
University of Wollongong University of Wollongong 

Research Online Research Online 

Australian Institute for Innovative Materials - 
Papers Australian Institute for Innovative Materials 

1-1-2014 

B-NMR of 8Li+ in rutile TiO2 B-NMR of 8Li+ in rutile TiO2 

R M. L McFadden 
University of British Columbia 

David L. Cortie 
University of British Columbia, dcortie@uow.edu.au 

D J. Arseneau 
TRIUMF 

T Buck 
University of British Columbia 

C-C Chen 
Max-Planck-Institute For Solid State Research 

See next page for additional authors 

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers 

 Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
McFadden, R M. L; Cortie, David L.; Arseneau, D J.; Buck, T; Chen, C-C; Dehn, M H.; Dunsiger, S; Kiefl, R F.; 
Levy, C D. P; Li, C D.; Morris, G D.; Pearson, M R.; Samuelis, D; Xiao, J; Maier, J; and MacFarlane, W A., "B-
NMR of 8Li+ in rutile TiO2" (2014). Australian Institute for Innovative Materials - Papers. 2305. 
https://ro.uow.edu.au/aiimpapers/2305 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiim
https://ro.uow.edu.au/aiimpapers?utm_source=ro.uow.edu.au%2Faiimpapers%2F2305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Faiimpapers%2F2305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Faiimpapers%2F2305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/aiimpapers/2305?utm_source=ro.uow.edu.au%2Faiimpapers%2F2305&utm_medium=PDF&utm_campaign=PDFCoverPages


B-NMR of 8Li+ in rutile TiO2 B-NMR of 8Li+ in rutile TiO2 
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an applied field of 6.55 T and 300 K. We observe a broad 12 kHz wide quadrupole split resonance with 
unresolved features and a sharp component at the Larmor frequency. The line broadening may be caused 
by overlapping multi-quantum transitions or motion of 8Li+ on the scale of its lifetime (1.21 s). We also 
find spin-lattice relaxation that is relatively fast compared to other wide band gap insulators. The origin of 
this fast relaxation is also likely quadrupolar and may be due to anisotropic 8Li+ diffusion. 
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Abstract. We report preliminary low-energy β-nmr measurements of 8Li+ implanted in single
crystal rutile TiO2 at an applied field of 6.55 T and 300 K. We observe a broad 12 kHz wide
quadrupole split resonance with unresolved features and a sharp component at the Larmor
frequency. The line broadening may be caused by overlapping multi-quantum transitions or
motion of 8Li+ on the scale of its lifetime (1.21 s). We also find spin-lattice relaxation that is
relatively fast compared to other wide band gap insulators. The origin of this fast relaxation is
also likely quadrupolar and may be due to anisotropic 8Li+ diffusion.

1. Introduction
Like the many TiO2 polymorphs, rutile has applications as an anode material in lithium-ion
batteries [1, 2]. Its tetragonal structure is comprised of edge-sharing TiO6 octahedra that
extend along the c-axis, forming natural channels which Li can occupy during electrochemical
intercalation. For incorporation into functional devices, a detailed understanding of the
diffusivity of Li+ is necessary. Macroscopic methods (e.g., impedance spectroscopy) are often
used to probe ionic diffusion, but are unable to distinguish between different conductive
pathways. The applicability of nmr to probe dynamics in solids is well known [3], and can be
especially useful in resolving multiple diffusive pathways activated in different thermal regions [4].
Li dynamics in TiO2 polymorphs (and related compounds) have been studied by conventional
nmr [5, 6, 7, 8, 9, 10], but no such investigation has been undertaken for rutile. We report here
a preliminary look at Li+ implanted (i.e., not doped) in rutile titania using beta-detected nmr
(β-nmr) at room temperature and high magnetic field.

13th International Conference on Muon Spin Rotation, Relaxation and Resonance IOP Publishing
Journal of Physics: Conference Series 551 (2014) 012032 doi:10.1088/1742-6596/551/1/012032

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Figure 1. Cleaved rutile TiO2 (100) substrate from Crystal GmbH mounted in the β-nmr
sample holder. The pale yellow colour is indicative of a minor presence of defects.

2. Experimental
A 10 mm × 10 mm single crystal rutile TiO2 (100) substrate was purchased from Crystal GmbH.
The rutile polymorph is tetragonal (a = b = 0.4584 nm, c = 0.2953 nm) with space group
P42/mnm. The substrate appears transparent pale yellow in colour, qualitatively indicating a
minor presence of defects [11]. The sample was cleaved for mounting on a cold finger cryostat
(see Figure 1).
β-nmr experiments were performed at triumf’s Isotope Separator and Accelerator (isac)

facility using a low-energy (∼ 20 keV) radioactive beam of spin-polarized 8Li+ with a typical
flux of ∼ 106 ions s−1 and spot size of ∼ 2 mm in diameter. The probe nucleus, 8Li, has spin
I = 2, a quadrupole moment Q = +31.4 mb, a gyromagnetic ratio γ = 6.3015 MHz T−1, and
a mean lifetime τ = 1.21 s. A large nuclear spin-polarization (∼ 70%) is achieved by collinear
optical pumping with resonant circularly polarized laser light [12] such that the direction of
spin-polarization is aligned parallel or antiparallel to the static applied magnetic field, B0. A
high-voltage bias is used to decelerate the beam prior to implantation. Depth-profiles were
estimated from Monte Carlo simulations of 106 ions using srim [13] (see Figure 2). Details of
the spectrometer can be found elsewhere [14, 15].

Resonance measurements were performed using a continuous 8Li+ beam with a transverse rf-
field H1 operated in continuous wave (cw) mode. Application of an rf-field at the appropriate
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Figure 2. srim stopping profiles for 106 8Li+ ions implanted in TiO2, histogrammed into 1 nm
wide bins. Here, z is the distance from the substrate surface and ρz is the stopping probability
density. Mean and root mean square implantation depths are inset over the profiles.

13th International Conference on Muon Spin Rotation, Relaxation and Resonance IOP Publishing
Journal of Physics: Conference Series 551 (2014) 012032 doi:10.1088/1742-6596/551/1/012032

2



0 5 10 15
0.00

0.05

0.10

0.15

t (s)

A
(t

)

8Li+ @ 20 keV
Fit to Eqs. 1–3

41.26 41.27 41.28 41.29

0.00

0.02
0.8 kHz

12 kHz

ν (MHz)

∫ A(
t)
d
t

A±
A

Figure 3. β-nmr spectra of 8Li+ implanted in rutile TiO2 (100) at 20 keV and 300 K. Left :
Spin-lattice relaxation — time-differential asymmetry showing the temporal evolution of 8Li+

spin-polarization. Right : cw resonance spectra — time-integrated asymmetry of the positive
and negative helicities, A±, and the combined asymmetry, A, from both helicities.

resonant frequency causes rapid 8Li spin-precession perpendicular to the H1 field-axis, destroying
8Li polarization, observed as a change in time-integrated asymmetry. Spin-lattice relaxation
(slr) measurements were performed using a pulsed beam and no rf-field. The time-differential
asymmetry, which is proportional to 8Li spin-polarization, is monitored both during and
following a 4 second 8Li+ beam pulse. All measurements were performed in a static magnetic
field B0 = 6.55 T ‖ the rutile TiO2 (100) (i.e., the a-axis).

3. Results & Discussion
Figure 3 (left) shows the spin-lattice relaxation (slr) spectrum at 300 K of 8Li+ implanted in
rutile TiO2 at 20 keV. The time-evolution of 8Li+ asymmetry follows [16]:

A(t) =

∫ t
0 exp [− (t− t′) /τ ] f (t, t′;T1) dt′∫ t

0 exp [−t′/τ ] dt′
t ≤ ∆ (1)

=

∫ ∆
0 exp [− (∆− t′) /τ ] f (t, t′;T1) dt′∫ ∆

0 exp [−t′/τ ] dt′
t > ∆ (2)

where τ is the mean lifetime of 8Li, and ∆ is the duration of the beam pulse, corresponding to the
pronounced kink at t = 4 s. f (t, t′;T1) is the longitudinal relaxation function phenomenologically
defined as a stretched exponential:

f
(
t, t′;T1

)
= A0 exp

[
−
{(
t− t′

)
/T1

}β]
, (3)

where A0, T1, and β are the initial asymmetry, slr relaxation time, and stretching exponent
(0 ≤ β ≤ 1). A best fit of Eqs. 1–3 to the slr spectra in Figure 3 (left) yields: A0 = 0.166±0.004,
β = 0.386 ± 0.020, and T−1

1 = 0.141 ± 0.005 s−1. Such a relaxation rate is relatively high
compared to other insulating metal oxides [17], where 8Li+ can be nearly non-relaxing.1 As
rutile is non-cubic and virtually without nuclear moments (47Ti: I = 3/2, 7.28%; 49Ti: I = 5/2,

1 See e.g., W A MacFarlane et al. and Z Salman et al. in these proceedings.
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Figure 4. Crystal structure of rutile TiO2 — oxygen and titanium atoms appear as red and
light blue spheres, with bonded atoms connected by grey cylinders. Left : Unit cell. Right : View
along the c-axis of a 3 × 3 rutile supercell. Octahedral Li sites are shown as dark blue spheres
and the dashed blue line encloses the unit cell.

5.51%, 17O: I = 5/2, 0.038%), it is likely that the relaxation is predominantly quadrupolar
in nature. It is worth noting that a previous β-nmr investigation of 8Li+ in rutile TiO2

reported a 30% preservation of nuclear spin-polarization at low magnetic fields in stark contrast
to 100% retention for other implanted nuclear probes (e.g., 12B) [18]. This is consistent with
our observation of appreciable 8Li+ relaxation. Additionally, we find a depth dependence to
the spin-lattice relaxation rate at 300 K, with T−1

1 decreasing by a factor of ∼ 5 when the
implantation energy is decreased from 20 keV to 5 keV. The origin of this depth-dependence is
not well-understood at this time.

A cw resonance spectrum of 20 keV 8Li+ implanted in rutile TiO2 at 300 K is shown in
Figure 3 (right). The asymmetric time-integrated asymmetries from spin-polarization with
different helicities (A±) are characteristic of a quadrupole split resonance [17, 19]. From the
combined asymmetry (A), we find a broad, 12.48 ± 0.12 kHz wide quadrupole split resonance
with unresolved features. This is in stark contrast to the 8Li+ resonance in Bi, where the
four quadrupole satellite and three double-quantum transitions are well-resolved,2 or in the
perovskite SrTiO3, where the satellite splitting is greater by about an order of magnitude [17].
X-ray diffraction and reflectometry measurements do not reveal the presence of impurity phases,
though static disorder (e.g., from oxygen vacancies, as indicated by the discolouration of the
crystal, or transition metal impurities) is a possible cause for the broadening. A sharp, large
amplitude, 0.76±0.05 kHz wide resonance is also observed at the Larmor frequency, ν0 = 41.2715
MHz. This may be a multi-quantum transition (e.g., the double-quantum |∆m| = 2 transition
between m = ±1 states). Such transitions appear as large sharp (narrow) enhancements in the
resonance spectrum and can be especially prevalent in cw β-nmr, where strong rf fields are
often used [20], as is the case here. This can easily be tested by comparing spectra at different

2 See W A MacFarlane et al. in these proceedings.
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values of the rf magnetic field amplitude H1. A multiquantum resonance will be attenuated
very strongly by a reduced H1.

Another possibility is that the observed pattern is due to Li residing in multiple sites
with overlapping resonances. Molecular dynamics (md) and density functional theory (dft)
calculations of lithiated rutile (LixTiO2: 0 < x ≤ 1) [21, 22, 23, 24, 25] predict preferential sites
for lithium at octahedral and tetrahedral oxygen-coordinated interstitial sites. Figure 4 shows
the octahedral site for Li along the rutile c-axis, which is predicted to be energetically favourable
over the tetrahedral site by ∼ 0.8 eV [21, 22].

It is also possible that the sharp component of the resonance in Figure 3 (right) is from a
motionally narrowed fraction of 8Li+, as it experiences an average electric field gradient (efg)
from site hopping during its lifetime. md and dft calculations also predict fast, anisotropic 1D
diffusion of Li+ along the rutile c-axis with a low hopping-barrier of ∼ 0.05 eV [21, 22, 24, 25].3

These barriers are significantly lower than what is observed experimentally from macroscopic
methods [26, 27], though such measurements are done far from the limit of infinitely dilute
lithium, where the potential energy landscape is likely altered by lattice distortions and Li+–
Li+ interactions [22, 28]. The broad component of the resonance may be due to fast-diffusion
of 8Li+ to Frenkel pairs, formed from irradiation, before they heal. Motion of 8Li+ during its
lifetime may also explain the relatively large slr rate observed and measuring its temperature
dependence would be a way of testing this. It will be interesting to see if the predicted low-
barrier hopping can be probed with β-nmr, which is uniquely suited for diffusion measurements
at such dilute lithium concentrations.

4. Summary
In a preliminary study of 8Li+ in rutile TiO2 at 300 K and B0 = 6.55 T ‖ the rutile (100)
using β-nmr, we find a relatively fast relaxation compared to other wide band gap insulators
and an unresolved quadrupole split resonance in contrast to well-resolved quadrupolar patterns
in other materials. We propose that these may be due to motion of 8Li+ during its lifetime. A
full temperature scan of slr rates and resonance lineshapes (at different rf powers) in future
experiments will help determine the relaxation mechanism and elucidate the behaviour of Li+

in rutile titania.
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