (Hsp27-3D) versus oligomeric (Hsp27-WT) 

assemblies. It was reasoned that fewer structural elements would be exposed in large 

oligomers (Hsp27-WT) compared to dimers (Hsp27-3D) as a result of packing in the 

oligomers. Thus, it was expected that the dimer would be more prone to cleavage. The C-

terminal domain is readily cleaved and thus accessible in both Hsp27-WT and -3D (at 

residues 172-198). As the C-terminal domain anchors neighbouring dimers during 
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oligomerisation, it has been shown previously in other sHsps that this domain is solvent-

accessible by NMR and prone to cleavage (Aquilina and Watt, 2007, Baldwin et al., 2011a, 

Morris and Aquilina, 2010). All the key structural regions of Hsp27-3D (i.e. N-terminal 

domain, αCD and C-terminal domain) were more accessible to trypsin cleavage than Hsp27-

WT, evidenced by larger peptides being identified in Hsp27-WT (indicative of missed 

cleavage sites by trypsin), whilst much smaller fragments were identified in 3D. The 

presence of small peptides in 3D, in particular between residues 5-38 in the N-terminal 

domain, demonstrates that residues are freely accessible to cleavage. In contrast, the 

absence of these small fragments in Hsp27-WT can be interpreted as the result of these 

regions being inaccessible to cleavage, presumably because they are buried within an 

oligomer. However, some of these regions (residues 20-38) may be prone to cleavage as the 

population of free dimer present during subunit-exchange in Hsp27-WT may be sufficient 

for proteolytic cleavage. These results demonstrate that both the N-terminal and C-terminal 

domains of Hsp27 are more accessible to proteolytic cleavage irrespective of 

oligomerisation state (i.e. dimers and oligomers). More importantly, the results also show 

that the N-terminal domain of Hsp27-3D dimers remains unstructured and is even more 

susceptible to proteolysis than Hsp27-WT.  

As it was previously shown that MMP enhance oligomer dissociation of Hsp27, it was 

postulated that oligomeric disassembly is mediated by negative charge repulsion between 

dimers that result from phosphorylation. As such, it was expected that Hsp27-3D would not 

undergo subunit-exchange with Hsp27-WT since the negative charge introduced to mimic 

phosphorylation in Hsp27-3D would prevent it being incorporated into the larger oligomer. 

Unexpectedly, bulk-FRET analysis and SEC demonstrated that Hsp27-3D is capable of being 

incorporated into the Hsp27-WT oligomer. This finding indicates that Hsp27 oligomers are 
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able to withstand nearby negative charge repulsions that are introduced by 

phosphorylation, at least up to a point. It is postulated that the oligomer would reach a 

threshold at which the stability of the oligomer is overcome by the negative charge 

repulsion that Hsp27-3D introduces, leading to dissociation. Whilst studies of αB-c and MMP 

of this sHsp have demonstrated that these isoforms are capable of subunit-exchange 

(Ecroyd et al., 2007, Shashidharamurthy et al., 2005), the key difference between αB-c and 

Hsp27 is that MMP do not lead to dissociation of αB-c oligomers (in contrast to Hsp27). 

Rather, the rate of subunit-exchange between αB-c oligomers increases substantially with 

MMP (Ecroyd et al., 2007). Thus, for both Hsp27 and αB-c, the population of dissociated 

species at any point in time is increased upon the introduction of MMP (and by inference 

phosphorylation), such that more chaperone-active units are available to interact with, and 

prevent the aggregation, of client proteins.        

Another key PTM of Hsp27 is the formation of an inter-subunit disulfide-bond, mediated by 

Cys137, which is located along the dimer interface, and results in Hsp27 oligomers being 

predominantly made up of dimeric building blocks. The disulfide-bonded dimer is the major 

species produced following recombinant production of Hsp27 in bacteria (Almeida-Souza et 

al., 2010). However, disulfide-bonded Hsp27 dimers have also been shown to exist in vivo; 

for example, mutations of Hsp27 in Charcot-Marie Tooth disease have been shown to lead 

to varying levels of disulfide-linked dimers (Almeida-Souza et al., 2010, Evgrafov et al., 

2004). The role of dimerization via Cys137 was also examined in this previous study 

(Almeida-Souza et al., 2010), which showed that reduction results in a gross change in 

quaternary dynamics, which may contribute to chaperone hyperactivity in cases of disease. 

This previous study primarily explored the association between disease-related mutants of 

Hsp27 and reduction of the disulfide-bond (a process the authors referred to as 
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monomerisation) in cells, since many of these disease-related mutations occur along the 

dimer interface and close to Cys137 (Almeida-Souza et al., 2010). Using a reduction and 

thiol-blocking approach in order to generate reduced Hsp27 forms that could not reform the 

disulfide-bond, the quaternary structure of reduced and non-reduced Hsp27 was probed by 

native MS in this work. The results show that the quaternary structure of reduced Hsp27-

WT is markedly shifted towards the formation of smaller (including odd-sized) oligomers 

compared to the non-reduced form, indicating a weakening of the dimer interface. These 

results differ to previous native MS work on reduced Hsp27, whereby treatment with DTT 

did not result in a significant shift in the oligomeric distribution of the protein nor the 

formation of odd-sized oligomers (Aquilina et al., 2013). It is possible that in this earlier 

study the time between DTT treatment and MS analysis was sufficient to allow re-oxidation 

of the disulfide-bond (Aquilina et al., 2013). Recently, crystal structures of the core domain 

of Hsp27 disease-associated mutants (R127W, S135F, R136W, T151I and T164A) have 

indicated that there is no significant difference in the tertiary structure of the mutants 

compared to the core domain of Hsp27-WT (personal communication from Drs. Heidi 

Gastall and Justin L.P. Benesch, University of Oxford, UK). However, the susceptibility of the 

disulfide-bond to reduction was significantly increased as a result of mutation, suggesting 

that this may play a key role in modulating the quaternary structure and chaperone activity 

of Hsp27. The data presented here indicates that the inter-subunit disulfide-bond plays a 

significant role in the quaternary structure of Hsp27 oligomers, whereby a shift in the 

oligomeric equilibrium resulting from reduction of this disulfide-bond in cells may lead to an 

increase in chaperone activity due to the formation of smaller oligomers. In the case of 

disease-related mutants of Hsp27, the increased susceptibility of the disulfide-bond to 

reduction likely contributes to the observed ’hyperactivity’ of Hsp27, which is a result of the 
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prolonged and substantial increase in the population of dissociated Hsp27 species able to 

interact with client proteins. As a result, the disulfide-bond of Hsp27 can regulate the 

structure of Hsp27, and thus modulate its activity as a chaperone. Future studies should 

introduce a cysteine to serine mutation (i.e. C137S) in Hsp27, which could be used as a 

model to further assess the role of the disulfide-bond has on Hsp27 structure and 

chaperone function.  

In this work a wide range of biophysical approaches was used to decipher the impact PTMs, 

in particular phosphorylation and disulfide-bonding, have on the structure and dynamics of 

Hsp27. These data suggests that increased levels of phosphorylation of Hsp27 result in 

subtle changes to the tertiary structure of Hsp27 dimers, such that they become more 

unstructured and more stable. It is concluded that together these changes lead to an 

enhanced ability of phosphorylated Hsp27 dimers to recognise and interact with misfolded 

and aggregating proteins. The disulfide-bond formed between Cys137 in Hsp27 dimers is 

critical in regulating the activity of Hsp27; reduction of this bond significantly shifts the 

oligomeric equilibrium towards smaller species, which may be more chaperone-active. The 

increased susceptibility of disease-related mutants of Hsp27 to be reduced likely contributes 

to the reports of Hsp27 hyperactivity as a mechanism that underpins these diseases. 

Overall, PTMs of Hsp27 result in a range of structural changes, at the secondary, tertiary and 

quaternary level, and these facilitate changes in chaperone activity in cells. 
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Chapter 5: N-terminal mutations alter the structure and chaperone function 

of αB-crystallin   

5.1 Introduction 

The molecular chaperone αB-crystallin (αB-c) is a ubiquitously expressed sHsp which 

typically exists as large, polydisperse oligomers that undergo constant subunit-exchange 

(Aquilina et al., 2003, Aquilina et al., 2005, Bhat and Nagineni, 1989, Morris and Aquilina, 

2010). In conjunction with other broadly expressed sHsps, such as Hsp27 and Hsp20, αB-c 

plays a crucial role in the cell’s protein quality control (PQC) network by acting as a protein 

stability sensor (Balch et al., 2008, Kulig and Ecroyd, 2012, McHaourab et al., 2009). 

Numerous neurodegenerative diseases are associated with the malfunctioning of this 

quality control network, such as Alzheimer’s disease and Parkinson’s disease (Iwaki et al., 

1992). Mutations in αB-c are also associated with desmin-related cardiomyopathies and 

cataracts in the lens (Bova et al., 1999, Ecroyd and Carver, 2009). Overall, the association 

between αB-c and these diseases demonstrates that its chaperone function is critical to the 

PQC network.  

Like most sHsps, αB-c is made up of three key domains, the β-sheet rich αCD (residues 66-

149) which is conserved amongst sHsp family members. This domain is flanked by an 

unstructured N-terminal domain (residues 1-65) which contributes to its polydispersity 

(Laganowsky et al., 2010) and is also prone to post-translational modification (primarily 

phosphorylation) (Aquilina et al., 2004, Ecroyd et al., 2007) and a C-terminal flexible domain 

(residues 150-178) that contains the IXI/V motif which binds to the β4-β8 groove of a 

neighbouring αCD and is thought to aid in oligomeric stability (Delbecq et al., 2012).  The 

quaternary dynamics of αB-c have also been studied extensively; non-covalent exchange of 

monomers, mediated by the unstructured N-terminal and C-terminal domains, underpin 
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subunit-exchange between oligomers (Baldwin et al., 2011a, Baldwin et al., 2011c). In 

addition, cryo-EM and structural homology modelling has also suggested that residues 54-

60 form inter-dimer contacts that maintain a hexameric substructure within an oligomeric 

assembly (Braun et al., 2011, Peschek et al., 2013).  

Numerous structure-function studies on αB-c have shown that various point mutations in 

the N-terminal domain result in enhanced chaperone activity (against the amorphous 

aggregation of alcohol dehydrogenase, citrate synthase and insulin) when compared to the 

αB-c WT (Biswas et al., 2007, Santhoshkumar et al., 2009, Sreelakshmi and Sharma, 2005, 

Sreelakshmi and Sharma, 2006). However, the majority of these studies use low-resolution 

techniques (e.g. tryptophan fluorescence, CD spectroscopy and analytical-SEC) to investigate 

the effect of mutation on the structure of αB-c. Moreover, these studies did not extensively 

investigate the effect(s) these mutations have on the quaternary structure of αB-c. By 

contrast, native MS is an ideal technique to study the effect of mutation has on the 

quaternary structure of αB-c.  

A previous study had shown that changing the orientation of residues 54-60 of αB-c 

significantly reduced its polydispersity, observed by SEC-MALS, and enhanced chaperone 

activity (Sreelakshmi and Sharma, 2006). It is thought that this region plays a key role in the 

oligomerisation of αB-c by disrupting the inter-dimer contacts that maintain the oligomer. 

However, the exact oligomeric distribution and abundance that this mutation introduced 

was not examined. This study explored the role of the N-terminal domain in the quaternary 

structure and chaperone function of αB-c by introducing mutations in the region 

encompassing residues 54 – 60, which is thought to play a key role in αB-c oligomerisation. 

With this, mutations were designed in order to disrupt the oligomerisation dynamics of αB-c 
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via changes in size (P58A and S59A), introduction of charge (S59K) or disruption of sequence 

motifs responsible for oligomerisation (R56S/S59R and invert 54-60). As a result, five 

different N-terminal domain mutants were generated (P58A, S59A, S59K, R56S/S59R and 

invert 54-60 of αB-c) and were characterised extensively with respect to structure and 

chaperone function.  

5.2 Methods 

Human αB-c WT and N-terminal mutants (P58A, S59A, S59K, R56S/S59R and invert 54-60) 

were expressed and purified as described previously (section 2.3). Purification and 

confirmation of the identity of the N-terminal mutations were confirmed by SDS-PAGE 

(section 2.2.1) and denatured MS (section 2.5.5). The secondary structure of the αB-c 

isoforms was assessed by far UV-CD spectroscopy (section 2.5.3), thermal stability by 

dynamic light scattering (DLS) (section 2.5.4) and the tertiary and quaternary structure 

analysed by intrinsic tryptophan fluorescence and bis-ANS fluorescence (section 2.5.2), 

analytical-SEC (section 2.5.1) and native MS (section 2.5.6). The chaperone activity of the 

αB-c isoforms was assessed using in vitro aggregation assays as described previously 

(section 2.6.1). 

5.3 Results 

5.3.1 Mutations confer changes in secondary and tertiary structure of αB-

crystallin  

The expression and purification of N-terminal mutants of αB-c (P58A, S59A, S59K, 

R56S/S59R and invert 54-60) was confirmed by both SDS-PAGE and denatured MS (Figure 

5.1). All αB-c mutants were produced with good yields (in excess of 15 mg per 1 L of 

bacterial culture) and the purity of these proteins was greater than 95 % as determined by 

denatured MS (Figure 5.1B). Following the expression and purification of these constructs, 

the structure of these αB-c isoforms was characterised using a range of biophysical 
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techniques. Far UV-CD spectroscopy was performed to probe the secondary structure of 

these proteins. Most of the αB-c mutants do not exhibit gross changes in secondary 

structure compared to WT isoform, with the exception of the invert 54-60 mutant, which 

showed a dramatic (4-fold) increase in negative ellipticity at 215 – 225 nm (Figure 5.2). The 

α-helical and β-sheet content for all variants, except for αB-c S59A, was greater than that of 

WT as evidenced by the increase in negative ellipticity at 225 nm (Figure 5.2). When the CD 

spectra were deconvoluted using BestSel software to determine secondary structure 

content, it was observed that the 54-60 invert mutation led to a dramatic overall change in 

the secondary structure of αB-c compared to the WT protein. The 54-60 invert mutant was 

found to have a 41 % increase in α-helical content and a 36.7 % decrease in random coil 

content relative to αB-c WT (Table 5.1).  
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Figure 5.1: SDS-PAGE and denatured MS to assess the purity of αB-c N-terminal mutants   
To confirm the purification of the αB-c variants, SDS-PAGE and denatured MS was performed to 
assess the levels of purity. A: SDS-PAGE analysis of αB-c variants (50 µM in 50 mM phosphate buffer, 
pH 7.4). B: Denatured MS of αB-c variants (50 µM in 200 mM ammonium acetate pH 6.8, 1 % v/v 
formic acid, 40% v/v acetonitrile). Based on these data the purity of all the variants produced was 
assessed to be greater than 95%. 
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Figure 5.2: Far UV-CD spectroscopy of αB-c N-terminal mutant isoforms reveals differences in 
secondary structure compared to the wild-type protein   
Proteins were incubated at room temperature for 30 min. CD spectra were accumulated from 6 
scans, smoothed using Savitzky-Golay smoothing and normalised to protein concentration and 
results shown are representative of two independent experiments. All variants, with the exception 
of S59A, exhibited greater negative ellipticity than αB-c WT. The 54-60 inversion mutant exhibited 
the greatest negative ellipticity compared to WT. 
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Table 5.1: Deconvolution of the far UV-CD spectra of the αB-c isoforms   
CD spectra of the N-terminal αB-c mutants (shown in Figure 5.2) were deconvoluted to determine 

the content (as a %) of secondary structural motifs (α-helix, β-sheet, turn and random coil) and 

compared to the wild-type protein. Deconvolution was performed using BeStSel secondary structure 

prediction software (Micsonai et al., 2015).  

 α-helix β-sheet Turn Random coil 

WT 6.8 29.8 18.6 45.6 

P58A 5.9 41.7 11.0 41.4 

S59A 9.5 34.6 17.1 38.8 

S59K 6.0 46.2 7.2 40.7 

R56S/S59R 7.3 47.1 8.5 37.2 

Invert 54-60 47.8 43.2 - 8.9 

 

The relative thermal stability of these isoforms was determined by measuring the mean 

particle size of the proteins in solution (Z-average) as a function of temperature by DLS 

(Figure 5.3A). The average size of the αB-c isoforms in solution began to increase 

exponentially at 60°C (Figure 5.3A). Moreover, there was a greater rate of increase in 

average particle size in all the mutant isoforms compared to WT such that, at 75 °C the 

average size of particles formed by αB-c WT was 150 nm whereas it was greater than 250 

nm for all the mutant isoforms  (Figure 5.3A). The tertiary structure of the αB-c mutants was 

also examined by intrinsic tryptophan and bis-ANS fluorescence. The S59K and R56S/S59R 

αB-c isoforms exhibited greater intrinsic tryptophan fluorescence intensity, indicative of 

greater exposure of the two tryptophan residues (W9 and W60 in αB-c) compared to WT. 

The other isoforms had an intrinsic tryptophan fluorescence profile similar to WT protein 

with no observable shift in emission maximum (Figure 5.3B).  Interestingly, all αB-c isoforms 

showed a substantial decrease in bis-ANS fluorescence compared to WT along with a right 

shift in the emission maximum of the fluorescence spectrum (Figure 5.3B). These results are 

indicative of a substantial decrease in exposed hydrophobicity of the mutant αB-c isoforms 

compared to WT.  
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Figure 5.3: N-terminal αB-c variants are less thermostable and adopt a different tertiary and 
quaternary structure compared to WT  
A: Thermal denaturation curves of αB-c isoforms (50 µM in 50 mM phosphate buffer, pH 7.4). The 
change in average particle size (Z-average) was measured by DLS with increasing temperature (ramp 
rate 2.5 °C per 15 min). B: Intrinsic tryptophan fluorescence reveals differences in tertiary structure 
of some αB-c variants, whereby the R56S/S59R and S59K αB-c mutants have greater tryptophan 
fluorescence emission compared to WT. C: bis-ANS fluorescence of αB-c variants reveal that 
mutations results in decreased hydrophobic exposure compared to WT. Proteins for intrinsic 
tryptophan and bis-ANS fluorescence studies were incubated (20 µM in 50 mM phosphate buffer, pH 
7.4) at room temperature for 15 min prior to measurement. Spectra were normalised to protein 
concentration and results shown are representative of two independent experiments. 
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5.3.2 N-terminal mutations alter the quaternary structure of αB-crystallin  

In order to extensively characterise the quaternary structure of the N-terminal mutants of 

αB-c, analytical-SEC and native MS were utilised to determine the oligomeric size and 

distribution of these proteins. SEC revealed that the mutant αB-c isoforms have a near 

identical elution profile compared to αB-c WT in both phosphate and ammonium acetate 

buffer systems. In both cases, eluting as a large broad peak indicative of a large polydisperse 

assembly, with oligomeric masses ranging from 200 – 700 kDa (Figure 5.4A). A slight 

variation in elution volume between phosphate (used in other structural studies and 

aggregation assays) and ammonium acetate (used in native MS experiments) buffers was 

also observed (Figure 5.4A-B). Native MS and CID (as described previously; section 3.1.3), 

allows the oligomeric state and distribution of these polydisperse proteins to be observed 

and quantified. Multiple MS studies on αB-c have demonstrated its polydisperse nature; the 

size of the oligomers range from 10-mers to 40-mers and there is a preference for even-

sized stoichiometries under the condition used in this study (Aquilina et al., 2003, Baldwin et 

al., 2011c). Under low collision energies, all αB-c isoforms exhibited a charge state 

distribution envelope ranging from 8,000 – 12,000 m/z, which is typical of a large 

polydisperse species such as αB-c WT (Figure 5.4B). The complexity of the MS spectra was 

overcome by employing CID, which strips a monomeric subunit off an oligomer and allows 

the identification and quantification of all the oligomers present (Aquilina et al., 2003). It 

was found that the oligomeric distribution of the N-terminal isoforms was similar to αB-c 

WT, with oligomers ranging from 14-mers to 33-mers observed (Figure 5.4C) (Appendix III; 

Figure 8.4). The 20-mer and the 22-mer were the most abundant oligomers present in all 

the αB-c isoforms (Figure 5.4C).  The inversion mutant of αB-c displayed an atypical 
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oligomeric distribution whereby there was a considerable decrease in the abundance of 

oligomers ranging from 14-mers to 18-mers (Figure 5.4C). 

 

Figure 5.4: Native MS reveals changes in quaternary structure between αB-c variants 
A: Analytical-SEC of N-terminal αB-c variants (50 µM) in 50 mM phosphate buffer (PB, pH 7.4) (left 
panel) and 200 mM ammonium acetate (NH4OAc; pH 6.8) (right panel) which illustrates the presence 
of large oligomers in solution. B: Native MS of αB-c variants (50 µM) under low collision energy (αB-c 
P58A in this instance) (25 V), present as large polydisperse oligomers ranging from 5,000 - 
14,000 m/z (left panel). Collision-induced dissociation (CID) MS of αB-c variants under a higher 
accelerating voltage (180 V) results in the signal in the n-2 (orange box) and n-3 (green box) regions 
being well resolved (right panel). C: Oligomeric distributions of αB-c variants, with large oligomers 
ranging from 14-mers to 29-mers present. There is a preference of even-sized oligomers (dark grey) 
over odd-sized oligomers (light grey). Protein samples were prepared in 200 mM NH4OAc (pH 6.8) 
for the MS experiments. Distribution and abundance data was deconvoluted using UniDec (Marty et 
al., 2015).  
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5.3.3 N-terminal mutations are just as chaperone able compared to 

wildtype αB-crystallin  

The ability of the N-terminal αB-c mutants to prevent amorphous and fibrillar protein 

aggregation was also analysed. In order to assess the chaperone activity of these isoforms, 

insulin was used as a model protein for amorphous aggregation and αS was used to model 

fibril forming protein. In the absence of chaperone, insulin was observed to aggregate 

rapidly upon reduction with DTT such that, after ~15 min the light scatter associated with its 

aggregation into large insoluble particles had reached a plateau (Figure 5.5A, left panel). In 

the absence of client protein, no increase in light scatter and ThT fluorescence associated 

with aggregation was observed (Appendix III; Figure 8.5). There was no significant difference 

in chaperone efficacy between αB-c isoforms in preventing amorphous insulin aggregation 

(Figure 5.5B) with the exception of the 54-60 inversion mutant isoform, which was 

significantly less effective at preventing insulin aggregation compared to WT (Figure 5.5B). 

The ability of the N-terminal αB-c mutants to prevent fibrillar aggregation was ascertained 

by monitoring the inhibition of seeded αS aggregation. Essentially, this assay measures the 

ability of αB-c to inhibit the elongation of αS fibrils using preformed αS seed fibrils (Buell et 

al., 2014). In the absence of chaperone, αS was observed to completely aggregate over 

~16 h, indicated by the change in ThT fluorescence associated with fibrillar aggregation 

reaching a plateau after this time (Figure 5.5A, right panel). In the presence of chaperone, 

there was a decrease in the change in ThT fluorescence associated with αS fibril formation. 

However, there was no significant difference in chaperone activity between the αB-c 

isoforms in preventing seeded αS aggregation (Figure 5.5C). Therefore, mutation of the N-

terminal region of αB-c appears to not have a significant effect on its ability to act as a 
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molecular chaperone, with the exception of the 54-60 invert mutant which was less 

effective in preventing insulin aggregation. 

 

Figure 5.5: The ability of the N-terminal αB-c variants to inhibit the amorphous and fibrillar 
aggregation of client proteins  
A: Inhibition of the reduction-induced amorphous aggregation of insulin was monitored by the 
change in light scatter at 360 nm (left panel), whilst fibrillar αS aggregation was measured by the 
change in ThT fluorescence emission at 490 nm (excitation at 440 nm) (right panel). B: The invert 54-
60 mutant of αB-c showed a significant decrease in the ability to inhibit insulin aggregation at 
various molar ratios compared to αB-c WT (left panel, red). C: There was no significant difference in 
the ability of αB-c isoforms to inhibit αS seeded aggregation (10% w/w seed relative to αS monomer 
concentration) at either molar ratios tested (right panel, red). Amorphous and fibrillar aggregation 
assays were performed in 50 mM phosphate buffer (pH 7.4) at 37 °C. Molar ratios between αS and 
αB-c to ascertain chaperone activity is stated above each histogram. Data in B and C are mean ± SEM 
(n = 3) (*p < 0.05; **p < 0.01). 
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5.4 Discussion 

The aim of this work was to examine the effect(s) of mutations have in the region from 54-

60 in the N-terminal domain of αB-c have on its structure and chaperone function. The 

rationale for this was based on various studies that have demonstrated that residues 54-60 

potentially play a critical role in oligomerisation of αB-c by forming inter-dimer contacts 

which maintain αB-c oligomers (Braun et al., 2011). Moreover, another study, using SEC-

MALS, indicated that the inversion of αB-c residues 54-60 significantly reduced its 

polydispersity (Sreelakshmi and Sharma, 2006). Thus, five different mutant isoforms were 

generated for this work, namely P58A, S59A, S59K, R56S/S59R and invert 54-60 αB-c. This 

study showed that mutation of these residues does confer slight changes in secondary and 

tertiary structure to αB-c. However, native MS showed that there was no observable 

difference in polydispersity and quaternary structure of these αB-c mutants compared to 

αB-c WT, the exception being the 54-60 invert mutation of αB-c, which led to a decreased 

abundance of oligomers smaller than 19-mers. Moreover, the ability of these isoforms to 

prevent amorphous and fibrillar aggregation of client proteins was not significantly different 

to αB-c WT (again, with the exception of the 54-60 invert mutant which was less efficient 

than WT at preventing the amorphous aggregation of insulin). These results suggest that 

whilst mutations may alter the structure of αB-c at the secondary and tertiary level, the 

detailed quaternary level information is extremely valuable in delineating the structure-

function relationship in αB-c. Therefore, it is concluded that the quaternary structure is a 

key determinant of αB-c chaperone activity. 

After expression and purification of these isoforms, changes in secondary structure (in 

comparison to αB-c WT) were assessed by far-UV CD spectroscopy. The data shows that all 

the mutant isoforms, with the exception of αB-c S59A, induce slight changes in secondary 
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structure of αB-c. The inversion of residues 54-60 resulted in the most significant difference 

in secondary structure compared to αB-c WT, substantially increasing the α-helical content 

and decreasing the proportion of random coil in the protein, in agreement with the earlier 

study of this mutant αB-c isoform (Sreelakshmi and Sharma, 2006). All of the N-terminal 

mutations were found to increase the overall β-sheet content compared to αB-c WT.  

These changes in secondary structure were accompanied by more significant changes in the 

tertiary structure of the N-terminal mutants compared to αB-c WT, as assessed by intrinsic 

tryptophan and bis-ANS fluorescence. The intrinsic tryptophan fluorescence data show that 

the S59K and R56S/S59R isoforms have a significant increase in tryptophan fluorescence 

intensity (one-fold and two-fold increase, respectively) compared to αB-c WT. There are 

only two tryptophan residues in αB-c (W9 and W60), and thus these primarily report on the 

solvent exposure of the N-terminal region of αB-c. It is likely that the S59K and R56S/S59R 

mutations primarily effect the packing of W60, since they are very close to this residue, 

making it more solvent exposed. The introduction of the basic residues lysine and arginine 

(which have large side chains) proximal to W60 is likely to reduce the flexibility of this 

region, resulting in increased solvent exposure. Interestingly, other mutations, including 

inversion of residues 54-60, which includes W60, did not have a significant effect on solvent 

accessibility of the tryptophan residues in αB-c.  

In stark contrast to the intrinsic fluorescence data, the result from the bis-ANS experiments 

demonstrate that all the mutants isoforms studied in this work have decreased exposed 

surface hydrophobicity compared to αB-c WT. This indicates that the tertiary structure of 

these αB-c mutants differs significantly to that of WT. Surprisingly; the large difference in 

bis-ANS fluorescence did not translate to changes in chaperone activity, which is thought to 
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be driven by hydrophobic interactions. This could be a result of the mutant isoforms 

shielding their hydrophobic regions (in both oligomeric and dissociated states of αB-c) in the 

absence of an aggregating client protein and undergoing a tertiary and/or quaternary 

structure change when in the presence of exposed hydrophobicity from the client protein. 

Also, non-hydrophobic interactions (e.g. charged interactions) may also be responsible for 

the chaperone activity observed of these N-terminal mutants. It also indicates that the 

quaternary structure and dynamics primarily drives the chaperone activity of the N-terminal 

αB-c isoforms. However, both these fluorescence-based techniques provide relatively low 

resolution information on the tertiary and quaternary structure of large polydisperse 

proteins like αB-c. This polydispersity, as well as the constant subunit-exchange dynamics 

that underpin the quaternary structure of αB-c, cannot be studied using these low 

resolution approaches. Therefore, the differences observed by intrinsic and bis-ANS 

fluorescence could pertain to changes at the level of the dimeric building block of αB-c 

and/or the various oligomeric states that αB-c populates, or both.  

Analytical-SEC demonstrated that αB-c elutes as a large, broad peak, which has previously 

been shown and is typical of large polydisperse oligomers of αB-c (Aquilina et al., 2004, 

Ecroyd et al., 2007, Santhoshkumar et al., 2009). In order to ascertain the effect that these 

mutations have on the quaternary structure of αB-c, native MS was used to determine the 

oligomeric state of the N-terminal mutant αB-c isoforms. Native MS allows the structural 

heterogeneity of large polydisperse proteins, such as αB-c, to be interrogated (Aquilina et 

al., 2004, Baldwin et al., 2011c, Benesch et al., 2010, Jovcevski et al., 2015). This work shows 

that the polydispersity and oligomeric distribution of αB-c does not change significantly with 

the N-terminal mutations introduced in this work. This indicates that the observed changes 

in secondary and tertiary structure of these αB-c isoforms relative to αB-c WT do not 
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translate to changes in quaternary structure. It is concluded that the differences in 

secondary and tertiary structure may be due to differences in subunit-exchange rates, 

whereby the structural elements of smaller species (e.g. dimers) are more abundant in 

certain mutants when measured using averaged, fluorescence-based techniques. For 

example, the significant increase in tryptophan fluorescence of the R56S/S59R mutant may 

be a result of an increase in subunit-exchange rate where structural elements in smaller 

species are more abundant during measurement at room temperature. Thus, the subunit-

exchange rate of some of these isoforms (S59K, R56S/S59R and invert 54-60) may be faster 

than the other isoforms tested; including WT. The increase in subunit-exchange is reflected 

by the relative abundance of odd-sized oligomers, which is much lower than even-sized 

oligomers in these isoforms. This indicates that the intra-dimer interface (site of 

dimerization) is stronger than the inter-dimer 'edge' interface (dimer-dimer contact 

regions), resulting in an increase in dimeric subunit-exchange rate. Surprisingly, this increase 

in subunit-exchange did not translate to enhanced chaperone activity when tested against 

the client proteins used in this study. The data demonstrates that the choice of client 

protein is crucial in determining the chaperone efficacy of these N-terminal αB-c mutants, 

which can vary depending on the client protein chosen (Ecroyd et al., 2007). In light of this, 

the chaperone activity of these mutants should be tested against other client proteins to 

gain a greater picture of how effective the N-terminal mutants are at inhibiting aggregation.    

After extensively characterising the structure of the N-terminal αB-c mutants, we sought to 

assess their ability to inhibit the amorphous and fibrillar aggregation of target proteins. It 

was found that the ability of these mutants to prevent amorphous insulin and fibrillar αS 

aggregation was comparable to WT, with the exception of the 54-60 inversion mutant which 

had a significantly reduced capacity to inhibit the reduction-induced amorphous aggregation 
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of insulin, but not the seeded fibrillar aggregation of αS. Overall, these data show that the 

quaternary structure and dynamics of αB-c is a key indicator of chaperone activity since it 

also was found not to change significantly with mutation (as the dimeric and oligomeric 

form cannot be distinguished in this case). Thus, despite observing distinct changes in 

secondary and tertiary structure of the N-terminal αB-c mutants compared to αB-c WT, the 

similarity of the mutant isoforms to αB-c WT in quaternary structure mirrored the similarity 

measured in chaperone activity. The decrease in the ability of the 54-60 inversion mutant to 

prevent insulin amorphous aggregation may be attributable to specific changes in the 

tertiary structure between residues 54-60 in this isoform, which alters the ability of the 

protein to recognise and/or interact (via. hydrophobic exposure or charged interactions) 

with aggregation-prone monomeric insulin. The relative absence of small oligomers in 54-60 

invert αB-c may also be responsible for the reduction in the relative chaperone activity of 

this mutant, as it has been previously shown that oligomer dissociation and increased 

subunit-exchange is crucial to inhibiting aggregation (Ecroyd et al., 2007, Jovcevski et al., 

2015). 

The data also suggests that the mechanisms by which αB-c inhibits αS aggregation differs 

from the inhibition of amorphous insulin aggregation. Interestingly, this data implies that a 

different region of αB-c is responsible for interacting with αS to prevent its fibrillar 

aggregation, since the invert mutant had a similar chaperone efficacy to αB-c WT in this 

assay. Moreover, in preventing the amorphous aggregation of insulin, αB-c form a high 

molecular mass complex with this client protein (i.e. holdase type activity), whereas recent 

work has shown that αB-c interacts with aggregation-prone monomeric αS in a transient 

manner (i.e. no high molecular mass complex is formed and thus, it does not involve a 

holdase type mechanism) (Cox et al., 2016). Therefore, in the case of the inversion mutation 
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of αB-c, the holdase-like activity appears to be compromised whereas the transient-like 

interaction mechanism with client proteins is maintained. A recent study suggested that 

region of αB-c involved in binding to aggregation-prone proteins is dependent on the 

morphology of the aggregating substrate protein (Mainz et al., 2015). Using deletion 

mutants of αB-c and solid-state NMR correlation spectroscopy, it was shown that the N-

terminal domain was responsible for the recognition and interaction with aggregation prone 

(i.e. reduced) lysozyme (which aggregates amorphously), whereas both the N-terminal 

domain and αCD interact with and are involved in preventing the fibrillar aggregation of the 

Aβ1-40 peptide (Mainz et al., 2015). Therefore, it is possible that the 54-60 inversion 

mutation of αB-c reduces its ability to recognise and form a stable high molecular mass 

complex with amorphously aggregating substrate proteins.  

The unstructured N-terminal domain of αB-c is thought to play a key role in the structure 

and chaperone activity of sHsps. Previous studies proposed that residues 54-60 form inter-

dimer contacts in αB-c, and therefore maintain oligomeric stability and modulate oligomeric 

polydispersity. By introducing a variety of mutations in this region of the N-terminal domain 

(residues 54-60) this work has investigated the potential effects that these mutations have 

on the structure and chaperone function of αB-c. Despite mutations in this region leading to 

significant changes in secondary and tertiary structure of αB-c relative to αB-c WT, the 

quaternary structure and chaperone activity of these mutants was similar to αB-c WT. These 

results highlight the fundamental link between quaternary structure and chaperone activity 

of sHsps.   
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Chapter 6: Overall Discussion 

The primary focus of this thesis was to study the quaternary structure and dynamics of the 

human sHsps, Hsp27 and αB-c, in order to rationalise the effects these have on the capacity 

of these proteins to act as a molecular chaperones by inhibiting protein aggregation. Due to 

the large and heterogeneous nature of these mammalian sHsps, this work primarily 

employed native MS to study the structure and dynamics of these molecular chaperones. A 

detailed analysis was undertaken on the effect PTMs, in particular phosphorylation and 

disulfide-bonding on the structure of Hsp27. The results of this work highlight the pivotal 

role that PTMs have in regulating Hsp27 structure and hence chaperone function. In 

addition, the role of the N-terminal domain in modulating the structure and function of αB-c 

was assessed. Overall, the results of the work presented here emphasises the key role the 

quaternary structure has on the function of these mammalian sHsps, both of which are 

crucial parts of the network that acts to maintain proteostasis in cells.  

6.1 The site-specific effect phosphorylation has on Hsp27 structure and chaperone 
function 

The sHsp Hsp27 is an important member of the cells PQC network that aids in maintaining 

intracellular proteostasis. One key PTM that occurs in some human sHsps, including Hsp27, 

is phosphorylation. This PTM changes the quaternary structure and dynamics of Hsp27, 

whereby phosphorylation at all three serine residues decreases the size of Hsp27 oligomers 

(Hayes et al., 2009, McDonald et al., 2012, Rogalla et al., 1999). However, up until the work 

described in this thesis (Chapter 3), there had not been a comprehensive survey performed 

on the specific effect(s) phosphorylation at each serine residue had on the oligomer size, 

oligomer distribution and chaperone function of Hsp27. Consequently, the first aim of this 
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thesis (Chapter 3) was to systematically examine the site-specific effects of phosphorylation 

on Hsp27. 

In order to ascertain the role phosphorylation has on Hsp27 structure and chaperone 

function, seven distinct variants were produced in which phosphorylatable serine residues 

were substituted with aspartic acid residues, i.e. S15D, S78D and S82D, collectively referred 

to as isoforms with MMP. To assess the effect of phosphorylation on Hsp27 quaternary 

structure, native MS was used to examine how MMP changes the oligomeric distribution of 

Hsp27. Native MS was also used to observe the concentration-dependent dissociation of 

Hsp27 oligomers with successive MMP. This work showed that substitution at two serine 

residues had a significant impact on Hsp27 quaternary structure, reducing the size of Hsp27 

oligomers, whilst substitution at three serine residues (i.e. Hsp27-3D) led to complete 

dissociation of oligomers into dimers. A strong correlation between oligomer dissociation 

(via increased MMP) and enhanced chaperone activity against amorphous and fibrillar client 

proteins was also observed. The results of this work support a model whereby the dimer is a 

more effective chaperone than the larger oligomers. This enhanced function, combined with 

dissociation, suggests that the inter-dimer contacts maintained in oligomeric Hsp27 are 

disrupted by the negative charges introduced by phosphorylation. It appears that the large 

oligomers act as reservoirs of these chaperone-active dimers. As a result, it is proposed that 

phosphorylation acts as a molecular switch, activating Hsp27 under conditions of cellular 

stress in order to boost the overall PQC network in the cell. 

6.2 Post-translational modifications modulate the structure and dynamics of Hsp27 
dimers and oligomers 

This aspect of the project, described by the results presented in chapter 4 of this thesis,  

built on from the previous work (Chapter 3) in which it was concluded that Hsp27 dimers 
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were more chaperone-active than the larger oligomers. This work sought to address 

whether the enhanced chaperone activity of Hsp27 dimers is attributable to the dissociation 

of the large oligomers into dimers (differences in quaternary structure) or whether there are 

distinct differences in the structure and/or conformation of Hsp27 dimers (differences in 

tertiary structure) upon phosphorylation. Low resolution approaches (i.e. far UV-CD 

spectroscopy and intrinsic tryptophan fluorescence), despite being unable to discern 

between dimers and oligomers, showed that there are differences in the secondary and 

tertiary structure of Hsp27 with increased MMP. However, there is no conclusive evidence 

to indicate whether these observed changes in structure specifically alter the conformation 

of Hsp27 dimers. As a result, IM-MS was employed to identify potential differences in the 

conformation of Hsp27 dimers and oligomers. This study found that MMP make Hsp27 

dimers more unstructured (i.e. more flexible) and more stable. However, there was no 

discernible difference in the overall conformation of Hsp27 12mers (and by inference all 

oligomers) with MMP. Thus, it is concluded that differences in the conformation and 

stability of Hsp27 dimers upon phosphorylation contribute to their enhanced chaperone 

activity.  

The data presented in Chapter 4 conclusively shows that an increase in the number of MMP 

results in variation to the conformation of Hsp27 dimers; the dimer of Hsp27 becomes 

increasingly unstructured with MMP. This may be favourable for the recognition of 

misfolded proteins since the dimers are more adaptable and flexible. Previous studies which 

have shown that MMP, as well as phosphorylated forms of Hsp27, are more efficient at 

inhibiting the amorphous and fibrillar aggregation of client proteins compared to Hsp27-WT 

(Hayes et al., 2009, Jovcevski et al., 2015, McDonald et al., 2012, Rogalla et al., 1999). The 

increase in flexibility of the Hsp27 dimer observed in this work may facilitate Hsp27-3D 
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subunit-exchanging with Hsp27-WT. A Hsp27 oligomer comprising both phosphorylated and 

non-phosphorylated dimers must reach a critical point whereby the number of 

phosphorylated dimers incorporated into an oligomer leads to negative charge repulsions 

and hence dissociation. Interestingly, the observed rates of subunit-exchange between 

Hsp27-3D and Hsp27-WT oligomers were comparable to those between WT oligomers and 

with other subunit-exchange studies of other sHsps (Bova et al., 1997, Bova et al., 2000, 

Shashidharamurthy et al., 2005). However, it must be noted that the bulk-FRET method of 

monitoring subunit-exchange of WT and 3D was performed by covalently-labelling lysine 

residues, which results in the subunit-exchange of labelled disulfide-linked dimers. 

Consequently, the subunit-exchange dynamics of disulfide-linked dimers may differ 

significantly to that of reduced Hsp27 in which monomers and dimers can exchange. 

Unfortunately, an MS-based approach could not be used for this experiment as the 

ionisation efficiency of Hsp27-3D is significantly greater than that of WT, resulting in the 

poor resolution of the Hsp27-WT/3D hetero-oligomer at high m/z.  

Hsp27 is unique amongst the sHsp family in that dimerization also occurs via inter-molecular 

disulfide bonding of Cys137 that is located along the β6 sheet of the αCD (Hochberg et al., 

2014). This is in contrast to the dimer of αB-c, which is mediated only by a charged network 

along the β6+7 sheets (Bagneris et al., 2009, Hochberg et al., 2014). The effect of reduction 

of Cys137 is thought to contribute towards the increase in proportion of monomer in 

mutant Hsp27, which leads to chaperone hyperactivity in Charcot-Marie Tooth disease 

(Almeida-Souza et al., 2010). In addition, Hsp27 has been shown to form disulfide-linked 

dimers in HeLa cell lysates (Arrigo, 2011). This highlights the importance of dimerization via 

Cys137 in Hsp27; however, no previous studies have extensively investigated the effects of 

reduction in terms of Hsp27 quaternary structure. As a result, the role of disulfide-bonding 
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in modulating the quaternary structure and dynamics of Hsp27 was investigated. By 

preventing the re-oxidation of the disulfide-bond with IA, a significant shift in the oligomeric 

equilibrium of Hsp27 occurred, such that smaller odd-sized species were observed. The 

generally accepted mechanism of action by which sHsps become chaperone-active is by 

oligomeric dissociation and enhanced rate of subunit-exchange, whereby the population of 

smaller 'chaperone-active' species (i.e. monomers and dimers) are responsible for inhibiting 

protein aggregation (Figure 6.1). However, the aggregating client protein is just as important 

in ascertaining how effective a sHsp is at inhibiting aggregation and must be taken into 

account when assessing sHsp function. In the case of Hsp27, disulfide-bond reduction at 

Cys137 is crucial as it contributes to the increased abundance of monomers, where a shift in 

the oligomeric equilibrium, towards smaller species, was observed. Based on the findings in 

this thesis, it is proposed that the abundance of smaller oligomers in disease mutants of 

Hsp27 to become 'hyperactive' such that it co-aggregates with client proteins (Almeida-

Souza et al., 2010, Benesch et al., 2008). Thus, the abundance of dissociated Hsp27 in the 

cell, as well as the proportion of monomer and dimer, must be tightly regulated in order to 

avoid hyperactivity and hence disease. Overall, both phosphorylation and disulfide-bonding 

of Hsp27 lead to a range of structural transitions in the protein. These changes in structure 

underlie the increase in chaperone activity of Hsp27 during periods of cell stress, as well as 

in disease.   

Future directions with this aspect of the project should focus on investigating the 

conformation of Hsp27 monomers post-reduction using IM-MS, with MMP used as the 

model system. Such an approach may reveal more observable differences in the flexibility of 

the dimer with MMP. It should be noted that such an approach should not be limited to just 

monomers and dimer. Other higher assemblies, particularly hexamers would be of 
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significant interest as many oligomeric models of αB-c (24-mer) are based upon the 

formation of hexamers prior to higher order oligomerisation (Braun et al., 2011, Jehle et al., 

2011) and also may provide information on role of the N-terminal domain in maintaining the 

hexameric structure of Hsp27. Also, subunit-exchange analyses (via bulk-FRET and MS) 

between Hsp27-WT with single and double Hsp27M isoforms should be performed to 

determine whether the degree of MMP modulates the rate of subunit-exchange. In light of 

the role dimerization has on modulating Hsp27 quaternary structure, all the above analyses 

should also be performed under both reduced and reduced/thiol-blocked conditions. In 

addition, chaperone activity assays against amorphous and fibrillar client proteins (seeded 

αS, Aβ1-40/42, insulin, BSA, κ-casein) should be performed to determine whether reduced and 

thiol-blocked Hsp27 becomes ‘hyperactive’ across a range of client proteins. Put together, 

these studies would reflect a greater physiological relevance in the cell as the population 

and abundance of all these potential protein species are likely to occur and interact in vivo.  

6.3 The role of the N-terminal domain (residues 54-60) on the structure and chaperone 
function of αB-c 

The work presented in Chapter 5 of this thesis aimed to determine the role of residues 54-

60 in the N-terminal domain of αB-c with regards to the structure and chaperone function of 

the protein. Many studies have structurally and functionally characterised various point 

mutations of αB-c that have led to an apparent increase or decrease in chaperone function 

(Biswas et al., 2007, Bova et al., 1999, Horwitz et al., 1998a, Santhoshkumar et al., 2009, 

Sreelakshmi and Sharma, 2005, Sreelakshmi and Sharma, 2006). However, these studies 

typically employed relatively low-resolution approaches to characterise the tertiary and 

quaternary structure of αB-c. To address this, five distinct isoforms harbouring mutations in 

the disordered N-terminal domain of αB-c (P58A, S59A, S59K, R56S/S59R and invert 54-60) 
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were constructed and the structure and chaperone function of these isoforms was 

thoroughly characterised. The biophysical studies undertaken on these mutant αB-c 

isoforms demonstrate that these mutations result in various changes to the secondary and 

tertiary structure of αB-c. As the majority of these techniques are unable to overcome the 

structural heterogeneity of αB-c, native MS was utilised to observe any distinct changes in 

the quaternary structure of these isoforms resulting from mutation. However, there was no 

significant difference observed in quaternary structure of these mutant isoforms compared 

to αB-c WT, with the exception of the invert 54-60 mutation, which was skewed towards 

larger species. The ability of these isoforms to prevent amorphous and fibrillar aggregation 

was also not significantly different from αB-c WT, again with the exception of the invert 54-

60 mutant which had a decreased ability to prevent the reduction-induced amorphous 

aggregation of insulin compared to αB-c WT. Overall, the lack of difference in the point 

mutant isoforms compared to αB-c WT with regards to quaternary structure correlates 

strongly with the mutants having a similar chaperone activity to αB-c WT. Therefore, it is 

concluded that the quaternary structure is the key determinant of αB-c chaperone activity. 

Support for this conclusion can be found in work using MMP of αB-c in which enhanced 

chaperone activity was a result of enhanced subunit-exchange, where the increased 

abundance of dissociated forms of αB-c (presumably dimers) contribute to its enhanced 

chaperone activity (Ecroyd et al., 2007).  

Future work, measuring the subunit-exchange rate of the mutant αB-c isoforms by native 

MS, will help to define whether the presence of dissociated species is either enhanced or 

diminished with mutation. As the mass of the monomeric form of these mutant isoforms 

are very close to that of αB-c WT (< 200 Da difference between the two isoforms), a 

labelling approach (e.g. 15N or 13C) should be used to provide clear resolution between 
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labelled and unlabelled αB-c. Another key future direction is to test the chaperone function 

of the N-terminal αB-c mutants against other client proteins such as κ-casein, Aβ1-40/42, 

creatine phosphatase kinase, alcohol dehydrogenase and α-lactalbumin. This is particularly 

important as the chaperone activity of αB-c is also dependent on the aggregating client 

protein.  Also, utilising IM-MS to observe whether there are any distinct differences in 

quaternary architecture with N-terminal mutation should also be examined and performing 

dilution native MS experiments would supplement this information in terms of whether N-

terminal mutations significantly weaken the inter-dimer contacts that maintain αB-c 

oligomers.  

Overall, the results of the work presented in this chapter indicates that the unstructured N-

terminal domain of αB-c plays a key role in dictating oligomeric structure and dynamics of 

the protein, both of which are determinants of chaperone activity. Mutations at residues 

54-60 translate the gross changes in both secondary and tertiary structure. These changes 

did not translate to large rearrangements in quaternary structure. The similarity in 

quaternary structure translated well with chaperone activity when compared to αB-c WT. 

The data suggests that there is an interlinked relationship between quaternary structure 

and dynamics with chaperone activity, to a point where the partially unstructured state of 

αB-c overcomes the effect of mutation and demonstrates the robustness nature of αB-c to 

effectively prevent protein aggregation. 
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Figure 6.1: Modifications at the primary sequence level significantly alter the quaternary structure 
and dynamics of Hsp27 and αB-c which modulate chaperone activity.  
The modification of sHsps is a defining factor in regulating sHsp structure and consequent chaperone 
function. The tertiary structure of sHsp monomers is comprised of the αCD (blue ellipses/spheres) 
and is flanked by the unstructured N-terminal (green) and flexible C-terminal (red) domains. 
Dimerization is mediated by either electrostatic interactions (αB-c) or disulfide-linkage (Hsp27; 
yellow) along the dimer interface on the αCD. Mutations in the N-terminal domain of αB-c results in 
the alteration of secondary and tertiary structure compared to WT. However, the quaternary 
structure remains relatively unchanged with mutation, which confers to comparable levels of 
chaperone activity. In the case of Hsp27, phosphorylation (P) at serine residues in the N-terminal 
domain results in oligomeric dissociation into dimers (via negative charged inter-dimer repulsions). 
Increased levels of phosphorylation also results in the dimers becoming more unstructured and 
more stable. These changes in structure aid in enhanced recognition and binding of misfolded 
proteins, contributing to its enhanced chaperone activity.  

 

6.4 Concluding Remarks and Future Directions 

Defining the structure-function relationship of sHsps is crucial to understanding the 

mechanisms involved in maintaining intracellular proteostasis. More importantly, 

delineating this relationship has the potential to inform therapeutic design, whereby the 

activation of sHsps is enhanced to combat neurodegenerative diseases that are associated 

with protein aggregation. For example, drugs could potentially be designed that trigger the 

dissociation of large sHsp oligomers into chaperone-active dimers, which would be ideal to 

inhibit and prevent protein aggregation.     

A common problem in the sHsp literature is that many mammalian sHsps are ‘painted with 

the same brush’; conclusions as to the structure and chaperone function of all human sHsps 

tend to be based purely on information attained from studies of αB-c. The work in this 

thesis has shown that this should not be the case. There are significant differences in the 

structure and dynamics of Hsp27 compared to αB-c. For example, phosphorylation induces a 

range of downstream structural changes in Hsp27 that do not occur in αB-c, e.g. complete 

oligomeric dissociation. In addition, Hsp27 phosphorylation induces the 'chaperone-active' 

dimers to adopt a different conformation, becoming more unstructured and flexible with 
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increased levels of phosphorylation. However, it has yet to be established whether the 

structure of the monomer and/or dimer also changes upon phosphorylation of αB-c. These 

structural transitions significantly boost the chaperone activity of Hsp27 by enhancing the 

adaptability of dimers to recognise and interact with misfolded proteins, thereby preventing 

aggregation.  

In light of this, there is much more work that needs to be done to further our understanding 

of the structure, function and interactions of sHsps within the cell. It is well-known that 

various sHsp family members are able to undergo subunit-exchange in vitro and in vivo to 

form large hetero-oligomers. Some of these hetero-oligomers have been previously studied, 

predominately Hsp27/αB-c (Aquilina et al., 2013, Bova et al., 2000), αA-c/αB-c (Aquilina et 

al., 2005, Morris and Aquilina, 2010), Hsp16.9/Hsp18.1 (Sobott et al., 2002) and more 

recently Hsp27/Hsp20 (Bukach et al., 2009, Heirbaut et al., 2016). However, all of the 

aforementioned studies have only investigated the WT isoforms of each sHsp; the hetero-

oligomerisation dynamics between WT and phosphorylated isoforms has not been 

addressed. It is very likely that there are distinct populations of sHsp oligomers in cells that 

contain both non-phosphorylated and phosphorylated forms of various sHsps. These likely 

form a wide range of oligomeric forms of sHsps in cells, much more complicated than the 

‘simple’ oligomers that have been studied in most work to date. Studies of the structure-

function relationship, akin to those highlighted in this thesis, should be performed in these 

more complex hetero-oligomers. The detection, separation and sensitivity of technology 

present in mass spectrometers has significantly improved in recent years with the 

emergence of new generation Orbitrap mass spectrometers which can provide the 

necessary baseline resolution to detect hetero-oligomeric species without the use of labels, 
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particularly when analysing hetero-oligomeric species formed between single and double 

Hsp27M isoforms.   

Our current understanding of sHsp structure and dynamics has largely been attained using 

purified recombinant proteins in relatively simple buffer systems. However, it remains to be 

determined whether the structure and dynamics of sHsps is similar when in the presence of 

other non-interacting proteins and/or crowding agents that can mimic the intracellular 

environment. An optimal crowding agent or non-interacting protein would be one that does 

not undergo subunit-exchange with sHsps, does not covalently attach to or modify sHsp 

residues, and does not directly contribute to aggregation, e.g. polyethylene glycol (PEG). 

Such a system would enable several unresolved questions to be answered. For example, 

does the concentration-dependent dissociation of Hsp27 also occur in the presence of 

crowding agents? Are subunit-exchange dynamics and chaperone activity of sHsps affected 

by molecular crowding? Previous work has shown that the molecular crowding agent 

trimethylamine N-oxide (TMAO) induced oligomerisation of Hsp20-WT, but had no effect on 

the oligomerisation state of phosphorylated Hsp20 (Sluchanko et al., 2015). However, this 

study did not investigate how these changes in structure in the presence of crowding agent 

affected chaperone activity. Previous studies have also looked at the effect of crowding 

agents on the subunit-exchange of α-crystallin using dextran (Ghahghaei et al., 2007), PEG, 

Ficoll and TMAO (Roman et al., 2011). Both studies showed that the presence of these 

crowding agents lowered subunit-exchange rate and decreased chaperone activity 

(Ghahghaei et al., 2007, Roman et al., 2011). However, both studies only tested a single 

client protein (ovotransferrin and glycogen phosphorylase b) to measure the chaperone 

activity of α-crystallin in the presence of crowding agents. These studies also did not 
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determine the effect of crowding agents has on the oligomeric distribution of α-crystallin by 

SEC-MALS or MS. Of particular interest is the effect molecular crowding has on the structure 

and function of phosphorylated Hsp27 since the rationale for the enhanced chaperone 

activity of phosphorylated Hsp27 is the dissociation of large oligomers into dimers. Whilst 

this dissociation has been consistently observed by native-PAGE, analytical-SEC and native 

MS, it remains to be established whether dissociation occurs within the crowded 

environment of the cell. Overall, investigating the effects of molecular crowding on sHsp 

structure and function would provide a more relevant picture of the structural 

characteristics of sHsps, and how changes that occur to structure translate to differences in 

chaperone activity. 

It is concluded that Hsp27-3D would be a useful model sHsp for use in a wide range of 

biophysical studies aimed at establishing precisely how sHsps interact with client proteins to 

prevent aggregation. For example, the stoichiometries of sHsp/client protein complexes 

may be able to be resolved using this dimeric form of Hsp27 through techniques such as 

native MS, X-ray co-crystallisation, single molecule fluorescence microscopy or NMR 

dispersion/relaxation experiments. These studies could also aid in determining the specific 

residues of Hsp27-3D involved in client protein binding and interaction. Similar experiments 

have been recently performed in order to investigate the regions of αB-c involved in binding 

to preventing the aggregation of lysozyme (amorphous) and Aβ1-40 (fibrillar) (Mainz et al., 

2015). The advantage of using Hsp27-3D over αB-c is that these experiments did not use a 

predominantly dimeric sHsp; therefore regions that are involved in oligomerisation can 

confound the analyses, in particular since the oligomerisation state itself may vary in the 

presence of client proteins. Generally, binding to the aggregation-prone client protein that is 
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observed in vitro is highly dependent on the client protein of choice (Ecroyd et al., 2007, 

Kulig and Ecroyd, 2012). Therefore, studies as stated above should be performed against a 

wide range of client proteins, in order to determine whether the specific residues of Hsp27-

3D that are involved in the interaction with the client proteins are generic or specific for 

certain client proteins.  

In conclusion, this thesis has demonstrated that modification of the unstructured N-terminal 

domain, by PTMs or mutation, of Hsp27 and αB-c induces changes in sHsp structure from 

the secondary to the quaternary level. It is concluded that, in general, factors that act to 

dissociate large oligomeric forms of these sHsps enhance chaperone activity. This work has 

increased our understanding of the roles PTMs have in regulating sHsp structure, and, in 

turn, modulating its chaperone activity.  A better understanding of the mechanisms involved 

in regulating the structure-function relationship of sHsps provides new targets for 

therapeutic development. Enhancing the ability of sHsps to inhibit and prevent protein 

aggregation may one day lead to the development of a drug to treat a range of devastating 

neurodegenerative diseases.  
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Chapter 8: Appendices 

8.1 Appendix I –Hsp27 structure and function supplementary material 

 

 

 

 
Figure 8.1 (related to Chapter 3, Figure 3.3, page 67): Collision-induced dissociation mass 
spectrometry of Hsp27 phosphomimics  
Spectra were acquired at higher accelerating voltage (200 V) where signal in the n region (6,000 – 
14,000 m/z) were substantially resolved. The charge state distributions in this region were used to 
identify and determine the relative abundance of Hsp27M. 
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Figure 8.2 (related to Chapter 3, Figure 3.5, page 72): Chaperone activity of Hsp27-WT and 
phosphomimics against amorphous BSA aggregation  
Chaperone efficacy of the Hsp27 isoforms containing MMP was determined relative to Hsp27-WT for 
the target protein (BSA). Inhibition of amorphously aggregating BSA was monitored by the change in 
light scatter at 340 nm. Variants that showed a significant increase in activity compared to Hsp27-
WT are indicated (*= p < 0.05; **= p < 0.01; ***= p < 0.001) (n = 3 – 5; mean ± SEM).  
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8.2 Appendix II – Hsp27 structural dynamics supplementary material 

Table 8.1 (related to Chapter 4, Figure 4.3, page 86): Drift time analysis of Hsp27 dimers and 12-
mers by IM-MS 
Arrival time and peak width at half height of Hsp27M dimers and 12-mers as determined by IM-MS. 
The increase in both arrival time and peak width at half height confers to an increase in the 
unstructured state of the species of Hsp27M.  

Dimer
13+

 
Arrival time (ms) Peak width at half height (ms) 

WH8 WH9 WH10 WH8 WH9 WH10 

Hsp27-1D 9.87 7.31 5.9 1.68 1.42 0.92 

Hsp27-2D 10.13 7.42 5.52 1.52 1.55 1.22 

Hsp27-3D 10.39 7.38 5.9 1.8 2.18 1.76 

12-mer
31+

 
Arrival time (ms) Peak width at half height (ms) 

WH11.5 WH13 WH11.5 WH13 

Hsp27-WT 13.07 9.23 2.1 1.17 

Hsp27-1D 12.81 9.22 2.0 1.22 

Hsp27-2D 12.81 9.22 2.0 1.39 

 

 

Figure 8.3 (related to Chapter 4, Figure 4.5, page 89): Internal RMSD determination of the collision-
induced unfolding dynamics of Hsp27M dimers by IM-MS 
CIU of Hsp27M dimers was monitored with increasing activation energy. Heat maps highlight the 
differences in the unfolding of the dimer13+ in the gas-phase between the same isoform (Hsp27-
S15D; Hsp27-1D) calculated on two different occasions at the same WH (V). RMSD values (%) 
(bottom right corner) indicate the difference in the unfolding of the dimer between each pair 
analysed (pairs analysed where greatest difference attributed to one isoform indicated by either 
dark blue or red). Difference plots and RMSD values were calculated using CIUsuite with default 
settings (Eschweiler et al., 2015).  
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8.3 Appendix III – αB-c N-terminal mutation structure and function 
supplementary material 

 

 
 
Figure 8.4 (related to Chapter 5, Figure 5.4, page 117): Collision-induced dissociation mass 
spectrometry of αB-c N-terminal domain mutants  
Spectra were acquired at both lower activation energy (20 V; left panels) and at higher activation 
energies (200 V; right panels) where signal in the n-2 (orange) and n-3 (green) regions (19,000 – 
30,000 m/z) were substantially resolved. The charge state distributions in this region were used to 
identify and determine the relative abundance of αB-c mutant isoforms. 
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Figure 8.5 (related to Chapter 5, Figure 5.5, page 119): The aggregation propensity of the N-
terminal αB-c variants in the absence of amorphous and fibrillar client proteins  
A: In the absence of client protein (insulin) there was no observable increase in light scatter at 360 
nm of αB-c isoforms (75 µM). B: In the absence of client protein (seeded αS, 10% w/w seed relative 
to αS monomer) there was no observable increase in ThT fluorescence at 490 nm of αB-c isoforms 
(25 µM). Amorphous and fibrillar aggregation assays were performed in 50 mM phosphate buffer 
(pH 7.4) at 37 °C.  
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8.4 Appendix IV – Media and buffer compositions 

 

Luria-Bertani (LB) broth 
Tryptone 10 g/L 
Yeast Extract 5 g/L 
NaCl 10 g/L 
 
LB agar 
Tryptone 10 g/L 
Yeast Extract 5 g/L 
NaCl 10 g/L 
Agar 15 g/L 
 
1 × Phosphate buffered saline (PBS) (pH 7.4) 
NaCL 8 g/L 
KCl 0.2 g/L 
Na2HPO4 1.44 g/L 
KH2PO4 0.24 g/L 
 
50 mM phosphate buffer (pH 7.4) 
NaH2PO4  1.58 g/L 
Na2HPO4  6.37 g/L 
 
5 × SDS-PAGE sample buffer 
Tris-HCl (pH 6.8) 200 mM 
Glycerol 50 % (v/v) 
SDS 1 g/L 
2-Mercaptoethanol 300 mM 
Bromophenol blue 0.4 % (w/v) 
 
Coomassie blue stain 
Coomassie blue 2 g/L 
Methanol 40 % (v/v) 
Glacial acetic acid 10 % (v/v) 
 
Rapid destain 
Methanol 40 % (v/v) 
Glacial acetic acid 10 % (v/v) 
 
200 mM ammonium acetate (pH 6.8) 
7.5 M NH4OAc  2.66 % (v/v) 
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