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Abstract

Mixture distributions have become a very flexible and common class of distributions, used in
many different applications, but hardly any literure can be found on tests for assessing their goodnes
of fit. We propose two types of smooth tests of goodness of fit for mixture distributions. The first
test is a genuine smooth test, and the second test makes explicitly use of the mixture structure. In
a simulation study the tests are compared to some traditional goodness of fit tests that, however, are
not customised for mixture distributions. The first smooth test has overall good power and generally
outperforms the other tests. The second smooth test is particularly suitable for assessing the fit of
each component distribution separately. The tests are applicable to both continuous and discrete
distributions and they are illustrated on three example data sets.

Keywords: goodness of fit, hypothesis testing, score test

1 Introduction

Although mixture distributions were studied by Karl Pearson more than 100 years ago, it is only in
the last one or two decades that they have become popular in daily statistical practice. The book of
McLachlan and Peel (2000) gives an excellent overview of the estimation theory and the scope of finite
mixture distributions. A mixture distribution of m component distributions is defined as follows. Let
fi(.; ηi), i = 1, . . . ,m, denote m density functions that make up the mixture, in which the ηi are the
corresponding nuisance parameter vectors. The m distributions are referred to as the components of the
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mixture distribution. The density function of the mixture distribution is given by

f(x; p, η) =

m∑
i=1

pifi(x; ηi), (1)

where the pi are the mixing proportions, subject to 0 < pi < 1 and
∑m
i=1 pi = 1. The parameters can be

estimated by means of the maximum likelihood method, for which the EM-algorithm (Dempster, Laird,
& Rubin, 1977) is generally accepted as the most appropriate implementation for mixture models. For
notational convenience we will often use βt = (pt, ηt), where p and η are vectors containing the ηi
(i = 1, . . . ,m) and pi (i = 1, . . . ,m − 1) parameters. Note that pm is not part of the parameter vector
β, because pm = 1−

∑m−1
i=1 pi.

Mixture distributions are also popular in classification problems. In this paper we consider an ex-
ample from genomics in which the methylation status (methylated or not) of the MGMT gene is to
be predicted. See Vlassenbroeck et al. (2008) for more details. There appears to be clinical evi-
dence that in glioblastoma cancer patients alkylating agent therapy, such as with temozolomide, is
more likely to be successful in patients with methylated MGMT genes. Although molecular tech-
niques for the exact determination of the methylation status exist, they are not feasible in daily clin-
ical practice. Instead a high-throughput molecular method (rt-qPCR) is used, but this technique does
not give a binary outcome for the methylation status. Figure 1 shows histograms of the continuous
outcomes from two data sets, each with 150 patients, some of whom are believed to have a methy-
lated MGMT gene. The histograms clearly show bimodal distributions. Vlassenbroeck et al. (2008)
fitted a two-component normal mixture to the data and used this to find the optimal threshold to dis-
criminate between methylated or not-methylated. This approach implicitly assumes that the bio-assay
outcomes of methylated MGMT genes can be described by a normal distribution and that the out-
comes of non-methylated MGMT genes can be described by another normal distribution. A mix-
ture distribution may also be used to compute posterior probabilities that an observed outcome, say
x, has been generated by a particular component, say fi. To be more specific, if pi is given the
interpretation of the prior probability P {an observation has been generated by fi}, then, upon using
Bayes rule, pifi(x)/f(x) = P {an observation has been generated by fi | x}, i.e. given the observed
x, pifi(x)/f(x) gives the probability that it belongs to the i-th component. The result obviously de-
pends on the appropriateness of the component densities fi and the mixing proportions for describing
the data distribution.

Despite the increasing usage of mixture distributions, the authors have no knowledge of published good-
ness of fit tests for assessing the mixture distributional assumption, except for an ad-hoc method pro-
posed by Hawkins, Muller, and ten Krooden (1982). They suggested first fitting the mixture distribution
to the data and using the fitted distribution to classify each sample observation into one of them clusters
by means of the posterior probabilities. Subsequently, upon using a classical test, goodness of fit of each
individual component distribution can be tested using the observations classified to cluster i.

Part of the goodness of fit is the correctness of the number of components (m). Several methods for
this problem have been described in the literature; see McLachlan and Peel (2000, chapter 6) for an
overview of these methods. The methods that we introduce in this paper, however, assume m is known
and focus on the assessment of the fit of the mixture distribution.
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In this paper we propose two smooth tests of goodness of fit for mixture distributions. In the first
approach the mixture distribution is considered as any other distribution, and the test follows from
methods for the construction of smooth tests (Rayner, Thas, & Best, 2009, chapter 6). The second
approach explicitly makes use of the structure of a mixture distribution and allows for the assessment of
the quality of the fit of each component distribution separately. For example, for the MGMT data sets
shown in Figure 1, we will conclude that neither is consistent with a mixture of two normal distributions,
and we will be able to identify the second component of MGMT1 and the first component of MGMT2
as the cause of the rejection of the null hypotheses. This is important information for the data-analyst
when seeking an improved mixture model.

The structure of this paper is as follows. Section 2 describes the construction of the tests in detail. Their
performance is evaluated in a simulation study and reported in Section 3. In Section 4 the methods are
applied to some data sets. Finally, conclusions are formulated in Section 5.

2 Two Smooth Tests

The construction of a smooth test starts by embedding the hypothesised density into a family of alterna-
tive densities, indexed by k parameters, the elements of θ say, so that the hypothesised density results
from setting θ = 0. The smooth test is basically the efficient score test for testing H0 : θ = 0 against
H1 : θ 6= 0 within this alternative density, which is referred to as the smooth alternative, because it
varies smoothly from the hypothesised density when θ moves away from zero. The two tests that we
propose, differ in the set up of the smooth alternatives.

2.1 The Smooth Mixture Test

We now apply the theory in Rayner et al. (2009, chapter 6) to derive smooth tests of goodness of fit.
Given a random sample of i.i.d. observations X1, . . . , Xn, the construction method for the smooth test
statistic is given by Rayner et al. (2009, Theorem 6.1.3, p. 100). The construction requires a smooth
alternative density function that involves a set of orthonormal functions. Details follow in the next
paragraphs.

Let θt = (θ1, . . . , θk) and let {hr(x;β)} be a set of polynomials orthogonal on the mixture density
f(x;β), i.e. the polynomials satisfy∫ +∞

−∞
hr(x;β)hs(x;β)f(x;β)dx = δrs (r, s = 1, 2, . . .),

where δrs = 1 if r = s and 0 otherwise. For common distributions (e.g. normal, exponential, . . . ) the
polynomials are often in the literature, but for mixture distributions a more generic method is required.
Rayner, Thas, and De Boeck (2008) proposed recurrence relations that may be used for almost any
density function for which the moments are known. Here we can take advantage of the linear structure
of a mixture distribution that allows the expression of the moments of f as a function of the moments
of the component distributions. More details are given in Appendix A.
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Let ht(x;β) = (h1(x;β), . . . , hk(x;β)). Consider the smooth alternative given by

g(x; θ, β) = C(θ, β) exp{θth(x;β)}f(x;β), (2)

where C(θ, β) is a normalisation constant and f(x;β) is the mixture density function (1). The smooth
test requires estimates of the nuisance parameters p and η under the null hypothesis. Let p̂ and η̂ denote
the maximum likelihood estimators (MLE) of p and η in the mixture distribution. Let β̂t = (p̂t, η̂t).
Following the theory of Rayner et al. (2009, Theorem 6.1.3), the smooth test statistic is given by

Sk = V t(β̂)M−1(β̂)V (β̂),

where V (β̂) = (V1(β̂), . . . , Vk(β̂))
t with

Vr(β̂) =
1√
n

n∑
j=1

hr(Xj ; β̂).

The matrixM(β̂) equals the asymptotic covariance matrix of V (β̂), evaluated under the null hypothesis,
and with β replaced by its MLE. In particular,

M(β) = Ik − Cov0

{
h,
∂ log f

∂β

}
Var0

{
∂ log f

∂β

}−1
Cov0

{
∂ log f

∂β
, h

}
. (3)

In Appendix B we show how M(β) can be calculated. When σ2
r(β̂) denotes the rth diagonal element

of M(β̂), the statistic Vr(β̂)/σr(β̂) is known as the rth component of Sk and component can be used
for testing H0r : θr = 0 against H1r : θr 6= 0. As M(β̂) is not diagonal these components are not
uncorrelated.

The statistic Sk is only well defined if M(β̂) is of full rank. Often estimating functions of the η param-
eters imply that Vr(β̂) = 0 for one or more r ≤ k. This results in a singular M(β̂). One solution is
to modify the smooth alternative (2) by removing the corresponding θrhr(x;β) terms; the resulting Sk
test statistic is now well defined.

Given that the regularity conditions of Theorem 6.1.3 in Rayner et al. (2009, p.100) hold for the mixture
distribution and that the first q θrhr(x;β) terms have been removed, the test statistic Sk asymptotically
has a χ2

k−q null distribution. The test is referred to as the smooth mixture (SM) test. The components
Vr(β̂)/σr(β̂) are asymptotically standard normal under the null hypothesis.

2.2 The Component Focused Smooth Test

For the second type of smooth test we requirem sets of polynomials so that the ith set, say {hir(x; ηi)},
contains polynomials that are orthonormal with respect to the component density fi, i.e. the polynomials
satisfy ∫ +∞

−∞
hir(x; ηi)his(x; ηi)fi(x; ηi)dx = δrs (r, s = 1, 2. . . .).
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For many common densities fi the orthonormal polynomials are listed in Rayner et al. (2009) and thus
no recurrence relations are required.

Let hi(x; ηi) = (hi1(x; ηi), . . . , hik(x; ηi))
t. Consider now smooth alternatives to the hypothesised

mixture distribution constructed as a mixture distribution of smooth alternatives to the component den-
sities of f ,

g(x; θ, β) =

m∑
i=1

piCi(θi, ηi) exp{θtihi(x; ηi)}fi(x; ηi), (4)

where θi = (θi1, . . . , θik)
t and Ci(θi, ηi) is the normalisation constant of the ith component density

in (4). In contrast to the θ parameters in (2), the embedding θir parameters in (4) refer to a particular
component density. We anticipate that this will allow for more focussed tests that may be used for
assessing the fit of each component distribution separately.

Whereas the SM test is a genuine smooth test in the sense that it is an efficient score test related to
smooth alternative (2), the test constructere here is a smooth test of a different kind because its smooth
alternative (4) has a different structure. However, the test is still constructed as an efficient score test.

The test again needs the MLEs of p and η under the null hypothesis, and thus p̂ and η̂ are found exactly
as before. In Appendix C we demonstrate that the score statistic for testing H0 : θir = 0 against
H1 : θir 6= 0 is

Vir(β̂) =
1√
n

n∑
j=1

τi(Xj ; β̂)hir(Xj ; η̂i), (5)

where τi(x; β̂) = p̂ifi(x; η̂i)/f(x; β̂) is the estimated posterior probability that x has been generated
by the ith component distribution. The form of the Vir(β̂) statistic resembles

∑n
j=1 hir(Xj ; η̂i)/

√
n,

which form the basis of the smooth test for assessing the fit of the sample observations to the single
density fi. The factor τi(Xj ; β̂), which appears in (5), weights the observations with their estimated a
posteriori probability of being generated by fi.

Let
V t(β̂) = (V11(β̂), V12(β̂), . . . , V1k(β̂), V21(β̂), . . . , Vmk(β̂)).

The asymptotic covariance matrix of V t(β̂), say M(β), is of the same form as (3), but in general no
simple analytical expressions are available so that numerical integration is required. Details are provided
in Appendix B.

From efficient score test theory it follows that V t(β̂)M−1(β̂)V (β̂) asymptotically has a χ2
mk null dis-

tribution, and the individual component test statistics, Vir(β̂)/σir(β̂), with σ2
ir(β̂) the appropriate di-

agonal element of M(β̂), have asymptotically standard normal null distributions. We also define the
component-specific test statistics (i = 1, . . . ,m)

Sik = V ti (β̂)M
−1
i (β̂)Vi(β̂)

with V ti (β̂) = (Vi1(β̂), Vi2(β̂), . . . , Vik(β̂)) and Mi(β̂) the estimated asymptotic covariance of V̂ ti
(elements taken from M(β̂)). Under the null hypothesis Sik is asymptotically χ2

k distributed. The test
can be used for testing the goodness of fit for each component distribution separately. The test is referred
to as the component focused smooth (CFS) test.
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2.3 Smooth Tests for Mixtures of Discrete Distributions

Smooth tests 1 and 2 may also be developed for mixtures of discrete distributions of ordinal random
variables. The theory essentially remains unaltered, except that the orthonormal polynomials are now
defined on the sample space of the ordinal observations. The integrals in the orthonormality conditions
have to be replaced with sums over all elements of the sample space. We refer again to Rayner et al.
(2009) for details on smooth tests for discrete distributions.

3 Simulation Study

3.1 Settings

The performance of the proposed smooth tests is assessed in a simulation study. To reduce complexity,
but still covering continuous and discrete distributions, only testing for a mixture of normal distributions
(with m = 2, 3 and 4) and for a mixture of m = 2 Poisson distributions is considered.

All computations are performed using R (R Core Team, 2014) and the R packages mixtools and
gamlss.mx. For each setting, 2000 data sets of size n = 200 are generated. All tests were performed
at the 5% level of significance. The asymptotic null distributions do not give good approximations;
see Web Tables 1, 2, 5, 6 and 7. Therefore, based on 500 bootstrap samples, the parametric bootstrap
method has been used for the calculation of p-values.

Alternatives to the null hypotheses of a normal mixture and a Poisson mixture were constructed by
replacing one or more hypothesised component distributions by another distribution. For the mixtures
of normal, t5, gamma and lognormal distributions were considered. The alternative component dis-
tributions were shifted and scaled to have to the same mean and variance as the normal component
distributions. In particular the means were set to µ1 = 1, µ2 = 6 (for m = 2, 3 and m = 4), µ3 = 12
(for m = 3 and m = 4) and µ4 = 18 (for m = 4). The mixing probabilities were set to p1 = 0.4
and p2 = 0.6 for m = 2, p1 = 0.2, p2 = 0.4 and p3 = 0.4 for m = 3, and p1 = 0.2, p2 = 0.2,
p3 = 0.2 and p3 = 0.4 for m = 4. Tables 1 and 2 show the powers of the smooth tests for m = 2
and m = 3, respectively, for testing the null hypothesis of a mixture of normals with common variances
(σ2
i = 2; i = 2, 3). Results for m = 4 and for unequal variances are presented in Web Tables 8 up to 13.

For the mixture of two Poisson distributions, binomial and negative binomial (NB) distributions were
considered as alternative component distributions. The means of the Poisson components are set to 4
and 10. The size parameter of the binomial distribution is fixed at 20 and the probability parameter is
set to 0.2 or 0.5 so as to obtain the same mean as the Poisson component. The mixing probabilities were
set to p1 = 0.4 and p2 = 0.6 The results are presented in Table 4; all powers are based on bootstrap
p-values (500 bootstrap samples). Results based on the asymptotic null distributions are provided in
Web Table 4.

Table 5 shows the powers of three competitor goodness of fit tests: the Chernoff-Lehmann (CL) test
(dividing the observations in 10 intervals with equal estimated frequencies across intervals under the null
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hypothesis), the Anderson-Darling (AD) test and the Kolmogorov-Smirnov (KS) test. The parametric
bootstrap procedure has been used for p-value calculations to place all tests on a similar footing in
respect of distributional issues.

3.2 Results

Under the null hypotheses the type I error rates of the bootstrap tests are quite well controled at the
nominal significance level (see Tables 1 to 4). Some tests are slightly conservative. Use of the asymp-
totic null distribution is less succesful at controlling the type I error rates (see Web Tables 1, 2, 5, 7 and
8), and we recommend use of the parametric bootstrap.

To keep the exposition brief and focussed, we will give a general discussion rather than discussing all
tests and scenarios separately. Therefore, the competitor tests will be compared with the SM test. The
results of the CFS test will be discussed in terms of its diagnostic ability to identify what component
distribution deviates from the null hypothesis

Among the competitor tests, the AD test is always most powerful. See Table 5. Apart from a few
alternatives, the SM test does always better than the AD test. The power of the SM test depends on the
order r. The simulation results suggest that r = 4 or r = 5 gives overall good results for Sr and Sir.

The Vir components of the CFS test are for many scenarios diagnostic in the sense that Vir has power
when component distribution i deviates from the component distribution as specified under H0. This
diagnostic property seems to diminish when the deviating component distribution has tails that overlap
with other component distributions. This can, for example, be clearly seen from the gamma/gamma
alternative in Table 1: the V2r tests are powerful, whereas the V1r tests are not (the long right tail of the
first component distribution is masked by the second).

The Vir component tests do not succeed well in discovering the moments that deviate from the hypoth-
esised component distribution. For example, for the t/t alternative (Table 1) the Vi3 and Vi5 component
tests show substantial powers, whereas t distributions are symmetric, as are the hypothesised normal
distributions. On other occasions, however, asymmetry can be detected (e.g. V13 for gamma/normal,
V13 and V15 for lognormal/normal) as can a deviation in terms of kurtosis (e.g. V14 for the t/normal and
t/normal/normal).

From all the results presented here and in Web-based Supplementary Material, we conclude that the
new smooth tests are overall more powerful than the competitor tests considered. The SM test seems
a good choice if no assessment of individual components is wanted; we recommend r = 4 or r = 5.
The components of the CFS test often succeed in identifying the component distributions that deviate
from those hypothesised, but when the tails of the deviating component distributions are masked by the
other component distributions, this propery diminishes. In some circumstances the components of the
CFS test also succeed in detecting the moments in which the component distributions differ from the
hypothesised, but often this property fails.

All conclusions formulated here do equally well apply to m = 4 and the unequal-variance situation
(Web Tables 8 up to 13).
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4 Example

4.1 MGMT

We analyse the MGMT data sets with the two types of smooth tests. First a mixture of two normal
distributions is fitted to the data. The data and the fits are shown in Figure 1. Next the two smooth
tests, and their component tests are applied for several orders r = 3, 4, 5 and r = 6. The p-values
are computed using the bootstrap with 5000 bootstrap samples for p-value calculation. The results
are presented in Table 3. The three competitor tests (CL, AD and KS) have also been applied with
parametric bootstrap; the results are also shown in Table 3. All tests are performed at the 5% level of
significance.

For both MGMT data sets, the SM test and the competitor tests agree to reject the null hypothesis.
From the component tests of the CFS test applied to MGMT1, we conclude that the first component
distribution fits the data well, but the second does not. For MGMT2 the component tests suggest that
the first component distribution does not fit the data well, but the second does.

4.2 Snapper Length

Cassie (1954) reported lengths of 256 red snappers taken by a trawl with a mesh of about 1.5 in. The
data are shown in Web Figure 1 and clearly show a multimodal distribution. Since snappers typically
spawn in a particular season, and since young snappers show a fast and a slow growing season, growing
about 10cm per year, Cassie hypothesised that data can be described by a mixture distribution, with each
component distribution describing the length distribution of fish of a particilar age (0, 1, 2, 3, . . . years).
The question is whether he observed data from four of five age classes and whether the age-specific
lengths can be modelled with normal distributions. We fitted mixtures with m = 3 and m = 4 normal
components. The fits are depicted in Web Figure 1 and the test results are presented in Table 3 (tests are
performed as for the MGMT data).

The AD and KS tests reject the null hypotheses for m = 3 and m = 4, whereas the smooth tests do not
reject when m = 4. When m = 3 the CFS test suggests that the first component distribution does not fit
well. We have not included the results for m = 5, because with m = 4 the test results already indicate
a good fit.

We should remark that that the data contain many ties as a consequence of severe rounding. The ob-
served AD and KS test statistics, which are functionals of the difference between the empirical distribu-
tion function and the fitted mixture distribution function, are therefore large, whereas the test statistics
calculated from the parametric bootstrap samples do not suffer from this issue as the bootstrap samples
are unlikely to contain ties. This may explain the extremely small p-values for KS and AD. The CL
test shows decreasing p-values with increasing number of components. A possible explanation is that
for large m the CL test should perhaps better be calculated from a larger number of intervals, but the
optimisation of the CL test is outside the scope of this paper.
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4.3 London Deaths

A classic data set considered by a number of authors starting with Whitaker (1914) considers deaths
per day of women over 80 in London during the years 1910, 1911 and 1912 as recorded in the Times
newspaper. A mixture of two Poisson distributions is anticipated, caused by different death rates in
summer and winter. The data and the fit are depicted in Web Figure 2 and the test results are presented
in Table 3 (tests are performed as for the MGMT data). All tests accept the null hypotheses, including
the components of the CFS test.

5 Conclusion

Despite the enormous literature on goodness of fit tests, hardly any test for assessing the fit of mixtures
distributions has been published.

In this paper we have proposed two smooth tests of goodness of fit for finite mixture distributions. A first
type of smooth test considers the mixture density function as any other density function, and uses the
methodology of Rayner et al. (2009) for the construction of a smooth test. A second type of smooth tests
makes use of the mixture structure and constructs smooth test statistics for each component distribution
separately.

From an extensive simulation study that includes mixtures of continuous and mixtures of discrete distri-
butions, with two up to four component distributions, we have concluded that the parametric bootstrap
works well for controlling the type I error rates. The first smooth test has better overall powers than
any competitor test, and the second smooth test succeeds quite well in indentifying the component
distributions that deviate from the hypothesised. However, when the tails of the deviating component
distribution are masked by other component distributions, this diagnostic proporty diminishes.

The second smooth test may be considered as an improvement over the method of Hawkins et al. (1982)
in the sense that their approach applies a crisp classification of observations to component distributions
(before applying whatever test for goodness of fit), whereas we use all observations, but weighed with
their posterior probabilities.
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Appendices

A Moments of the mixture distribution

Let µ′ik = Efi {X} denote the kth noncentral moment of the ith component density fi. The kth non-
central moment of the mixture distribution f then follows immediately from

µ′k = Ef
{
Xk
}
=

∫ +∞

−∞
xk

m∑
i=1

pifi(x) =

m∑
i=1

piEfi
{
Xk
}
=

m∑
i=1

piµ
′
ik.

Rayner et al. (2008) and Rayner et al. (2009) give details on how orthonornal polynomials may be
constructed starting from a set of moments. Starting from the moments, the recurrence relations of
Rayner et al. (2008) may be used for constructing the orthonormal polynomials.

B Covariance matrices for smooth tests

The elements of the information matrices for tests 1 and 2 are listed below. For notational comfort we
write h instead of h(X;β) (similarly for other functions) and we have suppressed the dependence on
the parameters.
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The SM test

For the matrix M(β) of the SM test we need

Covf

{
h,
∂ log f

∂β

}
=

(
Covf

{
h, ∂ log f

∂p

}
Covf

{
h, ∂ log f

∂η

})t
,

where

Covf

{
h,
∂ log f

∂p

}
= Covf

{
h,
fi − fm

f

}
= Efi {h} − Efm {h} .

Because of the polynomial nature of h, we may write h = Az with zt = (1, x, x2, . . . xk) for h
containing polynomials up to order k. Hence, Efi {h} = AEfi {z} = Aµ′i with µ′i = (1, µ′i1, . . . , µ

′
ik)

t

the vector with the noncentral moments of fi up to order k. Hence,

Covf

{
h,
∂ log f

∂p

}
= Covf

{
h,
fi − fm

f

}
= A (µ′i − µ′m) .

Since each component distribution density function fi only depends on ηi (and not on the other nuisance
parameters in η), we find

∂f

∂η
=

(
τ1
∂f1
∂η1

, . . . , τm
∂fm
∂ηm

)t
.

The matrix Covf
{
h, ∂ log f

∂η

}
thus requires the elements Covf

{
h, τi

∂fi
∂ηi

}
. For many distributions the

score function ∂fi
∂ηi

is polynomial in x so that it can be written as ∂fi
∂ηi

= Cih, with h = AZ as before.
Under this condition,

Covf

{
h, τi

∂fi
∂ηi

}
= Covf

{
h, τih

t
}
Cti

=

∫
h(x)ht(x)pifi(x)dx

= piEfi
{
hht
}

= piAEfi
{
zzt
}
At,

which requires the noncentral moments of the component distribution fi.

The SM test also requires the matrix

Varf

{
∂ log f

∂β

}
= −

Ef
{
∂2 log f
∂p∂p

}
Ef
{
∂2 log f
∂η∂p

}
Ef
{
∂2 log f
∂η∂p

}
Ef
{
∂2 log f
∂η∂η

} , (6)
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with elements

Ef

{
∂2 log f

∂ηi∂ηtj

}
= −Ef

{
τiτj

∂ log fi
∂ηi

∂ log fj
∂ηtj

}
if i 6= j

= Ef

{
τi(1− τi)

∂ log fi
∂ηi

∂ log fi
∂ηti

+ τi
∂2 log fi
∂ηi∂ηti

}
if i = j

Ef

{
∂2 log f

∂pi∂pj

}
= −Ef

{(
τi
pi
− τm
pm

)(
τj
pj
− τm
pm

)}
Ef

{
∂2 log f

∂ηi∂pj

}
= −Ef

{
τi

(
τj
pj
− τm
pm

)
∂ log fi
∂ηi

}
if i 6= j

= Ef

{
τi

(
1− τi
pi

+
τm
pm

)
∂ log fi
∂ηi

}
if i = j.

The estimator of M(β) is obtained by calculating all matrices involved and subsequently substituting
β with β̂. Sometimes the expression involves Efi {zzt}, which can be estimated by expressing the
noncentral moments of fi in terms of ηi and replacing the latter with its MLE. Some the integrals have
no direct analytical expressions, but they may be numerically approximated for a given β̂.

The CFS test

The matrix M(β) of the second smooth test (efficient score test) is given by

M(β) = C(β)−A(β)B−1(β)A(β),

in which, with g given by (4),

A(β) = Ef

{
∂2 log g

∂θ∂θt

∣∣∣∣
θ=0

}
B(β) = Ef

{
∂2 log g

∂θ∂βt

∣∣∣∣
θ=0

}
C(β) = Ef

{
∂2 log g

∂β∂βt

∣∣∣∣
θ=0

}
= Ef

{
∂2 log f

∂β∂βt

}
.
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Note that C(β) equals matrix (6) of the SM test. The elements of the other two matrices are given by
the following expectations:

Ef

{
∂2 log g

∂θir∂θjs

∣∣∣∣
θ=0

}
= Ef {τiτjhirhjs}

Ef

{
∂2 log g

∂θir∂ηjs

∣∣∣∣
θ=0

}
= Ef

{
τiτjhir

(
∂ log fj
∂ηjs

− Efj
[
∂ log fj
∂ηjs

])}
Ef

{
∂2 log g

∂θir∂pi

∣∣∣∣
θ=0

}
= Ef

{
τihir

[
τj
pj
− τm
pm

]}
Ef

{
∂2 log g

∂ηir∂ηjs

∣∣∣∣
θ=0

}
= Ef

{
τiτj

(
∂ log fi
∂ηis

− Efi
[
∂ log fi
∂ηis

])(
∂ log fj
∂ηjs

− Efj
[
∂ log fj
∂ηjs

])}
Ef

{
∂2 log g

∂ηir∂pj

∣∣∣∣
θ=0

}
= Ef

{
τi

(
∂ log fi
∂ηis

− Efi
[
∂ log fi
∂ηis

])(
τj
pj
− τm
pm

)}
Ef

{
∂2 log g

∂pi∂pj

∣∣∣∣
θ=0

}
= Ef

{[
τi
pi
− τm
pm

] [
τj
pj
− τm
pm

]}
.

For many distributions it will be difficult to find an analytical expression in terms of the parameters. In
these situations the expectations may be approximated through numerical integration. The estimator of
M(β) is obtained by replacing β by β̂.

C Score statistic for the CFS test

The rth component of the score statistic to be used in the smooth test statistic for testing H0 : θi = 0 is
given by

∂ logL(θ, β)

∂θir

∣∣∣∣
θi=0

=

n∑
j=1

∂ log g(xj ; θ, β)

∂θir

∣∣∣∣
θi=0

=

n∑
j=1

1

g(xj ; θ, β)

m∑
l=1

pl
∂gl(xj ; θl, ηl)

∂θir

∣∣∣∣
θi=0

=

n∑
j=1

1

g(xj ; θ, β)
pigi(xj ; ηi)

∂ log gi(xj ; θi, ηi)

∂θir

∣∣∣∣
θi=0

=

n∑
j=1

pigi(xj ; ηi)

g(xj ; θ, β)

(
∂ logCi(xj ; θi, ηi)

∂θir
+ hir(xj ; ηi)

)∣∣∣∣
θi=0

=

n∑
j=1

τi(xj ;β)hir(xj ; ηi).

The final step follows from

∂ logCi(θi, ηi)

∂θi
= −Egi {hir(X; ηi)} , (7)
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Figure 1: Histograms, nonparametric kernel density estimates and the fitted two-component normal
mixtures of the continuous outcome of the MGMT-methylation assay for two data sets (MGMT1 and
MGMT2).

which is zero when θi = 0. Identiy (7) follows from differentiating w.r.t. θi of both sides of∫
g(x; θ, β)dx = 1.
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Table 1: Powers (%) of smooth tests for normal mixtures using parametric bootstrap. The mixtures have
m = 2 components with means µ1 = 1 and µ2 = 7, and variances σ2

1 = σ2
2 = 2. Normal (N), T5

(T), gamma (G) and lognormal (L) component distributions were considered. Powers are based on 2000
Monte Carlo runs of samples of size n = 200

order SM CFS
Vr Sr V1r V2r S1r S2r

N/N 3 6.4 6.4 5.9 5.6 5.9 5.6
4 5.8 6.8 5.6 5.6 5.6 6.1
5 6.4 6.5 5.9 4.3 5.6 5.5
6 6.2 6.6 5.6 4.7 5.2 5.2

T/N 3 19.9 19.9 28.9 9.5 28.9 9.5
4 27.2 38 41.8 8.0 41 9.9
5 29.9 37.6 27.5 6.9 39.9 12
6 33.7 37.0 31.9 6.1 38.5 11.0

T/T 3 29.1 29.1 36.7 41.0 36.7 41.0
4 61.5 60.4 44.6 54.9 42.8 51.4
5 52.8 63.4 32.4 38.3 42.4 51.2
6 71.9 67.3 34.2 42.9 42.4 52.0

G/N 3 13.4 13.4 17.1 6.2 17.1 6.2
4 12.6 13.2 1.0 7.2 11.5 6.3
5 6.4 8.1 10.6 5.6 9.3 7.5
6 3.1 8.4 3.5 5.8 7.5 8.2

G/G 3 55.2 55.2 6.8 58.3 6.8 58.3
4 23.8 50.9 1.2 33.6 11.2 54.6
5 50.7 50.0 4.3 29.8 8.4 51.6
6 26.7 45.3 3.3 23.5 8.1 50.1

L/N 3 28.2 28.2 38.5 8.0 38.5 8.0
4 17.6 29.6 8 8.8 29.8 8.5
5 10.6 17.9 24.2 7.0 23.0 8.7
6 3.6 17.6 3.0 6.2 18.0 11.0

L/L 3 79.9 79.9 10.7 84.1 10.7 84.1
4 52.5 78.2 2.6 58.0 21.3 80.7
5 82.0 78.5 9.4 50.0 16.5 78.6
6 53.4 74.9 2.9 42.3 15.1 78.1
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Table 2: Powers (%) of smooth tests for normal mixtures using parametric bootstrap. The mixtures
have m = 3 components with means µ1 = 1, µ2 = 6 and µ3 = 12 and variances σ2

1 = σ2
2 = σ2

3 = 2.
Normal (N), T5 (T), gamma (G) and lognormal (L) component distributions were considered. Powers
are based on 2000 Monte Carlo runs of samples of size n = 200.

order SM CFS
Vr Sr V1r V2r V3r S1r S2r S3r

N/N/N 3 5.7 5.7 5.2 3.9 4.5 5.2 3.9 4.5
4 5.1 5.1 4.4 4.5 4.4 4.8 3.9 4.6
5 5.6 5.3 4.9 4.6 5.6 5.1 2.8 4.1
6 5.1 4.9 4.8 5.3 5.0 4.2 2.1 4.5

T/N/N 3 12.0 12.0 19.3 4.4 6.6 19.3 4.4 6.6
4 14.0 15.8 24.2 7.6 5.3 23.6 5.0 6.3
5 16.3 19.9 16.0 4.2 6.0 24.0 4.1 6.4
6 20.3 22.0 21.8 6.4 5.4 22.0 4.0 6.5

T/T/T 3 25.1 25.1 27.7 5.2 36.1 27.7 5.2 36.1
4 37.4 39.2 27.5 14.2 41.8 27.7 12.0 40.0
5 40.7 46.8 23.6 6.1 32.3 27.7 8.7 39.9
6 54.2 52.1 23.4 12.2 33.5 27.9 9.1 41.2

G/N/N 3 5.9 5.9 5.1 4.6 5.8 5.1 4.6 5.8
4 7.1 5.8 2.0 4.8 5.3 4.8 4.6 5.2
5 6.0 6.1 6.6 4.9 5.0 5.0 3.0 5.1
6 3.6 5.1 2.8 4.6 5.0 3.7 3.0 4.9

G/G/G 3 40.9 40.9 5 8.0 46.3 5 8.0 46.3
4 16.6 34.5 1.6 6.5 29.8 2.9 6.9 43.8
5 49.1 37.6 2.9 8.6 26.5 2.7 4.8 40.8
6 24.3 35.5 2.8 4.8 22.1 2.1 6.0 40.5

L/N/N 3 11.1 11.1 7.7 4.6 6.3 7.7 4.6 6.3
4 11.0 12.1 1.6 6.3 5.3 10.3 5.6 5.3
5 9.2 8.7 11.4 5.3 6.1 7.5 3.8 5.7
6 4.0 7.0 2.1 5.3 6.3 5.6 4.2 6.1

L/L/L 3 63.6 63.6 1.2 11.6 72.3 1.2 11.6 72.3
4 35.0 59.9 2.8 10.4 53.3 5.2 13.2 69.0
5 74.6 65.1 4.1 15.3 45.6 4.2 9.2 66.8
6 47.8 63.2 3.6 5.8 39.9 2.9 11.0 66.7
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Table 3: Bootstrap p-values for the example data sets. The order only refers to the order of the SM and
CFS tests.

data order SM CFS other tests
Vr Sr V1r V2r V3r V4r CL AD KS

MGMT1 3 0.023 0.023 0.173 0.027 0.000 0.000 0.000
4 0.157 0.006 0.879 0.014
5 0.820 0.011 0.292 0.009
6 0.002 0.012 0.906 0.006

MGMT2 3 0.006 0.006 0.006 0.708 0.000 0.000 0.001
4 0.000 0.000 0.000 0.353
5 0.000 0.000 0.000 0.484
6 0.000 0.000 0.000 0.055

Snapper 3 0.068 0.068 0.017 0.021 0.312 0.066 0.000 0.000
length 4 0.021 0.054 0.020 0.920 0.695

(m = 3) 5 0.169 0.061 0.494 0.147 0.842
6 0.058 0.093 0.043 0.874 0.437

Snapper 3 0.938 0.938 0.904 0.518 0.471 0.942 0.041 0.000 0.000
length 4 0.815 0.811 0.917 0.443 0.888 0.919

(m = 4) 5 0.956 0.929 0.875 0.890 0.264 0.813
6 0.814 0.960 0.755 0.349 0.883 0.966

London 3 0.504 0.504 0.740 0.510 0.975 0.899 0.713
deaths 4 0.468 0.735 0.870 0.500

5 0.699 0.564 0.766 0.631
6 0.937 0.433 0.440 0.757
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Table 4: Powers (%) of smooth tests for Poisson mixtures using parametric bootstrap. The mixtures
have m = 2 components with means µ1 = 4 and µ2 = 10. Poisson (P), Binomial (B), and negative
binomial (NB) component distributions were considered. Powers are based on 2000 Monte Carlo runs
of samples of size n = 200

order SM CFS
Vr Sr V1r V2r S1r S2r

P/P 2 4.8 5 3.5 4.2 3.5 4.2
3 5.4 5 3.7 5.1 3.6 3.8
4 5.4 1.4 4.3 5.7 2.4 3.7
5 5.7 3.9 4.4 5.0 1.5 2.5
6 5.1 5.6 4.0 4.1 5 2.1

P/B 2 87.2 87.2 39.5 88.2 39.5 88.2
3 67.8 82.1 14.3 44.8 54.8 67.3
4 0 67.8 2.8 38.9 53.0 53.9
5 72.3 63.4 7.2 8.2 31.4 36.2
6 15.8 57.0 4.3 46.4 10.4 17.1

B/P 2 8.0 8.0 8.0 6.3 8.0 6.3
3 4.4 5.3 8.2 4.1 5.7 5.2
4 3.8 4.6 4.6 4.4 3.8 4.0
5 6.5 4.9 4.2 4.2 1.7 2.5
6 5.0 4.3 4.0 4.9 5.0 1.7

B/B 2 94.2 94.2 61.3 93.8 61.3 93.8
3 64.3 84.7 30.5 54.9 70.2 77.7
4 5 69.8 1.2 49.4 61.1 61.8
5 82.8 71.0 8.4 8.8 35.4 40.8
6 22.9 67.8 4.7 57.7 10.3 17.0

P/NB 2 99.9 99.9 71.3 99.9 71.3 99.9
3 100.0 100.0 9.9 24.7 88.1 99.9
4 85.6 100.0 16.0 100.0 89.1 99.9
5 99.9 100.0 7.1 78.9 89.5 99.9
6 98.7 100.0 6.3 100.0 89.6 99.9

NB/P 2 100.0 100.0 100.0 100.0 100.0 100.0
3 82.9 99.9 100.0 31.0 100.0 100.0
4 304 100.0 100.0 100.0 100.0 100.0
5 100.0 100.0 100.0 100.0 100.0 100.0
6 100.0 100.0 100.0 100.0 100.0 100.0

NB/NB 2 98.0 98.0 98.0 98.0 98.0 98.0
3 88.7 100.0 100.0 61.8 98.0 98.0
4 33.7 100.0 34.5 98.1 97.9 98.0
5 100.0 100.0 100.0 100.0 96.5 90.6
6 99.8 100.0 100.0 96.5 89.0 89.0
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Table 5: Powers (%) of the CL, AD and KS tests for normal and Poisson mixtures using parametric
bootstrap. The settings and abbreviations are as for Tables 1, 2 and 4. Powers are based on 2000 Monte
Carlo runs of samples of size n = 200

CL AD KS

N/N 4.8 4.3 3.9
T/N 13.8 21.8 10.2
T/T 22.8 44.9 28.4
G/N 6.0 11.4 7.2
G/G 11.2 42.6 24.0
L/N 10.0 24.1 9.4
L/L 266 738 453

N/N/N 3.7 4.8 4.4
T/N/N 6.8 10.3 5.0
T/T/T 15.5 29.3 16.4
G/N/N 5.4 6.0 4.5
G/G/G 9.6 28.5 14.5
L/N/N 5.4 9.4 5.6
L/L/L 15.4 57.2 29.0
P/P 4.8 5.4 1.8
P/B 16.0 79.4 61.0
B/P 5.5 7.5 2.1
B/B 24.6 86.2 64.5

B/NB 62.5 100.0 100.0
NB/B 99.0 100.0 100.0
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